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ABSTRACT: �e rapid advance of Connected-Automated Vehicles (CAVs) has led to the emergence of diverse delay-

sensitive and energy-constrained vehicular applications. Given the high dynamics of vehicular networks, unmanned

aerial vehicles-assisted mobile edge computing (UAV-MEC) has gained attention in providing computing resources to

vehicles and optimizing system costs. We model the computing o�oading problem as a multi-objective optimization

challenge aimed at minimizing both task processing delay and energy consumption. We propose a three-stage hybrid

o�oading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm

(DVCG-MWOA) to address this problem. A novel dynamic clustering algorithm is designed based on vehicle mobility

and task o�oading e�ciency requirements, where each UAV independently serves as the cluster head for a vehicle

cluster and adjusts its position at the end of each time slot in response to vehiclemovement.Within eachUAV-led cluster,

cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints, ensuring e�cient

resource utilization. To enhance o�oading e�ciency, we improve the multi-objective whale optimization algorithm

(MOWOA), resulting in the MWOA. �is enhanced algorithm determines the optimal allocation of pending tasks to

di�erent edge computing devices and the resource utilization ratio of each device, ultimately achieving a Pareto-optimal

solution set for delay and energy consumption. Experimental results demonstrate that the proposed joint o�oading

scheme signi�cantly reduces both delay and energy consumption compared to existing approaches, o�ering superior

performance for vehicular networks.

KEYWORDS: Vehicular edge computing; cooperative game theory; multi-objective optimization; computation

o�oading

1 Introduction

�e development of Intelligent Transportation Systems (ITS) and CAVs has brought signi�cant

improvements to modern transportation [1]. As a result, numerous compute-intensive and delay-sensitive

vehicular applications have emerged in Internet of Vehicles (IoV) scenarios, including navigation, commu-

nication services, entertainment, and autonomous driving, etc. [2,3].

Vehicular edge computing (VEC) can coordinate with roadside base stations, edge devices, and

cloud servers to distribute the content and functions of centralized networks to the edge, shortening the

transmission path between vehicles and servers, thereby enhancing task computing e�ciency [4]. In recent

years, UAVs have been increasingly used in various �elds, taking advantage of their �exibility and ability

to operate without geographical limitations. And UAVs can provide edge computing capabilities to ground

users [5]. By integrating them into vehicular edge computing, they can e�ectively reduce the computational

load on vehicles, thereby enhancing the overall performance and e�ciency of the vehicular network system.

�erefore, the UAV-MEC framework has become a research hotspot [6].
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In real tra�c conditions, vehicles experience high dynamics, coexistence of various services, and uneven

distribution of tra�c �ow in both temporal and spatial domains [7]. IoV applications impose stringent

latency requirements and frequently depend on the stability of IoV communications [8].

Recent vehicular edge computing advancements strategically reconcile latency-energy tradeo�s

through intelligent task o�oading, dynamic resource orchestration, and game-theoretic coordination [9,10].

For task o�oading schemes, recent advances employ a hierarchical deep reinforcement learning framework

named Sequential Quadratic Programming-based Dueling Double Deep Q Networks reduces system costs

and task loss rates [11], Proximal PolicyOptimization (PPO)-basedmethoddecreases total delay anddropped

task ratios [12], a Hybrid Average Reward Proximal Policy Optimization algorithm (hybrid-ARPPO) that

combines optimized o�oading decisions, transmission rates, and edge server allocationwithout the discount

factor [13], Double Q-learning improving user service quality [14], Digital Twin-assisted Predictive Adaptive

Intelligent O�oading scheme to reduce computation latency [15], Exploration and Exploitation Assisted

Contract �eory (EEACT) scheme optimal o�oading strategies by minimizing task processing costs [16]

and a Mobile-Aware Computation E�ciency Task O�oading and Resource Allocation scheme to optimize

transmission e�ciency [17]. Resource-saving strategies focus on balancing Quality of Service (QoS) and

energy consumption through cooperative models [18], PPO-based to balance the long-term cost between

minimizing task delay and energy consumption [19], semi-distributed algorithm to solve the task o�oading

and service caching problem [20], based on Non-Orthogonal Multiple Access (NOMA) to minimize the

total system cost [21], and convex programming-driven power allocation via iterative o�oading ratio

derivation [22]. Game theory applications further enhance system equilibrium through Nash equilibrium

solutions [23], a Minority Game (MG)-based scheme and found the optimal solution by probabilistically

adjusting decisions, achieving near-optimal performance and stability [24] and a decentralized o�oading

game algorithm to solve task o�oading problems in edge computing [25].

Despite signi�cant advancements in Intelligent Transportation Systems and Connected and Automated

Vehicles, current research has not fully addressed the challenges introduced by highly dynamic vehicular

environments, diverse service requirements, and heterogeneous resource distributions. A thorough analysis

of these issues reveals the necessity for a robust system model and an optimization framework that can

e�ectively balance the con�icting objectives of delay minimization and energy e�ciency under stringent

constraints. �erefore, designing an e�ective strategy for task o�oading and resource allocation that also

minimizes costs presents a signi�cant challenge [26].

