
echT PressScience

Doi:10.32604/cmc.2025.065465

ARTICLE

Improved PPO-Based Task Offloading Strategies for Smart Grids

Qian Wang1 and Ya Zhou1,2,*

1College of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
2School of Electrical Engineering, Xuchang University, Xuchang, 461000, China
*Corresponding Author: Ya Zhou. Email: 12004042@xcu.edu.cn
Received: 13 March 2025; Accepted: 26 May 2025; Published: 03 July 2025

ABSTRACT: Edge computing has transformed smart grids by lowering latency, reducing network congestion, and
enabling real-time decision-making. Nevertheless, devising an optimal task-offloading strategy remains challenging,
as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network
conditions. We cast the offloading problem as a Markov Decision Process (MDP) and solve it with Deep Reinforcement
Learning (DRL). Specifically, we present a three-tier architecture—end devices, edge nodes, and a cloud server—
and enhance Proximal Policy Optimization (PPO) to learn adaptive, energy-aware policies. A Convolutional Neural
Network (CNN) extracts high-level features from system states, enabling the agent to respond continually to changing
conditions. Extensive simulations show that the proposed method reduces task latency and energy consumption far
more than several baseline algorithms, thereby improving overall system performance. These results demonstrate the
effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments.

KEYWORDS: Smart grid; task offloading; deep reinforcement learning; improved PPO algorithm; edge computing

1 Introduction
The large-scale integration of renewable energy sources and the digital transformation of power grids

are imposing new stresses on traditional centralized infrastructures, including increased latency, congestion,
and energy consumption [1–5]. Modern information and communication technologies (ICT) enable smart
grids to offer real-time monitoring and fine-grained dispatching; however, the high-frequency data streams
generated by distributed energy resources (DERs) and massive Internet-of-Things (IoT) devices quickly
overwhelm cloud-centric computing [6,7].

Edge computing mitigates these bottlenecks by processing data in close proximity to its source, thereby
sharply reducing round-trip latency and easing the load on core networks [8–11]. Yet static or heuristic task-
offloading schemes are ill-suited to the smart-grid context, where load fluctuations, link-quality variations,
and privacy constraints are the norm. Deep reinforcement learning (DRL), with its ability to learn optimal
policies through interaction, has therefore become a popular choice for dynamic offloading [12–15]. Early
methods—such as Deep Q-Networks (DQN) and their derivatives—lower mean latency but suffer from slow
convergence and limited scalability in highly coupled, multi-variable settings.

To address these challenges, we cast task offloading in smart grids as a Markov Decision Process
(MDP) and introduce a DRL-based framework that couples a convolutional neural network (CNN) for
feature extraction with an enhanced Proximal Policy Optimization (PPO) algorithm. The proposed approach

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065465
https://www.techscience.com/doi/10.32604/cmc.2025.065465
mailto:12004042@xcu.edu.cn

3836 Comput Mater Contin. 2025;84(2)

delivers adaptive, energy-aware scheduling, significantly reducing task latency and energy use in dynamic
grid environments while improving overall system performance.

Major contributions:

• MDP-based modeling across a three-tier architecture. We formulate task characteristics, system dynam-
ics, and energy expenditure for end devices, edge nodes, and cloud servers under a unified MDP, enabling
efficient task offloading.

• CNN-enhanced PPO. By integrating a lightweight CNN encoder with an improved PPO scheme, we
accelerate training and bolster adaptability to non-stationary conditions.

• Comprehensive simulations. Extensive experiments under dynamic, multi-task scenarios demonstrate
substantial gains in latency, energy savings, and resource utilization.

The remainder of this paper is organized as follows: Section 2 surveys related research; Section 3
details the system model; Section 4 reviews foundational concepts in deep reinforcement learning; Section 5
presents the MDP formulation; Section 6 describes the DRL-based offloading and scheduling strat-
egy; Section 7 evaluates performance via simulations; and Section 8 concludes the paper.

2 Related Work
Early studies relied on linear/non-linear and mixed-integer programming to solve offloading and

resource-allocation problems [16]. While these methods can approximate globally optimal offline solutions,
their computational complexity grows exponentially with network size, and they assume static links and
loads, limiting real-time applicability.

To reduce complexity, subsequent work adopted greedy, threshold-based, or genetic heuristics [17,18].
More recently, DRL has gained prominence for its model-free, online adaptability. For instance, the Task Pre-
diction and Multi-Objective Optimization Algorithm (TPMOA) minimizes user wait and rendering delay in
wireless virtual-reality offloading [19]. Hybrid-PPO, a customized PPO variant with parameterized discrete–
continuous action spaces, improves offloading efficiency [20]. Combining a Slime-Mould Algorithm (SMA)
with an optimized Harris Hawks Optimizer (HHO), HS-HHO clusters tasks for edge–cloud collaboration,
reducing energy consumption alongside delay [21].

In power-IoT (PIoT) scenarios [22,23], offloading must honor the stringent real-time and reliabil-
ity requirements of power-system operations. Prior art includes quota-matching offloading in wireless
sensor networks [24], joint optimization of service caching [25], and Q-learning-driven hydro–power co-
scheduling [26]; these methods typically introduce grid-specific priorities or stochastic models to capture
pulse-load characteristics. PPO, favored for its stability and implementation ease, has been applied in
multi-agent form to cooperative offloading and resource allocation in small-cell MEC [27], vehicular
networks [28], and fog–edge hybrids [29], consistently improving delay and energy efficiency with good
distributed scalability.

Most existing studies assume stable link bandwidth and homogeneous computing capacity, overlooking
the peak-load spikes and link disturbances that frequently occur in smart grids. In addition, when faced with
high-dimensional, coupled state variables—such as link rate, task size, and residual central processing unit
(CPU) cycles—current models rarely employ lightweight feature extractors, resulting in significant infer-
ence delays. To address these shortcomings, we design a Convolutional Neural Network–Proximal Policy
Optimization (CNN–PPO) framework: the CNN first distils salient features from the high-dimensional state
space, and the resulting embeddings are fed into a shared-parameter actor–critic network that estimates both
the policy and the value function. This architecture enables real-time inference while substantially improving
training stability and scalability.

Comput Mater Contin. 2025;84(2) 3837

3 System Model and Related Mathematical Formulation

3.1 System Architecture
The smart grid integrates distributed energy resources, smart meters, electric vehicles, and other

intelligent devices via advanced wireless networks and edge-computing infrastructure, forming a highly
interactive, computation-intensive cyber-physical system. In this context, computing resources must not only
satisfy the terminal devices’ stringent real-time requirements but also preserve overall grid stability.

Fig. 1 presents a three-tier edge-computing architecture for smart grids comprising: (i) the terminal
layer, populated by local processing units (LPUs); (ii) the edge layer, implemented via mobile-edge computing
(MEC) nodes; and (iii) the cloud layer, represented by a distribution cloud center (CC). The cloud layer
undertakes centralized processing and global coordination. The terminal layer encompasses heterogeneous
electrical equipment, while the edge layer supplies intermediate computation and storage through edge nodes
and micro-data servers. Each edge node aggregates sampled data from differential-protection terminals
together with operational metrics from the distribution network, thereby enabling automated load monitor-
ing, anomaly detection, power-quality assessment, and consumption analytics. The processed insights are
then translated into control commands that regulate field devices in real time.

