l(o%)| Computers, Materials & & Tech Science Press
, Continua ,

Do0i:10.32604/cmc.2025.065465

ARTICLE Check for

updates

Improved PPO-Based Task Offloading Strategies for Smart Grids
Qian Wang' and Ya Zhou"""

'College of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
*School of Electrical Engineering, Xuchang University, Xuchang, 461000, China

*Corresponding Author: Ya Zhou. Email: 12004042@xcu.edu.cn
Received: 13 March 2025; Accepted: 26 May 2025; Published: 03 July 2025

ABSTRACT: Edge computing has transformed smart grids by lowering latency, reducing network congestion, and
enabling real-time decision-making. Nevertheless, devising an optimal task-offloading strategy remains challenging,
as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network
conditions. We cast the offloading problem as a Markov Decision Process (MDP) and solve it with Deep Reinforcement
Learning (DRL). Specifically, we present a three-tier architecture—end devices, edge nodes, and a cloud server—
and enhance Proximal Policy Optimization (PPO) to learn adaptive, energy-aware policies. A Convolutional Neural
Network (CNN) extracts high-level features from system states, enabling the agent to respond continually to changing
conditions. Extensive simulations show that the proposed method reduces task latency and energy consumption far
more than several baseline algorithms, thereby improving overall system performance. These results demonstrate the
effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments.

KEYWORDS: Smart grid; task offloading; deep reinforcement learning; improved PPO algorithm; edge computing

1 Introduction

The large-scale integration of renewable energy sources and the digital transformation of power grids
are imposing new stresses on traditional centralized infrastructures, including increased latency, congestion,
and energy consumption [1-5]. Modern information and communication technologies (ICT) enable smart
grids to offer real-time monitoring and fine-grained dispatching; however, the high-frequency data streams
generated by distributed energy resources (DERs) and massive Internet-of-Things (IoT) devices quickly
overwhelm cloud-centric computing [6,7].

Edge computing mitigates these bottlenecks by processing data in close proximity to its source, thereby
sharply reducing round-trip latency and easing the load on core networks [8-11]. Yet static or heuristic task-
offloading schemes are ill-suited to the smart-grid context, where load fluctuations, link-quality variations,
and privacy constraints are the norm. Deep reinforcement learning (DRL), with its ability to learn optimal
policies through interaction, has therefore become a popular choice for dynamic oftloading [12-15]. Early
methods—such as Deep Q-Networks (DQN) and their derivatives—lower mean latency but suffer from slow
convergence and limited scalability in highly coupled, multi-variable settings.

To address these challenges, we cast task offloading in smart grids as a Markov Decision Process
(MDP) and introduce a DRL-based framework that couples a convolutional neural network (CNN) for
feature extraction with an enhanced Proximal Policy Optimization (PPO) algorithm. The proposed approach

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065465
https://www.techscience.com/doi/10.32604/cmc.2025.065465
mailto:12004042@xcu.edu.cn

3836 Comput Mater Contin. 2025;84(2)

delivers adaptive, energy-aware scheduling, significantly reducing task latency and energy use in dynamic
grid environments while improving overall system performance.

Major contributions:

o MDP-based modeling across a three-tier architecture. We formulate task characteristics, system dynam-
ics, and energy expenditure for end devices, edge nodes, and cloud servers under a unified MDP, enabling
efficient task offloading.

o CNN-enhanced PPO. By integrating a lightweight CNN encoder with an improved PPO scheme, we
accelerate training and bolster adaptability to non-stationary conditions.

o Comprehensive simulations. Extensive experiments under dynamic, multi-task scenarios demonstrate
substantial gains in latency, energy savings, and resource utilization.

The remainder of this paper is organized as follows: Section 2 surveys related research; Section 3
details the system model; Section 4 reviews foundational concepts in deep reinforcement learning; Section 5
presents the MDP formulation; Section 6 describes the DRL-based offloading and scheduling strat-
egy; Section 7 evaluates performance via simulations; and Section 8 concludes the paper.

2 Related Work

Early studies relied on linear/non-linear and mixed-integer programming to solve offloading and
resource-allocation problems [16]. While these methods can approximate globally optimal oftline solutions,
their computational complexity grows exponentially with network size, and they assume static links and
loads, limiting real-time applicability.

To reduce complexity, subsequent work adopted greedy, threshold-based, or genetic heuristics [17,18].
More recently, DRL has gained prominence for its model-free, online adaptability. For instance, the Task Pre-
diction and Multi-Objective Optimization Algorithm (TPMOA) minimizes user wait and rendering delay in
wireless virtual-reality offloading [19]. Hybrid-PPO, a customized PPO variant with parameterized discrete—
continuous action spaces, improves offloading efficiency [20]. Combining a Slime-Mould Algorithm (SMA)
with an optimized Harris Hawks Optimizer (HHO), HS-HHO clusters tasks for edge-cloud collaboration,
reducing energy consumption alongside delay [21].

-

In power-IoT (PIoT) scenarios [22,23], offloading must honor the stringent real-time and reliabil-
ity requirements of power-system operations. Prior art includes quota-matching offloading in wireless
sensor networks [24], joint optimization of service caching [25], and Q-learning-driven hydro-power co-
scheduling [26]; these methods typically introduce grid-specific priorities or stochastic models to capture
pulse-load characteristics. PPO, favored for its stability and implementation ease, has been applied in
multi-agent form to cooperative offloading and resource allocation in small-cell MEC [27], vehicular
networks [28], and fog-edge hybrids [29], consistently improving delay and energy efficiency with good
distributed scalability.

Most existing studies assume stable link bandwidth and homogeneous computing capacity, overlooking
the peak-load spikes and link disturbances that frequently occur in smart grids. In addition, when faced with
high-dimensional, coupled state variables—such as link rate, task size, and residual central processing unit
(CPU) cycles—current models rarely employ lightweight feature extractors, resulting in significant infer-
ence delays. To address these shortcomings, we design a Convolutional Neural Network-Proximal Policy
Optimization (CNN-PPO) framework: the CNN first distils salient features from the high-dimensional state
space, and the resulting embeddings are fed into a shared-parameter actor—critic network that estimates both
the policy and the value function. This architecture enables real-time inference while substantially improving
training stability and scalability.

Comput Mater Contin. 2025;84(2) 3837

3 System Model and Related Mathematical Formulation
3.1 System Architecture

The smart grid integrates distributed energy resources, smart meters, electric vehicles, and other
intelligent devices via advanced wireless networks and edge-computing infrastructure, forming a highly
interactive, computation-intensive cyber-physical system. In this context, computing resources must not only
satisfy the terminal devices’ stringent real-time requirements but also preserve overall grid stability.

Fig. 1 presents a three-tier edge-computing architecture for smart grids comprising: (i) the terminal
layer, populated by local processing units (LPUs); (ii) the edge layer, implemented via mobile-edge computing
(MEC) nodes; and (iii) the cloud layer, represented by a distribution cloud center (CC). The cloud layer
undertakes centralized processing and global coordination. The terminal layer encompasses heterogeneous
electrical equipment, while the edge layer supplies intermediate computation and storage through edge nodes
and micro-data servers. Each edge node aggregates sampled data from differential-protection terminals
together with operational metrics from the distribution network, thereby enabling automated load monitor-
ing, anomaly detection, power-quality assessment, and consumption analytics. The processed insights are
then translated into control commands that regulate field devices in real time.