In this paper, we propose a three-stage hybrid multi-objective task o�oading strategy for UAV-assisted

MEC systems to minimize the total system delay and overall energy consumption while ensuring perfor-

mance under resource constraints.�e control decisions include O�oad task allocation, UAV selection, and

UAV computation resource allocation. �e primary contributions of this study are listed below:

1. �is paper comprehensively considers the computing o�oading problem in sustainable UAVs-MEC

systems and formulates it as a multi-objective optimization problem, consisting of two optimization

objectives, i.e., delay and energy consumption with several constraints.

2. �is paper proposes a three-stage hybrid multi-objective optimization scheme, called DVCG-MWOA,

to address the above-formulated problem. A mobile-aware dynamic clustering algorithm (MDCA) is

proposed to dynamically link vehicles and UAVs in the �rst stage.�en, a cooperative gamemodel with

delay constraints is established for each cluster, allocating UAV resources for coordinated utilization.

�e Pareto front solution is derived using an improved multi-objective whale optimization algorithm.

3. We conductedmultiple experiments across application scenarios of di�erent scales to thoroughly assess

the e�ectiveness and adaptability of the proposed scheme. Additional parameter analysis reveals that

the scheme can �exibly regulate energy consumption, computation delay, and system performance in
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response to varying resource constraints and task demands, ultimately enhancing the overall e�ciency

of task o�oading.

2 SystemModel and Problem Formulation

In this section, we detail the UAV-assisted edge computing o�oading scheme model, aiming to mini-

mize delay and energy consumption, and formulate the computation o�oading problem as amulti-objective

optimization problem. Table 1 summarizes the main notations in this model.

Table 1: Summary of key parameters in the system model

Notation De�nition

V = {v1 , v2 , . . . , vn} A set of vehicles

U = {u1 , u2 , . . . , uc} A set of UAVs

W = {w1 ,w2 , . . . ,wn} A set of tasks

D i ,C i , τ i �e task data size, complexity, and tolerable delay of w i

a l ocali , a
ed ge
i , auavi �e proportions of local computing, edge computing and UAV

computing

t i_ l ocal , t i_ed ge , t i_uav Local computing, edge base station computing, and UAV

computing delay

ptrai_ed ge , p
tra
i_uav Task transmission power

E i_ l ocal , E i_ed ge , E i_uav Local computing, edge base station computing, and UAV computing

energy consumption

fv , fed ge , fed ge_ i , fuav , fuav_ i Vehicle computing resources, edge base station computing resources,

computing resources allocated to vehicle i by the edge base station,

maximum computing resources of UAV, computing resources allocated

to vehicle i by UAV

H UAV �ight altitude

kv , ked ge , ku E�ective switching capacitance of the chip

v tra Task transmission rate

B �e bandwidth

ptrai �e transmission power of vehicle i

h i Channel gain between task vehicle i and edge base station or UAV

N0 Channel noise power

WS i �e proposed task o�oading metric of vehicle i

wmv ,wwl �e weight of vehicle mobility metric and vehicle o�oading e�ciency

requirement

Q i �e communication quality of vehicle i

MVi Mobility measurement of vehicle i

q �e vehicles within the cluster

WL i �e task volume to be o�oaded by vehicle i

AD i �e average distance between vehicle i and other vehicles within the

cluster.

LS i �e stability of the communication link

Vns i �e number of neighboring vehicles of vehicle i

Arv i �e average speed of each vehicle in the cluster

(Continued)
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Table 1 (continued)

Notation De�nition

[Vmin ,Vmax] �e vehicle’s speed range

maxD i �emaximum distance between vehicle i and its neighboring vehicles.

R,Q, AM �e UAV positions matrix, the vehicle positions matrix and link matrix

, , ( ) �e set of vehicles of each cluster, the sub-resource allocation

strategies, and the multi-objective utility value of strategy

T Iterations

D �e dimension of the target solution

σ �e smallest prime number

Lb j ,Ub j �e lower bound and upper bound of the jth dimensional decision

variable

M �e number of whale individuals

PM �e initial position of the whale population

pth Dynamic feedback threshold of proposed MWOA

2.1 SystemModel

�eUAV-assisted vehicular ad-hocnetwork system is shown in Fig. 1.�e tasks generated by the vehicles

for o�oading can be computed by the vehicles themselves, roadside base stations, and deployed UAVs.

Vehicles in the area are represented byV = {v1 , v2 , . . . , vn}, UAVs isU = {u1 , u2 , . . . , uc}, and an edge server
is deployed. Assuming the vehicles have the same con�guration, each vehicle only communicates with one

UAV, and theUAVs are at the same height h above the vehicles, described using cartesian coordinates.�e set

of tasks generated by vehicles isW = {w1 ,w2 , . . . ,wn}, the i-th taskw i is represented by a triplet {D i ,C i , τ i}.
Assuming the tasks are divisible, a l ocali , a

ed ge
i and auavi , respectively represent the proportions of tasks

computed locally, o�oaded to the roadside base station, and o�oaded to the UAV, with their sum equal to 1.

