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ABSTRACT: Extracting data from visually rich documents and charts using traditional methods that rely on
OCR-based parsing poses multiple challenges, including layout complexity in unstructured formats, limitations in
recognizing visual elements, and the correlation between different parts of the documents, as well as domain-specific
semantics. Simply extracting text is not sufficient; advanced reasoning capabilities are proving to be essential to analyze
content and answer questions accurately. This paper aims to evaluate the ability of the Large Language Models (LLMs)
to correctly answer questions about various types of charts, comparing their performance when using images as input
versus directly parsing PDF files. To retrieve the images from the PDF, ColPali, a model leveraging state-of-the-art
visual language models, is used to identify the relevant page containing the appropriate chart for each question. Google’s
Gemini multimodal models were used to answer a set of questions through two approaches: 1) processing images
derived from PDF documents and 2) directly utilizing the content of the same PDFs. Our findings underscore the
limitations of traditional OCR-based approaches in visual document understanding (VrDU) and demonstrate the
advantages of multimodal methods in both data extraction and reasoning tasks. Through structured benchmarking of
chart question answering (CQA) across input formats, our work contributes to the advancement of chart understanding
(CU) and the broader field of multimodal document analysis. Using two diverse and information-rich sources: the
World Health Statistics 2024 report by the World Health Organisation and the Global Banking Annual Review 2024 by
McKinsey & Company, we examine the performance of multimodal LLMs across different input modalities, comparing
their effectiveness in processing charts as images versus parsing directly from PDF content. These documents were
selected due to their multimodal nature, combining dense textual analysis with varied visual representations, thus
presenting realistic challenges for vision-language models. This comparison is aimed at assessing how advanced models
perform with different input formats and to determine if an image-based approach enhances chart comprehension in
terms of accurate data extraction and reasoning capabilities.
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1 Introduction
There is a clear need to quickly extract data and understand the content of the visuals from diverse

documents: financial reports, health reports [1], traffic [2], and so on. However, there are multiple ways to
do that, from rule-based and structured approaches, then Deep Learning (DL)-based OCR, to now multi-
modal document understanding leveraging Vision-Language Models (VLMs) [3]. Traditional approaches
in document understanding used to have two steps: document parsing (extracting the text by converting it
into a structured format) and interpretation (using a language model that leverages the structured text to
respond to the queries posed). OCR (Optical Character Recognition) is used to detect text and transcribe
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it, with different models used for each task [4]. The OCR process can take three paths: 1) the document
goes through a language detection model, then a transcription model to extract the text from the bounding
boxes found previously; 2) the document goes through a text instance segmentation model which colors the
pixels containing text black, then a transcription model; 3) the document goes through a segmentation model
which outputs the character a pixel corresponds to [5]. Among the limitations of the traditional methods, it
can be mentioned: 1) unstructured documents, which lack a predefined, fixed schema, as there is a growing
need to process all types of documents, many of them having different formats and complex layouts; 2)
atypical documents which deviate from the norm either through their layout, format or type of content;
they can be unstructured or structured documents with a novel template than what the system was trained
on (e.g., processing fails for an invoice with an unforeseen design/structure); 3) dependency on context
understanding and proper interpretation of the relationship between elements—most documents contain a
combination of text and different visual elements (charts, diagrams, pictures, figures, etc.) that the model
should integrate equally in the outcome; 4) domain specificity and semantic understanding. More focus
should be on semantics rather than syntax, on specialized terminology, especially important when processing
domain-specific documents, where a proper interpretation should take into account the implications of a
sentence over the overall situation [6].

Therefore, document understanding shifted towards DL-based models once large pre-trained models
such as Bidirectional Encoder Representations from Transformers (BERT) have gained popularity due to
their capabilities after fine-tuning. BERT is a Google-developed model based on transformer architec-
ture, and it can capture contextual information because it processes text from left to right and right to
left [7]. However, these types of language models still struggle with long sequences. The interest in Chart
Understanding (CU) increased significantly due to the focus on multimodal models and the rise of Visual
Language Processing (VLP) [8,9]. VLP refers to methods (e.g., models) designed to make use of both visual
understanding (visual data such as images and charts) and language understanding (textual information)
for a comprehensive interpretation. It is considered a subdomain of VLP and has a multidisciplinary nature,
and among the tasks, it is worth mentioning Chart Question Answering (CQA), Chart Captioning, and
Chart-to-Text Summarization [10]. One of the DL techniques, the transformer architecture (transformers),
has an essential role in moving further away from rule-based methods, with Convolutional Neural Networks
(CNNs) and Graph Neural Networks (GNNs) having their limits [11,12]. Transformers were first introduced
in 2017, and they rely on an attention mechanism that draws global dependencies between input and output
without making use of the recurrent layers, which have been most commonly used in encoder-decoder
architectures [13].

Visually Rich Document Understanding (VrDU) is aimed at properly leveraging all the elements of a
document: a mix of text with tables, charts, graphics, and other visual elements. Text extraction is not enough;
reasoning capabilities are necessary for a proper analysis of the content to answer the questions. VrDU has
three important stages: 1) encode the document through methods that incorporate all the elements or use
vision-only approaches, taking into account also multi-page situations; 2) integrate the embeddings with
Large Language Models (LLMs); 3) train the VrDU models with a focus on modalities alignment [4]. Since
one of the challenges of the models is using different modalities, the newest studies investigated processing
VrDs as images, where the document pages are divided into image patches with smaller patches, thus more
patches altogether, being more efficient at capturing fine details. Such a model is ColPali, a cutting-edge
document retrieval model that harnesses VLMs to efficiently index and retrieve information by directly
analyzing the visual features of documents, such as PDFs. There was a gap noticed in the evaluation of
VrDU—it should be done taking into account not only the text but also the context and visual elements
of the retrieved document. To bridge this shortcoming, ViDoRe (Visual Document Retrieval Benchmark)
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was introduced, a benchmark aimed at evaluating multimodal retrieval methods and, more clearly, the
capabilities of such systems to match queries to page-level retrieval tasks [14].

In this paper, our goal is to evaluate the question-answering abilities of LLMs aimed at understanding
different chart types by comparing their performance when using two input formats: first, when providing
the full-page image renderings of the PDF pages containing the relevant charts as a knowledge base,
and second, when processing the entire original PDF documents directly. To obtain the images, ColPali,
a model that leverages the latest VLM, is used to pinpoint the correct chart for each question, and
then the latest multimodal models from Google’s Gemini family are used to generate the answers to the
questions asked as prompts. The primary focus is to assess the performance of advanced models when given
different input types, but also to see if using an additional processing step of processing the documents as
images improves the overall chart understanding, focusing on accurate data extraction and also stronger
reasoning capabilities.

The contributions of this paper consist of:

1. Evaluation of LLMs for chart understanding. Our research systematically assesses the ability of LLMs to
answer questions related to different types of charts by comparing their performance when processing
images extracted from PDFs vs. directly parsing the PDF content.

2. Comparison of input modalities. It investigates whether processing documents as images enhances
chart comprehension, not only in terms of accurate data extraction but also in improving reasoning
capabilities, which is a challenge in VrDU.

3. Use of ColPali for chart retrieval. Our research utilizes ColPali, a state-of-the-art VLM-based document
retrieval model, to efficiently extract relevant charts from PDFs, contributing to improved multimodal
document understanding.

4. Application of multimodal models. By employing the latest Google Gemini multimodal models, our
research explores the impact of advanced vision-language processing techniques in answering questions
about charts.

5. Advancing VrDU. Our research highlights the limitations of traditional OCR-based methods and
showcases the benefits of multimodal approaches in extracting meaning from unstructured and
domain-specific documents.

6. Benchmarking CQA. Our research contributes to the broader field of CU by benchmarking the rea-
soning and interpretation capabilities of multimodal models in a structured comparison of different
input formats.