N [Model | Model
g Distribution | Training Update
- Cloud Server P
[C— , Coordinated Coordinated | (Coordimated Data
| Cloud Control Control ‘ ‘ ‘
| Center (CC) Control Computanou
| (o)) / P
(()) E ‘ Collaborativ H Data
’ 3 /| e Computing || Computation
N
Edge * Edge Eclge é e] Data :
Mobile Edge Nodes odes Nodesi | H - e ’
|Computing (M EC} i __ Control J{ SISO
| Acquisition coneroll | Ac : i >
quisition| ‘ Information ‘ ‘ ‘
E | Acquisition || Load Data |
1;3_?:3‘ » Inv erter
nding e e B —
o ¢ L_—:' | Opamiona | Reacive |
{ Local Plocessﬂng | Data /| Compensation |
{ Unit (LPU) !

Figure 1: Hierarchical task offloading and execution framework

3.2 Task Queue Model

In a smart-grid environment, every intelligent terminal generates a stream of application-driven tasks—
ranging from periodic data acquisition and anomaly detection to device-state monitoring, load forecasting,
and advanced analytics. We model the aggregate arrival process as a Poisson process with intensity A, which
denotes the expected number of task arrivals within a given time interval. Each individual task J; is described
by the tuple:

Ji=(t,di ki) oY)

where #% is the task generation time, representing the moment a task is triggered or determined by the data
sampling period. d; is the size of the input data for the task, typically measured in bits. The size of the task is

3838 Comput Mater Contin. 2025;84(2)

determined by the data volume to be processed, such as power consumption data collected by smart meters
or real-time information obtained from sensors. k; is the task’s computation-to-data ratio (CVR), expressed
in CPU cycles per bit. This parameter quantifies the computational complexity of the task. For instance,
complex forecasting algorithms might have a higher CVR compared to simple state monitoring tasks.

Tasks are serviced under a finite-buffer, first-come-first-served (FCFS) discipline. When the buffer
is full, additional arrivals are dropped, producing overflow events. Representing the queue as a fixed-size
matrix—each row corresponding to a single task—facilitates efficient, dynamic updates as tasks are admitted
or completed, thereby providing a tractable abstraction for subsequent scheduling and oft-loading analysis.

3.3 Communication Model

In smart grids and edge-computing scenarios, the communication module is pivotal. Wireless channels,
influenced by fading, interference, and device mobility, evolve dynamically. To capture these fluctuations,
we employ a sinusoidal time-varying channel model that reflects the periodic changes in transmission rate
commonly caused by traffic congestion or multipath propagation. Time is discretised into fixed-length slots;
the channel state is assumed to remain constant within each slot but may differ from one slot to the next,
thereby affecting both the achievable data rate and task-offloading decisions.

Let R(t) denote the instantaneous communication rate between smart terminal devices and
the edge/cloud server. To reproduce the temporal dynamics outlined above, we model R (¢) at an
arbitrary time t as:

R(t) :Ravg+AR-sin(2—;t) 2)

where R (t) represents the transmission rate at time f, R, is the average transmission rate, AR is the
amplitude of the rate fluctuation, representing the maximum deviation from the average rate, T is the period,
indicating the duration of one cycle of fluctuation.

In this model, periodic fluctuations in transmission rates are suitable for two types of communication
scenarios. For edge-to-edge communication, the transmission rate R, (t) (the data rate between devices and
edge servers) with periodic variations can be expressed as:

Rl,max + Rl,min Rl,max - Rl,min . (27Tt)
+ - S1In

R (1) = =
1 (1) 5 3 T

(3)

where Ry max and Ry min denote the maximum and minimum edge transmission rates, respectively.

For cloud communication, the transmission rate R, (¢) (the data rate between devices and the cloud
server) includes a phase offset of 180 degrees, ensuring asynchronous dynamics with edge communica-
tion rates. T, represents the phase offset or time shift of the cloud communication system. This can be
represented as:

Ry (t) = (4)

Rz,max + R2,min R2,max - Rz,min . 2m (t + TZ)
+ - SIn
2 2 T

where R, max and R; i, denote the maximum and minimum cloud transmission rates, and T, represents
the phase offset introduced to simulate asynchronous fluctuations across different communication links.

We employ a sinusoidal model to capture the periodic fluctuations of wireless channels in smart-grid

and edge-computing environments. Although this streamlined formulation omits complex phenomena such
as multipath fading and sudden blockages, it nevertheless reflects the dominant variability observed in

Comput Mater Contin. 2025;84(2) 3839

substation-level deployments with largely stationary nodes. Its low computational overhead makes the model
well-suited to analysing task-offloading and resource-optimisation strategies. Future work could extend this
framework by integrating more sophisticated channel models tailored to highly dynamic scenarios.

3.4 Computational Model

In smart grids, computational tasks can be executed either locally on terminal devices via their on-board
Local Processing Units (LPUs) or off-loaded to edge servers over wireless links. To characterise the resulting
computation time and energy expenditure, we develop analytical models for local, edge, and cloud execution.
These models quantify resource consumption and performance trade-offs among the three modes, thereby
providing theoretical guidance for optimising task-offloading decisions.

(1) Local Execution Model. Under the local execution mode, tasks are processed by the LPU on terminal
devices. LPUs typically have limited computational power but can efficiently handle latency-sensitive tasks.
For a task J; offloaded at time ¢/, the local execution time is given as:

s

where f' is the CPU frequency of the LPU, measured in cycles per second, which determines the task
execution efficiency. d; k; represents computational demand of the task, expressed in CPU cycles.

The energy consumption of local computation depends on the power consumption model of the LPU.
Generally, power p' has a nonlinear relationship with CPU frequency, expressed as:

! 1Y
pi=e(f) (©6)
where € and v are constants specific to the device. Thus, the total energy consumption for local execution is:

ej=p -t 7)

(2) Edge Execution Model. In the edge execution mode, task data is first transmitted via wireless
networks to an edge server and then processed at the server. For a task J; offloaded at time t7, the total delay
consists of two parts: data transmission delay and computation delay. It can be expressed as:

£ (]) = toa (di, t) + £5°° .

where ti (d;, t?) represents data transmission delay, depending on the data size and current wireless

channel state. t**°: computation delay at the edge server, given as:

o]
Js

where f; is the CPU frequency of the edge server. From an energy perspective, edge execution energy
consumption primarily occurs during data transmission. The energy consumption model is:

e; (t7) = pra - tea (dis t]) (10)

where piy is the power consumption rate for transmission, depending on the communication module and
transmission distance.

(3) Cloud Execution Model. In the cloud execution mode, tasks are offloaded to cloud servers for
execution. Cloud servers have the highest computational power but incur higher transmission delays and

3840 Comput Mater Contin. 2025;84(2)

energy costs due to the distance. The execution time for a task J; offloaded to the cloud at time ¢/ includes
both data transmission time and computation time:

t; (1) = toa (dis) + £7°°° (1)

exe,c

where ti, (d;, t]) represents data transmission time from the terminal device to the cloud server. f;

represents computation time on the cloud server, expressed as:

dik;
(e = | == (12)
7

where f, is the CPU frequency of the cloud server.

