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ABSTRACT: In the dynamic scene of autonomous vehicles, the depth estimation of monocular cameras often faces
the problem of inaccurate edge depth estimation. To solve this problem, we propose an unsupervised monocular depth
estimation model based on edge enhancement, which is specifically aimed at the depth perception challenge in dynamic
scenes. The model consists of two core networks: a deep prediction network and a motion estimation network, both
of which adopt an encoder-decoder architecture. The depth prediction network is based on the U-Net structure of
ResNet18, which is responsible for generating the depth map of the scene. The motion estimation network is based on
the U-Net structure of Flow-Net, focusing on the motion estimation of dynamic targets. In the decoding stage of the
motion estimation network, we innovatively introduce an edge-enhanced decoder, which integrates a convolutional
block attention module (CBAM) in the decoding process to enhance the recognition ability of the edge features of
moving objects. In addition, we also designed a strip convolution module to improve the model’s capture efficiency
of discrete moving targets. To further improve the performance of the model, we propose a novel edge regularization
method based on the Laplace operator, which effectively accelerates the convergence process of the model. Experimental
results on the KITTI and Cityscapes datasets show that compared with the current advanced dynamic unsupervised
monocular model, the proposed model has a significant improvement in depth estimation accuracy and convergence
speed. Specifically, the root mean square error (RMSE) is reduced by 4.8% compared with the DepthMotion algorithm,
while the training convergence speed is increased by 36%, which shows the superior performance of the model in the
depth estimation task in dynamic scenes.
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1 Introduction
Obtaining in-depth information in autonomous driving scenarios [1] is a key topic in the field of

intelligent transportation and computer vision. This aspect allows us to utilize the depth of each pixel in
the scene as a multifaceted tool for tasks such as object detection [2,3], path planning [4], and slam [5]. In
particular, unsupervised depth estimation has important application value in SLAM, which can improve
system robustness, reduce hardware requirements, enhance map construction accuracy, and improve posi-
tioning accuracy. Compared with the work of Islam et al. [6], unsupervised depth estimation focuses more
on accurate estimation of depth information and can provide more accurate depth perception for SLAM
systems, while YOLO focuses on semantic information extraction, which can enhance the perception of
dynamic environment. Compared with ARD-SLAM [7], unsupervised depth estimation focuses on depth

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065297
https://www.techscience.com/doi/10.32604/cmc.2025.065297
mailto:shipeicheng@126.com


3322 Comput Mater Contin. 2025;84(2)

accuracy, while ARD-SLAM focuses on dynamic object recognition and multi-view geometry optimization,
which can further improve the performance of SLAM in dynamic environments.

Conventional techniques for attaining scene depth typically hinge on sensors such as millimeter wave
radar [8] or lidar [9], which directly gauge the reflected luminous waves from surfaces of objects. These
methodologies not only entail substantial financial outlay but are also susceptible to environmental influ-
ences during the measurement process. In recent years, a more challenging approach has emerged, which
involves using only a monocular camera to extract depth information in autonomous driving scenarios. This
methodology not only efficaciously curtails the fiscal outlay involved in acquiring in-depth information for
autonomous driving scenarios but also broadens its applicability to an expanded spectrum of circumstances.
Notably, given the challenges related to the acquisition of training datasets, complications in the annotation
of intrinsic dataset parameters, and the perturbations resulting from the motion patterns of the objects
being estimated, unsupervised monocular depth estimation techniques for dynamic scenarios have garnered
escalating attention.