Figure 1: Hierarchical task offloading and execution framework

3.2 Task Queue Model
In a smart-grid environment, every intelligent terminal generates a stream of application-driven tasks—

ranging from periodic data acquisition and anomaly detection to device-state monitoring, load forecasting,
and advanced analytics. We model the aggregate arrival process as a Poisson process with intensity λ, which
denotes the expected number of task arrivals within a given time interval. Each individual task Ji is described
by the tuple:

Ji = (t g
i , di , ki) (1)

where t g
i is the task generation time, representing the moment a task is triggered or determined by the data

sampling period. di is the size of the input data for the task, typically measured in bits. The size of the task is

3838 Comput Mater Contin. 2025;84(2)

determined by the data volume to be processed, such as power consumption data collected by smart meters
or real-time information obtained from sensors. ki is the task’s computation-to-data ratio (CVR), expressed
in CPU cycles per bit. This parameter quantifies the computational complexity of the task. For instance,
complex forecasting algorithms might have a higher CVR compared to simple state monitoring tasks.

Tasks are serviced under a finite–buffer, first-come–first-served (FCFS) discipline. When the buffer
is full, additional arrivals are dropped, producing overflow events. Representing the queue as a fixed-size
matrix—each row corresponding to a single task—facilitates efficient, dynamic updates as tasks are admitted
or completed, thereby providing a tractable abstraction for subsequent scheduling and off-loading analysis.

3.3 Communication Model
In smart grids and edge-computing scenarios, the communication module is pivotal. Wireless channels,

influenced by fading, interference, and device mobility, evolve dynamically. To capture these fluctuations,
we employ a sinusoidal time-varying channel model that reflects the periodic changes in transmission rate
commonly caused by traffic congestion or multipath propagation. Time is discretised into fixed-length slots;
the channel state is assumed to remain constant within each slot but may differ from one slot to the next,
thereby affecting both the achievable data rate and task-offloading decisions.

Let R (t) denote the instantaneous communication rate between smart terminal devices and
the edge/cloud server. To reproduce the temporal dynamics outlined above, we model R (t) at an
arbitrary time t as:

R (t) = Ravg + ΔR ⋅ sin(2πt
T
) (2)

where R (t) represents the transmission rate at time t, Rav g is the average transmission rate, ΔR is the
amplitude of the rate fluctuation, representing the maximum deviation from the average rate, T is the period,
indicating the duration of one cycle of fluctuation.

In this model, periodic fluctuations in transmission rates are suitable for two types of communication
scenarios. For edge-to-edge communication, the transmission rate R1 (t) (the data rate between devices and
edge servers) with periodic variations can be expressed as:

R1 (t) =
R1,max + R1,min

2
+ R1,max − R1,min

2
⋅ sin(2πt

T
) (3)

where R1,max and R1,min denote the maximum and minimum edge transmission rates, respectively.
For cloud communication, the transmission rate R2 (t) (the data rate between devices and the cloud

server) includes a phase offset of 180 degrees, ensuring asynchronous dynamics with edge communica-
tion rates. T2 represents the phase offset or time shift of the cloud communication system. This can be
represented as:

R2 (t) =
R2,max + R2,min

2
+ R2,max − R2,min

2
⋅ sin(2π (t + T2)

T
) (4)

where R2,max and R2,min denote the maximum and minimum cloud transmission rates, and T2 represents
the phase offset introduced to simulate asynchronous fluctuations across different communication links.

We employ a sinusoidal model to capture the periodic fluctuations of wireless channels in smart-grid
and edge-computing environments. Although this streamlined formulation omits complex phenomena such
as multipath fading and sudden blockages, it nevertheless reflects the dominant variability observed in

Comput Mater Contin. 2025;84(2) 3839

substation-level deployments with largely stationary nodes. Its low computational overhead makes the model
well-suited to analysing task-offloading and resource-optimisation strategies. Future work could extend this
framework by integrating more sophisticated channel models tailored to highly dynamic scenarios.

3.4 Computational Model
In smart grids, computational tasks can be executed either locally on terminal devices via their on-board

Local Processing Units (LPUs) or off-loaded to edge servers over wireless links. To characterise the resulting
computation time and energy expenditure, we develop analytical models for local, edge, and cloud execution.
These models quantify resource consumption and performance trade-offs among the three modes, thereby
providing theoretical guidance for optimising task-offloading decisions.

(1) Local Execution Model. Under the local execution mode, tasks are processed by the LPU on terminal
devices. LPUs typically have limited computational power but can efficiently handle latency-sensitive tasks.
For a task Ji offloaded at time ta

i , the local execution time is given as:

t l
i = ⌈

di ki

f l ⌉ (5)

where f l is the CPU frequency of the LPU, measured in cycles per second, which determines the task
execution efficiency. di ki represents computational demand of the task, expressed in CPU cycles.

The energy consumption of local computation depends on the power consumption model of the LPU.
Generally, power pl has a nonlinear relationship with CPU frequency, expressed as:

pl = ε ⋅ (f l)v
(6)

where ε and v are constants specific to the device. Thus, the total energy consumption for local execution is:

e l
i = pl ⋅ t l

i (7)

(2) Edge Execution Model. In the edge execution mode, task data is first transmitted via wireless
networks to an edge server and then processed at the server. For a task Ji offloaded at time ta

i , the total delay
consists of two parts: data transmission delay and computation delay. It can be expressed as:

te
i (ta

i) = ttx1 (di , ta
i) + texe,e

i (8)

where ttx1 (di , ta
i) represents data transmission delay, depending on the data size and current wireless

channel state. texe,e
i : computation delay at the edge server, given as:

texe
i = ⌈

di ki

fs
⌉ (9)

where fs is the CPU frequency of the edge server. From an energy perspective, edge execution energy
consumption primarily occurs during data transmission. The energy consumption model is:

ec
i (ta

i) = ptx1 ⋅ ttx1 (di , ta
i) (10)

where ptx1 is the power consumption rate for transmission, depending on the communication module and
transmission distance.

(3) Cloud Execution Model. In the cloud execution mode, tasks are offloaded to cloud servers for
execution. Cloud servers have the highest computational power but incur higher transmission delays and

3840 Comput Mater Contin. 2025;84(2)

energy costs due to the distance. The execution time for a task Ji offloaded to the cloud at time ta
i includes

both data transmission time and computation time:

tc
i (ta

i) = ttx2 (di , ta
i) + texe,c

i (11)

where ttx2 (di , ta
i) represents data transmission time from the terminal device to the cloud server. texe,c

i
represents computation time on the cloud server, expressed as:

texe,c
i = ⌈di ki

fc
⌉ (12)

where fc is the CPU frequency of the cloud server.
(4) Cloud Energy Consumption. Cloud energy consumption includes the energy used for data trans-

mission and the energy consumed by receiving results. Since cloud servers are not energy-constrained, the
energy consumption of smart devices is primarily concentrated in the communication stage:

ec
i = ptx2 ⋅ ttx2 (di , ta

i) (13)

where ptx2 is the transmission power rate, determined by the communication module and transmission
distance.