�e transmission rate between vehicles and the edge base station or UAV can be calculated using

Shannon’s theorem [27]:

v tra = B log2 (1 + ptrai h i

BN0

) (1)

2.2 Local Vehicle Computing Model

In the local computing process, the amount of data allocated to the vehicle itself can be represented

by a l ocali × D i , the power consumed in the computing process can be represented by kv × ( fv)3, the local
computing delay and energy consumption are represented by:

t i_ l ocal =
C i × a l ocali × D i

fv
, (2)

E i_ l ocal = kv × C i × a l ocali × D i × ( fv)2 . (3)
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Figure 1: Model of UAV-assisted Vehicular Ad-Hoc Network (VANET) system

2.3 Roadside Base Station Computing Model

In the roadside base station computing process, the amount of data allocated to the roadside base station

can be represented by a
ed ge
i × D i , the delay and energy consumption generated by transmitting tasks from

the vehicle to the roadside base station represented by:

t trai_ed ge =
C i × aed gei × D i

v tra
ed ge

, (4)

E tra
i_ed ge = p

tra
i_ed ge × t trai_ed ge . (5)

�e computing power used by the roadside base station to process the task is represented by ked ge ×( fed ge_ i)3. �e computing power used by the roadside base station to process the task is represented by:

tmid
i_ed ge =

C i × aed gei × D i

fed ge_ i
, (6)

Emid
i_ed ge = ked ge × C i × aed gei × D i × ( fed ge_i)2 . (7)

A�er the task is processed, the result is returned to the vehicle i.

In the roadside base station computing process, the total task processing delay is represented by the sum

of the transmission delay and the computing delay, and the total energy consumption is represented similarly.
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2.4 UAV Computing Model

In the UAV computing process, the amount of data allocated to the UAV can be represented by auavi ×
D i the delay and energy consumption generated by transmitting tasks from the vehicle to the UAV are

represented by:

t trai_uav =
C i × auavi × D i

v tra
, (8)

E tra
i_uav = p

tra
i_uav × tupi_uav . (9)

�e computing power used by the UAV to process the task is represented by ku × ( fuav_ i)3, the
computing delay, and energy consumption is represented by:

t i_uav =
C i × auavi × D i

fuav_ i
, (10)

E i_uav = ku × C i × auavi × D i × ( fuav)2 . (11)

A�er the task is processed, the result is returned to the vehicle i.

In the UAV computing process, the total task processing delay is represented by the sum of the

transmission delay and the computing delay, and the total energy consumption is represented similarly.

2.5 Formulation of Problem

�e total delay and total energy consumption of the task processing process for vehicle i are represented

as follows:

Ti_sum = t i_ l ocal + t i_ed ge + t i_uav , (12)

E i_sum = E i_ l ocal + E i_ed ge + E i_uav . (13)

�e problem of local o�oading, roadside base station, and UAV edge computing for multiple mobile

vehicles in the area ismodeled as amulti-objective optimization constraint problem Z, and themathematical

model is constructed as follows:

Z =min{∑N

i=1
Ti_sum ,∑N

i=1
E i_sum} , (14)

s.t.

a l ocali + aed gei + auavi = 1,∀i ∈ [1, 2, 3, . . . , n] , (14a)

t i_sum ≤ τ i ,∀i ∈ [1, 2, 3, . . . , n] , (14b)

∑n

i=1
fed ge_i ≤ fed ge , (14c)

where Eq. (14a) indicates the sum of the ratios at which tasks are allocated to di�erent o�oading termi-

nals. Eq. (14b) indicates the total processing delay of the task should be lower than the maximum tolerable
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delay. Eq. (14c) indicates the sum of the computing resources allocated by the edge server to each vehicle

should be less than its own computing resources.

3 Proposed Optimization Solution

In this section, which �rst performs dynamic clustering of vehicles, determines the optimal resource

allocation scheme for each cluster head-unmanned aerial vehicle (CH-UAV) through cooperative game the-

ory. To further improve performance, this study develops an enhanced multi-objective whale optimization

algorithm to e�ciently explore the global optimal solution of the objective function.

3.1 MDCA Clustering Algorithm

�e high-speed mobility of vehicular nodes introduces critical IoV challenges including dynamic

topology �uctuations, scalability constraints, and routing e�ciency demands. Clustering approaches that

leveragemobilitymetrics tend to outperform traditionalmethods in enhancing cluster stability.Metrics such

as vehicle density, relative velocity, relative distance, andmoving direction are particularly well-suited for the

dynamic environment of VANET system.