As research progresses in this field, the domain of depth estimation through deep learning can be
dichotomized into two principal categories: supervised and unsupervised. Within the realm of supervised
learning paradigms, myriad depth estimation methodologies grounded in encoder-decoder architectures
have garnered promising outcomes. Song et al. [10] argue that in many decoding processes, simple
upsampling operations are repeated, which fail to fully utilize the well-learned low-level features from the
encoder for monocular depth estimation, leading to the loss of edge information in the estimated depth
image. Fu et al. [11] addressed the issue of certain methods neglecting the inherent ordered relationships
between depths. They converted the regression problem into a classification problem and introduced a
ranking mechanism in the model to help estimate image depth information more accurately. Their approach
also availed itself of ordinal regression to gauge depth boundaries, with features being densely culled via
atrous spatial pyramid pooling (ASPP), a variant of dilated convolutional pooling [12]. While supervised
monocular depth estimation often offers higher reliability, it typically requires a substantial amount of
annotated depth data, and data annotation is a costly endeavor. Conversely, in the purview of unsupervised
training paradigms, Godard et al. [13] harnessed epipolar geometric constraints and inculcated a network
with the mandate to engender disparity maps through image reconstruction loss, ultimately begetting
depth maps. Meanwhile, Lee et al. [14] introduced an end-to-end joint training framework hinging upon
a neural forward projection module. This framework utilizes both single-instance perceptual photometric
measurements and geometric consistency loss to reduce the impact of motion blur on depth estimation
accuracy. Notwithstanding, these unsupervised methods often face several challenges, including textureless
regions, occlusions, reflections, and—perhaps most importantly—moving objects. In particular, owing to the
exigencies entailed in procuring training datasets for monocular depth estimation, the intricate intricacies
besetting dataset parameter annotation (such as intrinsics), and the intercession introduced by the kinetics of
the objects under scrutiny, unsupervised monocular depth estimation paradigms in the context of dynamic
scenes are garnering mounting interest, as exemplified in [15–17].

While the aforementioned approaches hold considerable promise, their performance in the realm of
depth estimation has hitherto fallen short of the capabilities exhibited by specialized depth measurement
sensors. In order to minimize the gap with measurements from specialized sensors, through extensive
testing and observations, it has been found that most traditional unsupervised monocular depth estimation
methods suffer from three conspicuous limitations: (1) Owing to the perpetually changing trajectories of
moving objects, the features related to these objects, such as their textures, are challenging for neural
networks to capture effectively. This leads to the prediction of depth maps with a profusion of artifacts, depth
discontinuities, and blurriness at depth edges. (2) A multitude of decoding operations within the decoder
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section employ standard square convolutional kernels, which results in insufficient computation near the
edges when upsampling the predicted objects. This leads to the underutilization of detailed information
from shallow-layer features by the encoder, and some discrete moving objects may not be adequately
captured, ultimately engendering the omission of edges in the predicted depth maps of objects. (3) The overall
complexity of the network is too high, resulting in slow convergence. In the process of monocular camera
depth estimation, these factors significantly impinge upon the veracity of depth estimation. To address these
concerns stemming from the mobility of objects and the convolutional kernel architecture of the network,
we introduce several innovative measures aimed at improving the precision of depth estimation:

(1) We introduce a convolutional block attention module (CBAM) [18] into the motion estimation
network. The CBAM attention mechanism facilitates the automatic modulation of the network’s
focus towards mobile objects, thereby mitigating susceptibilities to dynamic backgrounds or other
extraneous factors. Consequently, the edges of the depth maps pertaining to the estimated objects are
rendered more distinct.

(2) During the decoding phase of the motion estimation network, we incorporate a novel convolutional
strategy by substituting conventional square convolution kernels with stripe convolution kernels. This
modification empowers the motion network to more efficaciously extract edges and global information
while capturing discrete mobile entities.

(3) Combined with the Gausslacite operator, we propose an edge regularization loss, which uses the
rotational invariance of the Laplace operator to make the convergence speed of the motion network
faster and prevent the gradient explosion of the motion network.

2 Related Work

2.1 Depth Estimation
Depth estimation is an important task in 3D scene understanding and automatic driving technology.

Pioneering this domain, Garg et al. [19] introduced a depth estimation methodology predicated on left-
right stereo images. They input the left image into their model, reconstruct the left image using the
predicted depth map and the right image, and subsequently compute a reconstruction loss. However,
their image reconstruction model exhibited non-differentiability during the training regimen, thereby
engendering training intricacies and yielding suboptimal outcomes. Expanding upon Garg’s framework,
Goard et al. [13] introduced the Monodepth network, which not only harnessed image reconstruction loss
but also incorporated left-right consistency loss as a supervisory signal. Zhou et al. [20] introduced the
SfmLearner network, a composite model comprising a camera depth network and a camera pose network.
Significantly, the depth and pose networks can be independently trained, obviating the necessity for left-
right consistency signals as a prior reference. In an effort to mitigate the influence of occluded entities,
Godard et al. [21] introduced the Monodepth2 network in tandem with a novel photometric loss function.
At each pixel, instead of averaging photometric errors across all source images, it discerns the minimum
photometric reprojection error from a specific source image to circumvent issues arising from occlusion.