3.5 Objectives
In smart-grid environments, geographically distributed devices continually generate computational

workloads—including energy forecasting, real-time monitoring, and data analytics. Minimising latency and
energy consumption therefore depends on selecting both an appropriate execution venue and an optimal
execution schedule for each task. To address this challenge, we propose an optimisation framework that
jointly allocates computational and communication resources while orchestrating task execution, thereby
enhancing overall system performance.

For each task Ji , the system must first decide whether the task should be processed locally, offloaded
to an edge server, or sent to a cloud server. We use a binary indicator ai to represent this choice: When
ai = 0, the task Ji is executed locally on the device’s LPU. This option is suitable for latency-sensitive tasks
with relatively low computational demands, which can be processed quickly on device, thereby avoiding
communication delays. When ai = 1, the task Ji is offloaded to an edge server for execution. Edge servers
can significantly reduce task execution latency while avoiding the higher transmission latencies associated
with cloud computing. When ai = 2, the task Ji is further offloaded to a cloud server for execution. Cloud
servers are ideal for handling large-scale computationally intensive tasks but incur greater latency and energy
consumption due to long-distance communication.

The total delay experienced by a task Ji is defined as the time elapsed from the task generation moment
t g

i to the task completion time texe
i (measured in time units). Therefore, the delay can be expressed as a

function of the scheduling decision ai and the task’s start time ta
i , given by:

li (ai , ta
i) = ta

i + T − t g
i (14)

where ta
i is the time at which task execution begins, texe

i (ai , ta
i) is the time required to execute the task at

the chosen location, which can be further defined as:

texe
i (ai , ta

i) = (1 − ae
i − ac

i) ⋅ t l
i + ae

i ⋅ te
i + ac

i ⋅ tc
i (15)

Comput Mater Contin. 2025;84(2) 3841

Similarly, combining the system scheduling model, the energy consumption for task execution can be
expressed as a function of the scheduling decision and execution time:

ei (ai , ta
i) = (1 − ae

i − ac
i) ⋅ e l

i + ae
i ⋅ ee

i + ac
i ⋅ ec

i (16)

where α is the weight coefficient for task delay costs, representing the importance of minimizing delays. β
is the weight coefficient for energy consumption costs, indicating the priority of reducing energy usage. The
system’s optimization objective is to minimize the total cost of the scheduling strategy, defined as the sum of
task delays and energy consumption. The comprehensive cost function is:

ci (ai , ta
i) = αli (ai , ta

i) + βei (ai , ta
i) (17)

To optimize the execution efficiency of intelligent tasks in the smart grid, the system’s objective
is to minimize the average cost of all tasks generated within a specified time period T . The average
cost is defined as:

min lim
a ,ta

n→∞

1
n

n
∑
i=1

ci (ai , ta
i) (18)

Our model minimizes the average cost per task to optimize long-term system performance despite
challenges from random task arrivals and unpredictable wireless conditions. In dynamic smart grid scenar-
ios, where task arrival rates, data volumes, and resource availability vary, static methods fail. We propose a
Deep Reinforcement Learning (DRL) approach to achieve optimal task offloading and scheduling through
adaptive, continuous learning.

4 Background of Deep Reinforcement Learning (DRL)
Deep Reinforcement Learning (DRL) is an enhancement of traditional reinforcement learning (RL)

that introduces deep neural networks (DNNs) to approximate state representations and functions. The core
concept of RL is to enable an intelligent agent to interact with its environment and learn an optimal strategy
through continuous exploration. In reinforcement learning, at each time step n, the agent observes the
environment state sn and selects an action an from the action space A. The action is chosen based on a policy
π (an ∣ sn), which defines the probability of executing action an in state sn . Upon executing the action, the
environment transitions to a new state sn+1 and returns a reward signal rn, determined by the transition
probability P (sn+1∣sn , an) and the reward function R (sn , an , sn+1). This process continues iteratively, starting
from an initial state sm, and the cumulative reward expectation Gm is expressed as:

Gm =
∞

∑
l=0

γl rm+l (19)

where γ ∈ (0, 1] is the discount factor, used to balance immediate and future rewards. By maximizing the
expected value of Gm , the agent can learn an optimal strategy to achieve the highest long-term reward.

In the mathematical framework of RL, the problem is typically defined as a Markov Decision Process
(MDP):

M = (S , A, P, R, γ) (20)

where S represents state space, representing all possible environmental states. A represents action space,
representing all possible agent actions. P represents state transition probability, describing the likelihood

3842 Comput Mater Contin. 2025;84(2)

of transitioning from one state s to another s′ after executing action a. R represents reward function,
quantifying the immediate reward for performing an action in a specific state. γ: discount factor, controlling
the importance of future rewards. The goal of RL is to use policy π to maximize the cumulative reward
expectation, defined as:

vπ (s) = Eπ [Gm ∣ Sm = s] (21)

where vπ , referred to as the state value function, represents the cumulative reward expectation for a specific
state under policy π. For a specific state-action pair, the action-value function is defined as:

qπ (s, a) = Eπ [Gm ∣ Sm = s, am = a] (22)

The goal of DRL is to find an optimal policy π∗ that maximizes the expected cumulative reward from
any state:

vπ∗ (s) =max
a

qπ∗ (s, a) , s ∈ S (23)

In practical applications, DRL uses deep neural networks (DNNs) to approximate policies and value
functions. Leveraging the feature representation capabilities of DNNs, DRL can adapt to large-scale state
spaces. Currently, DRL methods are categorized into two major approaches: value-based methods and
policy-based methods.

Value-Based Methods. In value-based methods, DNNs are employed to approximate the value function,
commonly referred to as the Q-network (Deep Q-Network, DQN) and its variations. The core idea is to
minimize the loss between the DNN-predicted value and the true target value, formally expressed as:

LV (θ) = En [(vπ∗ (sn) − v (sn ; θ))2] (24)

where sn is the state at time step n, vπ∗ (sn) is the value function parameterized by θ, representing the
network’s training weights.

Policy-Based Methods. Policy-based methods directly use DNNs to approximate the parameterized
policy, known as the policy network. Typical policy-based algorithms include REINFORCE and Actor-
Critic, which exhibit higher sample efficiency and learning capabilities. A common policy gradient update
equation is:

∇LPG (θ) = En [∇θ log π (an ∣ sn ; θ) Ân] (25)

where π (an ∣ sn ; θ) represents the probability of selecting action an in state sn , θ is the network weights, Ân
represents advantage function, used to balance the relative quality of action an .

Proximal Policy Optimization (PPO). To enhance exploration while avoiding local optima, the Gener-
alized Advantage Estimation (GAE) method is introduced to balance bias and variance:

ÂGAE
n (γ, ϕ) =

∞

∑
l=0
(γϕ)l ηv

n+l (26)

where ηv
n+l is the temporal difference (TD) error at step n, ϕ adjusts the balance between bias and variance.