In this part, a new clustering algorithm named MDCA that is based on mobility values and vehicle

dynamic characteristics is proposed. Considering the mobility and communication quality of each vehicle,

dynamically allocate vehicles into clusters with UAVs as cluster heads. Utilize vehicle clustering to enhance

UAV o�oading e�ciency. Continuously adjust UAV positions based on vehicle dynamics at each moment

to ensure data processing quality, better addressing the dynamic mobility environment of VANET system.

�e following discusses the details of various components and their communication. Vehicles andUAVs

serve as the mobile nodes and key elements of our network architecture, and they are equipped with GPS

devices. On-board units (OBUs) provide mutual wireless communication via vehicle-to-vehicle (V2V) and

vehicle-to-UAV (V2U). A vehicle is assigned to a single cluster at any time slot. Each cluster, headed by aUAV,

is responsible for the overall management of the cluster and overseeing the e�cient allocation of resources.

We propose a task o�oading metric that integrates mobility measurement, task o�oading volume, and

communication quality as follows:

WS i = wmv
MVi∑q∈Cl MVq

+wwl
WL i∑q∈Cl WLq

× Q i∑q∈Cl Qq

, (15)

Q i is the communication quality between vehicle i and the UAV, represented by the reciprocal of the

Euclidean distance:

Q i =
1

Dis(i ,UAV)2 . (16)

Mobility measurement [28] MVi is de�ned as follows:

MVi =
LS i (t)
Vns i

+
¿ÁÁÀ(ln(1 − Arν i

Vmax

))2 + AD i

maxD i

. (17)

�e algorithmprocess is detailed inAlgorithm 1.�emain objective is to divide n vehicles into c distinct

CH-UAV clusters during each time slot. �e location and speed of vehicles can be acquired either through

integrated GPS modules or by employing appropriate localization techniques.
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Algorithm 1:Mobile-aware dynamic clustering algorithm

1: Input: Input the position matrices R and Q of vehicles and UAVs, initialize the link matrix AM to 0

2: Output: the link matrix AM between UAVs and vehicles

3: Initialization: Divide the vehicles into the nearest UAV clusters by Euclidean distance and update AM.

4: For each cluster do

5: For each vehicle do

6: CalculateWS i of each vehicle in the cluster use Eq. (15)

7: End

8: Calculate the average value of the dynamic task o�oading metrics of the remaining vehicles in the

clusterWS

9: Update the UAV position to directly above the vehicle with the smallest absolute value WS in this

round of calculations

10: For each vehicle do

11: If v i is in the coverage zone of CH UAV then

12: If closer in Euclidean distance to other UAV then

13: update connectivity relationships and matrix AM.

14: Else

15: Establishing multi-hop communication with UAV via V2V communication.

16: End if

17: Else

18: If v i is in the coverage zone of other UAV then

19: update connectivity relationships and matrix AM.

20: Else

21: Establishing multi-hop communication with UAV via V2V communication.

22: End if

23: End if

24: End for

25: End for

Initialize the CH-UAV positions and store them in matrix R, and the vehicle positions are stored in

matrix Q. Initialize a link matrix AM of size x × n, AMcd is the link relationship between UAV c and vehicle

d. Vehicle d is clustered to UAV c, AMcd is 1, otherwise, AMcd is 0. Initially, link each vehicle to the nearest

UAV based on Euclidean distance.

�e process of dynamic task o�oading and communication binding begins by calculating the dynamic

task o�oading metric WS for each vehicle in a cluster using Eq. (15) and determining the cluster’s average

WS. �e UAV position is then updated to be directly above the vehicle with the smallest absoluteWS value.

Next, the communication range is assessed: if all vehicles are within the UAV’s range, those farther awaymay

select a UAVwith a closer Euclidean distance, and the link relationship matrix AM is updated accordingly. If

some vehicles are outside the range, their positions are checked for coverage by other UAVs. If covered, links

are established with those UAVs, and AM is updated; otherwise, V2V communication is established with the

nearest vehicle to form a multi-hop routing connection to the UAV, and the matrix is modi�ed.�is process

completes the communication binding for the current time slot. Finally, UAV positions are continuously

adjusted in real-time based on road conditions to enhance data transmission quality and ensure network

stability, with the updated link relationship matrix AM outputted at the end.
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3.2 Intra-Cluster Cooperative Game

�e algorithm clusters vehicles with o�oading tasks based on movement similarity, using UAVs as

cluster heads. A coalition formation game coordinates resource allocation within each cluster. To handle

unpredictable task demands, the approach employs conditional value-at-risk (CVaR) for risk assessment and

introduces a negotiation mechanism to optimize allocation while ensuring task completion within tolerable

latency. By integrating consensus auctions, the approach maintains UAV autonomy and stability in the

coalition structure. �e UAV resource allocation problem as a cooperative game model among the vehicles:

= { , , ( )}, (18)

where is the set of all vehicles of each cluster, is the set of all sub-resource allocation strategies, and( ) represents the multi-objective utility function of strategy , which is the sum of the delay and energy

consumption generated by q vehicles in the cluster.

