
echT PressScience

Doi:10.32604/cmc.2025.065334

ARTICLE

PAV-A-kNN: A Novel Approachable kNN Query Method in Road
Network Environments

Kailai Zhou*, Weikang Xia and Jiatai Wang

School of Software, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
*Corresponding Author: Kailai Zhou. Email: zkl2@163.com
Received: 10 March 2025; Accepted: 08 May 2025; Published: 03 July 2025

ABSTRACT: Ride-hailing (e.g., DiDi and Uber) has become an important tool for modern urban mobility. To improve
the utilization efficiency of ride-hailing vehicles, a novel query method, called Approachable k-nearest neighbor
(A-kNN), has recently been proposed in the industry. Unlike traditional kNN queries, A-kNN considers not only the
road network distance but also the availability status of vehicles. In this context, even vehicles with passengers can
still be considered potential candidates for dispatch if their destinations are near the requester’s location. The V-Tree-
based query method, due to its structural characteristics, is capable of efficiently finding k-nearest moving objects
within a road network. It is a currently popular query solution in ride-hailing services. However, when vertices to be
queried are close in the graph but distant in the index, the V-Tree-based method necessitates the traversal of numerous
irrelevant subgraphs, which makes its processing of A-kNN queries less efficient. To address this issue, we optimize the
V-Tree-based method and propose a novel index structure, the Path-Accelerated V-Tree (PAV-Tree), to improve query
performance by introducing shortcuts. Leveraging this index, we introduce a novel query optimization algorithm, PAV-
A-kNN, specifically designed to process A-kNN queries efficiently. Experimental results show that PAV-A-kNN achieves
query times up to 2.2–15 times faster than baseline methods, with microsecond-level latency.

KEYWORDS: k-nearest neighbor query; ride-hailing services; V-Tree; shortest path

1 Introduction
The rapid advancement of mobile communication and spatial positioning technologies has led to

the widespread adoption of Location-Based Services (LBS), fueling the swift development of user-centric
urban transportation systems. LBS applications are especially prominent in road network environments. For
instance, in navigation systems like Gaode Map, users may seek the shortest path between two locations.
Meanwhile, in LBS applications such as DiDi or cargo transport platforms like Huolala, users issue requests
based on their current location. In these cases, the system needs to select the k nearest vehicles to the user for
scheduling to fulfill their needs. These application scenarios necessitate efficient spatial object queries within
road networks, such as k-nearest neighbor (kNN) searches. Therefore, developing methods to efficiently
handle such location-based spatial queries in road networks is of significant importance. A substantial
amount of research [1–3] has been conducted on the query problem of moving objects in road networks.
However, many of these studies assume that all moving objects can immediately respond to user requests
upon receiving a query. In practice scenarios, this assumption is not always valid. On one hand, due to high
user demand, vehicles near the query point may already be occupied and unable to respond to new requests.
On the other hand, vehicles that are currently performing tasks may become potential candidates for the

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065334
https://www.techscience.com/doi/10.32604/cmc.2025.065334
mailto:zkl2@163.com

3218 Comput Mater Contin. 2025;84(2)

query once they reach their destinations, especially if their destinations are close to the query point. Thus, a
class of queries known as Approachable-kNN (A-kNN) [4] has been proposed in the industry. The objective
of A-kNN is to return the top k moving objects that can respond to a query request at the earliest after
completing their current tasks, given a query point Q and a set of moving objects M. Therefore, the distance
metric between the query point and a moving object is redefined as the sum of the remaining distance to the
object’s destination and the distance from that destination to the query point. However, with the rapid growth
of travel demand and the increasing complexity of road network structures, computing the shortest distance
between arbitrary vertex pairs has become time-consuming. If the shortest distances between vertices can be
precomputed and stored in advance, query processing costs can be significantly reduced, thereby improving
overall query efficiency. Based on this idea, researchers have proposed tree-based index structures such as
V-Tree [5] to efficiently support kNN queries for moving objects in road networks. However, most existing
methods tend to overlook semantic constraints, particularly the involvement of moving objects (e.g., drivers)
in ongoing tasks with specific destinations, which may lead to suboptimal scheduling outcomes in real-world
applications. In large ride-hailing platforms like Didi or Uber, when a customer submits a request, the system
must identify the earliest-responding driver among thousands of candidates. Traditional methods such as
V-Tree and G-Tree consider only spatial proximity, neglecting the fact that some drivers are currently en route
to their respective destinations. As illustrated in Fig. 1, O3 is identified as closest to the query point Q based on
its current location. Consequently, O3 may be mistakenly selected as the nearest driver for the query request.
However, since O3 is en route to its destination D3, which is far from the Q, it is not the most appropriate
choice. In contrast, O2—though spatially farther—has a shorter aggregate distance (i.e., the remaining
distance to its destination plus the distance from that destination to Q), making it a more suitable candidate.
Such misjudgments may lead to service delays and a suboptimal user experience, clearly highlighting the
importance of incorporating destination-aware semantic constraints in spatial query processing.

Figure 1: An example of A-kNN query

In addition, when two query vertices are close in the actual road network but assigned to farther leaf
nodes in the V-Tree, the query process may require traversing numerous irrelevant subgraphs and their
boundary vertices until reaching the optimal solution. For instance, as shown in the road network of Fig. 2a,
when computing the shortest distance between vertices v12 and v6, the V-Tree-based query method needs
to access the boundary vertices of four nodes: D, A, B, and E, to obtain the solution. To address this issue,
this paper proposes an improved indexing structure based on V-Tree called the Path-Accelerated V-Tree
(PAV-Tree). To accelerate distance queries, PAV-Tree constructs shortcuts between designed leaf nodes,
where each shortcut records the shortest path distances among all boundary vertices within the two nodes.
For example, as illustrated in Fig. 2b, two shortcuts, S1 and S2, respectively connect leaf nodes C − F and

Comput Mater Contin. 2025;84(2) 3219

D − E. Consequently, calculating the distance between vertices v12 and v6 only requires accessing the shortcut
S2 and the distance matrix of node E, which is significantly more efficient than the V-Tree approach. Based
on our experiments on real-world road network datasets, the proposed method is particularly well-suited
for large-scale ride-hailing platforms, where high-frequency spatiotemporal queries over millions of moving
objects are routine. By reducing unnecessary candidate evaluations and employing pruning strategies, the
method significantly improves query efficiency. Compared with traditional approaches, our solution achieves
over a 45% reduction in query processing time, leading to substantial savings in computational resources.
Furthermore, the reduction in scheduling latency directly enhances user experience and driver utilization,
offering both operational and economic benefits for commercial platforms. The key contributions of this
paper can be summarized as follows:
1. We propose a novel index, PAV-Tree, which is better than the V-Tree in handling road network-based

A-kNN queries.
2. Building on PAV-Tree, we introduce a shortcut-based algorithm, PAV-A-kNN, to answer A-kNN

queries, demonstrating greater efficiency than the V-Tree-based algorithm.
3. Extensive experiments on real-world and synthetic datasets indicate that the query performance based

on method PAV-A-kNN is significantly better than that based on V-Tree-based kNN in road networks.

Figure 2: An example of PAV-Tree index (f = 2, τ = 4). Matrices of some nodes are omitted. (a) Graph partition.
(b) PAV-Tree

2 Related Work
Road network-based kNN queries have been a hot research topic [6–9]. The most basic solution to the

kNN query problem is the Dijkstra algorithm [10]. Given a query point q, the algorithm iteratively explores
vertices in increasing order of distance util k nearest objects are found. While effective, this approach becomes
computationally expensive, particularly in large-scale networks. To address these challenges, researchers
have developed index structures and algorithms that precompute and store critical information, significantly
enhancing query efficiency in large road networks. Notable index-based query methods include G-Tree [11],
and V-Tree [5].

G-Tree partitions the whole graph into subgraphs, utilizes a balanced tree structure to maintain these
subgraphs, and uses an assembly-based approach to answer kNN queries. G*-Tree [12] overcomes this
drawback by creating shortcuts between selected leaf nodes. However, when there are no shortcuts between
leaf nodes, G*-Tree still requires significant computational cost and time to traverse its subtrees. V-Tree
inherits G-Tree, identifying boundary vertices of subgraphs and employing efficient techniques to process
kNN queries by maintaining a list of objects near the boundary vertices.