2.2 Depth and Motion
The endeavor of estimating depth within dynamic scenes has perennially posed a formidable challenge.

Recent investigations have proposed multifarious techniques aimed at learning scene depth, camera motion,
and object motion from monocular video sequences. Yin and Shi [22] introduced GeoNet, a method that
utilizes neural networks to jointly predict depth, ego-motion, and optical flow information. Their method-
ology is dichotomized into two stages: the initial stage is dedicated to estimating depth and camera motion,
while the ensuing stage tackles the challenge of moving object occlusion by considering residual optical flow
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arising from the relative motion of objects with respect to the scene. Luo et al. [23] employ a global motion
solver to jointly optimize depth, camera motion, and optical flow estimation. The utilization of stereo image
pairs as input serves to obviate ambiguities encountered in the depth estimation process. Casser et al. [24]
proffered a methodology for ascertaining object motion within the scene, facilitated by a pre-trained seg-
mentation model, thus significantly enhancing the accuracy of depth estimation pertaining to mobile objects.
Godard et al. [21] introduced a novel method to address occlusion by manually segmenting potentially
moving objects. While this approach led to improved estimation results, it comes with a significant increase
in workload due to manual segmentation. Li et al. [25] and associates refined the DepthMotion algorithm,
obviating the need for manual object segmentation. Instead, they used a motion translation field to locate
potentially moving objects. However, a limitation of this approach is that motion translation fields can
sometimes introduce ambiguities, resulting in the occlusion of certain moving objects. This paper extends
upon the neural network architecture posited by Li et al. [25] and coauthors and elevates the refinement of
the motion residual translation field by introducing a potent attention mechanism, thereby augmenting the
discernment of moving entities.

2.3 Edge Enhancement
During the training process, consecutive frames of images are input. The images undergo encoding

with down-sampling to extract abstract features, and then they are up-sampled to restore their original size.
In this process, due to the continuous scaling of image resolution, the estimated depth map structure of
the objects experiences pixel loss, resulting in blurred boundaries in the estimated depth map. In previous
work [26], boundaries were used as labels to supervise and enhance the clarity of the boundaries. However,
manual annotation of the labels was required in advance. Huang and Bors [27] utilized the Laplacian
operator with second-order rotational invariance to search for the intensity and direction of edges through
image gradients. They performed sharpening on areas with low intensity in the depth image. Although this
approach yielded some results, it could lead to calculation errors for pixels with discontinuous gradients.
In light of the aforementioned issues, we replace the traditional square convolution kernel with a stripe
convolution kernel and incorporate the Laplacian operator in the regularization process. These stripe-shaped
kernels not only enable better capture of discrete pedestrians and vehicles but also enhance the utilization of
boundary and global contextual features to improve the overall accuracy of object boundary estimation in
the neural network.

3 Main Method
Fig. 1 illustrates the overall architecture of the unsupervised monocular depth estimation network with

dynamic scene edge enhancement designed in this paper, which is divided into three main stages: depth
prediction stage, motion estimation stage, and image reconstruction stage. Depth prediction stage: The
depth prediction network takes two consecutive frames of RGB images as input, uses the U-Net structure of
ResNet18 to compress the image features through the encoder to obtain the preliminary feature space, and
then performs up-sampling and feature fusion in the decoding stage, and finally outputs the preliminary
predicted depth map. Motion estimation stage: The motion network takes continuous frame RGB images
and depth information channels (four channels in total) as inputs. Based on the U-Net structure of Flow-Net,
the effective features of self-motion of moving objects are extracted in the coding stage. After high-frequency
motion redundant noise is processed by the bottleneck module, the internal parameters of the camera, self-
motion, and displacement field are predicted. In the decoding stage, the features are refined, upsampled, and
fused to obtain the motion of the moving object relative to the background, that is, the residual translation
field, and the total sports field between the camera and the moving object. Image reconstruction stage: Using
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the parameters obtained in the depth prediction and motion estimation stage, a video frame is distorted onto
adjacent frames to generate a reconstructed image. By comparing the difference between the reconstructed
image and the actual image, the main part of the training loss is to induce the network to learn to correctly
predict the depth map and motion parameters.

Figure 1: Network architecture for depth estimation

The whole network framework realizes the unsupervised monocular depth estimation and edge
enhancement of dynamic scenes through the cooperative work of these three stages, and improves the
precision of depth estimation and the effect of edge enhancement. Next, we will provide a detailed overview
of the work carried out in each stage.