( ) = {∑q

i=1
Ti ,∑q

i=1
E i}. (19)

De�nition 1 (Coalition structure):�e coalition structure∏ = { 0 , 1 , . . . , q}, is a disjoint partition of
the vehicleresource allocation set.Each coalition∏ ∈ is speci�c to the subresourceallocationset. Each element

k represents the proportion of UAV resources allocated to vehicle k.

De�nition 2 (Negotiation mechanism): For vehicle k ∈ , if vehicle k changes its strategy, it needs to

satisfy the conditions:

Tk( fuav−k ′) ≤ T τ
k ∪ E i( fuav−k ′) ≤ Ek( fuav−k),∀k ∈ , (20)

( ′) < ( ), (21)

where ′ represents the changed strategy. fuav−k
′
represents the UAV computing capacity allocated to vehicle k

a�er the strategy change. T τ
k represents the maximum tolerable delay for the UAV processing the task portion,

expressed as the product of the proportion of the task processed by the UAV and the maximum tolerable delay

of the task, i.e., auavk × τk .
�eUAV resource allocation game algorithm process is shown in Algorithm 2. In the initial stage, input

the link matrix AM of vehicles and UAVs from the clustering stage, and the task information to be allocated

for each vehicle.

Algorithm 2:UAV resource allocation game algorithm

1: Input: UAV and vehicle link matrix task information for each vehicle

2: Output: Optimal resource allocation strategy

3: Initialization: Evenly distribute the UAV’s computing resources among the vehicles in the cluster

4: For each cluster do

5: For each vehicle do

6: If the minimum latency requirement is satis�ed then

7: Gradient descent reduces resource allocation use (23)

8: Else if

9: Gradient ascent increases resources allocated use (23)

(Continued)
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Algorithm 2 (continued)

10: End

11: If (20) & (21) true then

12: Update the optimal resource allocation strategy

13: End

In the initial iteration, the UAV’s computing power is evenly distributed among the vehicles in the

cluster. Determine whether each task meets the delay tolerance requirement. For tasks that meet the delay

requirement, use the gradient descent method to reduce computing power allocation; for tasks that do

not meet the delay requirement, use the gradient ascent method to increase computing power allocation.

Continuously iterate under the constraints of the negotiation mechanism to seek the optimal strategy set ∗.

In this cooperative game model, delay is used as a constraint for the optimization goal. Gradient calcu-

lations are performed based on energy consumption to derive the optimal utility strategy.�e complexity of

each vehicle’s task, data size, task period, and switching capacitance values are set as constants ok , Ek denoted

as:

Ek = ok × ( k × fuav)2 , (22)

where ok is ku × Ck × auavk × Dk .

Computing the partial derivatives k to calculate the gradient.

Update the strategy of each vehicle in the direction opposite to the gradient using the stochastic gradient

algorithm, ensuring it continuously meets the conditions of (20) and (21). �e update rule is as follows:

(I+1)
k
= (I)

k
± η ×∇E( k). (23)

De�ne
(I+1)
k

as the strategy for the next iteration, continue iterating until the optimal strategy for the

cooperative game model is obtained. Output the proportion of UAV resources allocated.

3.3 Proposed MWOA O�oading Optimization Strategy

In multi-objective optimization (MOO), the inherent con�ict between objectives creates a Pareto

optimal set where improving one metric necessitates compromising others. While the Whale Optimization

Algorithm (WOA) has emerged as an e�ective MOO solver due to its exploration-exploitation balance and

computational e�ciency, existing multi-objective WOA variants still face limitations in handling complex

vehicular scenarios. To address this, we propose an enhanced MOWOA integrating swarm-based whale

search with evolutionary mechanisms. Each whale solution encodes vehicle/UAV capabilities and task

o�oading ratios across three layers (vehicles, RSUs, UAVs), with dual optimization objectives of latency and

energy consumption. As detailed in Algorithm 3, two critical improvements are implemented over baseline

MOWOA to achieve parallel optimization.

Algorithm 3:O�oading strategy optimization using improved MOWOA

1: Input: AM, task information for each vehicle, UAV resource allocation strategy, Population size M,

Iterations T

2: Output: Pareto optimal set

3: Initialize good point set for the population

4: For each dimension j in D do

(Continued)
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Algorithm 3 (continued)

5: Select the smallest prime number σ

6: Generate good point set P using (25)

7: End for

8: Map the good point set P to the search space using (26)

9: Initialize external archive to store non-dominated solutions

10: while t < T do

11: Calculate �tness values for each whale individual

12: Update external archive with non-dominated solutions

13: Perform non-dominated sorting on the population

14: Calculate crowding distance for each whale individual

15: Sort whale individuals by Pareto level and crowding distance

16: Select leaders from external archive

17: For each whale individual do

18: Update position using dynamic feedback threshold

19: If �rst iteration then

20: Set pth is 0.5

21: Else

22: Update threshold using Eq. (27)