Additionally, the PPO algorithm introduces a clipped objective function to limit policy updates, ensuring
stability and improving model robustness:

LCLIP (θ) = En [min (rn (θ) Ân , clip (rn (θ) , 1− ε, 1+ ε) Ân)] (27)

Comput Mater Contin. 2025;84(2) 3843

where rn (θ) = π(an ∣sn ;θ)
π(an ∣sn ;θold)

, ε controls the range of policy updates.
Based on the above framework, this paper employs the PPO-based DRL method to design the task

offloading strategy in smart grids. The clipped objective ensures stable policy updates while enhancing the
model’s adaptability, enabling the system to make efficient scheduling decisions in dynamic communication
environments and achieve resource optimization.

5 MDP Formulation
We address the task-offloading problem with deep reinforcement learning (DRL). By casting dynamic

task allocation as a Markov decision process (MDP), we leverage DRL to learn an offloading policy that
maximizes efficiency.

5.1 State Space
At each time step during smart grid task offloading and scheduling, the system orchestrator monitors

the current system state and determines offloading decisions. To accurately represent tasks, computational
resources, and communication link dynamics, we define the state space as a collection of relevant variables,
formally expressed as:

S = {s ∣ s = (Q , slpul , stq1 , stq2, smec, scc , R1, R2)} (28)

where the state space S includes multiple key variables describing task execution states at the local, edge
server, and cloud server levels, as well as data transmission conditions and network states. These components
are detailed as follows:

(1) We define the task queue Q as an M × 3 matrix, where each row Q [t] [j] represents a task’s
generation time, data size, and computational demand. These attributes facilitate evaluating queue latency,
prioritizing time-sensitive tasks, determining offloading bandwidth to edge or cloud servers, and estimating
the CPU cycles required for execution.

(2) Local Processing Unit State slpu: The Local Processing Unit (LPU) is responsible for handling
computational tasks at the terminal device level. The state slpu represents the remaining CPU cycles available
for processing tasks. At time t, if the orchestrator schedules a task to be executed locally, slpu is updated based
on the computational demand of the task di ⋅ ki , where di is the task’s data size and ki is the computational
intensity. As time progresses, the available computational resources gradually decrease, expressed as:

slpu [t] =max{slpul [t − 1] − f l , 0} (29)

where f l is the fixed computational capacity of the LPU in CPU cycles.
(3) Edge Server Transmission Queue State stq1: This state describes the remaining data to be transmitted

from terminal devices to the edge server via the wireless network. At time t, if a task is offloaded to the edge
server, stq1 [t] is initialized with the task’s data size di . The transmission process depends on the channel’s
transmission rate R1 (t), and the state is updated as:

stq1 [t] =max{stq1 [t − 1] − r1 (t − 1) , 0} (30)

when stq1 [t] = 0, the task has been successfully transmitted to the edge server.
(4) Cloud Transmission Queue State stq2: This state represents the remaining data to be transmitted

from terminal devices to the cloud server. If a task is offloaded to the cloud, stq2 [t] is initialized with the

3844 Comput Mater Contin. 2025;84(2)

task’s data size di . The state is updated dynamically based on the cloud transmission rate R2 (t):

stq2 [t] =max{stq2 [t − 1] − r2 (t − 1) , 0} (31)

(5) Edge Server State smec: The edge server is an extension of local processing that allows tasks to be
offloaded for execution. smec represents the remaining CPU cycles at the edge server. At time t, if a task is
offloaded, smec [t] is updated as:

smec [t] =max {smec [t − 1] − f s , 0} (32)

where f s is the computational capacity of the edge server.
(6) Cloud Server State scc: The cloud center provides extensive computational power for large-scale

tasks. scc represents the remaining computational resources in the cloud. When a task is processed, the state
is updated as:

scc [t] =max {scc [t − 1] − f cc , 0} (33)

where f cc is the computational capacity of the cloud server.
(7) Transmission Rates R: Transmission rates R1 (t) and R2 (t) represent the data rates between terminal

devices, edge servers, and cloud servers. These rates depend on the current channel conditions and device
locations, directly influencing the dynamics of stq1 and stq2.

5.2 Action Space
Within the devised MDP framework, the action space comprises three principal task-scheduling

options: Local Processing (LP), Edge Processing (EP), and Cloud Processing (CP). These alternatives are
selected to optimize task offloading in smart-grid environments by striking an effective balance between
execution latency and energy consumption. A detailed description of each action type follows.

1) Local Processing (LP): The Local Processing action refers to assigning tasks from the queue to the
Local Processing Unit (LPU) for execution. The complete set of actions can be expressed as:

LE = {LE1 , LE2, . . . , LEQ} (34)

where LEi ∈ {1, 2, . . . , Q} denotes the selection of the i-th task in the task queue for processing by the LPU.
This action is valid only under the following conditions: The LPU is currently in an idle state. The i-th task
exists in the task queue.

When LEi is selected, the i-th task is removed from the queue, and the LPU state is updated dynamically
based on the task’s attributes. The task is then executed according to the time slices defined.

2) Edge Processing (EP): The Edge Processing action refers to offloading tasks from the queue to the
Edge Server for execution. This set of actions is defined as:

EP = {EP1 , EP2, . . . , EPQ} (35)

where EPi denotes the selection of the i-th task in the task queue for offloading to the edge server. This action
is valid only under the following conditions: The Data Transmission Unit 1 (DTU1) is idle. The i-th task exists
in the task queue.

Comput Mater Contin. 2025;84(2) 3845

When EPi is selected, the i-th task is removed from the queue, and DTU1 initiates the transmission of
task data to the edge server. Upon successful data transmission, the edge server begins processing the task,
and DTU1 returns to an idle state.

3) Cloud Processing (CP): The Cloud Processing action refers to offloading tasks from the queue to the
Cloud Server for execution. This set of actions is defined as:

CP = {CP1 , CP2, . . . , CPQ} (36)

where CPi denotes the selection of the i-th task in the task queue for offloading to the cloud server. This
action is valid only under the following conditions: The Data Transmission Unit 2 (DTU2) is idle. The i-th
task exists in the task queue.

When CPi is selected, the i-th task is removed from the queue, and DTU2 initiates the transmission
of task data to the cloud server. Upon successful data reception, the cloud server processes the task with its
higher computational capacity, returning the results to the local device, and DTU2 returns to an idle state.

4) We introduce a dynamic action selection mechanism that evaluates the system’s state—task queue,
LPU, and DTUs—at each time step. This mechanism adaptively chooses valid actions (Local Execution,
Edge Processing, Cloud Processing) based on real-time conditions to optimize resource utilization and
minimize delays. For instance, if the task queue is non-empty and the LPU is idle, local execution reduces
communication latency. If tasks demand more resources, offloading to edge or cloud servers becomes
available when DTUs are idle (Table 1). This dynamic scheduling mechanism ensures effective resource
allocation and improved system performance.