This research advances the field of multimodal document understanding by demonstrating the effec-
tiveness of vision-based approaches in improving the accuracy and reasoning depth of LLMs for chart-based
question answering. The paper is structured into five sections. The Section 1 outlines the motivation for the
study, emphasizing the challenges of extracting and interpreting charts from visually rich documents and
introducing the research objectives. The Section 2 discusses previous work on document understanding,
OCR-based methods, multimodal AI, and advances in chart comprehension, highlighting the role of
VLMs and retrieval techniques like ColPali. The Section 3 details the experimental setup, including dataset
selection, the comparison between image-based and text-based processing, the role of ColPali in chart
retrieval, and the evaluation metrics used to assess model performance. The Section 4 presents the main
findings, demonstrating that ColPali outperforms traditional OCR-based methods, Gemini 2.0 Flash Exper-
imental achieves superior reasoning and accuracy, and image-based processing enhances CU. Finally, the
Section 5 summarises the main insights, reinforcing the benefits of multimodal AI (Artificial intelligence)
for document interpretation and suggesting future research directions in visually rich document analysis.
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2 Literature Review
Unlike traditional information extraction techniques, such as OCR, keyword spotting, and rule-based

parsers, which predominantly focus on textual content extraction and encounter difficulties in interpreting
varied layouts, discerning logical structures, or inferring document behavior (e.g., correct reading order) in
complex documents, VrDU adopts a multimodal methodology. This integrated approach allows not only for
enhanced content extraction but also for a more accurate interpretation of complex document structures
through comprehensive layout understanding, which becomes essential when the placement of key text
fields varies based on document format and design. Moreover, this understanding aids in determining the
correct reading behavior and more robust metadata extraction, irrespective of the field’s position, a task
often challenging for conventional systems. To enhance accuracy, VrDU models must integrate multiple data
types into a unified learning framework that can effectively process the cross-modal nature of documents
as mentioned in [15,16]. VrDU focuses on two main tasks: Key Information Extraction (KIE) and Question
Answering (QA). KIE extracts values based on predefined keys and can be performed through entity retrieval
or sequence tagging. VrD-QA answers natural language questions by locating relevant information within
the document. Both KIE and VrD-QA can use extractive or generative methods to retrieve or generate
responses [17,18]. Visually rich business document understanding is essential for extracting structured data
and automating workflows, yet current multimodal language models struggle with real-world document
complexities. Existing benchmarks do not comprehensively evaluate the diverse structures found in industry
applications, prompting the introduction of the VrDU benchmark [19]. Chart analysis methods are classified
into rule-based approaches, chart captioning, and CQA. The effectiveness of these methods depends on
accurate object detection, OCR-based text recognition, and robust feature extraction, which face challenges
with font variability and layout complexity [20]. Chart captioning relies on DL models like encoder-
decoder architectures and attention mechanisms, but struggles with capturing fine-grained details, while
CQA combines image analysis and Natural Language Processing (NLP) using transformers and co-attention
networks to answer user queries.

Recent advancements in VrDU have introduced two primary approaches: shallow fusion, which
combines pre-trained NLP and computer vision models but struggles with generalization, and deep fusion,
which leverages large-scale unlabeled data to enhance cross-modal learning and adaptability. LayoutLMv2
focuses on the second approach, being a multi-modal transformer model designed to improve VrDU by
integrating text, layout, and image data into a single framework. The model incorporates a spatially aware self-
attention mechanism that helps to capture the relative positioning of different text elements. Unlike earlier
approaches that separately processed textual and visual features, LayoutLMv2 deeply fuses these modalities
for more effective learning, which has minimized the need for retraining when applied to new domains [15].
Another approach to extracting information from VrDs is using weighted graph representations that better
capture diverse relationships between text units, leading to richer semantic representations. It models VrDs as
weighted graphs where nodes encode visual, textual, and spatial features, while edges represent relationships
between text regions. Information extraction is treated as a node classification problem, utilizing Graph
Convolutional Networks (GCNs) to analyze document structures more effectively [20,21]. The introduction
of transformer-based models has brought significant improvements in CU tasks and has greatly improved
performance over traditional heuristic and rule-based approaches.

In [10], researchers have investigated different pre-training techniques aimed at equipping models
with the ability to comprehend charts while incorporating mathematical reasoning capabilities, which are
significant for accurate data interpretation. However, despite these advancements, several key challenges
remain, including a heavy reliance on OCR, difficulties in processing low-resolution images, and the ongoing
need to strengthen visual reasoning skills for more robust chart analysis.
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A systematic review of VLMs for visual recognition was presented in [3], addressing the limitations
of traditional Deep Neural Networks (DNNs) that rely on crowd-labeled data and require training separate
models for each task. Unlike conventional approaches, VLMs leveraged web-scale image-text pairs to learn
vision-language correlations, enabling zero-shot predictions across multiple recognition tasks with a single
model. The review explored the evolution of visual recognition paradigms, the foundational aspects of
VLMs, including architectures, pre-training objectives, and downstream tasks, as well as the commonly used
datasets for training and evaluation. It also categorized existing methodologies in VLM pre-training, transfer
learning, and knowledge distillation, followed by benchmarking and analysis of these methods.

Multimodal language models integrate diverse data types like text, images, audio, and other inputs to
enhance machine understanding beyond text-based processing, overcoming the limitations of initial LLMs
by combining multiple modalities, and enabling richer and more comprehensive data interpretation [22].
The field is shifting away from two-step pipelines toward unified representations that allow LLMs to
directly process documents. Modern VrDU models embed document parsing into their weights, training on
structured document representations to capture layout, text, and visual attributes effectively. Multi-modal
approaches, which integrate all three modalities, are particularly effective for multi-page documents, but
present challenges in aligning these features. Emerging techniques using sparse attention mechanisms for
inter-page connections show promise for handling multi-page documents more effectively [23]. Early VrDU
models were primarily encoder-only, such as LayoutLM, which used self-supervised pretraining tasks like
masked visual-language modeling to capture spatial dependencies. However, encoder-decoder frameworks
emerged to overcome input length limitations and improve generative capabilities, enabling tasks such
as document-based QA and KIE. Multimodal transformers integrate text, layout, and visual cues using
pre-trained backbones like BERT for text, Faster-RCNN for vision, and positional encoding for layout. Hier-
archical transformer architectures, such as Hi-VT5, have been developed to handle multi-page document
QA by enhancing document-level understanding. Spatial-aware self-attention mechanisms introduce bias
terms and positional encodings to better align textual, visual, and layout features. Some encoder-decoder
models allow OCR-free document understanding, reducing dependencies on text recognition systems.
Additionally, prompt-based frameworks leverage transformers for in-context learning, using structured
prompts to improve zero-shot and few-shot KIE. Graph-enhanced transformers introduce relation-aware
mechanisms, encoding spatial and logical relationships between document entities, while attention-based
feature fusion techniques improve multimodal learning by better aligning different modalities within
encoder-decoder architectures. Hybrid transformer architectures are also explored, integrating CNN-based
visual feature extraction with transformer-based text encoders to capture document structures effectively.
However, scalability remains a challenge for transformer-based VrDU models, as large-scale multimodal
training demands computationally efficient architectures like sparse attention transformers [18].

LLMs have excelled in NLP tasks using in-context learning, but their ability to perform Document
Information Extraction (DIE) has not been explored. To address this, the authors propose ICL-D3IE [24],
a novel framework that enables LLMs to handle DIE by leveraging hard demonstrations (which are the
most challenging segments from training data) and positional relationship demonstrations to improve
structural understanding. The framework proved that LLMs can perform DIE without extensive fine-tuning,
making them more efficient for real-world applications. By bridging the modality and task gap, ICL-D3IE
expands the potential of LLMs beyond traditional NLP tasks. This research contributes to the broader
field by demonstrating that structured data extraction can be achieved through in-context learning. Recent
language models can process long input contexts, but their ability to effectively use this information remains
uncertain. Researchers analyzed model performance on multi-document QA and key-value retrieval to
assess how well they identified relevant information. The study found that models struggle when the position
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of relevant information changes, with performance degrading significantly. Notably, models perform best
when information appears at the beginning or end of the context, but struggle when it is located in the
middle. Controlled experiments further confirmed that models do not robustly access and use long-context
information [25].