(4) Cloud Energy Consumption. Cloud energy consumption includes the energy used for data trans-
mission and the energy consumed by receiving results. Since cloud servers are not energy-constrained, the
energy consumption of smart devices is primarily concentrated in the communication stage:

6? = Px2* Lix2 (di) t?) (13)

where piy, is the transmission power rate, determined by the communication module and transmission
distance.

3.5 Objectives

In smart-grid environments, geographically distributed devices continually generate computational
workloads—including energy forecasting, real-time monitoring, and data analytics. Minimising latency and
energy consumption therefore depends on selecting both an appropriate execution venue and an optimal
execution schedule for each task. To address this challenge, we propose an optimisation framework that
jointly allocates computational and communication resources while orchestrating task execution, thereby
enhancing overall system performance.

For each task J;, the system must first decide whether the task should be processed locally, offloaded
to an edge server, or sent to a cloud server. We use a binary indicator a; to represent this choice: When
a; =0, the task J; is executed locally on the device’s LPU. This option is suitable for latency-sensitive tasks
with relatively low computational demands, which can be processed quickly on device, thereby avoiding
communication delays. When a; =1, the task J; is offloaded to an edge server for execution. Edge servers
can significantly reduce task execution latency while avoiding the higher transmission latencies associated
with cloud computing. When a; = 2, the task J; is further offloaded to a cloud server for execution. Cloud
servers are ideal for handling large-scale computationally intensive tasks but incur greater latency and energy
consumption due to long-distance communication.

The total delay experienced by a task J; is defined as the time elapsed from the task generation moment
t3 to the task completion time #$*¢ (measured in time units). Therefore, the delay can be expressed as a
function of the scheduling decision a; and the task’ start time ¢{, given by:

l,’(d,‘,t?) =t?+T—Z"§ (14)

where t¢ is the time at which task execution begins, t:*¢ (a;, t7) is the time required to execute the task at
the chosen location, which can be further defined as:

(9 (ai t0) = (1 af —af) -t +al - £+ al - £ (15)

Comput Mater Contin. 2025;84(2) 3841

Similarly, combining the system scheduling model, the energy consumption for task execution can be
expressed as a function of the scheduling decision and execution time:

ei(aint?)=(1-at—-a)-e +a e +a e (16)

where « is the weight coeflicient for task delay costs, representing the importance of minimizing delays. f3
is the weight coefficient for energy consumption costs, indicating the priority of reducing energy usage. The
system’s optimization objective is to minimize the total cost of the scheduling strategy, defined as the sum of
task delays and energy consumption. The comprehensive cost function is:

ci(ai,t?) :ali(ai,tf’)+ﬁe,~(a,~,tf) 17)

To optimize the execution efficiency of intelligent tasks in the smart grid, the system’s objective
is to minimize the average cost of all tasks generated within a specified time period T. The average
cost is defined as:

1 n
min lim =) ¢ (a;,t]) (18)
n iz

a,tf‘—>oo

Our model minimizes the average cost per task to optimize long-term system performance despite
challenges from random task arrivals and unpredictable wireless conditions. In dynamic smart grid scenar-
ios, where task arrival rates, data volumes, and resource availability vary, static methods fail. We propose a
Deep Reinforcement Learning (DRL) approach to achieve optimal task offloading and scheduling through
adaptive, continuous learning.

4 Background of Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) is an enhancement of traditional reinforcement learning (RL)
that introduces deep neural networks (DNNs) to approximate state representations and functions. The core
concept of RL is to enable an intelligent agent to interact with its environment and learn an optimal strategy
through continuous exploration. In reinforcement learning, at each time step n, the agent observes the
environment state s, and selects an action a,, from the action space A. The action is chosen based on a policy
7 (ay | sn), which defines the probability of executing action a,, in state s,,. Upon executing the action, the
environment transitions to a new state s,.; and returns a reward signal r,, determined by the transition
probability P (s,41sx, a,) and the reward function R (s, a,, $,+1). This process continues iteratively, starting
from an initial state s,,, and the cumulative reward expectation Gy, is expressed as:

P e (19)

gk

G =

—
I

0

where y € (0,1] is the discount factor, used to balance immediate and future rewards. By maximizing the
expected value of G,,, the agent can learn an optimal strategy to achieve the highest long-term reward.

In the mathematical framework of RL, the problem is typically defined as a Markov Decision Process
(MDP):

M= (S,A,P,R,y) (20)

where S represents state space, representing all possible environmental states. A represents action space,
representing all possible agent actions. P represents state transition probability, describing the likelihood

3842 Comput Mater Contin. 2025;84(2)

of transitioning from one state s to another s’ after executing action a. R represents reward function,
quantifying the immediate reward for performing an action in a specific state. y: discount factor, controlling
the importance of future rewards. The goal of RL is to use policy 7 to maximize the cumulative reward
expectation, defined as:

Ve () =E,[Gu | Sm = 5] (21)

where v, referred to as the state value function, represents the cumulative reward expectation for a specific
state under policy 7. For a specific state-action pair, the action-value function is defined as:

qr(s,a) =E;[Gu | Sm=5,am = a (22)

The goal of DRL is to find an optimal policy 7" that maximizes the expected cumulative reward from
any state:

Var (8) = max g« (s,a), s€S (23)

In practical applications, DRL uses deep neural networks (DNNs) to approximate policies and value
functions. Leveraging the feature representation capabilities of DNNs, DRL can adapt to large-scale state
spaces. Currently, DRL methods are categorized into two major approaches: value-based methods and
policy-based methods.

Value-Based Methods. In value-based methods, DNNs are employed to approximate the value function,
commonly referred to as the Q-network (Deep Q-Network, DQN) and its variations. The core idea is to
minimize the loss between the DNN-predicted value and the true target value, formally expressed as:

LY (0) =E, [(var (s0) = v (530))*] 24)

where s, is the state at time step n, v+ (s,) is the value function parameterized by 6, representing the
network’s training weights.

Policy-Based Methods. Policy-based methods directly use DNNs to approximate the parameterized
policy, known as the policy network. Typical policy-based algorithms include REINFORCE and Actor-
Critic, which exhibit higher sample efficiency and learning capabilities. A common policy gradient update
equation is:

VL™ (0) =E,[Velogm (a, | s.;0) A,] (25)

where 7 (a,, | s,;) represents the probability of selecting action a,, in state s,, 8 is the network weights, A,
represents advantage function, used to balance the relative quality of action a,,.

Proximal Policy Optimization (PPO). To enhance exploration while avoiding local optima, the Gener-
alized Advantage Estimation (GAE) method is introduced to balance bias and variance:

ASAE (y,¢) = ,Z (o) 1l (26)
=0

where 7, ; is the temporal difference (TD) error at step #, ¢ adjusts the balance between bias and variance.
Additionally, the PPO algorithm introduces a clipped objective function to limit policy updates, ensuring
stability and improving model robustness:

CLIP (0) =E, [min (rn (0) An,clip (ra(0),1-¢,1+ ¢€) An)] (27)

Comput Mater Contin. 2025;84(2) 3843

where r, (0) = %, e controls the range of policy updates.

