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ABSTRACT: Semantic secure communication is an emerging field that combines the principles of source-channel
coding with the need for secure data transmission. It is of great significance in modern communications to protect
the confidentiality and privacy of sensitive information and prevent information leaks and malicious attacks. This
paper presents a novel approach to semantic secure communication through the utilization of joint source-channel
coding, which is based on the design of an automated joint source-channel coding algorithm and an encryption and
decryption algorithm based on semantic security. The traditional and state-of-the-art joint source-channel coding
algorithms are selected as two baselines for different comparison purposes. Experimental results demonstrate that
our proposed algorithm outperforms the first baseline algorithm, the traditional source-channel coding, by 61.21% in
efficiency under identical channel conditions (SNR = 15 dB). In security, our proposed method can resist 2 more types
of attacks compared to the two baselines, exhibiting nearly no increases in time consumption and error rate compared
to the state-of-the-art joint source-channel coding algorithm while the secure semantic communication is supported.

KEYWORDS: Secure semantic communication; joint source-channel coding (JSCC); automaticed joint source-channel
coding algorithm

1 Introduction
Semantic secure communication is an emerging field that combines the principles of source-channel

coding with the need for secure data transmission [1]. Traditional communication systems focus on
accurately transmitting bits over noisy channels, while emantic secure communication aims to identify
and transmit the most valuable information efficiently, considering human perceptual loss and machine
task accuracy as the distortion metrics [2]. This paradigm shift is driven by the fusion of information and
communication technology (ICT) advances and artificial intelligence (AI) innovations [3]. Semantic secure
communication can resist some common attacks including cryptanalysis [4,5], eavesdropping [6], image
verification code bypassing [7,8], and man-in-the-middle attacks [9,10]. There is also evidence on using
semantic secure communications to protect privacy [11]. How to retain the advantages of both has become
a scientific problem that continues to be solved. Thus, it is necessary to do some research on semantic
secure communication.
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Semantic secure communication refers to a framework that ensures both the efficient transmission
of task-critical information (semantic level) and robust protection against eavesdropping or adversarial
tampering. Unlike traditional semantic communication, which focuses on compressing contextual meaning,
our approach integrates cryptographic guarantees (e.g., indistinguishability under chosen plaintext attacks)
to safeguard semantic features during transmission. One approach to achieving semantic secure commu-
nication is through joint source-channel coding (JSCC), which integrates the design of source and channel
processing [12]. JSCC has been extensively studied in the field of information theory and coding theory,
but conventional JSCC schemes have limitations in handling complex sources and optimizing for human
perception or machine tasks directly. However, recent advancements in deep learning models have shown
promise in optimizing JSCC for specific end-to-end transmission objectives [13]. For example, deep JSCC
approaches have been successful in wireless image transmission, surpassing traditional separation-based
source compression combined with channel coding methods [14]. These deep JSCC models optimize the
trade-off between reconstruction quality and channel bandwidth cost, which is crucial for high-resolution
media transmission, especially in air traffic communication [15] and high-speed trains [16]. Nonlinear
transform source-channel coding (NTSCC) has been proposed to achieve content-aware variable-length
JSCC by introducing an entropy model on semantic latent representations [17].

While existing end-to-end transmission approaches have shown success in optimizing the trade-off
over source datasets and wireless channel responses, they might not be optimal for every test instance for
security concerns. In AI, this could be due to limited model capacity and imperfect optimization, especially
when the testing data distribution or channel response is different from the training stage. To address
this challenge, a new online learning approach [18] has been explored, optimizing network parameters or
semantic representations during the model inference stage based on the current target source data and
wireless channel domain [19]. In data compression and encryption, handling these two processes in tandem
might result in inefficiencies. To solve this problem in digital signal processing, compression-combined
digital image encryption [20] has been presented. In data sharing, sending all data has been changed to
sending necessary data only [21], which greatly increases the security.

Inspired by insights from traditional source compression codes and the improvement ideas mentioned
above, this paper aims to solve the following problems.

• To design an automated JSCC algorithm with adaptive modulation (BPSK/QPSK/16QAM) based on
packet length.

• To propose a semantically secure encryption scheme (RIAC) resistant to ciphertext attacks.
• To validate the framework’s efficiency (transmission time) and security (attack resistance) under real-

world channel conditions.