Two of the most used multimodal models (GPT-4o and Gemini Flash-1.5) were tested on labeled charts
and unlabeled charts, the findings being that while they excel at summarization and inference, both models
struggle with specific reading and estimation tasks when it comes to charts. On labeled charts, where data is
annotated, both models showed similar error patterns with significant inaccuracies, particularly in complex
formats. Human error rates in reading these charts were below 5%, whereas GPT-4o and Gemini Flash had
error rates of 16% and 14%, respectively, which is a common issue, such as misreading numbers or failing
to recognize negative values correctly. The performance gap widened further when models were tested on
unlabeled charts, leading to error rates of 79% for Gemini Flash and 83% for GPT-4o. Deviations in estimated
values were significant, with Gemini Flash averaging a 53% error and GPT-4o averaging 55%, compared to
a human benchmark of 10%–20%. These deviations were caused by both minor estimation errors and major
misreadings, such as mistaking years on a time-series chart [14].

3 Research Methodology
Unlike traditional retrieval systems that depend on OCR, which can struggle with complex layouts

and visual elements, ColPali works directly with document images. It captures both visual cues (e.g., layout,
tables, and figures) and textual meaning without the need for text extraction. Furthermore, instead of
matching documents at a global level, ColPali performs fine-grained, token-level matching. This improves
retrieval quality, particularly for long, multi-section documents. The ColPali architecture integrates the
PaliGemma-3B model with a late interaction mechanism inspired by ColBERT. During the indexing phase,
the model processes document pages by dividing them into image patches, which are then analyzed by a
vision transformer. These patch embeddings are subsequently passed through a language model to generate
contextualized representations. By leveraging multi-vector representations, ColPali ensures highly efficient
and accurate retrieval, making it well-suited for visually rich and structured documents. By looking at Table 1,
which compares traditional retrieval models with ColPali, it is clear that the latter exceeds the performance
for all the metrics.

Table 1: Comparison: ColPali vs. traditional OCR-based models

Feature Traditional OCR-based models ColPali
OCR dependency Yes No

Handles layouts/Tables/Figures Poorly Yes
Multi-vector representations No Yes
Late interaction for retrieval No Yes
Explainability & visual cues No Yes
Scalability for large datasets Moderate High

The focus of LLMs switched more to multimodal models, allowing for pictures or videos to be sent
as input, due to the increasing need for vision-language tasks. Google created the Gemini 1.5 family of
models “capable of recalling and reasoning over fine-grained information from millions of tokens of context,
including multiple long documents and hours of video and audio” [26] having reasoning capabilities of
up to at least 10 M tokens. Gemini 1.5 Flash was created to be a lighter model than Gemini 1.5 Pro, but
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with the same quality, having lower latency, but high efficiency at lower costs due to the efficient utilization
of the TPUs (Tensor Processing Units). It is a transformer decoder model having multimodal capabilities
(it can receive text, image, video, and audio as input). The latest release of the Gemini Family is Gemini
2.0 Flash Experimental, a model that introduces new features now, among the new features the most
notable ones being: new native multimodal outputs, image and audio, a Multimodal Live API to build
applications with real-time video streaming and audio, much better performance with the same efficiency,
spatial understanding and reasoning performance enabling more accurate image understanding, building
agentic experiences by using native tools such as Google Search [27]. Table 2 highlights one of the most
important benchmarks for our investigation, and it is clear that Gemini 2.0 Flash Experimental has a better
performance in all the capabilities, apart from the long context one, with 2.7% lower.

Table 2: Gemini models comparison

Capability Benchmark Description Gemini 1.5
flash 002

Gemini 2.0
flash

experimental
General MMLU-Pro Enhanced version of popular MMLU

dataset with questions across multiple
subjects with higher difficulty tasks

67.3% 76.4%

Factuality FACTS
grounding

Ability to provide factually correct
responses given documents and
diverse user requests. Held out

internal dataset

82.9% 83.6%

Math MATH Challenging math problems (incl.
algebra, geometry, pre-calculus, and

others)

77.9% 89.7%

Math HiddenMath Competition-level math problems.
Held out dataset AIME/AMC-like,

crafted by experts and not leaked on
the web

47.2% 63.0%

Reasoning GPQA
(diamond)

Challenging dataset of questions
written by domain experts in biology,

physics, and chemistry

51.0% 62.1%

Long-context MRCR (1 M) Novel, diagnostic long-context
understanding evaluation

71.9% 69.2%

Image MMMU Multi-discipline college-level
multimodal understanding and

reasoning problems

62.3% 70.7%

Image Vibe-Eval
(Reka)

Visual understanding in chat models
with challenging everyday examples.
Evaluated with a Gemini Flash model

as a rater

48.9% 56.3%
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Our research is conducted using the “World Health Statistics 2024—Monitoring Health for the SDGs,
Sustainable Development Goals”,1 a report released yearly by WHO (World Health Organization), which is
a 86-page document containing 4 chapters to detail indicators from the SDGs and the Thirteenth General
Programme of Work (GPW13). This report has a mix of visuals and textual information, which makes it
a good candidate for this paper as data for both the ColPali model and the Gemini Flash models. It was
purposefully chosen due to this variety and poses challenges not only to the data extraction but also to the
reasoning capabilities of the LLMs. A second document used for this research—the “Global Banking Annual
Review 2024” by McKinsey & Company2.

Two situations are considered for our research: 1) process the PDF, use ColPali to get the image of the
page used to respond to the question, use Gemini 1.5 Flash and Gemini 2.0 Flash and pass the image when
asking the question; 2) directly use Gemini 1.5 Flash and Gemini 2.0 Flash and pass the content of the whole
PDF as it is. The main steps of the process are mentioned in Table 3.

Table 3: Steps of the methodological flow

Step Description

Step 1:
Pre-process the PDF
by splitting the charts

and the text

The WHO report contains 51 figures in total, with different formats—most of
them containing multiple charts put together, variations of the standard

charts, or do not contain the standard chart formats at all (such as bar chart,
line chart, scatter plot, pie charts, etc.). We have chosen to split those pages

having the figure as a standalone page. For this research, we selected 25 charts
out of the total with different levels of difficulties and created 2 questions for

each, keeping in mind that the model would need to put multiple pieces
together to reach the correct response. The questions that have been used for

testing also have a ground truth, and they are constructed to lower the
possibility of having multiple possible correct responses.

For the McKinsey report, we have created questions for each figure, with a
total of 17 figures. One question was created for each figure.

Step 2:
Obtain the images by

leveraging ColPali
and create similarity

maps

Index the pages of the document with Byaldi and extract the page number for
each question. Byaldi is a library developed in Python that facilitates

document retrieval with different generative models by building RAG
pipelines (Retrieval-Augmented Generation). The model’s responses are

generated using the knowledge base provided by the retrieved documents,
which enhances accuracy and provides the appropriate context. The

integration of Byaldi with CoPali provides a quick and simple way of testing
the capabilities of the multi-modal model, with Byaldi acting as a wrapper3.

The ColPali architecture integrates the PaliGemma-3B model with a late
interaction mechanism inspired by ColBERT. During the indexing phase, the
model processes document pages by dividing them into image patches, which

are then analyzed by a vision transformer. These patch embeddings are

(Continued)

1https://www.who.int/publications/i/item/9789240094703 (accessed on 05 June 2025)
2https://www.mckinsey.com/industries/financial-services/our-insights/global-banking-annual-review#/ (accessed on 05 June 2025)

https://www.who.int/publications/i/item/9789240094703
https://www.mckinsey.com/industries/financial-services/our-insights/global-banking-annual-review#/
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Table 3 (continued)

Step Description

subsequently passed through a language model to generate contextualized
representations. By leveraging multi-vector representations, ColPali ensures
highly efficient and accurate retrieval, making it well-suited for visually rich
and structured documents. The model operates in two main stages, indexing

and retrieval:
– Stage 1. Indexing consists of document encoding and patch tokenization.

The model processes document images instead of plain text. Each
document page is divided into image patches, similar to how Vision
Transformers (ViTs) work. Then, these image patches are passed through
a ViT, which generates visual embeddings for different sections of the
document. This enables the model to understand layout structures, font
sizes, tables, and figures in addition to text. Instead of a single embedding
per document (like traditional models), ColPali generates multiple
contextualized embeddings. These embeddings are later used for
fine-grained retrieval.

– Stage 2. Retrieval (query processing and search) consists of four substages
(SS):
1) SS1. Query encoding. The user’s text query is processed by a

language model. The query is split into multiple embeddings,
enabling fine-grained matching with indexed document patches.

2) SS2. Late interaction mechanism that enables efficient multi-vector
retrieval. It compares query embeddings with stored document
embeddings at a more granular level.