3.1 Depth Prediction Stage
The primary objective of the depth prediction stage is for the depth prediction network to learn the depth

from consecutive frame images. The depth prediction network feeds two consecutive RGB images, denoted
as Ia and Ib , and generates the corresponding depth maps, Da and Db , as shown in Fig. 1 (Depth Prediction
Net). The depth prediction network is based on a U-Net structure with ResNet18 as the encoder. ResNet18
is served to condense image features significantly by way of stacked convolutional blocks, culminating in a
preliminary feature space that is 1/16 the size of the original feature space. Within this compacted feature
space, a wealth of depth-related information is embedded. The decoding stage of the depth prediction
network, akin to the U-Net decoding stage, is primarily centered on the augmentation of feature extraction.
It utilizes the previously obtained efficacious feature layers from the primary encoding component for
upsampling purposes, and concurrently executes feature fusion. Ultimately, an efficacious feature layer
that combines all depth features is obtained. The depth-related information emanating from this ultimate
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efficacious feature layer is subsequently subjected to classification to obtain the preliminary predicted depth
maps, Da and Db .

3.2 Motion Estimation Stage
The principal aim of the motion estimation stage is for the motion network to learn dynamic infor-

mation from consecutive frame images. In addition to taking a pair of consecutive RGB original images as
input, the motion network also concatenates the channels for depth information, Da and Db . In other words,
it takes input from images with four channels in total, comprising the RGB channels as well as an additional
channel containing depth information, as depicted in Fig. 1 (Motion Net). The output of the motion network
encompasses the camera’s intrinsic parameters, denoted as K, the camera’s ego-motion Me go , the background
translation field Te go , and the residual translation field Tob j pertaining to moving objects. The motion
network is based on a U-Net structure inspired by Flow-Net. In the encoding phase, subsequent to the
input of the four-channel image data, salient features pertinent to the motion of mobile objects are distilled
via seven convolutional downsampling strata. Following this, a bottleneck module is deployed to handle
high-frequency motion redundant noise. Ultimately, three convolutional layers which all size are 1 × 1 are
leveraged to predict the camera’s intrinsic parameters K, the camera’s ego-motion Me go , and the background
translation field Te go . Among them, the camera’s ego-motion Me go represents the motion of the camera
relative to the background, encompassing both the camera’s translation vector t (t = [tx , ty , tz]) and rotation
matrix R (R = [rx , ry , rz]), which constitute an SE3 transformation. The background translation field, Te go , is
composed of motion vectors representing the camera’s motion relative to the background. To eliminate any
potential ambiguities among the predicted motion parameters (as demonstrated in [15]), it is imperative to
establish the relative motion relationship between the camera and the mobile entities. For this purpose, in the
decoding phase, we further refine the projected Te go . We refine and upsample the salient feature layers from
the encoding stage, which initially contain rough motion information. Where each step of feature refinement
is executed through a refinement block. Subsequently, feature fusion is conducted, yielding an efficacious
feature layer amalgamating all relevant characteristics, representing the relative motion between the mobile
objects and the background. This motion, referred to as the residual translation field Tob j , signifies the motion
relationship between the camera and the moving objects, denoted as the overall motion field T . There exist
intrinsic mathematical relationships among the background translation field Te go , residual translation field
Tob j and the overall motion field T , as elucidated by Eq. (1):

Te go (u, v) + Tob j (u, v) = T (u, v) (1)

here, (u, v) signifies a point in pixel coordinates. Fig. 2 provides visual depictions of the depth map and
residual translation field, acquired through experimentation on the KITTI dataset and Cityscapes dataset.
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Figure 2: Depth map and residual translation field obtained through testing on the KITTI dataset and Cityscapes
dataset

3.3 Image Reconstruction Stage
The fundamental principle of continuous frame image reconstruction in this paper is similar to the

Zhou et al.’s [20] method, with the main approach involving the use of depth maps and camera matrices to
connect two consecutive frames:

z′p′ = KRK−1zp + Kt (2)

where K represents the camera intrinsic matrix:

K =
⎛
⎜
⎝

fx 0 x0
0 fy y0
0 0 1

⎞
⎟
⎠

(3)

fx , fy , x0 and yo represent specific camera intrinsic parameters. The symbols t and R respectively
denote the translation vector and the rotation matrix about an SE3 transformation. P and p′ signify the
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homogeneous pixel coordinates before and after the transformation, characterized by the rotation matrix R
and the translation vector t. In parallel, z and z′ respectively represent the corresponding depths of pixels
before and after this transformation.