3220 Comput Mater Contin. 2025;84(2)

Li et al. [13] developed a method to address the challenge of continuously reporting alternative
paths for users traveling along a specified route by sequentially accessing vertices in increasing order of
maximum depth values. This approach improves both computational efficiency and accuracy. To extend
kNN queries to multiple moving objects, Abeywickrama et al. [14] introduced the Compressed Object
Landmark Tree (COLT) structure, which facilitates efficient hierarchical graph traversal and supports various
aggregation functions.

In recent years, researchers have provided new solutions for kNN queries in terms of optimizing
throughput including TOAIN [15] and GLAD [16]. TOAIN uses SCOB indexing and contraction hierarchy
(CH) [17] structure, which creates shortcuts within the graph. These shortcuts enable the pre-computation
of candidate downhill objects before performing the kNN-Dijkstra search, thereby improving efficiency.
Additionally, TOAIN conducts a workload analysis to configure the SCOB indexing, ensuring maximum
throughput. GLAD, by comparison, uses an index of the grid to store moving objects, divides the road
network into 2x ⋅ 2x grids based on vertex latitude and longitude, and maintains lists containing objects for
each grid, and it employs a jump-tag based structure H2H [18] to compute the distance between vertices.
Since the update cost of the grid is low, GLAD can realize a small update cost, thus improving the throughput
of the system.

A relatively advanced approach is the tree decomposition kNN [19] search algorithm, which employs
a tree-based partitioning method to associate each vertex with a corresponding node in the tree. This
approach efficiently calculates the shortest path between nodes. However, it necessitates recalculating the
inputs for updated k-values, which results in greater time overhead due to redundant computations. In
the latest research progress, Wang et al. proposed a concise kNN indexing structure, KNN-Index [20],
designed to address the complexity of indexing, high space overhead, and prolonged query latency associated
with traditional methods. This method simplifies the index design by directly recording the first k nearest
neighbors of each vertex to significantly reduce the index space occupation while supporting progressive
optimal query processing.

The shortest path query is a crucial component of kNN queries, particularly for single-pair shortest
paths [21–25]. H2H and P2H [26] construct hierarchical labels based on tree decomposition. P2H improves
on H2H by pruning certain labels and adding shortcuts between others, achieving optimal performance in
a recent experiment [27]. Dan et al. introduced [28] LG-Tree, which divides the entire graph into multiple
subgraphs and indexes these subgraphs using a balanced tree. By incorporating Dynamic Index Filtering
(DIF) and boundary vertices, combined with phased dynamic programming, to ensure efficient shortest
distance queries.

Recently, employing machine learning methods has emerged as a novel research approach to solving
shortest distance computation problems. Huang et al. [29] proposed a road network embedding method
(RNE) that approximates the shortest path through L1 distance in a low dimensional vector space, achieving
nanosecond level query response. However, this method has large errors on long-distance paths and high
training costs, and the pruning effect of kNN is affected by high-dimensional features, resulting in a decrease
in accuracy.

Zheng et al. proposed RLTD [30], which applies reinforcement learning to optimize tree decomposition
for compressing the space overhead of 2-hop label indexing. Although it reduces index size, the method
requires costly training, lacks adaptability to dynamic network changes, and offers limited improvements in
query performance. Moreover, the learned strategies generalize poorly across different networks.

Drakakis et al. [31] proposed the Neural Bellman Ford Network (NBFN), which combines the classical
Bellman-Ford algorithm with Graph Neural Networks (GNNs) through a message-passing mechanism

Comput Mater Contin. 2025;84(2) 3221

(MPNN) to solve the shortest path problem. While innovative, this approach heavily depends on training
data, exhibits large errors on unseen nodes or long paths, suffers from numerical instability, and incurs high
computational overhead in sparsely connected networks.

In summary, although these learning-based approaches offer advantages in static scenarios—such as
fast querying, index compression, and algorithmic innovation—they face shared challenges: high training
cost, limited generalization, and lack of result controllability. In contrast, the PAV-Tree method proposed in
this paper, grounded in traditional index structures, features clear organization, no training requirement,
and transparent path computation logic, making it well-suited for scenarios demanding high controllability
and deployment stability. Table 1 summarizes the key characteristics of existing kNN index structures.

Table 1: Key properties of existing kNN index structures

Method Query efficiency Indexing time Space overhead Dynamic
support

Destination
awareness

V-Tree [5] Moderate Low Moderate
√ ×

G-Tree [11] Low Moderate Low × ×
TOAIN [16] Very high High Moderate

√ ×
GLAD [17] Very high Moderate High

√ ×
TEN-Index [20] Very high Very high Very high × ×
KNN-Index [21] Very high Moderate Moderate × ×

PAV-Tree High Low Moderate
√ √

3 Preliminaries
Shortest Path. Given an undirected weighted graph G = (V , E) where V is the set of vertices and E is

the set of edges, each edge (u, v) ∈ E has an associated weight representing the distance between u and v.
A path from u to v is defined as a sequence of vertices P = ⟨ v0, v1, . . . , vn⟩ where v0 = u and vn = v. The
path distance denoted as Path (u, v), is the sum of the weights of all edges in P. The shortest path, denoted
as SPath (u, v), is the path with the minimum total distance among all possible paths between the u and v,
and the corresponding distance is denoted as SPath(u, v).

For example, in Fig. 3, there are two paths from the vertex v2 to vertex v5, namely v2→v3→v5 and
v2→v4→v5. Clearly, SPDist (v2, v5) = 110.

Figure 3: An example of a moving object

Moving Object. Each moving object O is represented as a tuple O = (C , D, S), where C denotes the
current position, D denotes the destination of the moving object, and S indicates the status specifying
whether the object is occupied. If D = ∅, it indicates that the destination is its active vertex.

3222 Comput Mater Contin. 2025;84(2)

Active Vertice. Given an object O on an edge e which is moving to the vertex v, we call O an active
object of vertex v and call v an active vertex.

For example, in Fig. 3, the moving object O1 is traveling from vertex v2 to vertex v3 along edge (v2, v3).
Thus, O1 is the active object of the active vertex v3, with an offset of 30.

Local Nearest Active Vertex (LNAV) and Global Nearest Active Vertex (GNAV). Given a vertex u in
a subgraph Gi , an active vertex v in Gi is called the LNAV of u if the distance from v to u is the smallest
among all active vertices in Gi . If the distance from u′ to v is the smallest among all active vertices in the
entire graph G, u′ is termed the GNAV of v.

For example, in Fig. 2a, there are seven active vertices. In the subgraph GD , the LNAV of v6 is v5, and in
GA, the LNAV of v6 is v4. Meanwhile, the GNAV of v6 is v4.

Table 2 provides a summary of the key notations and their corresponding meanings used in this paper.

Table 2: Notations and their meaning

Notation Description
G = <V, E> Graph G with vertex set V and edge set E

B (Gi) Boundary vertex set of Gi
Leaf (Gv) The leaf node that contains vertex v

DGi Distance matrix of Gi
Di , j SPDist (i , j)
Li Local active vertex table of Gi
Di Destination of moving object Oi

offset The offset of moving object to its active vertex
G p

i Parent graph of Gi

Boundary vertices. Given a subgraph Gi of a graph G = <V , E> with a vertex β ∈ Gi , β is called a
boundary vertex if ∃ (β, v) ∈ E and v /∈ Gi . The set of boundary vertices of Gi is denoted as B (Gi).

A-kNN Query. Given a directed weighted graph G (V, E), a set M of moving objects, an integer
k ≤ ∣M∣, an A-kNN query is denoted as A-kNN = (q, k), where q represents the query position. The A-kNN
query returns a result set R ⊆M of k moving objects such that for every O′ ∈M/R, the following inequation
holds for all O ∈ R.

SPDist (O′.C , O′.D) + SPDist (O′.D, q) ≥ SPDist (O .C , O .D)
+ SPDist (O .D, q)

4 The PAV-Tree Index

4.1 Definition of PAV-Tree
A PAV-Tree for a road network G is a balanced search tree that follows a hierarchy of graph partitions

and satisfies the following properties:

1. Each non-leaf node has f children (f ≥ 2). Each leaf node contains at most τ vertices (τ ≥ 1).
2. Each node maintains an LNAV Table L. The leaf nodes store the LNAV for all vertices within the leaf,

while the non-leaf nodes store the LNAV of the boundary vertices of all their child nodes.

Comput Mater Contin. 2025;84(2) 3223

3. Each leaf node holds an active object table M, which records the active objects associated with each
vertex in the leaf node.

4. The total size of all shortcuts is at most η (η ≥ 0).

In a PAV-Tree, each node corresponds to a subgraph, and vice versa; thus, nodes and subgraphs can be
used interchangeably for simplicity.