Table 1: Task execution status and actions under different scenarios

Case ID Task queue
status

LPU
status

DTU1
status

DTU2
status

Local
execution (LE)

Edge
execution (EP)

Cloud
execution (CP)

1 Non-empty Busy Empty Empty Legal Illegal Illegal
2 Non-empty Busy Busy Empty Legal Illegal Illegal
3 Non-empty Empty Busy Empty Illegal Legal Illegal
4 Non-empty Empty Empty Busy Illegal Legal Illegal
5 Non-empty Busy Busy Busy Legal Illegal Illegal
6 Non-empty Empty Busy Busy Illegal Legal Illegal
7 Empty Empty Empty Empty Illegal Illegal Illegal

5.3 Reward Function
In a three-layer smart grid framework (terminal devices, edge servers, and cloud servers), the reward

function optimizes task offloading by balancing delay and energy consumption.
Delay and Energy Consumption Calculation: The orchestrator schedules task offloading decisions at

discrete time intervals. Assume that at time tn , an action; an is selected, transitioning the system state from
Sn ∈ S to Sn+1. For all tasks at time t, the total delay and energy consumption are quantified based on the
task’s execution or transmission conditions. At time t, the total delay Δs

t (t) for all tasks can be expressed as:

Δs
t (t) = q [t] + 1{slpu [t] > 0} + 1{sdtu1 [t] > 0} + 1{smec [t] > 0} + 1{sdtu2 [t] > 0} + 1{scc [t] > 0} (37)

3846 Comput Mater Contin. 2025;84(2)

where q[t] is the number of tasks in the task queue. 1{⋅} is an indicator function evaluating whether specific
states slpusdtu1 are active. The total delay from state sn to sn+1 is then aggregated as:

Δt (sn , an , sn+1) =
ta

n+1−1

∑
t=ta

n

Δs
t (t) (38)

At time t, the total energy consumption Δs
e (t) is related to local computation and data transmission. It

is given by:

Δs
e (t) = pl ⋅ 1{slpu [t] > 0} + ptx1 ⋅ 1{sdtu1 [t] > 0} + ptx2 ⋅ 1{sdtu2 [t] > 0} (39)

Thus, the total energy consumption during the transition is:

Δe (sn , an , sn+1) =
ta

n+1−1

∑
t=ta

n

Δs
e (t) (40)

Therefore, the overall cost is:

cost (sn , an , sn+1) = αΔt (sn , an , sn+1) + βΔe (sn , an , sn+1) (41)

where α and β are weighting factors balancing delay and energy consumption.
To optimize task offloading strategies, the reward function is defined as the negative of the total cost:

R (sn , an , sn+1) = −ks ⋅ cost (sn , an , sn+1) (42)

where k is a scaling constant to adjust the range of reward values.
Cumulative Reward Function. In the smart grid task offloading problem, the cumulative reward

function evaluates the long-term performance of a scheduling strategy. Starting from an initial state sm ∈ S,
the system interacts with the environment iteratively, selecting actions an ∈ A. This forms a Markov Decision
Process (MDP), and the cumulative reward function is:

Gm =
∞

∑
n=0

γnR (sm+n , am+n , sm+n+1) , sm ∈ S (43)

where Gm is the total reward obtained starting from state; sm . γ ∈ [0, 1] is the discount factor balancing
immediate and future rewards.

By maximizing Gm , the task offloading strategy can be optimized to minimize delays and energy
consumption while maintaining system efficiency. For γ = 1, the cumulative reward represents the sum
of all delays and energy costs. Thus, finding the optimal strategy π∗ aligns with minimizing the original
objective function. However, due to the vast state space, we plan to utilize Deep Reinforcement Learning
(DRL) for training.

6 DRL-Based Task Offloading and Scheduling
This section presents a novel deep neural network (DNN) architecture trained with Proximal Policy

Optimization (PPO). The DNN is tailored to extract complex patterns from high-dimensional data, while
PPO updates the policy parameters in a way that carefully balances exploration and exploitation, thereby

Comput Mater Contin. 2025;84(2) 3847

ensuring stable convergence. Comprehensive experiments show that the proposed method yields significant
performance improvements over prevailing approaches.

6.1 Network Architecture
As illustrated in Fig. 2, the proposed DRL framework is designed to simultaneously approximate the

task offloading policy and estimate the value function. To achieve this, we develop a parameter-sharing deep
neural network (DNN) that approximates two objectives: the task offloading policy π (αn ∣ sn ; θ), which
selects the optimal offloading action, and the value function v (sn ; ω), which evaluates the advantage function
to optimize the policy.

Input Layer

Queue State Other State

CNN Layers

FC Layers

FC Layer
Softmax

Layer

Figure 2: Neural network architecture

Due to the overwhelming size of the input state, processing becomes challenging; moreover, since
the data stored in task queue Q are structured, we employed a Convolutional Neural Network (CNN)
for feature extraction. Subsequent studies have demonstrated that this architecture significantly enhances
training performance compared to using solely fully connected layers.

6.2 Training Algorithm
We use a shared-parameter DNN where the objective function combines errors from both the policy and

value networks. To enhance sample efficiency and stabilize policy updates, we employ Generalized Advantage
Estimation (GAE).

The policy network is optimized using the PPO Clipped Objective, while the value network minimizes
the state-value error. The overall optimization objective is expressed as:

LPPO (θ) = En [LCLIP
n (θ) − cLV

n (θ)] (44)

where c is a loss coefficient used to balance the loss between the policy and value networks.
As shown in Algorithm 1, the training process alternates between sampling and optimization phases.

During the sampling phase, the old policy πold is used to generate N trajectories, with each trajectory

3848 Comput Mater Contin. 2025;84(2)

containing multiple time-step data points: n. At each time step n, based on the current environment state sn ,
an action is selected, and the corresponding reward and the next state are recorded.

Algorithm 1: Training algorithm for dynamic task off loading based on PPO
1: Initialize the deep neural network (DNN) parameters θ to obtain the initial policy πθ .
2: Initialize the environment with dynamic transmission rates and task arrival patterns.
3: Set the hyperparameters: α, β, γ for cost function weights and PPO-specific parameters.
4: for iteration = 1, 2, . . ., do
5: / Sampling Phase (Exploration)/
6: for i = 1, 2, . . ., N do
7: Generate a trajectory τi by interacting with the environment E using policy πθ .
8: Calculate the Generalized Advantage Estimation (GAE) ÂG AE

n for each step n in τi according
to Equation.
9: end for
10: Store all trajectories into the dataset T.
11: / Optimization Phase (Exploitation)/
12: for epoch = 1, 2, . . ., K do
13: Update the policy πθ using the objective function LPPO (θ) by maximizing the cumulative reward
via Adam optimizer.
14: end for
15: Synchronize πθol d ← πθ .
16: end for
17: Output the trained policy πθ

To improve training efficiency, the Generalized Advantage Estimate ÂGAE(γ ,λ)
n is precomputed for each

trajectory and stored in two sets: T (Trajectories) and A (Advantages).
During the optimization phase, the collected trajectory data are used to update the policy network.