Based on the above framework, this paper employs the PPO-based DRL method to design the task
offloading strategy in smart grids. The clipped objective ensures stable policy updates while enhancing the
model’s adaptability, enabling the system to make efficient scheduling decisions in dynamic communication
environments and achieve resource optimization.

5 MDP Formulation

We address the task-oftloading problem with deep reinforcement learning (DRL). By casting dynamic
task allocation as a Markov decision process (MDP), we leverage DRL to learn an offloading policy that
maximizes efficiency.

5.1 State Space

At each time step during smart grid task offloading and scheduling, the system orchestrator monitors
the current system state and determines offloading decisions. To accurately represent tasks, computational
resources, and communication link dynamics, we define the state space as a collection of relevant variables,
formally expressed as:

S = {s |s= (Q,slpul,stql,stqz,smec,scc,Rl, RZ)} (28)

where the state space S includes multiple key variables describing task execution states at the local, edge
server, and cloud server levels, as well as data transmission conditions and network states. These components
are detailed as follows:

(1) We define the task queue Q as an M x 3 matrix, where each row Q [¢][j] represents a tasK’s
generation time, data size, and computational demand. These attributes facilitate evaluating queue latency,
prioritizing time-sensitive tasks, determining oftfloading bandwidth to edge or cloud servers, and estimating
the CPU cycles required for execution.

(2) Local Processing Unit State s’ The Local Processing Unit (LPU) is responsible for handling
computational tasks at the terminal device level. The state s'P" represents the remaining CPU cycles available
for processing tasks. At time t, if the orchestrator schedules a task to be executed locally, s'™ is updated based
on the computational demand of the task d; - k;, where d; is the task’s data size and k; is the computational
intensity. As time progresses, the available computational resources gradually decrease, expressed as:

sPUTt] = max{slpul [t-1] —fl,O} (29)

where f! is the fixed computational capacity of the LPU in CPU cycles.

(3) Edge Server Transmission Queue State s'4'
from terminal devices to the edge server via the wireless network. At time t, if a task is offloaded to the edge
server, s'4 [¢] is initialized with the task’s data size d;. The transmission process depends on the channel’s

transmission rate R (t), and the state is updated as:

: This state describes the remaining data to be transmitted

5" [¢] = max {stql [t-1]-r(t-1) ,0} (30)

when s'9 [#] = 0, the task has been successfully transmitted to the edge server.

(4) Cloud Transmission Queue State s'9%: This state represents the remaining data to be transmitted

from terminal devices to the cloud server. If a task is offloaded to the cloud, s'9 [¢] is initialized with the

3844 Comput Mater Contin. 2025;84(2)

task’s data size d;. The state is updated dynamically based on the cloud transmission rate R, (t):
s [t] = max {s'? [t -1] - r, (£ -1),0} (31)

(5) Edge Server State s™“: The edge server is an extension of local processing that allows tasks to be
offloaded for execution. s™° represents the remaining CPU cycles at the edge server. At time t, if a task is
offloaded, s™¢ [¢] is updated as:

™€] = max {s™ [t ~1] - f*,0} (32)

where f* is the computational capacity of the edge server.

(6) Cloud Server State s°: The cloud center provides extensive computational power for large-scale
tasks. s represents the remaining computational resources in the cloud. When a task is processed, the state
is updated as:

s [1] = max {s [t 1] - £, 0} (33)

where f¢ is the computational capacity of the cloud server.

(7) Transmission Rates R: Transmission rates R; (¢) and R, () represent the data rates between terminal
devices, edge servers, and cloud servers. These rates depend on the current channel conditions and device
locations, directly influencing the dynamics of s'4! and s'%%.

5.2 Action Space

Within the devised MDP framework, the action space comprises three principal task-scheduling
options: Local Processing (LP), Edge Processing (EP), and Cloud Processing (CP). These alternatives are
selected to optimize task offloading in smart-grid environments by striking an effective balance between
execution latency and energy consumption. A detailed description of each action type follows.

1) Local Processing (LP): The Local Processing action refers to assigning tasks from the queue to the
Local Processing Unit (LPU) for execution. The complete set of actions can be expressed as:

LE = {LE,,LE,,...,LEq} (34)

where LE; € {1,2,...,Q} denotes the selection of the i-th task in the task queue for processing by the LPU.
This action is valid only under the following conditions: The LPU is currently in an idle state. The i-th task
exists in the task queue.

When LE; is selected, the i-th task is removed from the queue, and the LPU state is updated dynamically
based on the tasK’s attributes. The task is then executed according to the time slices defined.

2) Edge Processing (EP): The Edge Processing action refers to offloading tasks from the queue to the
Edge Server for execution. This set of actions is defined as:

EP = {EP,EP,,...,EPy} (35)

where EP; denotes the selection of the i-th task in the task queue for oftfloading to the edge server. This action
is valid only under the following conditions: The Data Transmission Unit 1 (DTU1) is idle. The i-th task exists
in the task queue.

Comput Mater Contin. 2025;84(2) 3845

When EP; is selected, the i-th task is removed from the queue, and DTUI initiates the transmission of
task data to the edge server. Upon successful data transmission, the edge server begins processing the task,
and DTUI returns to an idle state.

3) Cloud Processing (CP): The Cloud Processing action refers to offloading tasks from the queue to the
Cloud Server for execution. This set of actions is defined as:

CP={CP,CP,,...,CPy} (36)

where CP; denotes the selection of the i-th task in the task queue for offloading to the cloud server. This
action is valid only under the following conditions: The Data Transmission Unit 2 (DTU2) is idle. The i-th
task exists in the task queue.

When CP; is selected, the i-th task is removed from the queue, and DTU2 initiates the transmission
of task data to the cloud server. Upon successful data reception, the cloud server processes the task with its
higher computational capacity, returning the results to the local device, and DTU2 returns to an idle state.

4) We introduce a dynamic action selection mechanism that evaluates the system’s state—task queue,
LPU, and DTUs—at each time step. This mechanism adaptively chooses valid actions (Local Execution,
Edge Processing, Cloud Processing) based on real-time conditions to optimize resource utilization and
minimize delays. For instance, if the task queue is non-empty and the LPU is idle, local execution reduces
communication latency. If tasks demand more resources, oftfloading to edge or cloud servers becomes
available when DTUs are idle (Table 1). This dynamic scheduling mechanism ensures effective resource
allocation and improved system performance.

Table 1: Task execution status and actions under different scenarios

CaseID Task queue LPU DTU1 DTU2 Local Edge Cloud
status status status status execution (LE) execution (EP) execution (CP)
1 Non-empty Busy Empty Empty Legal Illegal Illegal
2 Non-empty Busy Busy Empty Legal Illegal Illegal
3 Non-empty Empty Busy Empty Ilegal Legal Illegal
4 Non-empty Empty Empty Busy Illegal Legal Illegal
5 Non-empty Busy Busy Busy Legal Illegal Illegal
6 Non-empty Empty Busy Busy Illegal Legal Illegal
7 Empty Empty Empty Empty Illegal Illegal Illegal

5.3 Reward Function

In a three-layer smart grid framework (terminal devices, edge servers, and cloud servers), the reward
function optimizes task offloading by balancing delay and energy consumption.