3) SS3. Attention-based matching identifies which parts of the
document are most relevant to the user’s query. This improves
accuracy by considering the structure and positioning of elements
(e.g., distinguishing between body text and footnotes).

4) SS4. Visual interpretability. Unlike traditional text-based retrieval,
ColPali highlights the exact image patches that match the query.
This provides better explainability in document search.

The associations between the queries and the indexed pages turned into
images are further analyzed by generating similarity maps that highlight the
sections of the page that are the most relevant to the tokens in the query. The
similarity maps are created between a token of a query and an image; if all the

tokens of the query are to be analyzed, a similarity map will be created for
each one. As an initial step, the image and the query are processed, and the
embeddings for each one are captured. Then the image is split into patches,

the embeddings unrelated to the image are filtered out, and the maps are
generated by calculating the similarities between the query embeddings and

the image embeddings4.

(Continued)



2914 Comput Mater Contin. 2025;84(2)

Table 3 (continued)

Step Description

Step 3:
Prompt construction,

output retrieval

The prompt is constructed, having a clear persona and instructions for all the
cases. The prompt mentioned to respond with ‘The question cannot be

answered with the given data’ if the query cannot be answered based on the
provided data. The focus is on the format of the output —the model is

instructed to return the output in a JSON format containing 4 fields: the chart
type, the extracted data (which can be used to verify later on if the extraction

was the issue or the reasoning), the exact answer and errors, if any. The
answer is extracted for each JSON, and similarity scores are calculated using
the pre-trained model “all-MiniLM-L6-v2” from the sentence-transformers

library to create the embeddings and sklearn for cosine similarity. An example
of such output is provided:

{

“chart_type”: “Stacked bar chart”,
“extracted_data”: “The chart shows the composition of causes of death globally
between 2000 and 2021. The categories are ‘Injuries’ (yellow), ‘Communicable,
maternal, perinatal and nutritional conditions’ (blue), and ‘Noncommunicable
diseases’ (green). The chart visually represents the percentage of each category
over time. ‘Noncommunicable diseases’ started at ~57% in 2000 and grew to

~72% in 2021. ‘Communicable, maternal, perinatal and nutritional conditions’
starts at ~35% in 2000 and decreases to ~22% in 2021. ‘Injuries’ appears to stay

relatively stable at around ~8%.”,
“answer”: “Based on the chart, ‘Injuries’ appear to be the most stable cause of

death globally between 2000 and 2021.”,
“error”: null

}

A Gemini API key is needed. Both Gemini 1.5 Flash and 2.0 Flash
Experimental are tested by posing each question as a prompt. The correctness

of the response is analyzed. The following tests are made using the same
queries:

– the output of Gemini-1.5-flash using only the picture that was previously
identified by ColPali;

– the output of Gemini-2.0-flash-exp using only the picture that was
previously identified by ColPali;

– the output of Gemini-1.5-flash using the encoded PDF as it was;
– The output of gemini-2.0-flash-exp using the encoded PDF as it was.

(Continued)
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Table 3 (continued)

Step Description

Step 4:
Assessment

The assessment of the LLMs is done with the following in mind.
1) Calculate similarity scores for the responses of the model and the

ground truth:
– 1.1. Comparing the same model with different contexts (image vs

PDF)—which context type renders similar results, the consistency of
each model, and how dependent are they on a specific context type?

– 1.2. Comparing the same context but different models—which
model renders similar results?

2) Calculate the correctness by categorizing the responses returned in
YES—correct; PARTIAL—partially correct; NO—incorrect;
NONE—unable to respond.

Note: 3https://github.com/AnswerDotAI/byaldi (accessed on 05 June 2025)
4https://github.com/tonywu71/colpali-cookbooks/blob/main/examples/gen_colpali_similarity_maps.ipynb
(accessed on 05 June 2025)

Overall, once the images from ColPali are obtained, the process is presented in Fig. 1. The long context is
ready (either the PDF or images of the pages), and it is used alongside the prompt, together with the Gemini
API, to retrieve the responses to the queries.

Figure 1: Process using the Gemini API

4 Findings

4.1 Performance Assessment
Out of the 50 questions tested, 49 questions pointed to the correct pages that are used as a reference

to create them, and 1 question pointed to a page that only had textual information and could not be used
standalone to answer it, however, the correct page was found third by the model, leading us to understand
that the model considered it to have less pertinent information.

The performance can be impacted by LLM errors, when mentioning LLM errors, the most common
one is hallucination, which can be caused by multiple situations. Having as input screenshots of PDF
pages can lead to inaccurate value extraction from charts depending on the chart complexity and clarity,
wrong interpretation of visual relationships (e.g., wrongly grouping values close together or associating the
legend to the data), wrong element identification (e.g., confusing grid lines and data lines, misunderstanding

https://github.com/AnswerDotAI/byaldi
https://github.com/tonywu71/colpali-cookbooks/blob/main/examples/gen_colpali_similarity_maps.ipynb
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overlapping or hidden elements, missing atypical chart elements), inventing data points or labels when it
cannot fully recognize them leading to visual estimations instead of actual extraction. Normally, image
quality is another point that leads to errors, but in our situation, all images were of high quality.

When parsing native PDFs to the LLM the errors focus more on issues with incorrect character
encoding, misunderstanding reading order or flow (e.g., when having multiple charts next to each other,
complex structures with numerous elements), misinterpretation of semantic relationships (e.g., wrong
linking of data points to labels due to the previously mentioned issues), wrong interpretation of meaning
for chart shapes leading to missing purely visual information. The image quality error may transform into
possible PDF and text embedding quality.

Each question from Table 4 was searched using the indexed pages, and the most relevant 3 pages that the
model saw as containing the most relevant information were returned as output. The columns are explained
below: figure—the id of the figure as stated in the PDF file; the question—the query tested; correct_page—the
ground truth established for the question; page_num_1—the first page extracted by the model; score_1—
the matching score of the first page extracted by the model; page_num_2—the first page extracted by the
model; score_2—the matching score of the first page extracted by the model; page_num_3—the first page
extracted by the model; score_3—the matching score of the first page extracted by the model; dif_1_2—the
percentual difference between the matching score of the first page and the one of the second page; dif_2_3—
the percentual difference between the matching score of the second page and the one of the third page.

Table 4: Pages and scores for the tested questions from the WHO document

Figure Question correct_
page

page_
num_1

score_1 page_
num_2

score_2 page_
num_3

score_3 dif_1_2 dif_2_3

1.1 Was the global healthy life expectancy at
birth higher than the life expectancy at birth

in 2010 for females?

3 3 25.75 6 25.63 5 25.00 0.13 0.63

1.1 What was the difference in years in global
healthy life expectancy at birth in 2010

between males and females?

3 3 25.38 6 25.25 5 24.75 0.13 0.50

1.2 In what year was the healthy life expectancy
at birth the highest in the Eastern

Mediterranean Region?

5 5 23.50 16 21.25 13 20.88 2.25 0.38

1.2 Which two WHO regions had the highest
healthy life expectancy at birth for females

in 2000?

5 5 23.25 6 20.88 3 20.88 2.38 0.00

1.3 In what year did the low-income group reach
the healthy life expectancy at birth peak?

6 6 22.00 4 20.25 12 19.63 1.75 0.63

1.3 Which two income groups had the highest
healthy life expectancy at birth in 2000?

6 6 23.38 5 21.75 4 21.25 1.63 0.50

1.4 Which cause of death was the most stable
one globally between 2000 and 2021?

9 9 24.50 15 24.13 12 23.75 0.38 0.38

1.4 Which of the three causes of death
categories was the highest in 2015 globally?

9 9 21.50 8 21.13 15 21.13 0.38 0.00

1.5 In what year the Region of the Americas had
the highest percentage of injuries as cause of

death?

11 11 22.25 16 21.13 27 20.50 1.13 0.63

1.5 Which WHO region had the highest
percentage of noncommunicable diseases in

2005?

11 11 20.88 65 20.75 16 20.75 0.13 0.00

1.6 Which cause of death had the lowest
percentage in low-income income group

between 2000 and 2021?

12 12 27.25 18 27.13 10 25.25 0.13 1.88

1.6 Which income group had the most stable
cause of death as “Communicable, maternal,

perinatal and nutritional conditions”
bertween 2000 and 2019?