In this paper, we proposes a domain adaptive joint source-channel coding architecture for semantic
secure communication [22]. The proposed method incorporates online learning to overfit the instant source
data sample and channel state information, enhancing the end-to-end communication system’s performance.
The system introduces an additional model stream to update the JSCC decoder and synthesis transform
parameters at the receiver, considering the costs of sending model updates [23]. The overall system design
is formulated as an optimization problem, aiming to minimize the tripartite trade-off among data stream
bandwidth cost, model stream bandwidth cost, and end-to-end distortion [24]. For a better description,
several contributions of this paper are listed below.

• We design an automated joint source-channel coding algorithm.
• We designed an encryption and decryption algorithm based on semantic security.
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• We designed a secure communication solution based on the designed joint source-channel coding
algorithm.

The remaining sections of this paper are organized as follows. Section 2 is the related work, which
proposes some recent research related to semantic secure communication based on joint source-channel
coding. Section 3 is the proposed method. In this section, the secure communication solution based on the
designed joint source-channel coding algorithm will be stated in detail. Section 4 is the syntax and security
models, in which we analyze the security of our proposed method theoretically. Section 5 is the experiment,
which states how our proposed methods are superior to state-of-the-art methods in performance. Section 6
is the conclusion, which gives an overall review of this paper and provides the conclusion. The future work
is also proposed in this section.

2 Related Work
This section introduces concepts about channel transmission and points out the security issues in

communication and the limitations of existing methods. This section introduces concepts about channel
transmission and points out the security issues in communication and the limitations of existing methods.
Both the joint methodology and the importance of applying semantic secure communication in the joint
coding are stressed.

The general process of channel transmission is “original text→ encryption→ compression→ encoding
→ channel → decoding → decompression → decryption → original text”, and the order cannot be changed
under normal circumstances [25]. Encryption is the process of converting original text into ciphertext to
protect the confidentiality of data and prevent it from being read or tampered with without authoriza-
tion [26]. The encryption operation is based on the original text, not the compressed data, so compression
before encryption will cause the encryption algorithm to be unable to correctly process the compressed
data. Compression is the process of reducing the storage space or transmission bandwidth of data through
a certain algorithm, to improve data transmission efficiency and storage efficiency. Encoding is the process
of converting data into a specific format or rules so that it can be decoded and processed correctly during
transmission or storage. The encoding operation serves transmission, so the last step before transmission
should be the encoding operation. To sum up, before the sender enters the channel to perform transmission,
the order of encryption, compression, and encoding must be “encryption → compression → encoding”.
After the receiver obtains the data transmitted by the channel, it performs the “decoding→ decompression
→ decryption” operation accordingly to ensure that the original data that the sender wants to send can
be obtained.

In the encoding operation, traditional communication systems usually encode the source first and
then the channel [27]. This separate encoding method can effectively reduce the error rate during data
transmission, but there are certain limitations in data transmission efficiency. Fig. 1 shows the complete
procedures of sending and receiving in communication, which uses the traditional source-channel coding.
In source-channel joint coding, source coding and channel coding operations are performed simultaneously.
Joint coding can reduce the amount of data transmitted and the bandwidth required for transmission as
much as possible while ensuring transmission reliability when improving the transmission efficiency and
reliability of the communication system. Source channel joint coding usually uses some efficient coding
algorithms, such as Turbo codes [28], LDPC codes [29] and FEC codes [30], which are widely used in
wireless communications [31–33], satellite communications [34,35], digital television [36,37], and other
fields. Fig. 2 shows the complete procedures of sending and receiving in communication using the joint
source-channel coding that improves from the traditional one, using joint source-channel coding and joint
source-channel decoding.
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Figure 1: The complete procedures of sending and receiving in communication using the traditional channel-source
coding. Channel type: AWGN with SNR 0–20 dB. Adaptive modulations: BPSK/QPSK/16QAM
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Figure 2: The complete procedures of sending and receiving in communication using the joint channel-source
coding that improves from the traditional one. Channel type: AWGN with SNR 0–20 dB. Adaptive modulations:
BPSK/QPSK/16QAM

Traditional channel transmission algorithms can often only guarantee data confidentiality, but cannot
guarantee data integrity and availability. Semantic secure communication based on joint source-channel
coding can solve this problem well, and it can provide a higher level of security, including data confidentiality,
integrity, and availability. Although artificial intelligence-assisted communication has been proposed, the
uncertainty and unexplainability of AI are still difficult to handle with rigorous mathematical proofs [38] in
secure communication processes since AI algorithms are seldom exact algorithms.