Example 1. Fig. 2b shows the PAV-Tree of the road network and moving objects in Fig. 2a with f = 2,
τ = 4, and η = 5. The shortcuts S1 and S2 store 2 and 3 distance values respectively in the distance matrix. Thus,
the shortcut threshold η is 5.

4.2 Data Structure of PAV-Tree
LNAV Table L. Each non-leaf graph Gi stores the LNAV of the boundary vertices of all its child nodes.

For a leaf node, L stores the LNAV of all its vertices, denoted by Lx has two columns, LX [β] .γ and LX [β] .δ,
which record β′s LNAV in a node X and β′s distance to its LNAV, respectively.

For example, in Fig. 2a, LD [β] .γ = v5, and LD [β] .δ = 8.
Active Object Table M. Each leaf node Gi maintains an active object table Mi , where Mi [v] records

the active objects associated with vertex v. Each entry in Mi [v] is represented as (O, D, δ), where O is the
active object, D is its destination, and δ is its offset from the active vertex.

Space Complexity of PAV-Tree. Given a PAV-Tree with V vertices, M moving objects, and a shortcut
threshold η, the space complexity is O (∣M∣ + log ∣V ∣ + η).

Table 3 records the relevant information of all moving objects in Fig. 2a.

Table 3: Moving objects list

O V E D Offset
O1 v3 v1, v3 v11 2
O2 v5 v2, v5 v13 1
O3 v11 v10, v11 v6 0.5
O4 v14 v13, v14 v16 3
O5 v2 v1, v2 ∅ 1
O6 v1 v4, v1 ∅ 1
O7 v4 v3, v4 v8 2

4.3 Shortcut Selection
In this section, we will introduce the method for establishing shortcuts in the PAV tree. Before discussing

the creation of shortcuts between leaf nodes, we first need to clarify that the goal of this paper is to build
shortcuts between leaf nodes that are geographically close in the graph but distant in the PAV-Tree structure
(as explained in Section 1). To achieve this, Definitions 1 and 2 are introduced to determine whether two
nodes meet the specified criteria.

Definition 1 (Adjacent cousin nodes). Given leaf nodes Gi and G j, where u ∈ B (Gi) and v ∈ B (G j), Gi
and are called adjacent cousin nodes, denoted as Gi∼ G j, if ∃ (u,v) ∈ E and Gi and G j are cousin nodes.

Furthermore, two nodes are cousins of each other if they are at the same level but have different parent
nodes. If two nodes are adjacent cousin nodes, this paper considers them to be geographically close in the

3224 Comput Mater Contin. 2025;84(2)

graph. Such adjacency indicates that the two nodes are directly connected in the graph while belonging to
different subgraphs at the same hierarchical level, reflecting their geographical closeness.

Definition 2. The function Y of two leaf nodes Gi and G j in PAV-Tree is denoted as:

Y (Gi , G j) = ∣B (Gi) ∣ + ∣B (G j) ∣ +∑⟨Nx ,N y⟩∈Pi , j
∣B (Gx) ∣ ⋅ ∣B (Gy) ∣ (1)

where pi , j denotes the shortest common ancestor path between leaf nodes Gi and G j in PAV-Tree. In addition,
Nx and Ny represent two consecutive nodes along pi , j.

Based on the time complexity analysis of the G-Tree method [11], the cost of calculating the distance
between any two vertices can be assessed by the number of boundary vertices on the shortest common
ancestor path between the two vertices. Therefore, a larger value of Y indicates that the algorithm needs to
scan more boundary vertices to compute the distance between the two leaf nodes, and thus we consider two
leaf nodes in the PAV tree to be “distant.”

Definition 3 (Shortest Common Ancestral Path). Given a subgraph Gi = (Vi , Ei), for two vertices vi ∈
Gi and v j ∈ G j, the path from vi to v j that traverses their least common ancestor is referred to as the shortest
common ancestral path (SCAP). The SCAP between any two vertices is denoted as SCAP (vi , v j) = {Gi →
Gi+1 ⋅ ⋅⋅ → G j}, where the intermediate subgraphs represent the sequence of subgraph partitions from Gi to G j.
(excluding the least common ancestor).

For example, in Fig. 2a, the SCAP (C, F) is {C, A, B, F}, and SCAP (C, D) is {C, A, D}.
Definition 4 (Shortcut Selection Problem). Let xi , j ∈ {0,1} be an indicator, where xi , j = 1 (or 0) indicates

whether a shortcut is selected (or not selected) between the leaf nodes Gi and G j in the PAV-Tree. Then, the
problem of shortcut selection is defined as follows:

∑1≤i , j≤z Y (Gi , G j) ⋅ xi , j (2)

∑1≤i , j≤z ∣B (Gi) ∣ ⋅ ∣B (G j) ∣ ⋅ xi , j ≤ η (3)

Maximize Eq. (2) under the constraints of Eq. (3).
Based on Definition 4, the shortcut selection problem is equivalent to the 0–1 knapsack problem, which

is known to be NP-hard. Thus, this paper employs a greedy algorithm to approximate the solution to the
shortcut selection problem. The pseudocode for shortcut selection is presented in Algorithm 1.

Example 2 (Building shortcuts for leaf nodes). As an example of the shortcut construction process for the
PAV-Tree in Fig. 2b, and based on Definition 1, there are: C ∼ F, D ∼ F, and D ∼ E. Next, we provide a specific
example for Y (C, F) using leaf nodes C and F. Note that the SCAP (C, F) is {C , A, B, F}. Thus, the value of
the function Y (C, F) is calculated as follows:

Y (C , F) = ∣B (GC) ∣ + ∣B (GF) ∣ + ∣B (GC) ∣ ⋅ ∣B (GA) ∣ + ∣B (GA) ∣ ⋅ ∣B (GB) ∣ + ∣B (GB) ∣ ⋅ ∣B (GF) ∣
= 2 + 1 + 2 × 3 + 3 × 2 + 2 × 1 = 17.

Similarly, Y (D, F) = 21 and Y (D, E) = 21. Then, based on Definition 4, the shortcut selection problem is
formulated as follows:

[Y (C , F) , Y (D, F) , Y (D, E)] ⋅ X (4)
[∣B (GC) ∣ ⋅ ∣B (GF) ∣, ∣B (GD) ∣ ⋅ ∣B (GF) ∣, ∣B (GD) ∣ ⋅ ∣B (GE) ∣] ⋅ X ≤ η (5)

Comput Mater Contin. 2025;84(2) 3225

Maximize Eq. (4) subject to Eq. (5), where the operator [] denotes the combination of values into a row
vector, and X is a column vector that can only take values of 0 or 1. Moreover, in this example, η is set to 5.
According to line 3 of Algorithm 1, applying the algorithm yields the sorted list: ((8.5, (GC , GF)), (7, (GD , GE)),
(7, (GD , GF))). Finally, substituting the specific values into the above problem yields X = [1, 0, 1]T. Therefore, this
example chooses to create a shortcut between the leaf node pairs <C, F> and <D, E>.

Algorithm 1: Greedy shortcut selection algorithm
Input: Leaf nodes {G1, G2, ..., Gn} of PAV-Tree

Function: Y (Gi , G j) for all adjacent cousin pairs (Gi , G j)
Shortcut size function size (Si , j) = ∣B (Gi))∣ × ∣B (G j))∣
Threshold η (total shortcut size budget)

Output: Selected shortcuts S
1. S← ∅, remaining_budget ← η;
2. Compute all adjacent cousin pairs (Gi , G j) and calculate Y (Gi , G j)
3. Sort all (Gi , G j) in descending order of Y (Gi , G j)/size (Si , j) #Sort by benefit per unit space
4. for each (Gi , G j) in sorted list do
5. if size (Si , j) ≤ remaining_budget then
6. S← S ∈ {Si , j}
7. remaining_budget← remaining_budget−size (Si , j);
8. end if
9. if remaining_budget ≤ 0 then break;
10. end for
11. return S

4.4 Comparative Analysis of Index Structures
To highlight the structural and functional distinctions among the three major indexing methods—

PAV-Tree, V-Tree, and G-Tree—we summarize their key characteristics in Table 4. This comparison not only
demonstrates the design improvements introduced by PAV-Tree, such as shortcut support and destination
awareness, but also clearly shows its advantages in supporting A-kNN queries and dynamic moving objects.