23: End if

24: Update position based on spiral and contraction mechanisms with updated threshold

25: End for

26: Update t = t + 1
27: End while

28: Return Pareto optimal set from external archive

�e process is as follows:

Step 1: Good point set initialization population:GD is a unit cube in theD dimensional Euclidean space,

D represents the dimension of the target solution, points γ in the Euclidean space can be represented by D

dimensional vectors, i.e., γ = (γ1 , γ2 , . . . , γD) , γ ∈ GD , where 0 ≤ γ j ≤ 1, be represented as:

γ j = 2 cos (2 jπ
σ
) , 1 ≤ j ≤ D, (24)

where j is a dimension in D, σ is the smallest prime number that satis�es
(σ−3)

2
≥ D, generating the good

point set PM(m):
PM(m) = {(γ1 ×m), . . . , (γD ×m)} , 1 ≤m ≤M, (25)

where M is the number of whale individuals in the population, m = 1, 2, . . . ,M, with m representing an

individual whale in the population, γ j ×m represents a good point, PM(m) is the good point set matrix of

size D ×M, which is mapped to the search space as:

PM (m) = Lb j + (Ub j − Lb j) ×mod ({PM (m)} , 1) , 1 ≤ j ≤ D, (26)

where Lb j is the lower bound of the jth dimensional decision variable Ub j is the upper bound of the jth
dimensional decision variable. PM(m)mapped is the initial position of the whale population.
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Step 2: Establish Pareto front storage mechanism: An external archive stores Pareto non-dominated

solutions, replacing lower-�tness ones when capacity is exceeded to ensure dynamic updates.

Step 3: Non-dominated sorting: Individuals are ranked based on dominance, selecting non-dominated

ones as the �rst level and iterating until all are classi�ed.

Step 4: Crowding distance sorting mechanism: to maintain diversity and explore the solution space,

crowding distance guides the algorithm toward the Pareto front bymeasuring distribution density. Solutions

with greater distances are prioritized to ensure uniform coverage and enhance optimization.

Step 5: Elite retention mechanism: whale individuals from parent and o�spring generations are sorted

by crowding distance within each Pareto level.�ose with the largest distances are stored in the archive until

full, while the rest are discarded.

Step 6: Leader selection strategy: a whale individual with the smallest Pareto rank is randomly selected

from the archive to guide the group’s movement in each iteration.

Step 7: Enhancement of individual location update strategy: the �xed 0.5 selection probability in

the original whale optimization algorithm causes an imbalance between global exploration and local

exploitation, slowing convergence. We propose a dynamic feedback threshold mechanism to adjust these

probabilities, improving both convergence speed and optimization performance. �e selection probability

pth is updated dynamically as follows:

pth(t + 1) = ⎧⎪⎪⎨⎪⎪⎩
pth(t) + (ra/M) , ra > 0

1 − pth(t), ra = 0
, (27)

where M is the total number of whale individuals in the population, and ra represents the number of

populations whose �tness values have improved compared to the previous iteration. At the �rst iteration,

pth is set to 0.5, and in subsequent iterations, pth(t + 1) is updated based on the value of pth from the

previous iteration.

�e rest of the process is updated according to the WOA.

3.4 Method Overview

�is paper considers the task o�oading and resource allocation problem as a multi-objective optimiza-

tion problem, aiming to minimize latency and energy consumption. Firstly, dynamic clustering is formed

through the current positions and mobility characteristics of vehicles and UAVs, enabling cooperation in

each time slot. Subsequently, a cooperative game model constrained by latency is used for intra-cluster

resource allocation. To �nd the optimal task assignment strategy and resource utilization, an improved

parallel MOWOA algorithm is employed for multi-objective optimization. �is scheme is potentially very

e�ective in balancing the trade-o� between latency and energy consumption, providing e�cient solutions

in complex environments. �e proposed scheme process is shown in Fig. 2.

4 Experimental Evaluation

In this section, a simulation is performed to evaluate the e�ectiveness of the proposed joint strategy.�e

experiment is conducted in MATLAB R2022b, and run on a personal computer with Intel (R) Core (TM)

i9-13900 CPU and 32.0 GB RAM.�e results are based on the average of 30 Monte Carlo simulations.
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Figure 2: �e �ow chart of DVCG-MWOA

4.1 Experimental Environment

In our experiment, we simulate an intersection composed of two perpendicular roads, each 500 m in

length. A roadside base station is set on one side of the road, and drones are randomly distributed in the

area. Five experimental vehicle scales are set up, with vehicles randomly generated according to a Poisson

distribution. �e clustering cycle between drones and vehicles is 3 s (ignoring the time required for drone

movement), and task o�oading is performed every 6 s. �e experiment runs for 6 min, and the results

are averaged over 10 task o�oads. �e experimental parameters set in this paper are shown in Table 2. �e

communication standard employed in our experiments is the IEEE 802.11p standard. Speci�cally, simulation

map is based on [29], the vehicle speed con�guration references [30], the task complexity and chip switching

capacitance as suggested in [31].