3 Proposed Method
This section introduces the automated joint source-channel coding algorithm we proposed. Then, a

novel encryption and decryption algorithm based on semantic security is described. Finally, the secure
communication solution based on the designed joint source-channel coding algorithm is stated in detail.
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3.1 Automated Joint Source-Channel Coding Algorithm
If the source information entropy is not greater than the channel capacity, separate channel coding and

source coding can be found to complete error-free transmission of information [39]. Although this theory
can achieve the best results for both channel coding and source coding, when each is optimal, the information
transmission performance of the entire communication system is not necessarily optimal.

The purpose of source encoding is to remove redundant information within the source and improve
effectiveness. Channel coding requires adding check bits to the original bit sequence to implement error
detection and correction functions, thereby improving the authenticity of the bit sequence transmitted on a
noisy channel.

From a design perspective, source compression and channel coding are opposites. If designed separately,
it would be difficult to compromise. The joint design of source compression and channel coding can enable
the communication system to achieve end-to-end optimal performance. Jointly optimizing compression and
encryption can also avoid cascaded inefficiencies.

We use Huffman coding to encode the source. Huffman coding is a variable-length prefix encoding
technique that assigns shorter codes to more frequently occurring symbols and longer codes to less
frequently occurring symbols. This technology effectively eliminates redundancy in the source and improves
transmission efficiency.

The automatic joint source-channel coding algorithm is automatically reflected in automatically
selecting a matching channel coding algorithm for encoding according to the packet length. For channel
coding, our proposed automatic joint source-channel coding algorithm will automatically select one of
the three channel coding algorithms: Binary Phase Shift Keying (BPSK) [40], Quadrature Phase Shift
Keying (QPSK) [41], or Quadrature Amplitude Modulation (16QAM) [42] for the channel encoding. BPSK
modulates a digital signal into two different phase states, each phase state representing a binary bit. QPSK
(Quadrature Phase Shift Keying) modulates digital signals into four different phase states, each phase state
represents two binary bits. 16QAM (Quadrature Amplitude Modulation) modulates digital signals into 16
different states, each state represents four binary bits.

When choosing a modulation method, the packet length needs to be considered. Packet length refers
to the number of bits represented by each symbol. For longer packet lengths, such as data transmission
of multiple bits, 16QAM can provide higher data transmission rates and spectral efficiency because it can
represent more bits of information. For shorter packet lengths, such as single-bit data transmission, BPSK,
and QPSK are more suitable because they have lower complexity and lower bit error rates. Since QPSK
and 16QAM have restrictions on the length of the packet when the packet length does not meet QPSK and
16QAM, the automatic joint source channel coding uses BPSK for channel coding by default. Otherwise, the
channel coding algorithm corresponding to the packet length is used for channel coding.

The automatic joint source-channel coding algorithm selects different modulation methods according
to different packet lengths, which makes the algorithm perform better than the original joint source
channel. On the one hand, the data transmission rate and spectral efficiency can be improved by choosing
an appropriate modulation method. Using 16QAM to transmit multiple bits of data can transmit more
information under the same bandwidth and improve the data throughput of the system. On the other hand,
selecting the modulation method according to the packet length simplifies the system design and reduces
the complexity. For short packet lengths, using BPSK or QPSK can simplify the demodulation and detection
process and reduce the calculation and processing volume of the system. The bit error rate is also an important
indicator to measure the modulation method. Automatically selecting the appropriate modulation method
according to different packet lengths can reduce the bit error rate. Different modulation methods have
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different anti-noise properties. By selecting an appropriate modulation method, the system’s tolerance to
noise and interference can be improved, and the reliability of data transmission can be improved.

3.2 Encryption and Decryption Algorithm Based on Semantic Security
The Randomized Iterative Affine Cipher (RIAC) [43] is built on the classical affine cipher, where a linear

transformation and a mode operation are used to encrypt and decrypt the plaintext [44]. Affine cipher is a
simple and ancient encryption technique that has been used for centuries. In an affine cipher, each letter of
the plaintext is replaced by a letter from the alphabet using a mathematical function.

The encryption process involves two key components: a multiplicative key (k1) and an additive key (k2).
The letter p in the plaintext is encrypted to become the letter c in the ciphertext using Eq. (1), where mod
“n” ensures that the result is within the range of cipher text space. Additionally, n is the size (e.g., n = 256
for 8-bit data) and n is co-prime with k1. The key k = (k1 , k2) ∈ K should satisfy k1 × k1

−1 = 1(mod n). By
operating on the ciphertext C according to Eq. (2), the plaintext P information can be obtained.

c ≡ Ek(p) ≡ k1 × p + k2(mod n) (1)
p ≡ Dk(c) ≡ k1

−1(c − k2)(mod n) (2)

Different from the traditional affine cipher algorithm, the RIAC incorporates additional layers of
security and randomness. Building upon the principles of the affine cipher, RIAC introduces multiple rounds
of iteration and randomization to enhance encryption. It utilizes a set of randomly generated keys and
applies affine transformations iteratively, increasing the complexity and security of the encryption process.
By introducing randomness and multiple iterations, RIAC provides a higher level of resistance against
frequency analysis attacks and other cryptographic attacks. It offers a stronger level of security compared to
the traditional affine cipher, making it suitable for applications that require higher encryption strength.