Delay and Energy Consumption Calculation: The orchestrator schedules task offloading decisions at
discrete time intervals. Assume that at time ¢,,, an action; a, is selected, transitioning the system state from
Sn €S to S, For all tasks at time t, the total delay and energy consumption are quantified based on the
task’s execution or transmission conditions. At time t, the total delay A (t) for all tasks can be expressed as:

A5 (1) = q[t] +1{sP [£] > 0} + 1{s®™ [¢] > 0} + 1{s™ [t] > 0} + 1{s®™2 [¢] > 0} + 1 {s* [t] >0} (37)

3846 Comput Mater Contin. 2025;84(2)

where g[t] is the number of tasks in the task queue. 1{-} is an indicator function evaluating whether specific

states s'PUs9t! are active. The total delay from state s, to s, is then aggregated as:

e -1

n+l"

At (Spy @nsSna1) = Z A (1) (38)

t=to

At time t, the total energy consumption A? (t) is related to local computation and data transmission. It
is given by:

AS () = p' - 1{sP [£] > 0} + p™ - 1{s®™ [£] > 0} + p"* - 1{s*™* [¢] > 0} (39)

Thus, the total energy consumption during the transition is:

e -1

n+l"

t
A, (Sn’ ana5n+1) = ASe (t) (40)

t=t¢
Therefore, the overall cost is:
cost (Sy> Aps Snr1) = & (Sys dys Sps1) + BAe (Sus Ans Sns1) (41)

where « and 8 are weighting factors balancing delay and energy consumption.

To optimize task offloading strategies, the reward function is defined as the negative of the total cost:

R (Sp>AnsSpe1) = —ks - cOSt (Sy5 A, Sps1) (42)

where k is a scaling constant to adjust the range of reward values.

Cumulative Reward Function. In the smart grid task offloading problem, the cumulative reward
function evaluates the long-term performance of a scheduling strategy. Starting from an initial state s,, € S,
the system interacts with the environment iteratively, selecting actions a,, € A. This forms a Markov Decision
Process (MDP), and the cumulative reward function is:

Gp = Z)/"R (5m+na am+n;5m+n+l) > Sm €S (43)
n=0

where G, is the total reward obtained starting from state;s,,. y € [0,1] is the discount factor balancing
immediate and future rewards.

By maximizing G,,, the task offloading strategy can be optimized to minimize delays and energy
consumption while maintaining system efficiency. For y = 1, the cumulative reward represents the sum
of all delays and energy costs. Thus, finding the optimal strategy n* aligns with minimizing the original
objective function. However, due to the vast state space, we plan to utilize Deep Reinforcement Learning
(DRL) for training.

6 DRL-Based Task Offloading and Scheduling

This section presents a novel deep neural network (DNN) architecture trained with Proximal Policy
Optimization (PPO). The DNN is tailored to extract complex patterns from high-dimensional data, while
PPO updates the policy parameters in a way that carefully balances exploration and exploitation, thereby

Comput Mater Contin. 2025;84(2) 3847

ensuring stable convergence. Comprehensive experiments show that the proposed method yields significant
performance improvements over prevailing approaches.

6.1 Network Architecture

As illustrated in Fig. 2, the proposed DRL framework is designed to simultaneously approximate the
task offloading policy and estimate the value function. To achieve this, we develop a parameter-sharing deep
neural network (DNN) that approximates two objectives: the task offloading policy 7 («, | s,; 0), which
selects the optimal offloading action, and the value function v (s,; w), which evaluates the advantage function

to optimize the policy.
Softmax
[FC Layers)

LD\
N

CNN Layers

[Queue State J [Other State j

I T

[Input Layer j

Figure 2: Neural network architecture

Due to the overwhelming size of the input state, processing becomes challenging; moreover, since
the data stored in task queue Q are structured, we employed a Convolutional Neural Network (CNN)
for feature extraction. Subsequent studies have demonstrated that this architecture significantly enhances
training performance compared to using solely fully connected layers.

6.2 Training Algorithm

We use a shared-parameter DNN where the objective function combines errors from both the policy and
value networks. To enhance sample efficiency and stabilize policy updates, we employ Generalized Advantage
Estimation (GAE).

The policy network is optimized using the PPO Clipped Objective, while the value network minimizes
the state-value error. The overall optimization objective is expressed as:

L7 (8) = E, [LS"" (6) — cL (6)] (44)

where c is a loss coefficient used to balance the loss between the policy and value networks.

As shown in Algorithm 1, the training process alternates between sampling and optimization phases.
During the sampling phase, the old policy 7,14 is used to generate N trajectories, with each trajectory

3848 Comput Mater Contin. 2025;84(2)

containing multiple time-step data points: n. At each time step #, based on the current environment state s,,,
an action is selected, and the corresponding reward and the next state are recorded.

Algorithm 1: Training algorithm for dynamic task oft loading based on PPO

1: Initialize the deep neural network (DNN) parameters 6 to obtain the initial policy 7g.

2: Initialize the environment with dynamic transmission rates and task arrival patterns.

3: Set the hyperparameters: «, 3,y for cost function weights and PPO-specific parameters.

4: for iteration=1,2,...,do

5./ Sampling Phase (Exploration)/

6: for i=12,...,, Ndo

7: Generate a trajectory 7; by interacting with the environment E using policy 7.

8: Calculate the Generalized Advantage Estimation (GAE) AS4F for each step n in 7; according
to Equation.

9: end for

10: Store all trajectories into the dataset T.

11: / Optimization Phase (Exploitation)/

12: for epoch=12, ...,K do

13: Update the policy 7y using the objective function LP7° (6) by maximizing the cumulative reward
via Adam optimizer.

14: end for
15 Synchronize g ,, < .
16: end for

17: Output the trained policy 7y

To improve training efficiency, the Generalized Advantage Estimate ASAE(V’A)

trajectory and stored in two sets: T (Trajectories) and A (Advantages).

is precomputed for each

During the optimization phase, the collected trajectory data are used to update the policy network.
The parameters 6 are optimized over multiple epochs using stochastic gradient ascent. The objective is to
maximize the PPO loss function L*© (6). In each epoch, the Adam optimizer is used to update the policy
parameters. After optimization is completed, the updated parameters replace the old policy 7,4, and the
data sets T and A are cleared to prepare for the next iteration.

During sampling, the exploration policy may choose invalid actions—for example, executing tasks
locally when the LPU is saturated. To prevent errors, a validity constraint mechanism is implemented:
invalid actions are ignored, the current state is maintained, and a valid action is reselected, ensuring that
optimization proceeds correctly.

7 Performance Evaluation

This section provides a comprehensive evaluation of the proposed PPO-based Offloading Strategy
Method (PPO-OSM) through extensive simulation experiments. The algorithm and its neural architecture
are implemented in TensorFlow. Key simulation settings and training hyper-parameters are summarized
in Tables 2 and 3 [30], respectively.