12 12 34.50 18 34.25 9 33.50 0.25 0.75

1.7 How did kidney diseases rank in the global
causes of death ranking in 2021?

15 15 21.38 16 20.75 14 19.63 0.63 1.13

(Continued)
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Table 4 (continued)

Figure Question correct_
page

page_
num_1

score_1 page_
num_2

score_2 page_
num_3

score_3 dif_1_2 dif_2_3

1.7 Which disease ranked as the main cause of
death worldwide, keeping its spot the same

in the ranking between 2000 and 2019?

15 17 29.25 14 28.38 15 28.13 0.88 0.25

1.8 What death cause ranked third place for the
following WHO regions: African Region,
Region of the Americas, European Region

and South-East Asia Region?

16 16 31.13 17 31.00 11 29.75 0.13 1.25

1.8 What types of injuries are present between
2000 and 2021 in the top causes of death
ranking for the Region of the Americas?

16 16 30.38 11 30.13 14 28.25 0.25 1.88

2.1 Which two WHO regions had the same
value in terms of change in HIV infections

in percentages, but opposite signs?

33 33 21.88 32 20.13 40 19.88 1.75 0.25

2.1 Which three WHO regions had the highest
number of new HIV infections excluding

“Global” as a region?

33 33 23.75 40 22.75 32 22.38 1.00 0.38

2.11 Which WHO regions had a close to 0
percentage in terms of birth rate change in

the category 10–14 years, being the two
lowest of all the regions?

58 58 32.50 57 30.13 4 26.75 2.38 3.38

2.11 Which WHO regions had a similar
percentage, bigger than 30%, in terms of

birth rate change in the category 10–14 years,
being the two highest of all the regions?

58 58 35.50 57 33.00 102 29.13 2.50 3.88

2.12 In Europe what is the main UHC service
coverage index category in 2021?

61 61 20.13 91 19.63 60 18.88 0.50 0.75

2.12 In the USA what is the main UHC service
coverage index category in 2021?

61 61 21.00 91 19.88 90 18.38 1.13 1.50

2.14 For which IHR (International Health
Regulations) capacity score the values are

visibly above 80 in 2023?

65 65 25.63 64 22.25 67 21.63 3.38 0.63

2.14 Which two WHO regions had the C.12
Zoontic diseases capacity score between 40

and 60?

65 65 23.50 10 21.63 13 21.50 1.88 0.13

2.16 In what year did the health spending as
proportion of government total peaked for

low-income countries?

69 69 23.38 68 20.25 24 17.50 3.13 2.75

2.16 Which World Bank income group had a
lower health spending as proportion of

government total percentage in 2021 than in
2000?

69 69 29.88 68 23.88 12 23.63 6.00 0.25

2.4 In which type of hepatitis the number of new
infections was balanced between WHO

regions in 2022 (with a min of 98,000 and a
max of 225,000 numbers)?

40 40 36.50 33 33.00 39 32.75 3.50 0.25

2.4 Which WHO region has the biggest
discrepancy between hepatitis B and

hepatitis C?

40 40 19.13 41 16.88 39 16.75 2.25 0.13

2.5 For a reduction of 18% what is the number of
people that need interventions against NTDs

(neglected tropical diseases)?

42 42 27.50 39 27.25 32 26.38 0.25 0.88

2.5 In what year does the reduction (in
percentages) intersect the number of people

when talking about those that need
interventions against NTDs (neglected

tropical diseases)?

42 42 30.00 39 29.75 32 28.13 0.25 1.63

2.6 What is the age-standardized prevalence of
tobacco use among persons aged 15 years
and older in each of the four categories

mentioned in 2010?

47 47 31.50 46 28.63 45 26.63 2.88 2.00

2.6 Which two categories have a common point
in the age-standardized prevalence of

tobacco use among people aged 15 years and
older?

47 47 25.50 46 24.75 45 22.50 0.75 2.25

(Continued)
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Table 4 (continued)

Figure Question correct_
page

page_
num_1

score_1 page_
num_2

score_2 page_
num_3

score_3 dif_1_2 dif_2_3

2.7 In which WHO region the annual alcohol
consumption for females and males was very

similar, close to identical, from 2000 to
2008?

50 50 27.75 49 26.25 48 26.13 1.50 0.13

2.7 Which WHO region (without taking into
account “Global”) had the highest annual

consumption of alcohol for males in 2004?

50 50 24.00 48 22.88 49 22.63 1.13 0.25

3.1 How many people benefited from universal
health coverage in 2022 when talking about

the Triple Billion target?

75 75 24.13 89 23.25 74 22.63 0.88 0.63

3.1 How many people reached the healthier
populations target in 2023 when talking

about the Triple Billion target?

75 75 24.75 77 24.50 89 24.38 0.25 0.13

3.2 Which WHO region had the biggest
contribution in the healthier populations
billion target, abbreviated HPOP between

2019 and 2025?

78 78 30.75 77 30.75 76 28.88 0.00 1.88

3.2 Which WHO region had the second biggest
contribution to the healthier populations
billion target, abbreviated HPOP between

2019 and 2025?

78 78 31.50 77 31.50 76 29.75 0.00 1.75

3.3 Which tracer indicator was introduced
starting with 2024 as being a contributor

with less than 1 million to the HPOP?

81 81 26.38 79 25.25 76 25.13 1.13 0.13

3.3 Which tracer indicators are mentioned in
2025 and are all under the 1 million

contribution to the healthier populations
billion target, abbreviated HPOP between

2019 and 2025?

81 81 38.75 76 36.75 77 36.50 2.00 0.25

3.4 In what year did the overall contribution of
all the WHO regions to the universal health
coverage billion target decreased compared

to the previous year?

83 83 23.63 54 23.25 77 22.75 0.38 0.50

3.4 Which WHO region had the biggest
contribution in 2022 to the universal health

coverage billion target?

83 83 21.25 87 21.13 77 20.88 0.13 0.25

4.1 In which WHO region was the percentage of
stunting the lowest for children under 5

years old?

97 97 24.63 98 24.13 99 23.75 0.50 0.38

4.1 In which WHO region was the percentage of
wasting the lowest for children under 5 years

old?

97 97 23.00 98 22.38 99 21.38 0.63 1.00

4.11 What is the average across the country for
the high blood pressure risk factor when

talking about European countries between
2018 and 2022?

119 119 29.25 108 26.25 112 25.50 3.00 0.75

4.11 What is the average across the country for
the tobacco products smoked daily risk

factor when talking about European
countries between 2018 and 2022?

119 119 28.88 120 24.88 108 24.00 4.00 0.88

4.4 In what WHO region there is the biggest
percentage of underweight adults in 1990?

103 103 22.75 102 22.38 101 19.88 0.38 2.50

4.4 In what WHO regions the percentage of
underweight adults remained quite stable

between 1990 and 2022?

103 103 26.50 102 26.50 98 23.25 0.00 3.25

4.5 In which WHO region the difference in
terms of obesity between females and males

was the highest at the beginning, in 1990?

105 105 25.00 102 25.00 104 24.50 0.00 0.50

4.5 In which WHO regions the percentage of
obesity among females and males have

crossed between 1990 and 2022?

105 105 25.75 104 24.50 102 24.00 1.25 0.50

When performing the same steps for the McKinsey document, which had 17 figures and one question for
each, we obtained the results in Table 5. For all the questions, the correct page was retrieved as the first option.
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Table 5: Pages and scores for the McKinsey document

Figure Question correct_
page

page_
num_1

score_1 page_
num_2

score_2 page_
num_3

score_3 dif_1_2 dif_2_3

Exhibit
1

Which funding source category
intermediates the largest share of global

financial assets in 2023?

5 5 18.125 14 15.75 7 14.75 2.375 1

Exhibit
2

By how many percentage points did the
‘Sustainable liquidity, total loans as a ratio of

deposits’ change from 2022 to 2023?

6 6 28.875 5 22.5 20 20.875 6.375 1.625

Exhibit
3

Which industry had the highest net income
among publicly traded companies in 2023?

7 7 20.5 23 18.125 9 17.25 2.375 0.875

Exhibit
4

What percentage valuation discount was
placed on the global banking industry
relative to all other industries in 2003?