Table 4: Key characteristics of the three indexing structures

Dimension PAV-Tree V-Tree G-Tree Advantage of
PAV-Tree

Time
complexity

O(k(∣V ∣ ⋅ log min(∣V ∣, ∣M∣)
∣M∣

)+

log2 f ⋅ ∣V ∣ − τ2 log2 f + 2τη
n

))

O(k(∣V ∣ ⋅ log min(∣V ∣, ∣M∣)
∣M∣

)

+ log2 f ⋅ ∣V ∣)

O(k ⋅ (τ log τ + log2 f

⋅ log f
∣V ∣
τ
⋅ ∣V ∣))

Reduces the
probability of p3

through shortcuts
(Lemma 1)

Space
complexity

O(∣M∣ + log ∣V ∣ ⋅ ∣V ∣ + η) O(∣M∣ + log ∣V ∣ ⋅ ∣V ∣)
O(log f ⋅

√
τ∣V ∣

+ log2 f ⋅ log f ⋅V + n)
/

Shortcut
support

Yes Between sibling nodes only Between sibling nodes
only

Addresses the “near
in graph but far in
tree” (as illustrated

in Fig. 2b)
Pruning
strategy

Yes No Yes See Algorithm 2

(Continued)

3226 Comput Mater Contin. 2025;84(2)

Table 4 (continued)

Dimension PAV-Tree V-Tree G-Tree Advantage of
PAV-Tree

Support for
dynamic
objects

Yes Yes No Achieved by
maintaining the

LNAV table
Scalability

on road
networks

Moderate Limited Poor Performs better on
dense road networks

(Section 6.3)
Support for

A-kNN
queries

Yes No No Enabled by short- cut
support, making
A-kNN queries

feasible

5 PAV-A-kNN Query Algorithm

5.1 Single-Pair Shortest Path Query
Given a query q = (u, v), the single-pair shortest path query returns SPDist (u, v). As previously noted,

existing V-Tree-based methods suffer from redundant computations when calculating the distance between
two vertices that are far apart in the V-Tree. In order to resolve this issue, this paper introduces a more efficient
approach by utilizing shortcuts in the PAV-Tree, as shown in Algorithm 2. When no shortcut exists between
two nodes, the shortest distance is computed using dynamic programming, with the core strategy focused
on expanding along the SCAP of the two vertices. During the computation, the algorithm prioritizes visiting
boundary vertices and maintains a priority queue to store candidate vertices along the current path, along
with their corresponding shortest distances. If a candidate’s distance exceeds the known shortest distance,
the algorithm terminates early to avoid redundant calculations.

Algorithm 2: Computation of SPDist (u, v)
Input: a query q = (u, v)
Output: SPDist (u, v)

1. Locate Leaf (u) and Leaf (v);
2. if Leaf (u) = Leaf (v) then
3. return SPDist (u, v) based on DGu ;
4. else if the shortcut Su ,v exists then
5. return Shortcut (u, v);
6. else find SCAP (u, v);
7. Priority queue R←Φ;
8. SPDist (u, v) = ∞;
9. for each vi ∈ B (Gu) do
10. R.enqueue (SPDist (u, vi), vi);
11. end for
12. while R ≠ ∅ do
13. k←R.top();
14. if (Dist (u, k) > SPDist (u, v)) then
15. break;
16. end if
17. Get next subgraph G j based on SCAP;

(Continued)

Comput Mater Contin. 2025;84(2) 3227

Algorithm 2 (continued)
18. R.Enqueue (Dist (u, b ∈ B (G j;)), b);
19. end while
20. return SPDist (u, v);

The computation of Algorithm 2 when there is no shortcut between two nodes is given in Fig. 4. It is
worth noting that the two red curved lines in Fig. 4 do not need to be computed because at this point, the
first element of the queue Dist (v7, v11) = 20 ≥ SPDist (v7, v16) = 17, and the algorithm ends with the return of
SPDist (v7, v16) = 17. To provide a clearer explanation, Table 5 presents the detailed procedure for computing
SPDist (v7, v16). The notation Dist (u, v∣β) refers to the distance from vertex u to vertex v, conditioned on
passing through boundary vertex β, as explained in the context of the subgraph structure.

Figure 4: The dynamic programming for computing SPDist (v7, v16)

Table 5: The specific execution process of SPDist (v7, v16)

Processing
vertex

The boundary
vertices of the next

subgraph to be
processed

Distance R

v7 ∈ GD GD (v5, v6, v8) SPDist (v5, v7) = 2,
SPDist (v8, v7) = 7
SPDist (v6, v7) = 10

v5 (2), v8 (7), v6 (10)

v5 (2) ∈ GD GA (v4, v6, v8) Dist (v8, v7∣v5) = 7,
Dist (v6, v7∣v5) = 10
Dist (v4, v7∣v5) = 13

v8 (7), v6 (10), v4 (13)

v8 (7) ∈ GD GA (v4, v6, v8) Dist (v8, v7∣v8) = 7,
Dist (v6, v7∣v8) = 10
Dist (v4, v7∣v8) = 13

v8 (7), v6 (10), v4 (13)

v8 (7) ∈ GA GB (v11 , v13) Dist (v11 , v7∣v8) = 20,
Dist (v13 , v7∣v8) = 14

v6 (10), v4 (13), v13 (14),
v11 (20)

v6 (10) ∈ GA GB (v11 , v13) Dist (v11 , v7∣v6) = 20,
Dist (v13 , v7∣v6) = 20

v4 (13), v13 (14), v11 (20)

v4 (13) ∈ GA GB (v11 , v13) Dist (v11 , v7∣v4) = 25,
Dist (v13 , v7∣v4) = 19

v13 (14),
v11 (20)

v4 (13) ∈ GB GF (v13) Dist (v13 , v7∣v13) = 14 v13 (14), v11 (20)
(Continued)

3228 Comput Mater Contin. 2025;84(2)

Table 5 (continued)

Processing
vertex

The boundary
vertices of the next

subgraph to be
processed

Distance R

v13 (14) ∈ GF v16 Dist (v16 , v7∣v13) = 17 v16 (17), v11 (20)
v16 (17) \ Dist (v16 , v7) = 17 ≥

Dist (v11 , v7) = 20
SPDist (v16 , v7) = 17

Lemma 1: The time complexity of Algorithm 2 is:

O (k ⋅ (τ2

V 2 + τ (1 − f) log2 f − 2τη
V
+ V log2 f − τ2 log2 f

V
)) (6)

where V is the number of vertices in the graph, and f , τ and η are the fanout, maximum leaf size and shortcut
threshold of the PAV-Tree, respectively.

Proof of Lemma 1. Algorithm 2 is divided into three cases.

1. Case 1: u and v are in the same subgraph: SPDist (u, v) is directly gotten from leaf distance DGu . The
time complexity of this case is O (1).

2. Case 2: A shortcut exists between leaf (Gu) and leaf (Gv): The time complexity is O (b2), where b denotes
the average number of boundary vertices in a leaf node. It has been formally proven in [11] that b = O
(
√

τ ⋅ log f). Thus, in this case, the time complexity is O (τ log2 f).
3. Case 3: No shortcut exists between leaf (Gv) and leaf (Gu): The time complexity is O (n log2 f) [11], so

the overall time complexity of Algorithm 2 is:

p1 ⋅ O (1) + p2 ⋅ O (τ log2 f) + O (n log2 f) (7)

where p1, p2, and p3 represent the probabilities of occurrence of cases 1, 2 and 3, respectively, and their
formulas are proven as follows.

1. When two randomly chosen vertices are located within the same subgraph, the probability is given by
p1 = τ2

n2 .
2. When there is a shortcut between the subgraphs in which the two vertices are located: firstly, the

average number of boundaries in each leaf node is
√

τ ⋅ log f , and each shortcut consumes on average
O (τ log2 f) space, and each pair of sibling nodes has an implicit shortcut. Therefore, the number of

shortcuts is: shortcuts ≈ η
τ log2 f +

f
2 ⋅

n
τ f , where n

τ f represents the number of parents of all leaf nodes.

Secondly, the total number of leaf node pairs is Node Pairs = (n/τ
2). Thus, we obtain the probability

p2 = shor tcuts
Nod ePairs =

τ2 log2 f (f−1)n+2τ2 η
τ log2 f ⋅n(n−τ).

3. It is clear that p3 = (1 − p1 − p2).

Lemma 1 is proved by bringing p1, p2, and p3 into Eq. (7), respectively.