Comput Mater Contin. 2025;84(2) 3849

Table 2: Simulation settings

Parameter Value
Length of time slot 0.01s
LPU’s CPU frequency f 0.4 GHz
LPU power linear parameter £ 1.3 x1072°
LPU power exponential parameter v 3
Cloud server’s CPU frequency f, 5 GHz
Wireless transmission power p'*! 25W
Wireless transmission power p'*? 35W
Size of task input data d; [0.3,3.5] MB
Computation-to-volume ratio «; [130, 3400] cycles/byte
Size of task queue Q 25
Edge transmission rate range 7 (1, 50] Mbps
Cloud transmission rate range r, (0.5, 60] Mbps
Task arrival rate A Dynamic (0.5 + variation)

Table 3: Training parameters

Parameter Value Parameter Value

Clipping range 0.1 Optimization method Adam
Entropy coefficient 0.05 Adv. discount factor ¢~ 0.95
Learning rate 0.003 Discount factor y 0.99
Clipping range 0.1 Reward scaling factor k 2.0

We set the time step duration to 0.01 s, during which the system updates task scheduling and status
at each interval. Parameters for the Local Processing Unit (LPU) are configured based on. Thus, the local
computational power consumption p' is determined as p' = £(f')”). The power consumption for edge and
cloud transmission is set as p™*! = 2.5 W, p'** = 3.5 W, respectively. Each task’s data size d; and computational
complexity «; are sampled from uniform distributions defined in Table 2.

In smart grid environments, transmission rates change dynamically over time due to variations in node
distance and other factors. We use a sinusoidal model to represent these periodic rate fluctuations. Specifi-
cally, R1 simulates communication between users and nearby edge nodes, while R2 models communication
between terminal devices and the cloud. Although R2 generally provides higher bandwidth, its variability
can be more pronounced, reflecting trade-offs between edge and cloud offloading.

Our simulation integrates system parameters—such as LPU configurations, edge servers (MEC), and
cloud computing (CC) resources—to form a cohesive environment. As task complexity increases, DRL-based
scheduling strategies like PPOOSM adapt to changing conditions, learn optimal offloading decisions, and
enhance overall task scheduling performance.

7.1 Convergence Performance

To assess the efficacy of the proposed PPO-based Offloading Strategy Method (PPO-OSM), we
conducted experiments under the conditions illustrated in Fig. 3. PPO-OSM was benchmarked against a

3850 Comput Mater Contin. 2025;84(2)

baseline PPO implementation that uses only fully connected (FC) layers; both algorithms were trained
with identical hyper-parameters, and their learning curves were logged. As shown in Fig. 3, PPO-OSM
consistently achieves higher cumulative rewards and converges more rapidly than the baseline.

-10 -

[~
=
Il
Il

2L

=4
|
|

-40 K

Average Reward

-50 -

—PPOOSM
-60 —PPO .

1 T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Epoch

Figure 3: Comparison of average reward over training epochs for PPO and PPO-OSM

Our experiments show that PPOOSM significantly accelerates training, with cumulative rewards
stabilizing after about 100 epochs. In contrast, the FC-based PPO algorithm exhibits erratic performance
and slower convergence—its cumulative rewards even drop around 500 epochs. Additionally, PPOOSM
enhances both task offloading and strategy optimization, effectively balancing task delay and energy
consumption. Overall, these results demonstrate that PPOOSM is more efficient, stable, and robust for
optimizing task offloading in dynamic environments than the conventional FC-based PPO.

7.2 Analysis of Performance under Different Biases

We assessed the proposed PPO-based offloading strategy (PPOOSM) under a range of latency-energy
preference settings and benchmarked it against five representative baselines:

o All-Local Execution (AL): every task is processed entirely on the device’s local CPU.

o All-Edge Offloading (AE): all tasks are offloaded to an edge server, regardless of wireless-channel
conditions. All-Cloud Offloading (AC): all tasks are transmitted straight to the cloud, ignoring backhaul
and fronthaul constraints.

o PPO: the standard Proximal Policy Optimization algorithm directly applied to the offloading decision
problem, with no additional multi-objective shaping.

« Genetic Algorithm (GA): a heuristic implemented with the DEAP library that evolves oftloading
decisions through selection, crossover, and mutation.

Asillustrated in Figs. 4 and 5—which decompose the overall cost into latency and energy components—
the six evaluated strategies display markedly different behaviours as the latency-weighting factor a increases
(B is fixed at 1). All-Local execution (AL), in which every task is processed on the resource-constrained
device, consistently yields the highest delay and energy consumption. All-Edge (AE) and All-Cloud (AC)
offloading shorten latency slightly relative to AL, yet they remain energy-intensive and cannot adapt to
wireless-channel fluctuations, causing their performance to cluster in the upper regions of both plots.

Comput Mater Contin. 2025;84(2) 3851

The heuristic Genetic Algorithm (GA) reduces delay appreciably—especially when a < 0.3—but achieves
only moderate energy savings. PPO further lowers energy consumption through policy-gradient updates,
although its average delay is still marginally higher than that of GA. By contrast, PPOOSM adapts its
offloading policy online and therefore attains the lowest energy usage across all settings; moreover, once
a~ 0.3, it also achieves the smallest delay among all schemes. These results demonstrate that PPOOSM offers
the most favourable latency—energy trade-off in realistic smart-grid scenarios.

T T T T T
25 AL AE AC .
GA PPO PPOOSM
20 1 1
=
=
[*]
Q154 A
[¥]
[=T1]
E
[¥]
>
< 10 =
51 _
0 T T T T T
0.1 0.2 0.3 0.4 0.5

User Preference (o,p=1)

Figure 4: Comparison of average delay

T I T T I
554 AL AE AC i
- GA PPO PPOOSM
2.0 -
]
20
¥
= -
m 1.5 =
-]
=T)]
-]
5
Z 1.0 J
0.5 .
0.0 T T T T T
0.1 0.2 0.3 0.4 0.5

User Preferrence (a,p=1)

Figure 5: Comparison of average energy

Fig. 6 reveals that the static schemes—AL, AE, and AC—incur the highest overall cost because they
lack the flexibility required to cope with a dynamic environment. In contrast, PPOOSM, GA, and PPO
strike a more favorable balance between computation and transmission expenses. Notably, by embedding a
convolutional neural network (CNN) within its policy network, PPOOSM not only reduces the average cost
most substantially but also delivers superior stability and adaptability compared with GA and PPO.

3852 Comput Mater Contin. 2025;84(2)

12.5 T T T T T
AL AE AC
GA PPO PPOOSM
10. 0 .
B .-
< oA =1
o
o
=i}
il
o
E 5.0+ -
2.5 1
0.0 T T T T T
0.1 0.2 0.3 0.4 0.5

User Preference (a,p=1)

Figure 6: Comparison of average cost

7.3 Performance Analysis in Dynamic Queue Scenarios

In the Dynamic Queue Scenario (DQS), we evaluated the performance of different task offloading
strategies as the task load incrementally increased. The analysis particularly focused on variations in average
delay, energy consumption, and overall cost. In the experiments, we set the parameters a = 0.4, f = 1,
simulating each algorithm under varying load factors ranging from 0.1 (low load) to 1.0 (high load). Through
the analysis of experimental data, we could clearly observe the performance advantages of each strategy
under different load levels.

As the workload intensity A increases (Figs. 7 and 8), all schemes experience higher latency, but the
growth rates diverge: AL climbs most steeply, while AC and AE deteriorate once network congestion sets in.
PPO keeps delay low with an almost linear trend, and PPOOSM flattens the curve even further, achieving the
smallest latency across the entire range. Energy consumption follows the same ordering: the static policies
(AL, AE, AC) remain high and nearly flat, PPO cuts energy appreciably, and PPOOSM delivers the lowest
and most stable profile. Overall, PPOOSM offers the best latency-energy trade-off, with PPO serving as a
strong adaptive baseline that consistently outperforms all fixed strategies.