Table 2: Environment setting

Parameter Default value

Data Size D i [50, 200] KB

Task Complexity C i [100, 1000] cycles/bit

Maximum Tolerable Delay τ i [250, 1500] ms

Vehicle Computing Capability fv [5 × 108, 7 × 108] cycles/bit
UAV Computing Capability fuav [6 × 108, 8 × 108] cycles/bit

�e Vehicle’s Speed Range [Vmin ,Vmax] [60, 80] km/h

UAV Flight Height H 60 m

�e number of Vehicles n 10, 20, 30, 40, 50

(Continued)
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Table 2 (continued)

Parameter Default value

�e number of UAVs c 5, 10, 15

Edge Server Computing Capability fed ge 5 × 1010 cycles/bit
Chip Switching Capacitance kv , ked ge , ku 1 × 10−26, 1 × 10−26, 1 × 10−27

Transmission Power When Vehicles Send Tasks

ptrai

5 W

Channel Gain Between Task Vehicles and Edge

Base Stations or UAVs h i

1 × 10−4 Hz

Communication Bandwidth B 5 × 107 Hz

Channel Noise Power N0 5 × 10−14 W
4.2 Task O�oading Strategies

4.2.1 Benchmark O�oading Location Schemes

In the simulation experiments, we mainly study the vehicles, edge servers, and UAVs to collaborate for

computation task o�oading called Local, Edge andAir ComputationO�oading (LEACO),�is schemewas

compared with the following three benchmark o�oading location schemes.

1. LCO (Local Computation Only) scheme, where tasks are only o�oaded locally.

2. ECO (Edge Computation Only) scheme, where tasks are only o�oaded to edge servers.

3. LECO (Local and Edge Computation O�oading) scheme, where tasks are o�oaded both locally and to

edge servers.

4.2.2 Performance Metrics

In our experiments, to facilitate comparison with single-objective experiments, we not only considered

delay and energy consumption separately but also considered the weighted sum of these two normalized

optimization objectives to represent the total system cost. �e de�nitions are as follows.

Q = α × Delay_w + (1 − α) × Energ y_w , (28)

where Delay_w and Energ y_w represent the normalized delay and normalized energy consumption,

respectively, and α represents the weight factor. Particularly, two normalized objective values Delay_w and

Energ y_w are calculated as follows.

Delay_w =
2 × Delayal l

DelayL
al l
+ DelayE

al l

, (29)

Energ y_w =
2 × Energ yal l

Energ yL
al l
+ Energ yE

al l

, (30)

where DelayLal l and DelayEal l represent the total delay when all tasks are executed in LCO scheme and all

tasks are executed in ECO scheme, respectively. Energ yLal l and Energ yEal l represent the total energy con-

sumption when all tasks are executed in LCO scheme and all tasks are executed in ECO scheme, respectively.

�ese two objective values can be in the same order of magnitude, so the weighted sum can simultaneously

re�ect the algorithm’s comprehensive performance in terms of delay and energy consumption.
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4.3 Comparative Optimization Approaches

Wecompare the proposed joint schemewith the followingmethods, which combine o�oadingmethods

and optimization algorithms.

4.3.1 O�oading Methods

1. Random Sequential Scheme (RS): Vehicles are randomly bound to a UAV, which then o�oads

tasks sequentially.

2. Distance-First Averaging Scheme (DA): Vehicles bind only with the nearest UAV, and the UAV’s

computational resources are evenly distributed.

3. Cyclic Balanced Scheme (CB): Sort all vehicle o�oading tasks by size, then sequentially assign these

sorted tasks to the available UAVs with the most idle computing resources for computation.

4.3.2 Optimization Algorithms

We also compare these o�oading strategies using several intelligent optimization algorithms to evaluate

their e�ectiveness in minimizing system costs:

1. Single-objective Comparison: Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and

Improved Whale Optimization Algorithm (IWOA).

2. Multi-objective Comparison: Non-dominated Sorting Genetic Algorithm III (NSGA-III), Multi-

objective Pareto Envelope-based Selection Algorithm II (PESA-II) and Multi-objective Whale

Optimization Algorithm (MOWOA).

By integrating these intelligent optimization algorithmswith the o�oadingmethods, we aim to compare

their performance with our proposed joint scheme, focusing on �nding the optimal system cost.

4.4 Simulation Results

Fig. 3 shows we conducted a set of experiments to explore the optimal alpha value and number of UAVs

in the LEACO scenario, laying the foundation for subsequent research. In terms ofmethodology, we adopted

a di�erence-based optimization strategy, selecting the alpha value andUAVquantity thatminimized the total

system cost di�erence, thereby e�ectively reducing subjective bias in the experimental process.