Comput Mater Contin. 2025;84(2) 3229

5.2 GNAV Calculation Process
Finding GNAV. This paper employs a bottom-up approach to identify the GNAV, as described in

Algorithm 3. The process consists of two main steps:

1. Exploring the vertices in the leaf graph Gv : Using the LNAV Table LGv of the leaf node Gv , the algorithm
identifies the LNAV u of vertex v (line 1 in Algorithm 3) and gets the SPDist(u, v) (line 2).

2. Exploring boundary vertices of the ancestors of Gv : Let G p
v denote the parent graph of Gv . The variable

ε is used to store the minimum distance found so far, and it initialized as LNAVDistGv (u, v). If
min

β∈B(G a
v)

SPDist (β, v) ≥ ε, the algorithm terminates, as further search would yield active vertices with

greater distances. Otherwise, if SPDist (G p
v , v) < ε, the GNAV is identified within G p

v . The algorithm
computes smaller active vertex in G p

v (lines 4–7).

Algorithm 3: GNAV(v)
Input: v: query location;
Output: GNAV of v;

1. u← min
β∈B(Gv)

LNAVDistGv (β, v);

2. ε ← LNAVDistGv (v , u);
3. while G p

v ≠ NULL and min
β∈B(G a

v)
SPDist (β, v) < ε do

4. u′ = min
u′∈B(G a

v)
LNAVDistG p

v
(u′, v);

5. if LNAVDistG p
v
(u′, v) < ε then

6. u = u′;
7. ε ← LNAVDistG p

v
(u, v);

8. end if
9. G p

v ← parent of G p
v ;

10. end while
11. return LG p

v
[u] .γ

Example 3 (Finding the GNAV). Consider finding the GNAV of v6 as an example. First, locate the leaf
subgraph GD containing v6. Using the LNAV Table LD of GD , the algorithm determines ε = 8. Next, it searches
the locally active vertices in GA. After calculations, the distance from v6 to the active vertex in GA is found to
be 3, leading to an update ε = 3. The algorithm then continues to the parent node of GA, which is GR . In GR , it
evaluates min

β∈B(GR)
SPDist (β, v) = ε = 10. Since this value does not satisfy the loop condition (≥ε), the algorithm

terminates. The function returns v3 as the GNAV of v6.
Finding the Next GNAV (NGNAV). To maintain the LNAV table L, the NGNAV(v, u) function is

used to identify the next GNAV after the first GNAV has been determined. The main steps are summarized
as follows:

Step 1: Deactivation: Mark the current GNAV u as inactive in the PAV-Tree to prevent it from being
selected again. Algorithm 3 is then invoked again to continue the identification of subsequent GNAVs.

Step 2: Local Buffer Access: Due to concurrency control, the global LNAV table L cannot be updated
during query processing. A local buffer is maintained for each query to store modified entries of L. If the
buffer contains valid entries, they are prioritized during retrieval; otherwise, the algorithm falls back to the
global L on the PAV-Tree.

3230 Comput Mater Contin. 2025;84(2)

Step 3: Query Execution on Modified Graph: The NGNAV computation runs on a slightly modified
graph G′, which may cause repeated exploration of unchanged subgraphs. To avoid this, a priority queue
(PQ) is used to record boundary vertices along with their LNAVDist values, as detailed in Algorithm 3.

Step 4: Subgraph Reuse Optimization: The algorithm tracks the subgraph GL where the previous
GNAV or NGNAV computation terminated. This allows the subsequent NGNAV process to resume traversal
from that point, improving efficiency.

Step 5: Early Termination: If the shortest path distance from the query point q to the next candidate u
exceeds the threshold ε, the algorithm terminates early to reduce unnecessary computation.

5.3 PAV-A-kNN Algorithm
This section introduces the PAV-A-kNN algorithm based on the PAV-Tree. When the destination of a

moving object and the query point belong to subgraphs that are far apart, the V-Tree algorithm requires
traversing numerous unrelated subgraphs, resulting in inefficient querying of moving objects. To address this,
we propose a more efficient algorithm, PAV-A-kNN, as shown in Algorithm 4. The PAV-A-kNN algorithm
processes A-kNN queries in three main steps:

1. Maintaining a priority queue PQ: PQ stores the distances of k candidate objects from the query point q.
Initially, ε, which represents the maximum distance of the candidates in PQ to q, is set to∞ (lines 1–2
in Algorithm 4).

2. Identifying the First GNAV: By invoking the GNAV(v), the GNAV vertex u for v and SPDist (u, v) are
obtained. The Active objects associated with u are added to PQ based on the A-kNN query method, and
ε is updated accordingly (lines 3–7).

3. Locating Subsequent GNAV: Vertex u is marked as inactive, and the NGNAV (v , u) function is called to
find the next GNAV. The shortest path distance d = SPDist (u, v) is computed. If d > ε, this indicates that
the active objects associated with u cannot be among the kNN results for q, and the algorithm terminates
(lines 12–13). Otherwise, the active objects of u are added to PQ (lines 14–18). The process iterates until
the top k nearest results are found.

Example 4 (PAV-A-kNN Query): Using PAV-A-kNN (v8, 2) as an example, Fig. 5 illustrates the specific
processing steps:

Step 1: The priority queue PQ is initialized as empty (PQ = ∅), ε is set to∞, The function GNAV (v8) is
called, returning v5 as the GNAV of v8. The object O2, associated with v5, is added to candidate set R = {(O2,
20)}, ε = 20.

Step 2: The function NGNAV (v8, v5) is called, returning v4. The object O7, associated with v4, is added to
R. R = {(O7, 8), (O2, 20)}, ε = 20.

Step 3: The function NGNAV (v8, v4) is called, returning v1. The object O6, associated with v1, is added to
R, and ε is updated. R = {(O7, 8), (O6, 11)}, ε = 11.

Step 4: The function NGNAV (v8, v1) is called, returning v2 Since SPDist (v8, v2) = 11 ≥ ε, the algorithm
terminates. The final result is R = {(O7, 8), (O6, 11)}.

Comput Mater Contin. 2025;84(2) 3231

Figure 5: PAV-A-kNN query processing steps for (v8, 2)

Algorithm 4: PAV-A-kNN algorithm
Input: q: query location; k: the number of nearest neighbors
Output: R: kNN of q

1. Priority Queue PQ←∅, R←∅;
2. ε =maximal distance of candidates in R to q (initialized as∞);
3. u = GNAV(q);
4. for each active object Oi ∈ M [u] do
5. if SPDist (Oi .L, Oi .D) + SPDist (q, Oi .D) < ε then
6. PQ.Enqueue(Oi , SPDist(Oi , q));
7. Update ε;
8. end if
9. end for

10. while true do
11. u = NGNAV(q, u);
12. if SPDist(q, u) ≥ ε then
13. break;
14. end if
15. for each active object Oi ∈ M [u] do
16. if SPDist (Oi .L, Oi .D) + SPDist (q, Oi .D) < ε then
17. PQ.Enqueue(Oi , SPDist(Oi , q));
18. Update ε;
19. end if
20. end for
21. end while
22. Output R;

5.4 Time Complexity of the PAV-A-kNN Algorithm
Given a graph G and PAV-Tree with V vertices and M moving objects, with the assumption that the

moving objects are uniformly distributed across the road network, the average time complexity of A-kNN

3232 Comput Mater Contin. 2025;84(2)

search is:

O (k ⋅ (V log2 f + V log min (V , M)
M

)) (8)

6 Experiment
Datasets: We evaluated the proposed algorithm using eight different datasets, including both synthetic

and real-world datasets, as shown in Table 6.

Table 6: Experimental road networks

Database Type Vertices Edges Average
degree

Description

NY Real-world 264,346 733,846 5.55 New York
COL Real-world 435,666 1,057,066 4.85 Colorado

SparseGrid (G1) Synthetic 500,000 625,000 2.50 Sparse road network (rural)
DenseUrban (G2) Synthetic 800,000 2,400,000 6.00 Dense urban road network
MultiCenter (G3) Synthetic 1,000,000 1,750,000 3.50 Moderately dense road

network
FLA Real-world 1,070,376 2,712,798 5.07 Florida
NW Real-world 1,207,945 2,840,208 4.70 Northwest USA
CAL Real-world 1,890,815 4,657,742 4.93 California and Nevada

Environment. All experiments were carried out on a computer running Windows 11, with an Intel
i5-9300H CPU (2.40 GHz), 8 GB RAM, and a 512 GB SSD. The experiments were carried out within a virtual
machine configured with 4 GB of memory and two processors, each with two cores (a total of four cores). All
algorithms were implemented in C++, without utilizing any parallelization techniques; all programs were
executed serially on a single core. Graph partitioning was performed using the METIS library. The indexing
structures were implemented based on adjacency lists, and all methods were evaluated under identical
experimental conditions.