9 9 26.375 23 20.625 37 20.625 5.75 0

Exhibit
5

Which country had the highest share of
institutions with price-to-book ratio below 1

in 2023?

10 10 28.125 23 26.625 29 26.125 1.5 0.5

Exhibit
6

Which component contributed the most to
the improvement in ROTE from 2021 to

2023?

11 11 25.125 8 23.75 12 21.875 1.375 1.875

Exhibit
7

What is the relationship between ROTE and
COTE in 2023 for the banking industry

globally?

13 13 23.5 17 22 8 22 1.5 0

Exhibit
8

Which banking subsector had the highest
average ROTE in 2023?

14 14 19.625 11 19 4 19 0.625 0

Exhibit
9

Which sector experienced a decline in labor
productivity from 2010 to 2022?

16 16 22.875 3 22.375 12 20.875 0.5 1.5

Exhibit
10

What annual cost-to-asset reduction is
required by 2030 to maintain current ROTE

if revenue margins fall?

17 17 28 15 24.625 12 21.75 3.375 2.875

Exhibit
11

What percentage of banks had both a
price-to-book ratio >1 and price-to-earnings

ratio >13 in 2023?

22 22 31.75 23 31.125 29 30.25 0.625 0.875

Exhibit
12

Which sector had the highest share of
companies with price-to-book >1 and P/E

>13 in 2023?

23 23 27.75 22 24.875 29 23.875 2.875 1

Exhibit
13

How did the share of banks generating 80%
of economic profit change from 2013 to

2023?

26 26 27.875 37 23.875 24 23.125 4 0.75

Exhibit
14

What percentage of institutions in the
“Global banking industry” had negative

economic profit in 2023?

28 28 24.875 26 24.125 37 24 0.75 0.125

Exhibit
15

Which region had the highest share of public
banks with price-to-book >1 and P/E >13 in

2023?

29 29 29.5 23 25 22 24.75 4.5 0.25

Exhibit
16

What percentage of banks saw their return
on tangible equity decile decrease by exactly

1 decile between 2013 and 2023?

35 35 31.125 11 26.375 13 25.75 4.75 0.625

Exhibit
17

How does the distribution of economic
profit in banking compare to a normal

distribution?

37 37 20.125 28 19.625 26 17.25 0.5 2.375

Fig. 2 compares the differences between the first 2 scores versus the last 2 ones for the same question,
pointing out the highest and lowest points. Overall, there are bigger differences between scores 1 and 2 than
scores 2 and 3 which can mean the information in the identified pages is farther away from each other (and
from the question in the case of the second score), as opposed to questions where the difference was close to
0 thus a particular question was as relevant for multiple pages, which had similar information.

By comparison, an OCR retrieval method was used with the PDF-Tesseract OCR, an engine developed
by Google. Each page of the PDF was converted into an image, each image was preprocessed to improve the
performance by converting it to grayscale, and finally, the text was extracted using Tesseract (time taken:
290.26 s, extracted text length: 188,611). Part of the extracted text can be seen in Fig. 3, which is a side-by-
side check between an actual page containing a chart and the extracted text. We can see that the text on the
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page is split into 2 columns, and the OCR output fails to separate the content accordingly, resulting in clear
mix-ups; in terms of the chart, the description of the figure is correct, but the text on the axis and the legend
are wrongly extracted.

Figure 2: Differences between scores McKinsey document

Figure 3: OCR text extraction output

For further comparison of the LLM performance against a traditional system, we chose 2 pages
containing different charts more similar to the standard ones: a line chart and a stacked bar chart. This
approach needs to focus on extracting and analyzing the data differently for each chart type since even minor
changes can lead to wrong results. OCR was used in combination with rules based on pixel positions to
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estimate the plot area, extract axes, the data, titles, and sources, and properly identify each element; a color
mask was used to isolate the lines. However, even if the text was extracted, multiple tries did not result in a
clear split on elements that could be further used to understand the content of the chart.

Extracted text from the left chart in Fig. 4, as seen in the highlighted text boxes: “Health-related SDGs
Fig. 2.5 in the reported number of people requiring mass or individual treatment and care for NTDs, and its
relative reduction, 2010–2022 2300 26% 2200 4 25% +24 2100 ~ +22 = 2000~ 20% 3 20% 21% 19% +20 20%
1900-4 18% 3B 5 2 2 3 2 2 & 5 12% = ‘> 15004 14004 8 3 13004 1% 5 2 1200 L4 1100 3% 1% 1000 0% 2010 2011 2012
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Number of people (millions) Percentage reduction Source:
WHO (17).”

Figure 4: Text boxes detected by OCR for a line chart (left) and a stacked bar chart (right)

Extracted text from the right chart from Fig. 4, as seen in the highlighted text boxes: “World health
statistics 2024: Monitoring health for the SDGs, Sustainable Development Goals 58 Fig. 3.3 Contribution of
tracer indicators to the HPOP billion, 2019–2025 Sanit Road deaths Trans-fat policy Safe water-rural ‘Safe
water Tobacco Use Clean air (pm 2.5) service Contribution (Clean fuel use = == obesity ‘Adolescent-child obesity
consumption 2019 2020 2021 2022 2023 2024 2025 Net contribution Other indicators below 1% of the total Child
violence Sanitation Suicide mortality Child stunting absolute contribution in 2030 Child overweight Safe water
Source: WHO (5).”

The number of pages returned can be easily changed through a parameter, and the result is a list of
dictionaries, each one containing a match, meaning a page number and the matching score with the returned
page. The score (score_column) highlights how relevant the content of the returned page is to the question’s
goal, comparing the embeddings of the indexed pages to the ones of each question posed.

Table 4 shows that the initial scores for all 50 questions have an average of 26.39%, with a minimum of
19.13% and a maximum of 38.75%. The difference (diff_ columns) between the top 3 scores is small and, along
with the scores themselves, which are less than 39%, it means that the information from the question can be
easily found on multiple pages, bearing in mind that the pages were split, and the charts were separated from
the text.

Fig. 5 represents a pair plot with 9 cells that facilitate the visualization of any relationships between
the three scores from the data frame: 6 off-diagonal cells with individual scatter plots comparing different
score columns, and 3 histograms on the diagonal showing the distribution of each score variable. By paying
attention to the scatter plots, in each one, the points stand for the 50 questions, and their coordinates
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correspond to the scores written on each axis. All scatter plots point towards a positive correlation due to the
clear cluster tendency, indicating that the scores agree on the questions with high or low scores. The three
diagonal cells show the overall distribution for scores of the same column—it can be seen that in all the cases
the scores are concentrated towards the left, with a peak between 20 and 22.5 for scores 2 and 3 and a slightly
higher peak at around 22.5–24 for score 1, as expected since the first score should have the highest values.
There is more of an abrupt passing once we are going higher on the ox axis for scores 2 and 3, whilst score
1 seems to have a more scaled descent. There is a stronger correlation between scores 2 and 3 compared to
scores 1 and 2.

Figure 5: Pair-plot score 1, score 2, and score 3

The same analysis for the scores is done in Fig. 6, which compares the differences between the first 2
scores versus the last 2 ones for the same question. It can be noticed again that there are bigger differences
between scores 1 and 2 than between scores 2 and 3. There is a maximum difference of 6%, followed by
4% in the first category (“Which World Bank income group had a lower health spending as a proportion of
government total percentage in 2021 than in 2000?”, “What is the average across the country for the tobacco
products smoked daily risk factor when talking about European countries between 2018 and 2022?” whereas the
maximum two values for the second one are 3.88%, followed by 3.38% (“Which WHO regions had a similar
percentage, bigger than 30%, in terms of birth rate change in the category 10–14 years, being the two highest of
all the regions?”, “Which WHO regions had a close to 0 percentage in terms of birth rate change in the category
10–14 years, being the two lowest of all the regions?”). The difference between scores 1 and 2 has an average of
1.27%, a min of 0, and a max of 6%, whereas the difference between scores 2 and 3 has an average of 0.97%,
a min of 0, and a max of 3.88%.
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Figure 6: Differences between scores WHO document

4.2 Similarity Maps
The similarity maps are created for each token of the query, hence, Fig. 7a represents the similarity map

for the token “regions” with a max score of 0.81, while Fig. 7b represents the map for the token “migrant” with
a max score of 0.79. The questions asked were in order: “What death cause ranked third place for the following
WHO regions: African Region, Region of the Americas, European Region, and Southeast Asia Region?” and
“How does the ‘overcrowding rate’ differ between the migrant and non-migrant populations in the 35 European
countries studied?”. The maximum similarity score represents the strongest association between a particular
token and any region within the image, and it has a max value of 1. Judging by both scores, it means each
token has a strong link to the image.