Within the ambit of the depth prediction network, it becomes conceivable to infer the parameter z.
Likewise, the motion network yields R, t, and K. Eq. (1) represents warping one video frame onto another
adjacent frame, and the warped frame will form a new video image. As shown in Fig. 1, a pair of consecutive
frames, Ia and Ib , are warped to respectively reconstruct the images Ita and Itb . Ultimately, we compare the
reconstructed frames with the actual frames of the images. The reconstructed images, Itb and Ita , will be
compared with Ib and Ia , respectively. The differences after comparison constitute the primary component
of the training loss. By penalizing these differences, the network will learn to correctly predict z, K, R, and t.

4 Motion Network Edge-Enhanced Decoder
This section will provide a comprehensive elucidation of the internal architecture of the edge-enhanced

decoder. It expounds upon the precise construction methodologies deployed for various modules and
constituents within the network. Furthermore, it will also analyze the contributions of each component
through the output feature maps.

4.1 Overall Architecture of the Edge-Enhanced Decode
The precise structure of the decoder is depicted in Fig. 3, and the architectural framework of the decoder

comprises 7 consecutive Refinement modules. As convolutional neural networks are chiefly tasked with the
extraction of high-level features from images via the chaining of convolutional layers and pooling layers, a
process that leads to the spatial diminution of feature maps. Thus, pooling is necessary for the computational
feasibility of training neural networks, and, more importantly, it allows the aggregation of information
over large regions of input images. Nevertheless, it is imperative to acknowledge that pooling concurrently
entails a reduction in resolution. Therefore, to facilitate dense, pixel-wise prognostications, a methodology is
required for the refinement of coarsely pooled representations. To solve this, in the course of the up-sampling
operation, the Refinement component fuses together with the output features emanating from each stratum
of convolution in the encoding phase. This approach engenders the conservation of both the high-level
information conveyed from the coarser feature maps and the minutiae of localized information proffered by
the lower-level feature maps.

Figure 3: The structure of the motion network decoder
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Regarding the composition of each Refinement module, as illustrated in Fig. 4, it is divided into four
steps. In the first step, to change the image resolution of the input feature map as little as possible without
introducing significant distortion, a bilinear interpolation operation is applied to the input feature map. In the
second step, the CBAM convolutional attention mechanism is applied. This mechanism amalgamates spatial
attention and channel attention, thereby directing the neural network’s focus to disparate spatial locales while
augmenting the extraction of motion-related information from the feature map. In the third step, a stripe
convolution module is applied to extract discrete motion objects and enhance the extraction of edge semantic
information. Lastly, in the fourth step, the obtained edge information is fed into three convolutional layers,
and it is fused with the feature map obtained after the bilinear interpolation in the first step to produce the
refined feature map.

Figure 4: The structure of the edge-enhanced refinement module

4.2 CBAM Convolutional Block Attention Module
This article utilizes the CBAM convolutional attention mechanism [18], which combines channel

attention and spatial attention, as a critical component of the edge-enhancing decoder. The primary objective
of the CBAM attention mechanism is to enhance a convolutional neural network’s ability to perceive different
feature channels and spatial locations, thereby improving the network’s performance. Specifically, CBAM’s
channel attention module is able to learn the importance of each channel, obtain global information through
global average pooling and global maximum pooling, and generate channel-level weights. This allows the
network to more accurately focus on critical visual information, such as edges, corners, or textures, and
suppress unimportant areas. The spatial attention module learns the weights of spatial positions based on
the output of the channel attention module, so as to further emphasize the attention to important positions
in the input feature map. This optimized feature representation not only improves the performance of the
model, but also increases the generalization ability of the model, making it more robust to noise and irrelevant
image content. By integrating CBAM into the depth prediction stage, motion estimation stage, and image
reconstruction stage, the accuracy of depth estimation and the effect of edge enhancement can be improved,
thereby improving the performance of the entire network in dynamic scenes.