65 T T T T T T T T
60 —=—AL

*— AE
——— AC
| ——rrO
—*— PPOOSM

T L} 1 T
0.1 0.2 03 0.4 0.5 06 07 0.8 09 1.0
System workload A

Figure 7: Average delay under different workloads

Comput Mater Contin. 2025;84(2)

Average Energy

3.0

o]
(5]
1

Lo
o
1

3,
Il

T T T T T T T T
—=— AL

o— AE g
—a— AC
—»—PPO

+— PPOOSM .
P_F-——'—-—-r—F“‘”""““H‘.____._____F—l—-—'—"—‘*—H-.H—f“"‘

r._s_—&___‘__‘__‘u___ﬂ_‘———'—‘———i——ﬂ_-‘

—,— . . '___—4
—
= o
o 4
¥ —— T
=il — i
—r— d
———— — —yr
¥ e &

T
.1 0.2 03 04 05 06 07 08 09 1.0

T T T T T T T

System workload A

Figure 8: Average energy under different workloads

3853

Fig. 9 charts the composite cost—latency plus energy—against workload intensity A for five schemes.
The three static policies (AL, AE, AC) exhibit the highest and steepest cost growth because they cannot adapt
to changing conditions. Vanilla PPO reduces the curve substantially by continuously refining its off-loading
policy, yet PPOOSM remains dominant, yielding the lowest cost across the entire workload range. Equipped
with a CNN-enhanced state encoder and an a—[-weighted objective, PPOOSM dynamically reallocates tasks

in real time, achieving superior multi-objective optimisation in non-stationary edge environments.

8 Conclusion

Average Cost

35

—a— AL

T T T T

T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
System workload A

Figure 9: Average cost under different workloads

This paper presents a Proximal-Policy-Optimisation-based Offloading Strategy Model (PPOOSM)
that allocates computational resources efficiently for task-offloading in smart-grid environments. By for-
mulating the off-loading problem as a Markov decision process (MDP), the framework integrates deep
reinforcement learning through a shared convolutional neural network and a clipped objective function,

3854 Comput Mater Contin. 2025;84(2)

markedly improving training stability. Extensive simulations demonstrate that, under dynamic off-loading
conditions, PPOOSM reduces both latency and energy consumption, outperforming conventional baseline
algorithms and heuristic methods. Relative to static allocation strategies, it achieves a more favourable
latency-energy trade-off and exhibits superior adaptability and robustness, particularly at high load. These
findings confirm the viability of deep reinforcement learning for task-oftfloading decisions and provide an
efficient, flexible solution for real-time scheduling in smart grids, underscoring its significant potential for
practical engineering deployment and broad adoption.

Acknowledgement: We would sincerely want to thank the peoples who are supported to do this work and reviewing
committee for their estimable feedbacks.

Funding Statement: This work was supported by the National Natural Science Foundation of China (Grant No.
62103349) and the Henan Province Science and Technology Research Project (Grant No. 232102210104).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Ya
Zhou, Qian Wang; data collection: Qian Wang; analysis and interpretation of results: Qian Wang; draft manuscript
preparation: Qian Wang, Ya Zhou. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The datasets generated or analyzed during the current study are not pub-
licly available due to privacy and confidentiality concerns, but are available from the corresponding author on
reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. Acarali D, Chugh S, Rao KR, Rajarajan M. IoT deployment and management in the smart grid. In: Ranjan R,
Mitra K, Jayaraman PP, Zomaya AY, editors. Managing Internet of Things applications across edge and cloud data
centres. London, UK: The Institution of Engineering and Technology; 2024. p. 255-75. d0i:10.1049/PBPC027E_
chil.

2. Al-Bossly A. Metaheuristic optimization with deep learning enabled smart grid stability prediction. Comput Mater
Contin. 2023;75(3):6395-408. d0i:10.32604/cmc.2023.028433.

3. Ahmed RA, Abdelraouf M, Elsaid SA, ElAffendi M, Abd El-Latif AA, Shaalan AA, et al. Internet of Things-based
robust green smart grid. Comput. 2024;13(7):169. doi:10.3390/computers13070169.

4. Aminifar F. Evolution in computing paradigms for Internet of Things-enabled smart grid applications. In:
Proceedings of the 2024 5th CPSSI International Symposium on Cyber-Physical Systems (Applications and
Theory) (CPSAT); 2024 Oct 16-17; Tehran, Iran. doi:10.1109/CPSAT64082.2024.10745414.

5. Arcas GI, Cioara T, Anghel I, Lazea D, Hangan A. Edge offloading in smart grid. arXiv:2402.01664.
2024.

6. LiK, Meng], Luo G, Hou L, Cheng H, Liu M, et al. Fusion-communication MEC offloading strategy for smart
grid. Dianli Xinxi Yu Tongxin Jishu. 2024;22(6):10-7. (In Chinese). doi:10.16543/j.2095-641X .electric.power.ict.
2024.06.02.

7. LiuM, Tu Q Wang Y, Meng S, Zhao X. Research status of mobile cloud computing oftfloading technology and its
application in the power grid. Dianli Xinxi Yu Tongxin Jishu. 2021;19(1):49-56. (In Chinese). doi:10.16543/j.2095-
641X.electric.power.ict.2021.01.007.

8. ZhangN, Li WJ, Liu Z, Li Z, Liu YM, Nahar N. A new task scheduling scheme based on genetic algorithm for edge
computing. Comput Mater Contin. 2022;71(1):843-54. doi:10.32604/cmc.2022.017504.

9. Han X, Dai], Wang Y. Research on edge computing-oriented resource-aware access and intelligent gateway
technology for power transmission, transformation and distribution. In: Proceedings of the 2023 International

https://doi.org/10.1049/PBPC027E_ch11
https://doi.org/10.1049/PBPC027E_ch11
https://doi.org/10.32604/cmc.2023.028433
https://doi.org/10.3390/computers13070169
https://doi.org/10.1109/CPSAT64082.2024.10745414
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2024.06.02
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2024.06.02
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2021.01.007
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2021.01.007
https://doi.org/10.32604/cmc.2022.017504

Comput Mater Contin. 2025;84(2) 3855

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24,

25.

26.

Conference on Applied Intelligence and Sustainable Computing (ICAISC); 2023 Jun 16-17; Dharwad, India. p. 1-6.
doi:10.1109/ICAISC58445.2023.10199983.

Wei H, Guan Y, Zhao Q, Zhang T, Liu J, Zhang H. A novel distributed computing resource operation mechanism
for edge computing. In: Proceedings of the 2023 9th International Conference on Computer and Communications
(ICCC); 2023 Dec 8-11; Chengdu, China. p. 2593-8. d0i:10.1109/ICCC59590.2023.10507521.

Dong S, Tang J, Abbas K, Hou R, Kamruzzaman J, Rutkowski L, et al. Task oftloading strategies for mobile edge
computing: a survey. Comput Netw. 2024;254(6):110791. doi:10.1016/j.comnet.2024.110791.