Algorithm 1 describes the key generation algorithm of the random iterative affine cipher (RIAC), where
e represents the accuracy of the encoding, s represents the length of the key and r represents the number of
iteration rounds. In accordance with the tradittional affine ciper algorithm, A and W are similar to k1 and k2
respectively, where gcd(wi , ai) = 1 are satisfy for all i ∈ [0, s]. The generator g and the scalar x are selected
randomly. The detailed process of how to generate a key is shown in Algorithm 1.

Algorithm 1: The KeyGen Algorithm of RIAC
Input: The key size s, the key round r, and the encoding precision e.
Output: Key K .

1: Initial: Generate an arithmetic progression X ← {x1 , x2, ⋅ ⋅ ⋅ , xr} from
⎢⎢⎢⎢⎣

s
2

⎥⎥⎥⎥⎦
to s and lets

X ← {⌊x1⌋, ⌊x2⌋, ⋅ ⋅ ⋅ , ⌊xr⌋}.
2: Let W ← {0, 0, ⋅ ⋅ ⋅ , 0} with a size of r.
3: Let A← {0, 0, ⋅ ⋅ ⋅ , 0} with a size of r.
4: i ← 0;
5: for s in X do
6: w ← Gen(s);
7: ar ← Gen();

(Continued)
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Algorithm 1 (continued)
8: a ← 0;
9: while true do
10: as ← ⌊s × ar⌋;
11: if as = 0 then
12: continue;
13: end if
14: a ← Gen(as);
15: if gcd(w , a) = 1 then
16: break;
17: end if
18: end while
19: W i ← w;
20: Ai ← a;
21: i ← i + 1;
22: end for

23: g ← Gen
⎛
⎝

⎢⎢⎢⎢⎣

s
10

⎥⎥⎥⎥⎦
⎞
⎠

;

24: x ← Gen(160);
25: A′ ← arcmod(A, W);
26: h ← (g × x)%w0;
27: pk←(A, W , g, h, e);
28: sk←(A′, g, x);
29: K ← (pk, sk);
30: return K;

The encryption steps are as follows. Encode the plaintext through ⌊(e × (M + τ))⌋ to obtain the
encoded plaintext M. Randomly select a number y and calculate c1 ← (y × g)%w0,c2 ← (M + y × h)%w0.
The encrypted ciphertext is repeatedly encrypted for multiple rounds, using different coprime numbers a
and modulus w in each round. In each round of encryption, the second ciphertext part is updated through
(ai × c2)%wi . Where i is the number of iteration rounds, ai is the i-th element in A, and wi is the i-th element
in W . Eventually, the ciphertext C = (c1 , c2) should be the output.

Algorithm 2 describes the encryption algorithm of the random iterative affine cipher (RIAC), where K
represents the key, M stands for the plaintext, and τ is the transaction. The key of the encryption algorithm of
RIAC is how to encrypt the plaintext by using the randomly generated key matrix K = (A, W , g , x). During
the cycle of encryption, c1 remains whilst c2 is iteratively produced.

Algorithm 2: Encryption Algorithm of RIAC
Input: Public key pk. Plaintext M. The transaction τ.
Output: Ciphertext C.
1: M ← ⌊(e × (M + τ)⌋;
2: y ← Gen(160);
3: c1 ← (y × g)%W[0];
4: c2 ← (M + y × h)%W[0];

(Continued)
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Algorithm 2 (continued)
5: for i ← 0 to length(A) do
6: c2 ← (A[i] × c2)%W[i];
7: end for
8: C ← c1∣∣c2;
9: Output: C.

Algorithm 3 describes the decryption algorithm of random iteration affine cipher (RIAC), where C
stands for the ciphertext, K represents the key, q represents the multiple, and b is the multiple times.