The parameters θ are optimized over multiple epochs using stochastic gradient ascent. The objective is to
maximize the PPO loss function LPPO (θ). In each epoch, the Adam optimizer is used to update the policy
parameters. After optimization is completed, the updated parameters replace the old policy πol d , and the
data sets T and A are cleared to prepare for the next iteration.

During sampling, the exploration policy may choose invalid actions—for example, executing tasks
locally when the LPU is saturated. To prevent errors, a validity constraint mechanism is implemented:
invalid actions are ignored, the current state is maintained, and a valid action is reselected, ensuring that
optimization proceeds correctly.

7 Performance Evaluation
This section provides a comprehensive evaluation of the proposed PPO-based Offloading Strategy

Method (PPO-OSM) through extensive simulation experiments. The algorithm and its neural architecture
are implemented in TensorFlow. Key simulation settings and training hyper-parameters are summarized
in Tables 2 and 3 [30], respectively.

Comput Mater Contin. 2025;84(2) 3849

Table 2: Simulation settings

Parameter Value
Length of time slot 0.01 s

LPU’s CPU frequency f l 0.4 GHz
LPU power linear parameter ξ 1.3 × 10−26

LPU power exponential parameter ν 3
Cloud server’s CPU frequency fc 5 GHz
Wireless transmission power ptx1 2.5 W
Wireless transmission power ptx2 3.5 W

Size of task input data di [0.3, 3.5] MB
Computation-to-volume ratio κi [130, 3400] cycles/byte

Size of task queue Q 25
Edge transmission rate range r1 [1, 50] Mbps

Cloud transmission rate range r2 [0.5, 60] Mbps
Task arrival rate λ Dynamic (0.5 ± variation)

Table 3: Training parameters

Parameter Value Parameter Value
Clipping range 0.1 Optimization method Adam

Entropy coefficient 0.05 Adv. discount factor φ 0.95
Learning rate 0.003 Discount factor γ 0.99

Clipping range 0.1 Reward scaling factor k 2.0

We set the time step duration to 0.01 s, during which the system updates task scheduling and status
at each interval. Parameters for the Local Processing Unit (LPU) are configured based on. Thus, the local
computational power consumption pl is determined as pl = ξ(f l)ν). The power consumption for edge and
cloud transmission is set as ptx1 = 2.5 W, ptx2 = 3.5 W, respectively. Each task’s data size di and computational
complexity κi are sampled from uniform distributions defined in Table 2.

In smart grid environments, transmission rates change dynamically over time due to variations in node
distance and other factors. We use a sinusoidal model to represent these periodic rate fluctuations. Specifi-
cally, R1 simulates communication between users and nearby edge nodes, while R2 models communication
between terminal devices and the cloud. Although R2 generally provides higher bandwidth, its variability
can be more pronounced, reflecting trade-offs between edge and cloud offloading.

Our simulation integrates system parameters—such as LPU configurations, edge servers (MEC), and
cloud computing (CC) resources—to form a cohesive environment. As task complexity increases, DRL-based
scheduling strategies like PPOOSM adapt to changing conditions, learn optimal offloading decisions, and
enhance overall task scheduling performance.

7.1 Convergence Performance
To assess the efficacy of the proposed PPO-based Offloading Strategy Method (PPO-OSM), we

conducted experiments under the conditions illustrated in Fig. 3. PPO-OSM was benchmarked against a

3850 Comput Mater Contin. 2025;84(2)

baseline PPO implementation that uses only fully connected (FC) layers; both algorithms were trained
with identical hyper-parameters, and their learning curves were logged. As shown in Fig. 3, PPO-OSM
consistently achieves higher cumulative rewards and converges more rapidly than the baseline.

Figure 3: Comparison of average reward over training epochs for PPO and PPO-OSM

Our experiments show that PPOOSM significantly accelerates training, with cumulative rewards
stabilizing after about 100 epochs. In contrast, the FC-based PPO algorithm exhibits erratic performance
and slower convergence—its cumulative rewards even drop around 500 epochs. Additionally, PPOOSM
enhances both task offloading and strategy optimization, effectively balancing task delay and energy
consumption. Overall, these results demonstrate that PPOOSM is more efficient, stable, and robust for
optimizing task offloading in dynamic environments than the conventional FC-based PPO.

7.2 Analysis of Performance under Different Biases
We assessed the proposed PPO-based offloading strategy (PPOOSM) under a range of latency–energy

preference settings and benchmarked it against five representative baselines:

• All-Local Execution (AL): every task is processed entirely on the device’s local CPU.
• All-Edge Offloading (AE): all tasks are offloaded to an edge server, regardless of wireless-channel

conditions. All-Cloud Offloading (AC): all tasks are transmitted straight to the cloud, ignoring backhaul
and fronthaul constraints.

• PPO: the standard Proximal Policy Optimization algorithm directly applied to the offloading decision
problem, with no additional multi-objective shaping.

• Genetic Algorithm (GA): a heuristic implemented with the DEAP library that evolves offloading
decisions through selection, crossover, and mutation.

As illustrated in Figs. 4 and 5—which decompose the overall cost into latency and energy components—
the six evaluated strategies display markedly different behaviours as the latency-weighting factor α increases
(β is fixed at 1). All-Local execution (AL), in which every task is processed on the resource-constrained
device, consistently yields the highest delay and energy consumption. All-Edge (AE) and All-Cloud (AC)
offloading shorten latency slightly relative to AL, yet they remain energy-intensive and cannot adapt to
wireless-channel fluctuations, causing their performance to cluster in the upper regions of both plots.

Comput Mater Contin. 2025;84(2) 3851

The heuristic Genetic Algorithm (GA) reduces delay appreciably—especially when α ≤ 0.3—but achieves
only moderate energy savings. PPO further lowers energy consumption through policy-gradient updates,
although its average delay is still marginally higher than that of GA. By contrast, PPOOSM adapts its
offloading policy online and therefore attains the lowest energy usage across all settings; moreover, once
α ≈ 0.3, it also achieves the smallest delay among all schemes. These results demonstrate that PPOOSM offers
the most favourable latency—energy trade-off in realistic smart-grid scenarios.

Figure 4: Comparison of average delay

Figure 5: Comparison of average energy

Fig. 6 reveals that the static schemes—AL, AE, and AC—incur the highest overall cost because they
lack the flexibility required to cope with a dynamic environment. In contrast, PPOOSM, GA, and PPO
strike a more favorable balance between computation and transmission expenses. Notably, by embedding a
convolutional neural network (CNN) within its policy network, PPOOSM not only reduces the average cost
most substantially but also delivers superior stability and adaptability compared with GA and PPO.

3852 Comput Mater Contin. 2025;84(2)

Figure 6: Comparison of average cost

7.3 Performance Analysis in Dynamic Queue Scenarios
In the Dynamic Queue Scenario (DQS), we evaluated the performance of different task offloading

strategies as the task load incrementally increased. The analysis particularly focused on variations in average
delay, energy consumption, and overall cost. In the experiments, we set the parameters α = 0.4, β = 1,
simulating each algorithm under varying load factors ranging from 0.1 (low load) to 1.0 (high load). Through
the analysis of experimental data, we could clearly observe the performance advantages of each strategy
under different load levels.