The overall structure of CBAM, as shown in Fig. 5, involves taking an intermediate feature map as
input and sequentially inferring attention maps along two independent dimensions—the channel dimension
and the spatial dimension. These resultant attention maps are subsequently subjected to element-wise
multiplication with the input feature map, thus executing adaptive feature modulation.
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Figure 5: The overall structure of the Convolutional Attention Mechanism

For channel attention, as depicted in Fig. 6: In the first step, an input feature map of dimensions
H ×W × C is introduced, subsequently undergoing two parallel operations: global max-pooling (MaxPool)
and global average-pooling (AvgPool) layers. These operations transform the feature map from a size of
H ×W × C to 1 × 1 × C. In the second step, the feature map goes through a shared multi-layer perceptron
(MLP) module, which compresses the number of channels to 1/r (r is the reduction ratio), and then expands
it back to the original number of channels. Following this operation, ReLU activation is invoked, culminating
in the generation of two activated features. Ultimately, by means of element-wise summation of the activated
features and subsequent non-linear processing via a sigmoid activation function, the resultant outcome of
channel attention is denoted as Mc ∈ Rc×1×1. The formulation is articulated as follows:

Mc (F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F))) = σ (W1 (W0 (Fc
av g)) +W1 (W0 (Fc

max))) (4)

In this equation, σ represents the sigmoid activation function; W0 ∈ RC× C
r represents the weights of

the MLP; W1 ∈ R
C
r ×1×1 represents the weights of the ReLU activation function; Fc

av g and Fc
max represent the

global average pooling feature and global max pooling feature.

Figure 6: The channel attention mechanism structure

Concerning spatial attention, postulation is made for the feature map derived from channel attention,
designated as F′, as depicted in Fig. 7. In the First step, the input feature map F′ sequentially undergoes
MaxPool and AvgPool operations, yielding two feature maps of dimensions H ×W × 1 each. Subsequently,
in the second step, the two obtained feature maps are concatenated and subjected to a 7 × 7 convolution
operation to reduce the dimensionality to a solitary channel. Ultimately, the dimension-reduced features
are passed through a sigmoid activation function, and the output is subjected to multiplication with the
original image, thus restoring it to dimensions H ×W × C. The output of spatial attention denominated as
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Ms ∈ RC×H×W . The formula for spatial attention can be expressed as:

Ms (F) = σ ( f 7×7 ([AvgPool (F) ; MaxPool (F)])) = σ ( f 7×7 ([Fs
av g ; Fs

max])) (5)

In which, σ represents the sigmoid activation function, f denotes a convolution operation with a size
of 7 × 7.

Figure 7: Structure of the spatial attention mechanism

In summary, the entire CBAM convolutional attention mechanism process can be expressed using the
following equations:

F′ = Mc (F) ⊗ F (6)

F
′′

= MS (F) ⊗ F′ (7)

where ⊗ represents element-wise multiplication. F′ ∈ RC×1×1 represents the features obtained after applying
channel attention. F

′′ ∈ RC×H×W is the final feature obtained after passing the intermediate feature F through
the CBAM attention mechanism.

To illustrate the effectiveness of the edge enhancement module, we perform corresponding visualization
experiments, as shown in Fig. 8a, first input RGB images; As discernible in Fig. 8b,c, post the traversal
through the CBAM attention module, the decoder evinces a notable capability for delineating moving
entities. Additionally, it contributes to the elucidation of the relative positional relationships between moving
objects and the background, consequently yielding a reduction in artifacts and the augmentation of the clarity
of edge information.

(a) (b) (c) (d)

Figure 8: The visualization results of various components of the edge-enhanced module: (a) Input RGB image; (b)
Initial feature extraction; (c) Features after CBAM; (d) Features after CBAM and stripe convolution

4.3 Stripe Convolution
Traditional convolutional kernels predominantly employ square configurations, whether in tasks about

classification, semantic segmentation, or depth estimation. Such kernels only aggregate local features for
each pixel and do not fully utilize boundary and global contextual features. Simultaneously, this conventional



3332 Comput Mater Contin. 2025;84(2)

approach encumbers the neural network’s capacity to apprehend anisotropy, particularly when distinct
objects exhibit relative motion against the background. As illustrated in Fig. 9, when considering two pedes-
trians on bicycles manifesting discretely within the scene, square convolution simplifies the convolutional
kernel’s sampling process by encompassing nearby features that might be unrelated to the pedestrians.
Consequently, upon weighted aggregation, this approach tends to engender indistinct and unclear delin-
eations of the edges pertaining to moving objects within the predicted translation field. Contrastingly, as
showcased in Fig. 10, stripe convolution is employed. This variant permits the utilization of strip-shaped
convolutional kernels inherently biased toward specific orientations. Under the same convolution kernel size,
stripe convolution has the characteristic to capture extensive spatial relationships, resulting in an expanded
receptive field. Concurrently, it maintains a narrow kernel shape along other spatial dimensions, helping to
connect contextual information during feature extraction from images and effectively preventing sampling
interference in irrelevant areas.