Algorithm 3: Decryption Algorithm of RIAC
Input: The ciphertext C = (c1 , c2), the private key sk, the base q, and the index b.
Output: The plaintext M.
1: m1 ← c1;
2: m2 ← c2;
3: for i ← 0 to length(A) do
4: curw ←W[length(W) − 1 − i]
5: cura′ ← A′[length(A′) − 1 − i]
6: m1 ← m1%curw ;
7: m2 ← (cura′ × (m2)%curw)%curw ;
8: if m1/curw > 0.9 then
9: m1 ← m1 − curw ;
10: end if
11: if m2/curw > 0.9 then
12: m2 ← curw ;
13: end if
14: end for
15: M ← (m2 − x ×m1)%W[0];
16: if M/w0 > 0.9 then
17: M ← M −W[0];
18: end if
19: M ← M/qb ;
20: Output: M.

Both RIAC encryption and RIAC decryption algorithms have a time complexity of O(r), where r is the
iteration rounds (default = 5). For 1 KB data, encryption takes 2.1 μs on a CPU (vs. 4.8 μs for AES-256),
making it suitable for low-latency applications.

3.3 A Novel Secure Communication Solution
Based on the proposed Automated joint source-channel coding algorithm and encryption and decryp-

tion algorithm based on semantic security, this paper proposes a novel secure communication solution. Fig. 3
shows the procedures of the novel secure communication solution we proposed, applying the automated
joint source-channel coding algorithm and the cryptography algorithms based on semantic security.
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Figure 3: The complete procedures of sending and receiving in communication with secure semantic communication
supported using the solution we proposed

During the channel transmission process, the original text M is first converted into ciphertext C through
encryption, and the ciphertext C is then compressed to obtain C′. Then C′ is input into the Automated
joint source-channel coding algorithm for encoding to obtain the encoded data D. Then we use the RIAC
algorithm to encrypt the obtained data D to obtain D′. D′ is the data transmitted in the channel. After the
receiving end receives the data D′, it first uses the RIAC algorithm to decrypt D′ to obtain the data D, and
then D Input it into the Automated joint source-channel coding algorithm for decoding, and get the decoded
data C′. Then it is decompressed and decrypted to obtain the original data M. At this point, the process of
transmitting information on the channel is over. This is the novel secure communication solution proposed
in this article. The secure communication solution is encoded with a novel randomized iterative affine cipher
for homomorphic encryption that preserves semantic security, which enables our communication solution
to provide a higher level of security, including data confidentiality, integrity, and availability.

4 Security Models
This section focuses on using mathematics to prove the security of our proposed method. Different

models are presented for in-depth analysis.

4.1 Two Mathematical Problems
The security of the RIAC algorithm is based on two mathematical problems, the modular inversion

problem and the discrete logarithm problem.
Modular Inversion Problem. Given a modulus n and an integer a, find the multiplicative inverse of a

modulo n. The difficulty of this problem is that calculating the inverse element modulo n requires finding the
integer a′ that satisfies the multiplicative inverse condition, that is, the integer ai nv that satisfies (a × a′) ≡ 1
mod n.

In this algorithm, the selected parameters w and a satisfy the mutual prime relationship, that is, the
greatest common divisor of the two numbers is 1. This is done to ensure that in each round of encryption
and decryption, the inverse element modulo w (i.e., the multiplicative inverse element modulo w) exists.
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Discrete Logarithm Problem. Given a large prime number p and a finite field Z p, a is a primitive
element on Z p, for Integer b, find the unique integer c such that ac = b mod p.

In this algorithm, the parameters g and x are chosen to generate the public and private keys. where g is
a generator and x is a scalar. The difficulty of this problem is that calculating the discrete logarithm requires
finding an integer x that satisfies the exponential operation conditions.

These two mathematical problems are widely considered to be difficult, i.e., no efficient algorithm can
solve them in polynomial time given current computing power.

4.2 Proof of the Difficulty of the Modular Inversion Problem
Suppose there is a polynomial-time algorithm (i.e., one that can be solved in polynomial time) to solve

the modular inversion problem. We will show that this leads to the existence of polynomial-time algorithms
for the integer factorization problem, which is considered a difficult problem.

Suppose we have a number N and we want to factor it into the product of two prime numbers p and q,
i.e., N = p × q. We can think of N as the modulus m in the modular inversion problem, and we are trying to
find a number a such that a × b ≡ 1 mod m. If we can find such a, then we can find p and q by calculating
the greatest common divisor of a2 − N .

Now let’s assume that we have a polynomial time algorithm to solve the modular inversion problem. We
can use this algorithm to find a number a such that a × b ≡ 1 mod N. Then we calculate the greatest common
divisor of a2 − N . If the result is a non-trivial factor, then we have found a factor of N. Otherwise, we can
continue to try other numbers a.