As the workload intensity λ increases (Figs. 7 and 8), all schemes experience higher latency, but the
growth rates diverge: AL climbs most steeply, while AC and AE deteriorate once network congestion sets in.
PPO keeps delay low with an almost linear trend, and PPOOSM flattens the curve even further, achieving the
smallest latency across the entire range. Energy consumption follows the same ordering: the static policies
(AL, AE, AC) remain high and nearly flat, PPO cuts energy appreciably, and PPOOSM delivers the lowest
and most stable profile. Overall, PPOOSM offers the best latency–energy trade-off, with PPO serving as a
strong adaptive baseline that consistently outperforms all fixed strategies.

Figure 7: Average delay under different workloads

Comput Mater Contin. 2025;84(2) 3853

Figure 8: Average energy under different workloads

Fig. 9 charts the composite cost—latency plus energy—against workload intensity λ for five schemes.
The three static policies (AL, AE, AC) exhibit the highest and steepest cost growth because they cannot adapt
to changing conditions. Vanilla PPO reduces the curve substantially by continuously refining its off-loading
policy, yet PPOOSM remains dominant, yielding the lowest cost across the entire workload range. Equipped
with a CNN-enhanced state encoder and an α–β-weighted objective, PPOOSM dynamically reallocates tasks
in real time, achieving superior multi-objective optimisation in non-stationary edge environments.

Figure 9: Average cost under different workloads

8 Conclusion
This paper presents a Proximal-Policy-Optimisation-based Offloading Strategy Model (PPOOSM)

that allocates computational resources efficiently for task-offloading in smart-grid environments. By for-
mulating the off-loading problem as a Markov decision process (MDP), the framework integrates deep
reinforcement learning through a shared convolutional neural network and a clipped objective function,

3854 Comput Mater Contin. 2025;84(2)

markedly improving training stability. Extensive simulations demonstrate that, under dynamic off-loading
conditions, PPOOSM reduces both latency and energy consumption, outperforming conventional baseline
algorithms and heuristic methods. Relative to static allocation strategies, it achieves a more favourable
latency–energy trade-off and exhibits superior adaptability and robustness, particularly at high load. These
findings confirm the viability of deep reinforcement learning for task-offloading decisions and provide an
efficient, flexible solution for real-time scheduling in smart grids, underscoring its significant potential for
practical engineering deployment and broad adoption.

Acknowledgement: We would sincerely want to thank the peoples who are supported to do this work and reviewing
committee for their estimable feedbacks.

Funding Statement: This work was supported by the National Natural Science Foundation of China (Grant No.
62103349) and the Henan Province Science and Technology Research Project (Grant No. 232102210104).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Ya
Zhou, Qian Wang; data collection: Qian Wang; analysis and interpretation of results: Qian Wang; draft manuscript
preparation: Qian Wang, Ya Zhou. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The datasets generated or analyzed during the current study are not pub-
licly available due to privacy and confidentiality concerns, but are available from the corresponding author on
reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Acarali D, Chugh S, Rao KR, Rajarajan M. IoT deployment and management in the smart grid. In: Ranjan R,

Mitra K, Jayaraman PP, Zomaya AY, editors. Managing Internet of Things applications across edge and cloud data
centres. London, UK: The Institution of Engineering and Technology; 2024. p. 255–75. doi:10.1049/PBPC027E_
ch11.

2. Al-Bossly A. Metaheuristic optimization with deep learning enabled smart grid stability prediction. Comput Mater
Contin. 2023;75(3):6395–408. doi:10.32604/cmc.2023.028433.

3. Ahmed RA, Abdelraouf M, Elsaid SA, ElAffendi M, Abd El-Latif AA, Shaalan AA, et al. Internet of Things-based
robust green smart grid. Comput. 2024;13(7):169. doi:10.3390/computers13070169.

4. Aminifar F. Evolution in computing paradigms for Internet of Things-enabled smart grid applications. In:
Proceedings of the 2024 5th CPSSI International Symposium on Cyber-Physical Systems (Applications and
Theory) (CPSAT); 2024 Oct 16–17; Tehran, Iran. doi:10.1109/CPSAT64082.2024.10745414.

5. Arcas GI, Cioara T, Anghel I, Lazea D, Hangan A. Edge offloading in smart grid. arXiv:2402.01664.
2024.

6. Li K, Meng J, Luo G, Hou L, Cheng H, Liu M, et al. Fusion-communication MEC offloading strategy for smart
grid. Dianli Xinxi Yu Tongxin Jishu. 2024;22(6):10–7. (In Chinese). doi:10.16543/j.2095-641X.electric.power.ict.
2024.06.02.

7. Liu M, Tu Q, Wang Y, Meng S, Zhao X. Research status of mobile cloud computing offloading technology and its
application in the power grid. Dianli Xinxi Yu Tongxin Jishu. 2021;19(1):49–56. (In Chinese). doi:10.16543/j.2095-
641X.electric.power.ict.2021.01.007.

8. Zhang N, Li WJ, Liu Z, Li Z, Liu YM, Nahar N. A new task scheduling scheme based on genetic algorithm for edge
computing. Comput Mater Contin. 2022;71(1):843–54. doi:10.32604/cmc.2022.017504.

9. Han X, Dai J, Wang Y. Research on edge computing-oriented resource-aware access and intelligent gateway
technology for power transmission, transformation and distribution. In: Proceedings of the 2023 International

https://doi.org/10.1049/PBPC027E_ch11
https://doi.org/10.1049/PBPC027E_ch11
https://doi.org/10.32604/cmc.2023.028433
https://doi.org/10.3390/computers13070169
https://doi.org/10.1109/CPSAT64082.2024.10745414
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2024.06.02
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2024.06.02
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2021.01.007
https://doi.org/10.16543/j.2095-641X.electric.power.ict.2021.01.007
https://doi.org/10.32604/cmc.2022.017504

Comput Mater Contin. 2025;84(2) 3855

Conference on Applied Intelligence and Sustainable Computing (ICAISC); 2023 Jun 16–17; Dharwad, India. p. 1–6.
doi:10.1109/ICAISC58445.2023.10199983.

10. Wei H, Guan Y, Zhao Q, Zhang T, Liu J, Zhang H. A novel distributed computing resource operation mechanism
for edge computing. In: Proceedings of the 2023 9th International Conference on Computer and Communications
(ICCC); 2023 Dec 8–11; Chengdu, China. p. 2593–8. doi:10.1109/ICCC59590.2023.10507521.

11. Dong S, Tang J, Abbas K, Hou R, Kamruzzaman J, Rutkowski L, et al. Task offloading strategies for mobile edge
computing: a survey. Comput Netw. 2024;254(6):110791. doi:10.1016/j.comnet.2024.110791.

12. Park S, Kwon D, Kim J, Lee YK, Cho S. Adaptive real-time offloading decision-making for mobile edges: deep
reinforcement learning framework and simulation results. Appl Sci. 2020;10(5):1663. doi:10.3390/app10051663.