Baseline: We compared PAV-Tree, with the methods of V-Tree [5] and G-Tree [11], and the three index
structures were set with fanout f = 4 and τ = 32, which are the same as the V-Tree proposed parameters.
Additionally, the shortcut threshold η for the PAV-Tree was set as follows: 1 million for NY, COL, G1, and
G2; 1.5 million for G3, FLA, NW; and 3.5 million for CAL. These values were chosen to ensure that the size
of the shortcuts does not exceed approximately 15% of the total size of the PAV-Tree.

Moving Objects: The density of moving objects was uniformly set to θ − Total number o f mov ing ob jec ts
Total number o f v er t i ces =

0.01. Additionally, 90% of the moving objects were configured to be in an occupied state. For unoccupied
objects, their destinations were set to ∅. The positions of moving objects were randomly generated.

6.1 Evaluation on Index Construction
This section evaluates the index construction cost and index size of PAV-Tree, V-Tree, and G-Tree across

the eight datasets.
Fig. 6 presents a comparison of the construction time and space consumption for the three index

structures. The results show that both construction time and index size increase with the scale of the

Comput Mater Contin. 2025;84(2) 3233

dataset. In terms of construction time, PAV-Tree falls between V-Tree and G-Tree. Although PAV-Tree
incurs slightly higher overhead than V-Tree due to the additional cost of building shortcuts between leaf
nodes, its bottom-up construction strategy effectively avoids redundant computations, resulting in better
construction efficiency than G-Tree. Regarding index size, the differences among the three methods are
relatively small. PAV-Tree’s index is marginally larger, as it stores additional information, such as moving
objects and inter-leaf shortcuts.

It is worth noting that on dense graphs (e.g., G2, FLA, and CAL), both index construction time and space
usage grow more significantly. This is mainly due to higher vertex connectivity, which increases the number
of border vertices and the complexity of shortcut construction. In contrast, for sparse graphs (e.g., G1), where
the network structure is simpler, the differences in index construction time and space consumption among
the three methods are less pronounced. Overall, PAV-Tree demonstrates a good balance between efficiency
and scalability across both sparse and dense road networks.

Figure 6: Index comparison. (a) Construction time. (b) Index size

6.2 Evaluation of A-kNN Query Performance
This section evaluates the A-kNN query performance of the PAV-Tree, V-Tree, and G-Tree on the NW

dataset. The experiments were conducted by varying parameters such as the values of k, query distances,
update intervals, and the densities of moving objects. Let there be n queries, q1, . . ., qn , within a specified
time period, and assume that objects are updated before executing each qi . The average total query time is
calculated as follows: Average Total Query Time = Tu+∑n

i=1 Tqi
n , where Tu represents the update time and Tq

denotes the query time for each query Ti . In the bar charts, the entire bar represents the total query time,
with the top part showing the average update time and the bottom part showing the average query time.

Varying K: As shown in Fig. 7a, we conducted experiments with varying k values, ranging from 10 to 50
in increments of 10. The results clearly demonstrate that the PAV-Tree consistently achieves the fastest query
times. This is because PAV-Tree can efficiently utilize the LNAV Table L to quickly locate moving objects.
Additionally, when a moving object is already occupied, PAV-Tree utilizes shortcuts to rapidly compute
the actual distance between the query point and the moving object. In contrast, the V-Tree approach may
unnecessarily traverse multiple leaf nodes when calculating the actual distance, which significantly impacts
its efficiency. Among the three algorithms, G-Tree is the slowest, as it traverses the tree structure in a
top-down manner, requiring substantial computation and incurring high cost to explore its subtrees.

Varying Distance: For different query distances, we first extract the query location from the actual
query, and then sort the objects according to their distance from the query location. The moving objects are
categorized into three groups of equal size: near, far, and farthest, with k set to 10. The experimental results,
as shown in Fig. 7b, indicate that the average total search time of all three algorithms tends to increase as the

3234 Comput Mater Contin. 2025;84(2)

query distance increases. However, PAV-Tree always maintains the best performance. Specifically, for long-
distance queries, the PAV-Tree algorithm performs better by accessing fewer tree nodes and utilize shortcuts
to efficiently calculate the distance between the query point and the moving object.

Varying Update Interval: For update intervals, we set the values to 1, 10, 20, and 50 s, with k set to 10. We
evaluated the update cost using the positions of moving objects and queries during this period. The results
presented in Fig. 7c indicate that as the update frequency decreases, the average update time for all three
algorithms decreasing accordingly. This is because the cost of updates decreases with longer update intervals.

Figure 7: Performance comparison of A-kNN queries (NW Dataset(a-e)). (a) Varying K, (b) Varying distance,
(c) Varying updating interval, (d) Varying density, (e) Performance comparison of A-kNN on different datasets.

Varying Density: For the density of moving objects, we tested values of 0.2%, 0.4%, 0.6%, 0.8%, and
1.0%, with k set to 10. The results are shown in Fig. 7d. First, in terms of search time, the performance of PAV-
Tree is always optimal. Second, with the increase in the number of search objects, the average total query
time for all three algorithms also grows. This is attributed to the increased update overhead caused by the
growing number of moving objects. Additionally, all three algorithms achieve faster average query speeds
while increasing object density, as higher density reduces search space.

Various Datasets: To assess the query efficiency of the three algorithms, we measured the average
response time for single queries across eight distinct datasets, with the parameter k fixed at 10. As illustrated

Comput Mater Contin. 2025;84(2) 3235

in Fig. 7e, the PAV-Tree consistently achieves superior performance, exhibiting nearly a 50% reduction in
query time compared to the V-Tree, and outperforming the G-Tree by one to two orders of magnitude. This
notable improvement stems from the shortcut connections established between leaf nodes during the PAV-
Tree’s index construction phase, which improves the efficiency of computing the actual distance between the
query point and moving objects.

6.3 Scalability Evaluation under Varying Workloads
To comprehensively assess the performance and scalability of the three query methods, we conducted

experiments under both normal and extreme conditions. These tests evaluate the method’s adaptabil-
ity to diverse road network structures and its efficiency in handling high-density moving objects with
frequent updates.

6.3.1 Normal Workload Scenario
We conducted a comparative evaluation of PAV-A-kNN against two baseline methods under standard-

ized testing conditions, with fixed parameters (k = 10, vehicle density = 1%, update interval = 1 s) as shown
in Fig. 8a.

Figure 8: Performance evaluation under varying workload conditions. (a) Standard workload; (b) Stress workload

Query Efficiency: PAV-Tree achieves query times of 58–210 μs, which is 35%–60% faster than V-Tree
and 3%–12% of G-Tree’s query time. In Sparse graph (G1), PAV-Tree has a high shortcut coverage, thus
achieving the lowest query latency (58 μs). In the dense graph (G2), although the number of boundary
vertices increases, causing queries to traverse more vertices, the PAV-Tree maintains efficient querying
(141 μs). In contrast, the absence of dynamic pruning mechanisms in V-Tree results in significant perfor-
mance degradation (320 μs), while G-Tree suffers from severe computational overhead (1560 μs) due to its
exhaustive subgraph exploration pattern.

Update Efficiency: PAV-Tree’s update times (46–72 μs) are comparable to V-Tree, while G-Tree’s global
index reconstruction leads to 2 orders of magnitude higher overhead (19.2–41.6 ms). The slightly higher
update time for G2 (62 μs vs. 46 μs for G1) is due to prolonged LNAV table updates in dense networks.

6.3.2 Extreme Workload Scenario
To evaluate robustness, we tested the algorithm under high-density moving objects and frequent

updates: uniformly set parameters: k = 10, the density of moving objects is 10%, and the update interval is
0.2 s. The result is shown in Fig. 8b. As moving object density and update frequency increase, all methods

3236 Comput Mater Contin. 2025;84(2)

exhibit reduced query times but significantly higher update overhead (see Section 6.2), but still within the
range of real-time operation.

To confirm the statistical significance of these improvements, we repeated the experiments in Figs. 7e
and 8b five times and conducted paired t-tests. As shown in Table 7, even in the most extreme cases, all
observed improvements were statistically significant (p < 0.05).