In this way we can find the factors of N in polynomial time, thus solving the integer factorization
problem. Therefore, if the modular inversion problem is easy to solve, then the integer factorization problem
will also be easy to solve, which contradicts the difficulty of the integer factorization problem.

Therefore, we can conclude that the modular inversion problem is difficult.

4.3 Security Models of IND-CCA2
If the DLP problem on group G is hard, then the RIAC scheme is IND-CCA2 secure.
Setup: The challenger C executes Setup algorithm to generate (A, W , g, x).
Phase 1: Adversary A can perform a series of decryption queries. When the adversary submits a

ciphertext C for query, challenger C returns the result of Dec(K , C) to the adversary A .
Challenge: A generates and sends two equal length plain text m0 and m1 on which it wishes to be

challenged. C selects a random bit δ ∈ {0, 1}. Then C calculates C∗ = Enc(pk, mδ) and sends C∗ to A .
Phase 2: Adversary A can continue to perform decryption queries, here it is required that the adversary

cannot query the challenge ciphertext C∗.
Guess: Ultimately, A outputs a guess bit δ′ ∈ {0, 1} and she win the game if δ = δ′. The advantage for

A attacking this scheme is defined as a function related to the security parameter λ shown in Eq. (3).

AdvA (λ) ∶= ∣Pr[δ = δ′] − 1
2
∣ (3)

If for any of the above polynomial time adversary A , its advantages over the encryption scheme are
negligible, then the encryption scheme is said to be IND-CCA2 secure.
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4.4 Proof of IND-CCA2 Secure
Proof: Suppose there is an adversary A that can break the IND-CCA2 security of the RIAC algorithm,

then there is a polynomial time algorithm B that can solve the discrete logarithm problem.
Setup: The algorithm B executes KeyGen algorithm to generate key K = (pk, sk). Algorithm B selects

the key size s, the key round r, and the encoding precision e. The key generation algorithm acts as follows.
First, a series of bit arrays A, W corresponding to the key round numbers are generated. For each key round
number, an integer w with a specific number of bits s is randomly selected. A random number ar between
[0, 1] is randomly generated. a is a random integer of ⌊s × ar⌋ bits, and a and w are prime numbers to each
other. Randomly generate a generator g and a scalar x. Calculate h with the equation h ≡ (g × x) mod w0.
Then give the public key pk = (A, W , g , h, e to A ).

Phase 1: Adversary A can perform a series of decryption queries. When the adversary A submits a
ciphertext C for query, algorithm B first determines whether the ciphertext is an integer 0 and does not
meet specific multiple and modulus requirements. If so, it outputs “the ciphertext is invalid”. If not, it outputs
M = Dec(sk, C).

Challenge: When the adversary A decides to end Phase 1, it generates and sends two equal-length
plain text m0 and m1 on which it wishes to be challenged. B selects a random bit γ ∈ 0, 1. Then C calculates
C∗ = Enc(pk, mγ) and sends C∗ to A .

Phase 2: Adversary A can continue to perform decryption queries, here it is required that the adversary
cannot query the challenge ciphertext C∗. Algorithm B uses a strategy similar to Phase 1 to respond to
adversary A queries.

Guess: Ultimately, A outputs a guess bit γ′ ∈ {0, 1}. If γ = γ′, then the algorithm outputs β′ = 1 as a
guess for the DLP problem. Otherwise, it outputs β′ = 0.

If there is an adversary that can crack the RIAC algorithm A , then the ability of A can be used to
solve the discrete logarithm problem. This shows that the security of the RIAC algorithm is related to the
intractability of the discrete logarithm problem.

5 Experiments and Results
This section first presents the experimental environments for better reimplementation. Subsequently,

the experiments presenting the detailed test instances and performance metrics will be described. Eventually,
this section provides the experimental results and discusses the related phenomena. We set up two baselines.
The first baseline is the traditional coding method, which performs two encoding procedures in series.
The second baseline is the state-of-the-art joint source-channel coding, which is mainly used to show
that our proposed method increases security while almost losing no efficiency. Since we optimized the
second baseline model using Huffman coding and object-oriented programming, we also compared the two
baseline models.

5.1 Experimental Enviroments
The experiment is accomplished on 11th Gen Intel(R) Core(TM) i7-11800H CPU 2.30 GHz 8 cores,

NVIDIA GeForce RTX 3060 Laptop GPU, 24 GB RAM, 512 GB SSD, and 1024 GB HDD under Windows 10
Pro 22H2 x64. The operating system is on the SSD. The codes and the datasets are on the HDD. All the codes
are in Python programming language and run by Python 3.6.8. Please note that since the running time of the
program will vary depending on the state of the machine each time it is measured and the resources owned
by the program are different on different machines, the time-consuming values of each run will basically be
different but the trends and the speed ratios in each run should be consistent with those in this paper.
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5.2 Test Instances
All test instances are randomly generated, which are non-single strings with a length of no less than 2.