The similarity maps can be compared to a heatmap, as the highlighted points are the most important
patches that have been used in the association. The first map represents a figure talking about the top causes
of death, split by regions. It can be seen that this token appears on numerous occasions on the page, for the
smaller charts, and in the figure’s title, and the patches are strongly highlighted. Five out of six charts have
“region(s)” in the title, which is highlighted, whereas the last one does not have it and it is not highlighted.
The second map is built on an image containing both text and a visual representation. It can be seen that
words from the same semantic family are also highlighted: “migratory status”, “migration-related”, and “non-
migrants”. It can also be noticed that other patches (even blank spots) have been highlighted, which do
not seem to have a link, but this was explained as it seems the patches are being repurposed for internal
computations, and they are storing global information of the image, thus are relevant [14].
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(a) Similarity map 1 (b) Similarity map 2

Figure 7: Similarity maps

4.3 Gemini 1.5 Flash vs. Gemini 2.0 Flash Experimental
For each question, there are 4 categories of answers: 1) the model is Gemini-1.5-flash, and the input type

is an image; 2) the model is Gemini-1.5-flash, and the input type PDF; 3) the model is Gemini-2.0-flash-exp
and the input type image; 4) model is Gemini-2.0-flash-exp and the input type PDF.

Before checking the correctness of the responses, an initial analysis can be done on the extracted
information. The LLM is instructed to write the chart type used to answer that question based on its
understanding and it can be noticed in Fig. 8 that in 30% of the questions the chart types extracted were the
same, noticeably those chart types were the more standard ones: line chart, bar chart, stacked (bar) chart,
radar chart.

Another check can be done on the extracted data points. The analysis was done taking into account
the generated JSONs for the image input type with both models. The “extracted_data” field from the JSON
response was split into data series or key points depending on its content. For example, the response was
transformed from “extracted_data”: “African Region: −53%, Global: −32%, South-East Asia Region: −31%,
Region of the Americas: −7%, Western Pacific Region: 7%, European Region: 10%, Eastern Mediterranean
Region: 45%.” into the following JSON where each bar has a category and value, which will be used to calculate
precision, recall and accuracy for each of the extracted data compared to the ground truth.
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Figure 8: Extracted the chart type percentage for the 4 situations

. “extracted_elements”: [
{

“type”: “data_series”,
“series_name”: “Percentage Change”,
“data_points”: [
{

“category”: “African Region”,
“value”: −53,
“unit”: “%”
},
{

“category”: “Global”,
“value”: −32,
“unit”: “%”
},
{

“category”: “South-East Asia Region”,
“value”: −31,
“unit”: “%”
},
{

“category”: “Region of the Americas”,
“value”: −7,
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“unit”: “%”
},
{

“category”: “Western Pacific Region”,
“value”: 7,
“unit”: “%”
},
{

“category”: “European Region”,
“value”: 10,
“unit”: “%”
},
{

“category”: “Eastern Mediterranean Region”,
“value”: 45,
“unit”: “%”
}

]

The metrics from Table 6 belong to the chosen chart—Fig. 2.1—from the PDF document, which had 2
possible ground truths due to being a complex chart, where for the same regions, different numbers could
be extracted. In the extracted data, it was clear that based on the question, the model focused on either
extracting only the pertinent part of the chart or trying to extract everything, this is clear in the difference
in metrics between the first and second questions with the same model.

Table 6: Precision, recall, and accuracy data points WHO document

flash_1_5_image_q1
vs ground_truth

flash_1_5_image_q2
vs ground_truth

flash_2_image_q1
vs ground_truth

flash_2_image_q2
vs ground_truth

Precision_v1 0.5 0.5 0 1
Recall_v1 1 1 0 1

Accuracy_v1 0.5 0.5 0 1
Precision_v2 0.5 0.5 1 0

Recall_v2 1 1 1 0
Accuracy_v2 0.5 0.5 1 0

BLEU, ROUGE-L, and the Levenshtein distance metrics were calculated for each pair of responses, and
the aggregation from Table 7 is the outcome.
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Table 7: Metrics to compare the answers

Metric comparison Mean Median % Perfect
match

(==1.0/==0)

% High
sim

(>=0.9)

%
Very
close
(<=5)

flash_1_5_image_vs_flash_2_image_BLEU 0.27 0.15 4 4 0
flash_1_5_image_vs_flash_2_image_ROUGE-L 0.48 0.44 4 8 0

flash_1_5_image_vs_flash_2_image_Levenshtein 83.72 60.50 4 0 4
flash_1_5_image_vs_flash_2_pdf_BLEU 0.19 0.03 4 4 0

flash_1_5_image_vs_flash_2_pdf_ROUGE-L 0.41 0.35 6 6 0
flash_1_5_image_vs_flash_2_pdf_Levenshtein 82.00 76.00 6 0 6

flash_1_5_image_vs_flash_1_5_pdf_BLEU 0.31 0.19 10 10 0
flash_1_5_image_vs_flash_1_5_pdf_ROUGE-L 0.45 0.40 10 10 0

flash_1_5_image_vs_flash_1_5_pdf_Levenshtein 77.24 65.50 10 0 10
flash_2_image_vs_flash_2_pdf_BLEU 0.31 0.23 2 2 0

flash_2_image_vs_flash_2_pdf_ROUGE-L 0.58 0.61 6 14 0
flash_2_image_vs_flash_2_pdf_Levenshtein 71.88 53.50 2 0 8

flash_2_image_vs_flash_1_5_pdf_BLEU 0.25 0.21 6 6 0
flash_2_image_vs_flash_1_5_pdf_ROUGE-L 0.49 0.54 6 8 0

flash_2_image_vs_flash_1_5_pdf_Levenshtein 88.16 68.00 6 0 6
flash_2_pdf_vs_flash_1_5_pdf_BLEU 0.23 0.16 2 2 0

flash_2_pdf_vs_flash_1_5_pdf_ROUGE-L 0.46 0.50 2 4 0
flash_2_pdf_vs_flash_1_5_pdf_Levenshtein 81.98 65.00 2 0 2

A few mentions are needed to properly interpret the results:

– The metrics BLEU and ROUGE-L have values between 0 and 1, with higher values being considered
closer to a perfect match

– Levenshtein distance can be translated in the following way: 0—the strings are identical, 5—5 character
changes are needed for a perfect match

– “% High Sim” represents the percentage of rows where the BLEU or ROUGE-L score for the mentioned
pair was at least 0.9, thus indicating how often the answers given by that pair were very similar

– “% Very Close” represents the percentage of rows where the calculated Levenshtein distance for that pair
was less than 5; a higher percentage means the generated answers were closer in similarity

Based on the above metrics, we can draw the following conclusions:

– Overall, the answers from any given pair of the 4 sources are rarely identical, and by looking at the
percentages of the “High Sim” column, they are also rarely highly similar; based on the percentages from
the “Very Close” column, the answers often significantly differ at the character level

– The same flash version and different input type tend to be more similar than answers from different
model versions; the pair with flash 2.0 image vs PDF has the highest ROUGE-L mean, median, and
percentage of the high similarity column, whilst having the lowest mean/median Levenshtein distance.
The pair flash 1.5 image vs PDF has the highest percentage of perfect matches, a high similarity of 10%,
and a 10% Levenshtein distance.
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– Different flash version tends to lead to lower similar answers; flash 1.5 vs flash 2 PDF has the lowest
percentage of a perfect match, quite a low high similarity percentage, and low means/medians, whilst
the same models but with image as input type lead to a low similarity and only a 4% perfect match.

The charts below were created by grouping the 4 answers as follows: (a) same model but different context
types; to see which input types render similar results, the consistency of each model, and how dependent
are they on a specific input type; (b) same context type, but different models; purpose—seeing which model
renders similar results.