Park S, Kwon D, Kim J, Lee YK, Cho S. Adaptive real-time oftfloading decision-making for mobile edges: deep
reinforcement learning framework and simulation results. Appl Sci. 2020;10(5):1663. doi:10.3390/appl0051663.
Peng P, Lin W, Wu W, Zhang H, Peng S, Wu Q, et al. A survey on computation offloading in edge systems: from the
perspective of deep reinforcement learning approaches. Comput Sci Rev. 2024;53(5):100656. doi:10.1016/j.cosrev.
2024.100656.

Zhu C, Xia L, Qin C. Research progress and prospects of deep reinforcement learning in the field of mobile
edge computing. In: Ning Z, Xiong Z, editors. Proceedings of the Fifth International Conference on Computer
Communication and Network Security (CCNS 2024); 2024 May 3-5; Guangzhou, China. p. 1322813. doi:10.1117/
12.3038174.

Gao Z, Wu G, Shen Y, Zhang H, Shen S, Cao Q. DRL-based optimization of privacy protection and com-
putation performance in MEC computation offloading. In: IEEE INFOCOM 2022—IEEE Conference on
Computer Communications Workshops (INFOCOM WXKSHPS); 2022 May 2-5; Online. p. 1-6. doi:10.1109/
INFOCOMWKSHPS54753.2022.9797993.

Alfa AS, Maharaj BT, Lall S, Pal S. Resource allocation techniques in underlay cognitive radio networks based on
mixed-integer programming: a survey.] Commun Netw. 2016;18(5):744-61. d0i:10.1109/JCN.2016.000104.

Wei E, Chen S, Zou W. A greedy algorithm for task offloading in mobile edge computing system. China Commun.
2018;15(11):149-57. doi:10.1109/CC.2018.8543056.

Umair M, Saeed Z, Saeed F, Ishtiaq H, Zubair M, Hameed HA. Energy theft detection in smart grids with genetic
algorithm-based feature selection. Comput Mater Contin. 2023;74(3):5431-46. d0i:10.32604/cmc.2023.033884.
Wang J, Xia H, Xu L, Zhang R, Jia K. DRL-based latency-energy offloading optimization strategy in wireless VR
networks with edge computing. Comput Netw. 2025;258:111034. d0i:10.1016/j.comnet.2025.111034.

Wang T, Deng Y, Yang Z, Wang Y, Cai H. Parameterized deep reinforcement learning with hybrid action space for
edge task offloading. IEEE Internet Things J. 2024;11(6):10754-10767. doi:10.1109/JI0T.2023.3327121.

LiH, Liu L, Duan X, Li H, Zheng P, Tang L. Energy-efficient offloading based on hybrid bio-inspired algorithm for
edge-cloud integrated computation. Sustain Comput Inform Syst. 2024;42(11):100972. doi:10.1016/j.suscom.2024.
100972.

Wang W, Yang L, Long T, Zhang X, Zhang M. Mobile edge computing task offloading method for the power Internet
of Things. In: Proceedings of the 2024 IEEE 7th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC); 2024 Sep 20-22; Chongqing, China. p. 118-22. doi:10.1109/ITTNEC60942.2024.
10733102.

Cui], Li Y, Yang H, Wei Y, Liu W, Ji C, et al. Quota matching-based task offloading for WSN in smart grid. In:
Proceedings of the 2022 7th International Conference on Electronic Technology and Information Science (ICETIS
2022); 2022 Jan 21-23; Harbin, China. p. 1-4.

HuJ,LiY, Zhao G, Xu B, Ni Y, Zhao H. Deep reinforcement learning for task offloading in edge computing assisted
power IoT. IEEE Access. 2021;9:93892-901. doi:10.1109/ACCESS.2021.3092381.

Zhou H, Zhang Z, Li D, Su Z. Joint optimization of computing oftfloading and service caching in edge computing-
based smart grid. IEEE Trans Cloud Comput. 2023;11(2):1122-32. doi:10.1109/TCC.2022.3163750.

Nimkar S, Khanapurkar MM. Design of a Q-learning based smart grid and smart water scheduling model based
on heterogeneous task specific offloading process. In: Proceedings of the 2022 International Conference on Smart
Generation Computing, Communication and Networking (SMART GENCON); 2022 Dec 23-25; Bangalore, India.
p- 1-9. d0i:10.1109/SMARTGENCON56628.2022.10084189.

https://doi.org/10.1109/ICAISC58445.2023.10199983
https://doi.org/10.1109/ICCC59590.2023.10507521
https://doi.org/10.1016/j.comnet.2024.110791
https://doi.org/10.3390/app10051663
https://doi.org/10.1016/j.cosrev.2024.100656
https://doi.org/10.1016/j.cosrev.2024.100656
https://doi.org/10.1117/12.3038174
https://doi.org/10.1117/12.3038174
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9797993
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9797993
https://doi.org/10.1109/JCN.2016.000104
https://doi.org/10.1109/CC.2018.8543056
https://doi.org/10.32604/cmc.2023.033884
https://doi.org/10.1016/j.comnet.2025.111034
https://doi.org/10.1109/JIOT.2023.3327121
https://doi.org/10.1016/j.suscom.2024.100972
https://doi.org/10.1016/j.suscom.2024.100972
https://doi.org/10.1109/ITNEC60942.2024.10733102
https://doi.org/10.1109/ITNEC60942.2024.10733102
https://doi.org/10.1109/ACCESS.2021.3092381
https://doi.org/10.1109/TCC.2022.3163750
https://doi.org/10.1109/SMARTGENCON56628.2022.10084189

3856 Comput Mater Contin. 2025;84(2)

27. LiH, Xiong K, Lu Y, Chen W, Fan P, Letaief KB. Collaborative task offloading and resource allocation in small-cell
MEC: a multi-agent PPO-based scheme. IEEE Trans Mob Comput. 2025;24(3):2346-59. d0i:10.1109/TMC.2024.
3496536.

28. Mustafa E, Shuja J, Rehman F, Namoun A, Bilal M, Igbal A. Computation offloading in vehicular communications
using PPO-based deep reinforcement learning.] Supercomput. 2025;81(4):547. doi:10.1007/s11227-025-07009-z.

29. Goudarzi M, Palaniswami M, Buyya R. A distributed deep reinforcement learning technique for application
placement in edge and fog computing environments. IEEE Trans Mob Comput. 2023;22(5):2491-505. d0i:10.1109/
TMC.2021.3123165.

30. Dinh TQ, Tang J, La QD, Quek TQS. Offloading in mobile edge computing: task allocation and computational
frequency scaling. IEEE Trans Commun. 2017;65(8):3571-84. doi:10.1109/TCOMM.2017.2699660.

https://doi.org/10.1109/TMC.2024.3496536
https://doi.org/10.1109/TMC.2024.3496536
https://doi.org/10.1007/s11227-025-07009-z
https://doi.org/10.1109/TMC.2021.3123165
https://doi.org/10.1109/TMC.2021.3123165
https://doi.org/10.1109/TCOMM.2017.2699660

	Improved PPO-Based Task Offloading Strategies for Smart Grids
	1 Introduction
	2 Related Work
	3 System Model and Related Mathematical Formulation
	4 Background of Deep Reinforcement Learning DRL
	5 MDP Formulation
	6 DRL-Based Task Offloading and Scheduling
	7 Performance Evaluation
	8 Conclusion
	References