Figure 9: Capture of moving objects by square convolution

Figure 10: Capture of moving objects by stripe convolution

Consequently, stripe convolution serves as an excellent complement to the conventional square con-
volution, aiding motion networks in extracting more detailed and discrete information about moving
objects. In this study, stripe convolution was employed during the motion network’s decoding process to
enhance the capture of discrete moving objects and extract information about the edges of these moving
objects. The precise operational details of stripe convolution are delineated in Fig. 11, wherein a represents
a 1 × 3 convolutional layer, and b represents a 3 × 1 convolutional layer. Convolution a aggregates pixels
along the horizontal axis in proximity to the boundaries, while convolution b aggregates pixels vertically.
Subsequent to these dual convolutional operations, an element-wise summation is executed to consolidate
the features elicited by the two stripe convolutions. To ensure diversity in the fused features, no activation
function is applied after stripe convolution. By virtue of stripe convolutions a and b effectively sampling
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global contextual information along orthogonal orientations, they impart pivotal cues for heightening the
extraction of edge information pertaining to moving objects and the discerning of discrete moving objects.
Thus, the application of this stripe convolution will fortify the discernment of edge and motion information
for moving objects.

Figure 11: Details of stripe convolution

Notably, this enhancement is discernible in Fig. 8c,d, where the capacity to distinguish discrete objects,
exemplified by the second-to-last car on the right side in image Fig. 8d, is markedly clearer. Additionally, the
contours of the vehicles attain greater lucidity compared to image Fig. 8c, with a concurrent augmentation
in the richness of edge detail information. Stripe Convolution is able to effectively capture the features of
targets with different aspect ratios, especially for objects with high aspect ratios, where the geometry can
be better extracted. This is especially important in dynamic scenes, where targets tend to have complex
shapes and sizes. At the same time, because Stripe Convolution is more adaptable and flexible when dealing
with elongated targets, it is able to capture the edge information of the target more accurately. This is
a significant improvement for edge augmented networking frameworks, as it provides clearer and more
accurate information at the edge, which improves the performance of the entire network.

Overall, in the unsupervised monocular depth estimation and edge enhancement networks of dynamic
scenes, CBAM and strip convolutional modules enhance the depth estimation and edge enhancement
capabilities of dynamic scenes through synergies. Specifically, CBAM first performs channel attention and
spatial attention processing on input feature maps to enhance important features and suppress unimportant
parts, while strip convolutional module captures target features with different aspect ratios to enhance feature
extraction capabilities for high-aspect ratio targets and generate more comprehensive and accurate feature
representations. In the motion estimation stage, CBAM optimizes the four-channel image containing depth
information, and the strip convolution module extracts motion features to improve the accuracy of motion
parameter estimation. In addition, the depth map and motion parameters optimized by CBAM are used to
generate more accurate reconstructed images, and the strip convolution module further enhances the edge
information, making the reconstructed images less different from the actual images, thus improving the
training effect of the network.

5 Loss Function
In the realm of unsupervised deep learning for monocular cameras, the loss function assumes a

paramount role and serves as the solitary source for imparting training supervision signals. In this paper, the
loss function [16–18] primarily consists of four regularization components: (1) depth regularization Lre g ,d e p .
(2) motion regularization Lre g ,mot . (3) consistency regularization Lc yc . (4) edge enhancement regularization
Led ge .
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The objective of depth regularization resides in the regularization of depths within regions characterized
by low gradients, explicated as follows:

Lre g ,d e p = αd e p∬ (∣∂u D (u, v)∣ e−∣∂u I(u ,v)∣ + ∣∂v D (u, v)∣ e−∣∂u I(u ,v)∣)dudv (8)

In this equation, αd e p denotes a hyperparameter, D (u, v) represents the predicted depth map, I (u, v)
represents the input RGB video frame, ∂D (u, v) represents the gradient of the image depths, and ∂I (u, v)
represents the gradient of the image pixels.