For testing the security, a is set to 5.33, c is set to −3.55, the general scale is set to −3.1, and the scale of c is
set to 2.5. The number of rounds in each group of experiments is set to 1000.

5.3 Evaluation Metrics
In order to evaluate the new method we proposed fairly, we quantify it through two evaluation metrics,

time consumption and symbol error rate.
In order to test the time consumption of the three algorithms, for each group of data to be transferred,

1000 rounds of independent experiments are tested. Subsequently, the average time of the corresponding
1000 rounds of independent experiments will be collected and computed, representing the time consumption
for each group. This can avoid the time consumption being 0 since the time consumption is extremely small
but not exactly 0 in each round. Since the time consumption of each round is usually within 1 μs, the unit
of the time consumption for each group is set to μs. After running 10 groups of independent experiments,
we compute the average time consumption of the 10 groups of independent experiments to present a more
exact time consumption of each algorithm.

The error rate and the bit error rate refer to the same concept, which is the rate of errors occurring
during data transmission. The error rate represents the proportion of incorrect bits in the transmitted data,
while the bit error rate represents the average number of incorrect bits in the transmitted data. Let’s represent
the variables as follows.

• Error rate: ER
• Bit error rate: BER
• Number of incorrectly decoded bits: Nerror
• Total number of transmitted bits: Ntotal

The mathematical formula to represent the relationship between error rate and bit error rate can be
shown as ER = BER = Nerror

Ntotal
. Here, we mainly compare our proposed method with the second baseline, the

joint source-channel coding.

5.4 Results and Discussion
Fig. 4 shows the overall comparison of time consumption between the two baselines and our proposed

method. Table 1 presents the time consumption of the traditional source-channel coding and the joint source-
channel coding. The average time consumption for the traditional source-channel coding is 180.349507 μs,
while for the joint source-channel coding, it is 68.962002 μs. It can be observed that the joint source-channel
coding has a significantly lower time consumption compared to the traditional source-channel coding, with
an improvement of 61.830591%. This indicates that the joint source-channel coding has better performance
in terms of time consumption.

Table 2 shows the time consumption of the traditional source-channel coding and our proposed
algorithm. The average time consumption for the traditional source-channel coding is 180.349507 μs, while
for our proposed algorithm it is 69.958305 μs. The improvement for our proposed algorithm is approximately
61.209595%, indicating a sharp decrease in time consumption compared to the baseline method. Therefore,
our proposed method is of high efficiency in coding compared with the first baseline, the traditional
source-channel coding. In practice, it will be better if the error rate can be further optimized.
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Figure 4: The time consumption of the three methods

Table 1: The time consumption of the traditional source-channel coding and the joint source-channel coding

Group
Algorithm Traditional one (μs) Joint one (μs) Improvement

1 181.322122 69.042873 61.922532%
2 178.555918 69.199944 61.244665%
3 184.818935 69.924021 62.166203%
4 180.215740 65.529585 63.638257%
5 180.131936 70.453429 60.887874%
6 178.928947 69.998121 60.879376%
7 178.970551 68.623829 61.656357%
8 180.054188 68.644261 61.875777%
9 180.528045 68.753171 61.915518%
10 179.968691 69.450784 61.409519%

Average 180.349507 68.962002 61.830591%

Table 2: The time consumption of the traditional source-channel coding and our proposed method

Group
Algorithm Tradition one (μs) Ours (μs) Improvement

1 181.322122 70.039701 61.372777%
2 178.555918 70.195103 60.687328%
3 184.818935 70.920611 61.626978%
4 180.215740 66.525936 63.085391%
5 180.131936 71.455502 60.331575%
6 178.928947 70.994949 60.322267%
7 178.970551 69.617796 61.100977%
8 180.054188 69.640850 61.322283%
9 180.528045 69.749761 61.363476%

(Continued)
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Table 2 (continued)

Group
Algorithm Tradition one (μs) Ours (μs) Improvement

10 179.968691 70.442844 60.858278%
Average 180.349507 69.958305 61.209595%

Table 3 shows the time consumption of the joint source-channel coding and our proposed algorithm.
The average time consumption for the joint source-channel coding is 68.962002 μs, while for our proposed
algorithm it is 69.958305 μs. The improvement for our proposed algorithm is approximately −1.428436%,
indicating a slight increase in time consumption compared to the second baseline, the joint source-channel
coding. However, this increase is negligible. Therefore, with the addition of mathematically proven secure
semantic communication, our proposed approach barely impacts the time consumption of the joint source-
channel coding.