Figure 3: �e variation in the absolute di�erence in costs between the LECO and LEACO o�oading modes under
di�erent numbers of UAVs, as the value of alpha changes for di�erent vehicle quantities



2370 Comput Mater Contin. 2025;84(2)

�is approach not only validated the e�ectiveness of the LEACO scenario but also ensured the reliability

and scienti�c rigor of the experimental results. Speci�cally, we conducted experiments in both LEACO and

LECO scenarios under di�erent alpha values (0.45, 0.55, 0.65, 0.75) and varying numbers of UAVs (5, 10, 15).

For each con�guration, we calculated the di�erence in total system cost for di�erent vehicle quantities (10, 20,

30, 40, 50). As shown in the �gure, when the alpha value is 0.75 and the number of UAVs is 10, the system cost

di�erence reaches its minimum, and thus we follow this indicator for subsequent experiments. Optimizing

the system cost di�erence under complex and variable conditions ensures that the chosen alpha value and

number of UAVs demonstrate signi�cant feasibility and robustness in practical applications. Consequently,

this provides a solid theoretical foundation and a reliable experimental basis for subsequent studies.

Fig. 4 shows the experimental results of DVCG-MWOA compared to single-objective hybrid compar-

ison schemes in terms of delay and energy consumption weight, we calculated the average value of the

component in the Pareto solution set. As shown in the �gure, across �ve di�erent experimental environments

with varying vehicle quantities, the proposed hybrid strategy reduced the time delay weights by an average of

27.63%, 18.02%, and 8.71% compared to the single-objective hybrid strategies (RS-PSO, DA-GA, CB-IWOA),

and reduced the energy weights by an average of 22.12%, 33.69%, and 10.51% compared to the single-objective

hybrid strategies, respectively. DVCG-MWOA shows clear advantages compared to these single-objective

comparison algorithms.

Figure 4: �e delay weight comparison results and energy weight comparison results with the single target experiment
under di�erent experimental sizes

Fig. 5 compares the Pareto frontiers of the proposed DVCG-MWOA with six baseline combinations of

o�oading methods and optimization algorithms under varying vehicular densities (10/30/50 vehicles). �e

hybrid baselines exhibit distinct limitations: RS-NSGA-III induces latency spikes and energy �uctuations

due to uncoordinated task allocation and stochastic vehicle-UAV binding, while DA-PESA-II su�ers from

progressive performance decay as its static proximity-based binding exacerbates congestion at nearest

UAVs. Although CB-MOWOA mitigates load imbalance through sorted task scheduling, its rigid cyclic

allocation incurs computational overheads under high-density scenarios (50 vehicles), leading to suboptimal

resource utilization. In contrast, DVCG-MWOA integrates mobility-aware game-theoretic coordination

with latency-constrained optimization, dynamically adjusting UAV-vehicle binding based on real-time

trajectories. �is dual adaptation mechanism reduces total system costs by 22%–35% in Pareto dominance
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metrics, while maintaining stable energy-delay trade-o�s even under extreme densities. Furthermore, it

outperforms single/multi-objective baselines in convergence precision (12.7%–29.4% improvement) and

solution diversity, demonstrating superior adaptability to dynamic vehicular environments.

Figure 5: �e comparison results with multi-objective algorithm experiments under di�erent numbers of vehicles

Fig. 6 illustrates the task o�oading success rates of di�erent strategies under varyingmaximum tolerable

delays, with vehicle counts set to 20 and 40, respectively. �e results indicate a positive correlation between

the probability of successful task o�oading and the tolerable delay. �e RS-NSGA-III shows a gradual

increase in o�oading rates as the delay increases, but overall, its performance remains conservative, partic-

ularly with a higher number of vehicles. In comparison, the DA-PESA-II achieves slightly higher o�oading

rates across all delay conditions, although its growth trend is relatively moderate.�e CB-MOWOA exhibits

a stable growth trend, performing particularly well under high delay conditions; it achieves a high o�oading

rate at 750 ms, with smaller increases therea�er. Among the schemes, the DVCG-MWOA consistently

outperforms the others under all delay conditions, nearing saturation in high delay scenarios and showing

superior performance across both vehicle scales.

Figure 6: �e comparison results in maximum tolerable delay and task o�oading success rate when the number of
vehicles is 20 and 40, respectively
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5 Conclusion

In this paper, we comprehensively study sustainable edge computing in the Internet of Vehicles,

considering the complex and variable vehicle conditions, reasonable resource allocation optimization, and

UAV-assisted edge computing issues in practical scenarios of the Internet of Vehicles. We formulate the

computation o�oading problem as a multi-objective optimization problem with the goal of minimizing

latency and energy consumption. Further, we design a three-stage hybrid o�oading strategy to e�ectively

solve the above problems. �e �rst step is to cluster the vehicles, followed by resource allocation within the

clusters, and then solve using an improved parallel multi-objective whale optimization algorithm. In this

way, we achieve the goal of reducing latency and energy consumption.
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