Table 7: Statistical significance analysis (Paired t-test)

Comparison p-Value
PAV-Tree vs V-Tree (All datasets) <0.01
PAV-Tree vs G-Tree (All datasets) <0.01

PAV-Tree vs V-Tree (Extreme case) <0.03
PAV-Tree vs G-Tree (Extreme case) <0.01

6.4 Evaluation of Shortcut Parameter η
In this section, we evaluate the impact of shortcut selection parameters on the query efficiency of the

PAV-Tree. Specifically, we design two sets of experiments to investigate: (1) the effect of different shortcut
threshold configurations, and (2) the influence of shortcut usage on algorithm execution time.

6.4.1 Performance Evaluation of Shortcut
In the first set of experiments, we compared the execution time of PAV-Tree with and without

the shortcut mechanism on four road network datasets (NW, G1, G2, and G3), which exhibit diverse
topological structures and density characteristics. The results, shown in Fig. 9a, indicate that enabling the
shortcut mechanism significantly reduces query time across all datasets, achieving an average speedup of
approximately 2.2×. The G1 dataset achieves the highest improvement, with query time reduced from 150
to 68 μs. This is primarily due to the sparsity of the graph, where fewer direct connections between vertices
result in longer path dependencies; thus, shortcuts can bypass redundant computations more effectively.
In contrast, the performance gain on dense graphs (e.g., G2) is relatively limited. In such networks, the
abundance of direct edges between vertices reduces the marginal utility of additional shortcuts. These
findings further validate the critical role of shortcuts in accelerating the query process, particularly in
medium- to large-scale graphs. Furthermore, the varying levels of improvement across datasets suggest that
the effectiveness of shortcut-based optimization is more pronounced in sparse graphs and networks with
high path selection complexity.

6.4.2 Query Performance under Varying Shortcut Thresholds
We evaluated the query performance of PAV-Tree on NW dataset under different shortcut thresholds,

with the threshold values ranging from 1 k to 100 M. As shown in Fig. 9b, the execution time decreases
significantly with the increase of the shortcut threshold, dropping from 340 to 160 μs. The most notable
performance improvement is observed when the threshold increases from 10 to 10 and 100 k. This indicates
that increasing the threshold will skip the calculation of actual path extension and shortest path during query
processing, thereby improving query efficiency. However, when the number of shortcuts reaches a certain
scale (such as 10 to 100 M), the improvement in query performance begins to reach saturation. This is because
as shortcuts become increasingly dense, the types and distribution of covered paths are already sufficient,

Comput Mater Contin. 2025;84(2) 3237

and the original paths are close to optimal in space, making it difficult to further significantly optimize
query performance.

Figure 9: Performance evaluation of shortcut. (a) With/without shortcut. (b) Varying shortcut thresholds η

6.5 Real-Time Feasibility Analysis
In ride-hailing systems, real-time responsiveness is critical, with typical requirements demanding sub-

second latency. As shown in Fig. 7e, the proposed PAV-A-kNN algorithm achieves average query times at
the microsecond (μs) level, even on large-scale datasets such as CAL and NW. For instance, the average
response time on the CAL dataset is approximately 553 μs. This ultra-low latency indicates that our
method not only meets the sub-second responsiveness requirement but also leaves sufficient headroom for
additional computation or integration overhead. Therefore, it is highly suitable for practical deployment in
high-demand environments, such as online ride-hailing platforms.

6.6 Runtime Breakdown Analysis of the PAV-A-kNN Algorithm
To validate the efficiency of each component in PAV-A-kNN, we analyze the runtime distribution across

datasets with varying road network densities (with the same query conditions as Section 6.3.1). Table 8
presents the detailed breakdown of query time for GNAV computation, shortcut processing, and other
operations (e.g., priority queue updates and shortest path calculations).

Table 8: Runtime breakdown of PAV-A-kNN on selected datasets

Dataset Total time (μs) GNAV computation (μs) Shortcut processing (μs) Other logic (μs)
NW 240 156 (65%) 24 (10%) 60 (25%)
G1 68 34 (50%) 12 (18%) 22 (32%)
G2 151 107 (70%) 12 (8%) 32 (22%)
G3 115 69 (60%) 17 (15%) 29 (25%)

Across four representative datasets, GNAV computation consistently constitutes the primary source of
runtime overhead. In particular, it accounts for 70% on the dense graph G2 and 65% on the real-world road
network NW, indicating the high cost of locating the nearest active object in complex graph structures. On the
sparse graph G1, the GNAV share drops to 50%, while shortcut processing increases to 18%, suggesting that
shortcuts are more effective in accelerating queries when the path selection space is limited. The overhead
of control logic—including priority queue maintenance and LNAV buffer updates—remains stable across
datasets, ranging from 22% to 32%.

3238 Comput Mater Contin. 2025;84(2)

Overall, PAV-A-kNN spends the majority of its runtime on GNAV-related search, while shortcut
processing incurs minimal overhead but shows notable effectiveness in sparse networks. Control logic
remains a consistent cost component. These findings confirm the efficiency and adaptability of the algorithm
across different graph structures.

7 Conclusions
In this paper, we investigate a novel type of kNN query method, known as Approachable kNN

(A-kNN) query which differs from traditional kNN methods in the measurement between the query points
and the moving objects. Although V-Tree is widely recognized as an efficient kNN method, its limitations in
computing the shortest distance between arbitrary vertices make it less efficient in handling A-kNN queries.
To address the efficiency limitations of existing methods, a novel indexing structure, PAV-Tree, is proposed.
It extends the V-Tree by establishing shortcuts between leaf nodes thereby accelerating the shortest distance
queries between vertices. In addition, an efficient PAV-A-kNN algorithm is developed to solve the A-kNN
query problem. Finally, we conduct extensive experiments on both real-world and synthetic datasets, with
empirical results demonstrating that our proposed method achieves significant advantages over baseline
approaches. Despite its promising performance, the proposed method still presents several challenges. First,
space overhead may become a bottleneck in large-scale networks, as the storage of numerous shortcuts can be
prohibitive. This limitation highlights the need for more efficient shortcut selection or compression strategies.
Second, the index’s robustness under noisy data—such as imprecise vertex coordinates or corrupted edge
weights—has not been thoroughly examined. Addressing this issue could further improve the reliability of
A-kNN queries in real-world settings. While these issues merit attention, our immediate future work will
focus on two key directions: (1) extending the approach to dynamic road networks, where edge weights vary
over time; and (2) exploring learning-based methods for shortest path estimation, such as leveraging graph
neural networks (GNNs) or reinforcement learning (RL), to enhance query efficiency and reduce redundant
path traversal.

Acknowledgement: The authors gratefully acknowledge all those who contributed to the research and preparation of
this article.

Funding Statement: This work was supported by the Special Project of Henan Provincial Key Research, Development
and Promotion (Key Science and Technology Program) under Grant 252102210154, in part by the National Natural
Science Foundation of China under Grant 62403437.

Author Contributions: Conceptualization, Kailai Zhou and Weikang Xia; Methodology, Weikang Xia; Software,
Weikang Xia; Validation, Kailai Zhou; Formal analysis, Jiatai Wang; Data Curation, Kailai Zhou; Writing—original draft
preparation, Weikang Xia; Writing—review & editing, Weikang Xia; Supervision, Jiatai Wang. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from the corresponding
author, K.Z., upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Sarana N, Rui Z, Egemen T, Lars K. The V*-Diagram: a query-dependent approach to moving KNN queries. Proc

VLDB Endow. 2008;1(1):1095–106. doi:10.14778/1453856.1453973.

https://doi.org/10.14778/1453856.1453973

Comput Mater Contin. 2025;84(2) 3239

2. He D, Wang S, Zhou X, Cheng R. An efficient framework for correctness-aware kNN queries on road networks. In:
2019 IEEE 35th International Conference on Data Engineering (ICDE); 2019 Apr 8–11; Macao, China. p. 1298–309.
doi:10.1109/icde.2019.00118.

3. Cho HJ. The efficient processing of moving k-farthest neighbor queries in road networks. Algorithms.
2022;15(7):223. doi:10.3390/a15070223.

4. Li M, He D, Zhou X. Efficient kNN search with occupation in large-scale on-demand ride-hailing. In: Databases
theory and applications. Cham, Switzerland: Springer International Publishing; 2020. p. 29–41. doi:10.1007/978-3-
030-39469-1_3.

5. Shen B, Zhao Y, Li G, Zheng W, Qin Y, Yuan B, et al. V-tree: efficient kNN search on moving objects with road-
network constraints. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE); 2017 Apr 19–22;
San Diego, CA, USA. p. 609–20. doi:10.1109/ICDE.2017.115.