13. Peng P, Lin W, Wu W, Zhang H, Peng S, Wu Q, et al. A survey on computation offloading in edge systems: from the
perspective of deep reinforcement learning approaches. Comput Sci Rev. 2024;53(5):100656. doi:10.1016/j.cosrev.
2024.100656.

14. Zhu C, Xia L, Qin C. Research progress and prospects of deep reinforcement learning in the field of mobile
edge computing. In: Ning Z, Xiong Z, editors. Proceedings of the Fifth International Conference on Computer
Communication and Network Security (CCNS 2024); 2024 May 3–5; Guangzhou, China. p. 1322813. doi:10.1117/
12.3038174.

15. Gao Z, Wu G, Shen Y, Zhang H, Shen S, Cao Q. DRL-based optimization of privacy protection and com-
putation performance in MEC computation offloading. In: IEEE INFOCOM 2022—IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS); 2022 May 2–5; Online. p. 1–6. doi:10.1109/
INFOCOMWKSHPS54753.2022.9797993.

16. Alfa AS, Maharaj BT, Lall S, Pal S. Resource allocation techniques in underlay cognitive radio networks based on
mixed-integer programming: a survey. J Commun Netw. 2016;18(5):744–61. doi:10.1109/JCN.2016.000104.

17. Wei F, Chen S, Zou W. A greedy algorithm for task offloading in mobile edge computing system. China Commun.
2018;15(11):149–57. doi:10.1109/CC.2018.8543056.

18. Umair M, Saeed Z, Saeed F, Ishtiaq H, Zubair M, Hameed HA. Energy theft detection in smart grids with genetic
algorithm-based feature selection. Comput Mater Contin. 2023;74(3):5431–46. doi:10.32604/cmc.2023.033884.

19. Wang J, Xia H, Xu L, Zhang R, Jia K. DRL-based latency-energy offloading optimization strategy in wireless VR
networks with edge computing. Comput Netw. 2025;258:111034. doi:10.1016/j.comnet.2025.111034.

20. Wang T, Deng Y, Yang Z, Wang Y, Cai H. Parameterized deep reinforcement learning with hybrid action space for
edge task offloading. IEEE Internet Things J. 2024;11(6):10754–10767. doi:10.1109/JIOT.2023.3327121.

21. Li H, Liu L, Duan X, Li H, Zheng P, Tang L. Energy-efficient offloading based on hybrid bio-inspired algorithm for
edge-cloud integrated computation. Sustain Comput Inform Syst. 2024;42(11):100972. doi:10.1016/j.suscom.2024.
100972.

22. Wang W, Yang L, Long T, Zhang X, Zhang M. Mobile edge computing task offloading method for the power Internet
of Things. In: Proceedings of the 2024 IEEE 7th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC); 2024 Sep 20–22; Chongqing, China. p. 118–22. doi:10.1109/ITNEC60942.2024.
10733102.

23. Cui J, Li Y, Yang H, Wei Y, Liu W, Ji C, et al. Quota matching-based task offloading for WSN in smart grid. In:
Proceedings of the 2022 7th International Conference on Electronic Technology and Information Science (ICETIS
2022); 2022 Jan 21–23; Harbin, China. p. 1–4.

24. Hu J, Li Y, Zhao G, Xu B, Ni Y, Zhao H. Deep reinforcement learning for task offloading in edge computing assisted
power IoT. IEEE Access. 2021;9:93892–901. doi:10.1109/ACCESS.2021.3092381.

25. Zhou H, Zhang Z, Li D, Su Z. Joint optimization of computing offloading and service caching in edge computing-
based smart grid. IEEE Trans Cloud Comput. 2023;11(2):1122–32. doi:10.1109/TCC.2022.3163750.

26. Nimkar S, Khanapurkar MM. Design of a Q-learning based smart grid and smart water scheduling model based
on heterogeneous task specific offloading process. In: Proceedings of the 2022 International Conference on Smart
Generation Computing, Communication and Networking (SMART GENCON); 2022 Dec 23–25; Bangalore, India.
p. 1–9. doi:10.1109/SMARTGENCON56628.2022.10084189.

https://doi.org/10.1109/ICAISC58445.2023.10199983
https://doi.org/10.1109/ICCC59590.2023.10507521
https://doi.org/10.1016/j.comnet.2024.110791
https://doi.org/10.3390/app10051663
https://doi.org/10.1016/j.cosrev.2024.100656
https://doi.org/10.1016/j.cosrev.2024.100656
https://doi.org/10.1117/12.3038174
https://doi.org/10.1117/12.3038174
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9797993
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9797993
https://doi.org/10.1109/JCN.2016.000104
https://doi.org/10.1109/CC.2018.8543056
https://doi.org/10.32604/cmc.2023.033884
https://doi.org/10.1016/j.comnet.2025.111034
https://doi.org/10.1109/JIOT.2023.3327121
https://doi.org/10.1016/j.suscom.2024.100972
https://doi.org/10.1016/j.suscom.2024.100972
https://doi.org/10.1109/ITNEC60942.2024.10733102
https://doi.org/10.1109/ITNEC60942.2024.10733102
https://doi.org/10.1109/ACCESS.2021.3092381
https://doi.org/10.1109/TCC.2022.3163750
https://doi.org/10.1109/SMARTGENCON56628.2022.10084189

3856 Comput Mater Contin. 2025;84(2)

27. Li H, Xiong K, Lu Y, Chen W, Fan P, Letaief KB. Collaborative task offloading and resource allocation in small-cell
MEC: a multi-agent PPO-based scheme. IEEE Trans Mob Comput. 2025;24(3):2346–59. doi:10.1109/TMC.2024.
3496536.

28. Mustafa E, Shuja J, Rehman F, Namoun A, Bilal M, Iqbal A. Computation offloading in vehicular communications
using PPO-based deep reinforcement learning. J Supercomput. 2025;81(4):547. doi:10.1007/s11227-025-07009-z.

29. Goudarzi M, Palaniswami M, Buyya R. A distributed deep reinforcement learning technique for application
placement in edge and fog computing environments. IEEE Trans Mob Comput. 2023;22(5):2491–505. doi:10.1109/
TMC.2021.3123165.

30. Dinh TQ, Tang J, La QD, Quek TQS. Offloading in mobile edge computing: task allocation and computational
frequency scaling. IEEE Trans Commun. 2017;65(8):3571–84. doi:10.1109/TCOMM.2017.2699660.

https://doi.org/10.1109/TMC.2024.3496536
https://doi.org/10.1109/TMC.2024.3496536
https://doi.org/10.1007/s11227-025-07009-z
https://doi.org/10.1109/TMC.2021.3123165
https://doi.org/10.1109/TMC.2021.3123165
https://doi.org/10.1109/TCOMM.2017.2699660

	Improved PPO-Based Task Offloading Strategies for Smart Grids
	1 Introduction
	2 Related Work
	3 System Model and Related Mathematical Formulation
	4 Background of Deep Reinforcement Learning DRL
	5 MDP Formulation
	6 DRL-Based Task Offloading and Scheduling
	7 Performance Evaluation
	8 Conclusion
	References