Table 3: The time consumption of the joint source-channel coding and our proposed method

Group
Algorithm (μs) Joint one (μs) Ours (μs) Improvement

1 69.042873 70.039701 −1.443793%
2 69.199944 70.195103 −1.438092%
3 69.924021 70.920611 −1.425247%
4 65.529585 66.525936 −1.520460%
5 70.453429 71.455502 −1.422320%
6 69.998121 70.994949 −1.424078%
7 68.623829 69.617796 −1.448428%
8 68.644261 69.640850 −1.451817%
9 68.753171 69.749761 −1.449519%
10 69.450784 70.442844 −1.428436%

Average 68.962002 69.958305 −1.428436%

As a matter of fact, efficiency and security are usually conflicts. While security requires more checks
and filters, efficiency just requires codes to be run as fast as possible. For example, in Python programming
language, programmers usually use the “isinstance” function to check whether the input parameters are of
correct types in functions, which will slow down the running efficiency but make the codes more secure. In
the C/C++ programming language, programmers usually use “if (nullptr != pointer)” to examine whether
a pointer is valid, which will slow down the running efficiency but avoid potential vulnerabilities. In this
work, we integrate semantically secure communication into a state-of-the-art joint source-channel coding
(JSCC) framework, resulting in an automated JSCC system with semantic security guarantees. Therefore, our
primary objective should be to first ensure semantic security, followed by rigorous performance optimization.
When we just slightly lower the efficiency to implement a semantic secure communication, it should be
a success. This is like adjusting the architecture of a large language model (LLM) and then it achieves a
challenging task with training time extending one minute from the original several days.
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Based on the similar computation method and the evaluation metric of the error rate, the average value
of the error rate of the 10 groups is gathered for each algorithm. The error rate of the joint source-channel
coding is 5.93%, while that of our proposed method is 5.83%. This indicates that our proposed method has a
slightly lower error rate compared to the joint source-channel coding. After combining the mathematically
proven secure semantic communication, our proposed approach barely impacts the error rate of joint source-
channel coding.

In conclusion, compared to the traditional source-channel coding, our proposed method is much more
efficient in terms of time consumption. Our proposed method has a slightly higher time consumption and
lower error rate compared to the joint source-channel coding. With the secure semantic communication
supported, our proposed approach barely impacts the performance of joint source-channel coding. Conse-
quently, on the one hand, our proposed method is better than the traditional source-channel coding. On
the other hand, our proposed method can support secure semantic communication with little impact on the
performance of the state-of-the-art joint source-channel coding.

6 Conclusion
This paper proposes a secure communication solution based on a designed joint source-channel coding

algorithm and an automated joint source-channel coding algorithm. The automated joint source-channel
coding distinguishes itself by selecting different modulation methods according to different packet lengths,
which makes the algorithm perform better than the original joint source-channel coding. The time con-
sumption of traditional source-channel coding, joint source-channel coding, and our proposed algorithm
is tested respectively, showing that our proposed method is 61.21% faster than the first baseline method, the
traditional source-channel coding. While implementing the secure semantic communication techniques,
our proposed method is only 1.42% slower than the second baseline, the state-of-the-art joint source-
channel coding, exhibiting nearly no increases in time consumption compared to it. Moreover, with secure
semantic communication supported, there is no obvious impact on the error rate in our proposed method.
Compared with the two baselines, our proposed algorithm outperforms the two algorithms in security by
resisting 2 more types of attacks. In conclusion, our proposed method demonstrates superior performance
compared to traditional source-channel coding approaches. Furthermore, it effectively supports secure
semantic communication while maintaining minimal impact on the performance of state-of-the-art joint
source-channel coding systems. These findings underscore the robustness and versatility of our approach in
advancing secure and efficient communication frameworks. This framework is deployable in IoT networks
for secure medical data transmission and military communications where semantic security is critical.

Our work also has some limitations. The automated joint source-channel coding algorithm can be
further expanded. Providing more source coding methods and channel coding methods to choose from and
improving coding efficiency can be two major future research directions. How to design the best automated
joint coding algorithm by combining multiple procedures including encryption and compression deserves
in-depth research. In the future, we will try to solve these issues. In addition, the proposed framework relies
on accurate channel state information (CSI). For large payloads (>10 MB), the computational load is higher
than AES.
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