6. Feng Q, Zhang J, Zhang W, Qin L, Zhang Y, Lin X. Efficient kNN search in public transportation networks. Proc
VLDB Endow. 2024;17(11):3402–14. doi:10.14778/3681954.3682009.

7. Jiang W, Ning B, Li G, Bai M, Jia X, Wei F. Graph-decomposed k-NN searching algorithm on road network. Front
Comput Sci. 2024;18(3):183609. doi:10.1007/s11704-023-3626-3.

8. Xu Y, Zhang M, Wu R, Li L, Zhou X. Efficient processing of coverage centrality queries on road networks. World
Wide Web. 2024;27(3):25. doi:10.1007/s11280-024-01248-5.

9. Min X, Pfoser D, Züfle A, Sheng Y, Huang Y. The partition bridge (PB) tree: efficient nearest neighbor query
processing on road networks. Inf Syst. 2023;118(5):102256. doi:10.1016/j.is.2023.102256.

10. Dijkstra EW. A note on two problems in connexion with graphs. Numer Math. 1959;1(1):269–71. doi:10.1007/
BF01386390.

11. Zhong R, Li G, Tan KL, Zhou L, Gong Z. G-tree: an efficient and scalable index for spatial search on road networks.
IEEE Trans Knowl Data Eng. 2015;27(8):2175–89. doi:10.1109/TKDE.2015.2399306.

12. Li Z, Chen L, Wang Y. G*-tree: an efficient spatial index on road networks. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE); 2019 Apr 8–11; Macao, China. p. 268–79. doi:10.1109/ICDE.2019.00032.

13. Li L, Cheema MA, Ali ME. Continuously monitoring alternative shortest paths on road networks. In: vLDB
endowment. 3rd edition. New York, NY, USA: Association for Computing Machinery; 2020. p. 2243–55. doi:10.
14778/3407790.3407822.

14. Abeywickrama T, Cheema MA, Storandt S. Hierarchical graph traversal for aggregate k nearest neighbors search
in road networks. In: Proceedings of the International Conference on Automated Planning and Scheduling; 2020
Jun 14–19; Nancy, France. p. 2–10. doi:10.1609/icaps.v30i1.6639.

15. Luo S, Kao B, Li G, Hu J, Cheng R, Zheng Y. Toain: a throughput optimizing adaptive index for answering dynamic
knn queries on road networks. Proc VLDB Endow. 2018;11(5):594–606. doi:10.1145/3177732.3177736.

16. He D, Wang S, Zhou X, Cheng R. GLAD: a grid and labeling framework with scheduling for conflict-aware kNN
queries. IEEE Trans Knowl Data Eng. 2021;33(4):1554–66. doi:10.1109/TKDE.2019.2942585.

17. Geisberger R, Sanders P, Schultes D, Delling D. Contraction hierarchies: faster and simpler hierarchical routing in
road networks. In: Experimental Algorithms. Berlin/Heidelberg, Germany: Springer; 2008. p. 319–33. doi:10.1007/
978-3-540-68552-4_24.

18. Ouyang D, Qin L, Chang L, Lin X, Zhang Y, Zhu Q. When hierarchy meets 2-hop-labeling: efficient shortest
distance queries on road networks. In: Proceedings of the 2018 International Conference on Management of Data;
2018; Houston, TX, USA. p. 709–24. doi:10.1145/3183713.3196913.

19. Ouyang D, Wen D, Qin L, Chang L, Zhang Y, Lin X. Progressive top-K nearest neighbors search in large road
networks. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data; 2020;
Portland, OR, USA. p. 1781–95. doi:10.1145/3318464.3389746.

20. Wang Y, Yuan L, Zhang W, Lin X, Chen Z, Liu Q. Simpler is more: efficient top-K nearest neighbors search on large
road networks. arXiv:2408.05432, 2024.

21. Wang S, Xiao X, Yang Y, Lin W. Effective indexing for approximate constrained shortest path queries on large road
networks. Proc VLDB Endow. 2016;10(2):61–72. doi:10.14778/3015274.3015277.

https://doi.org/10.1109/icde.2019.00118
https://doi.org/10.3390/a15070223
https://doi.org/10.1007/978-3-030-39469-1_3
https://doi.org/10.1007/978-3-030-39469-1_3
https://doi.org/10.1109/ICDE.2017.115
https://doi.org/10.14778/3681954.3682009
https://doi.org/10.1007/s11704-023-3626-3
https://doi.org/10.1007/s11280-024-01248-5
https://doi.org/10.1016/j.is.2023.102256
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/TKDE.2015.2399306
https://doi.org/10.1109/ICDE.2019.00032
https://doi.org/10.14778/3407790.3407822
https://doi.org/10.14778/3407790.3407822
https://doi.org/10.1609/icaps.v30i1.6639
https://doi.org/10.1145/3177732.3177736
https://doi.org/10.1109/TKDE.2019.2942585
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1145/3183713.3196913
https://doi.org/10.1145/3318464.3389746
https://doi.org/10.14778/3015274.3015277

3240 Comput Mater Contin. 2025;84(2)

22. Zhu AD, Xiao X, Wang S, Lin W. Efficient single-source shortest path and distance queries on large graphs. In:
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2013;
Chicago, IL, USA. p. 998–1006. doi:10.1145/2487575.2487665.

23. Singh A. A novel shortest path problem using dijkstra algorithm in interval-valued neutrosophic environment.
In: 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART
GENCON); 2022 Dec 23–25; Bangalore, India. p. 1–6. doi:10.1109/SMARTGENCON56628.2022.10083619.

24. Wang L, Wong RC. PCSP: efficiently answering label-constrained shortest path queries in road networks. Proc
VLDB Endow. 2024;17(11):3082–94. doi:10.14778/3681954.3681985.

25. Li J, Chen Y, Zhang M, Li L. A CPU-GPU hybrid labelling algorithm for massive shortest distance queries on road
networks. Proc VLDB Endow. 2024;18(3):770–83. doi:10.14778/3712221.3712241.

26. Chen Z, Fu AW, Jiang M, Lo E, Zhang P. P2H: efficient distance querying on road networks by projected vertex
separators. In: Proceedings of the 2021 International Conference on Management of Data. Virtual Event; 2021;
China. p. 313–25. doi:10.1145/3448016.3459245.

27. Anirban S, Wang J, Islam MS. Experimental evaluation of indexing techniques for shortest distance queries on road
networks. In: 2023 IEEE 39th International Conference on Data Engineering (ICDE); 2023 Apr 3–7; Anaheim, CA,
USA. p. 624–36. doi:10.1109/ICDE55515.2023.00054.

28. Dan T, Luo C, Li Y, Guan Z, Meng X. LG-tree: an efficient labeled index for shortest distance search on massive
road networks. IEEE Trans Intell Transp Syst. 2022;23(12):23721–35. doi:10.1109/TITS.2022.3203432.

29. Huang S, Wang Y, Zhao T, Li G. A learning-based method for computing shortest path distances on road networks.
In: 2021 IEEE 37th International Conference on Data Engineering (ICDE); 2021 Apr 19–22; Chania, Greece.
p. 360–71. doi:10.1109/icde51399.2021.00038.

30. Zheng B, Ma Y, Wan J, Gao Y, Huang K, Zhou X, et al. Reinforcement learning based tree decomposition for
distance querying in road networks. In: 2023 IEEE 39th International Conference on Data Engineering (ICDE);
2023 Apr 3–7; Anaheim, CA, USA. p. 1678–90. doi:10.1109/ICDE55515.2023.00132.

31. Drakakis S, Kotropoulos C. Applying the neural bellman-ford model to the single source shortest path problem.
In: Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods; 2024 Feb
24–26; Rome, Italy. p. 386–93. doi:10.5220/0012425800003654.

https://doi.org/10.1145/2487575.2487665
https://doi.org/10.1109/SMARTGENCON56628.2022.10083619
https://doi.org/10.14778/3681954.3681985
https://doi.org/10.14778/3712221.3712241
https://doi.org/10.1145/3448016.3459245
https://doi.org/10.1109/ICDE55515.2023.00054
https://doi.org/10.1109/TITS.2022.3203432
https://doi.org/10.1109/icde51399.2021.00038
https://doi.org/10.1109/ICDE55515.2023.00132
https://doi.org/10.5220/0012425800003654

	PAV-A-kNN: A Novel Approachable kNN Query Method in Road Network
obreakspace Environments
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The PAV-Tree Index
	5 PAV-A-kNN Query Algorithm
	6 Experiment
	7 Conclusions
	References