The x-axis represents the similarity scores with values between 0 and 1, and the y-axis represents the
number of questions that fit into each similarity score interval. For both charts in Fig. 9, the distribution is
skewed to the right, suggesting that many answers have a very high similarity (between 0.9 and 1.0), but more
responses are similar in Flash 2.0 than in 1.5. Also, around 76% of the responses have a similarity above 0.6
for Flash 2.0, suggesting the model is more robust and has better reasoning capabilities that do not rely on
the input type, compared to Flash 1.5, which has a similarity of only approximately 56% above 0.6.

Figure 9: Histogram similarity scores within the WHO model document

The second analysis is performed by comparing the similarity scores of different models that were
each given first the image as ground for the questions, then the whole PDF. The purpose is to compare the
performance of each model for a specific input type. For Fig. 10, the distribution is also skewed to the right in
both cases, suggesting there is a larger number of responses with a higher similar score. This time 65% of the
responses have a similarity score higher than 0.6 when using PDF as an input type, compared to 58% when
using image, which suggests the models are producing more similar responses when using PDF compared
to images, but it may also mean Flash 1.5 is not as good as interpreting images as Flash 2.0.

When calculating the number of questions that could not be answered for each combination of model
and input type, it is seen that Flash 2.0 can respond regardless of the input type, while Flash 1.5 has a difference
of 10 questions more than were answered when extracting from PDF, suggesting it is less performant on
images, but even with PDF, it was not able to match the numbers from Flash 2.0 (as in Table 8).
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Figure 10: Histogram similarity scores within the input type WHO document

Table 8: The number of questions that could not be answered WHO document

Flash 1.5 image Flash 2.0 image Flash 2.0 PDF Flash 1.5 PDF
19 2 1 9

To calculate the correctness of each of the 4 outputs, a ground truth was created for each ques-
tion. To evaluate the responses, a prompt was used that would split the outcome into 4 categories
[YES/PARTIAL/NO/NONE]:

– “YES”, if the answer explicitly highlights the same outcome as the ground truth and contains no
contradictory information.

– “PARTIAL”, if the answer contains the information from the ground truth, but also includes contradic-
tory or additional information (like extra possibilities not supported by the ground truth).

– “NO”, if the answer’s main point is completely different than the ground truth, or completely misses the
ground truth.

– “NONE”, if the answer states or implies that the question cannot be answered based on the information
it was given.

The outcome is visible in Tables 9 and 10. For both documents, the most correct and complete responses
are found in the output of Flash 2.0 using the image ColPali as a knowledge source. These results are followed
by the same model but using the whole document as a knowledge source in the case of the WHO document.
Overall, for the WHO document, counting both true and partially true responses, Flash 2.0 has 36/50 and
27/50, with only 3, respectively, 1 question not receiving a response at all. Flash 1.5 has the most queries
without response, with 21 when using image as input versus 12 when using PDF. These results for both
documents show that Flash 1.5 works much better with textual information, while the 2.0 version has much
better image recognition and reasoning abilities.
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Table 9: Correctness of the 4 outputs WHO document

NO NONE PARTIAL YES
Flash 1.5 image 8 21 7 14
Flash 1.5 PDF 17 12 6 15

Flash 2.0 image 11 3 2 34
Flash 2.0 PDF 22 1 6 21

Table 10: Correctness of the 4 outputs McKinsey document

NO NONE PARTIAL YES
Flash 1.5 image 2 2 0 13
Flash 1.5 PDF 6 1 0 10

Flash 2.0 image 1 1 0 15
Flash 2.0 PDF 3 0 1 13

5 Conclusions
This paper used the “World Health Statistics 2024” report released yearly by WHO to analyze the

performance of ColPali, a new model that leverages the latest VLMs by using images of the document’s pages
to produce high-quality contextualized embeddings. The chosen document contains a combination of text
and complex figures, presenting a good structure for our chosen model. ColPali is indexing the documents
only from their visual features, which resulted in fast indexing while maintaining higher performance than
other existing document retrieval methods.

Using the chosen document, a dataset of 50 questions was created based on different selected charts. For
clearer recognition, the PDF was first split, and each chart was moved to a different page. The purpose was
to test if the model could point to the chart page whilst also having textual info regarding the topic of each
question. ColPali had a 98% success rate, and the recognition based on the token was visible through the
similarity maps, which highlighted that the model has strong capabilities of complex image understanding.

The images that were outputted by ColPali were used as input for Gemini Flash 1.5 and Flash 2.0
Experimental to test the capabilities of each model for QA based on only the image. Tests were also done
using the content of the document as a PDF to compare the performance. The similarity of the responses
was calculated using the sentence-transformers library for embeddings and sklearn for cosine similarity. Each
question had a ground truth, and the correctness was calculated for each model. Overall, Flash 2.0 has
shown clearly better results for our tests, being capable of extracting data from complex charts and also
understanding the overall visuals, and being able to properly use them to end up with the correct response.

The main insights and conclusions drawn from our research are:

(a) ColPali outperforms traditional OCR-based retrieval. Unlike traditional OCR-based models that
struggle with complex document layouts, ColPali effectively retrieves relevant visual elements (charts,
figures, tables) without requiring text extraction. By leveraging fine-grained, token-level matching,
multi-vector representations, and late interaction retrieval mechanisms, ColPali achieves higher
accuracy and better scalability for visually rich documents. The similarity maps generated using
ColPali highlight the most relevant sections of a page, demonstrating its effectiveness in retrieving
precise information.
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(b) Gemini 2.0 Flash Experimental is More Robust Than Gemini 1.5 Flash. Across all performance
metrics, Gemini 2.0 Flash Experimental outperforms Gemini 1.5 Flash, demonstrating improved
factual grounding, mathematical reasoning, and multimodal understanding. The similarity analysis
shows that Gemini 2.0 Flash is more consistent across different input types (PDF and image), while
Gemini 1.5 Flash exhibits more variation depending on the input format. 76% of Gemini 2.0 Flash
responses had a similarity score above 0.6, compared to 56% for Gemini 1.5 Flash, indicating a more
reliable reasoning process.

(c) Gemini 2.0 Flash excels in multimodal reasoning. When using images as input, Gemini 2.0 Flash
provides the most accurate responses, followed by its performance when using the full PDF. In contrast,
Gemini 1.5 Flash struggles with image-based input, answering 10 fewer questions when using images
than when using PDFs. Flash 2.0 was able to answer nearly all questions regardless of input type,
demonstrating superior image reasoning and multimodal comprehension compared to Flash 1.5.

(d) Text-based processing still holds advantages in certain cases. The PDF-based approach slightly out-
performed the image-based approach when considering the overall similarity scores, suggesting that
structured text extraction still provides a reliable way for LLMs to understand documents. Flash 1.5
performs significantly better with textual input than with images, reinforcing the notion that earlier
LLMs rely more on text-based processing.

(e) Gemini 2.0 Flash with image input is the best approach for chart understanding. The most correct
and complete responses came from Gemini 2.0 Flash using images retrieved by ColPali, proving that
multimodal models improve chart comprehension when images are used as input. Out of 50 questions,
Flash 2.0 with image input answered 34 correctly, compared to only 21 for Flash 2.0 with PDF input.
Gemini 1.5 Flash struggled significantly, with 21 questions left unanswered when using image input.

(f) Implications for VrDU. ColPali’s ability to enhance document retrieval and Gemini 2.0 Flash’s superior
reasoning suggest a shift towards multimodal AI for document understanding. Multimodal LLMs
surpass traditional OCR-based methods in processing complex document layouts, integrating textual
and visual elements, and improving response accuracy. The results emphasize the importance of
reasoning capabilities in document analysis, not just text extraction.

Using multimodal AI models like Gemini 2.0 Flash, combined with advanced retrieval methods like
ColPali, significantly enhances chart understanding. The integration of visual and textual reasoning leads to
better document comprehension, marking a shift away from traditional OCR-based approaches.

In terms of limitations of the proposed approach, we mention unusual content split in documents (e.g.,
content spreading on multiple pages might pose issues to ColPali, questions which require access to charts
and textual information to draw up a pertinent conclusion); further evaluation is needed for highly unusual
documents: completely different layouts, handwritten, scanned images turned into PDFs. As for future
research, focusing on understanding the behavior with highly variable document layouts and completely
different domains is key, followed by using specific and more advanced evaluation metrics.
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