Motion regularization is based on two properties of the residual translation field: (1) Sparsity, arising
from the fact that most pixels in a frame typically belong to the background or static objects. (2) In 3D
space, the shape of an entire rigidly moving object is often constant during translation. Consequently, motion
regularization, denoted as Lre g ,mot , imposed on the motion map T (u, v), incorporates two facets: group
smoothing loss, denoted as Lg1, and sparsity loss, denoted as L1/2, elucidated as follows:

Lg1 [T (u, v)] =
∑

∑
i∈{x , y ,z{}}

∬
√
(∂u Ti (u, v))2 + (∂u Ti (u, v))2dudv (9)

where ∂T (u, v) represents the gradient of motion vectors in the motion field.
The sparsity loss, L1/2, is defined as:

L1/2 [T (u, v)] = 2 ∑
i∈{x , y ,z}

⟨∣Ti ∣⟩∬

�
���1 + ∣Ti (u, v)∣

⟨∣Ti ∣⟩
dudv (10)

where ⟨∣Ti ∣⟩ is the spatial average of ∣Ti (u, v)∣∣Ti(u ,v)∣, and this regularization is self-normalized. The final
motion regularization loss expressed as:

Lre g ,mot = αmot Lg1 [Tob j (u, v)] + βmot L1/2 [Tob j (u, v)] (11)

The Consistency regularization consists of two components: motion cycle consistency loss, denoted
as Lc yc and occlusion and photometric consistency loss, denoted as Lr gb . Lc yc encourages the forward and
backward motions between any pair of frames to be opposite to each other:

Lc yc = αc yc
∥RRinv − 1∥

∥RR − 1∥2 + ∥RRinv − 1∥2 + βc yc∬
∥Rinv T (u, v) + Tinv (uw ar p , vw ar p)∥

∥T (u, v)∥2 + ∥Tinv (uw ar p , vw ar p)∥
2 dudv (12)

where the subscript ‘inv’ indicates the same quantity obtained when the input frames are reversed in
order, and the subscript ‘warp’ indicates the warp operation. αc yc and βc yc represent hyperparameters. Lr gb
encourages photometric consistency, including L1 loss in RGB space and SSIM loss:

Lr gb = αr gb∬ ∣I (u, v) − Iw ar p (u, v)∣D(u ,v)>Dwar p(u ,v) dudv + βr gb
1 − SSIM (I, Iw ar p)

2
(13)

where I and Iw ar p are the original image and the reconstructed image, respectively.
The first three regularization components closely align with prior research, while in this study we

introduce a novel regularization termed edge regularization. Edge regularization is an improvement based
on the Laplacian operator and possesses rotation invariance. It can identify edge strength and direction using
image gradients. For the predicted residual translation field, edge regularization can effectively capture the
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edge intensity of moving objects and accelerate the convergence speed of the neural network. The formula is
expressed as follows:

Led ge [T (u, v)] =
∑

∑
i∈{x , y ,z{}}

∬

�
���(∂2Ti (u, v)

∂2 u2)
2

+ (∂2Ti (u, v)
∂2 v2)

2

dudv (14)

where ∂2T (u, v) represents the variation in the gradient of motion vectors in the motion field.
In summation, the composite loss function for the entire network is articulated as follows:

Ltotal = Lre g ,mot (Lg1 (groupsmoothnessloss) + L 1
2
(sparsityloss)) + Lre g ,d e pth (15)

+ Lc yc (rotation + transl ation) + Lr gb (rgb_consistenc y + ssim) + Led ge

6 Experiments

6.1 KITTI Dataset and Cityscapes Dataset
The KITTI dataset stands as a classic corpus in the realm of autonomous driving and computer vision

endeavors. It encompasses a multitude of images representing diverse scenarios, including highways, urban
locales, and residential areas. In the context of our investigation, we harnessed a set of 22,600 image pairs
from the KITTI dataset for training purposes, and an additional 697 image pairs were allocated for assessing
the performance of our experimental models. In a distinctive vein, the Cityscapes dataset emerges as a
more formidable benchmark, particularly tailored to the domain of autonomous driving within dynamic
urban environments. Unlike the KITTI dataset, Cityscapes is meticulously crafted to cater specifically to
autonomous driving challenges within urban settings. In our research, we made use of 22,973 image pairs
derived from a summation of high-quality annotated and roughly annotated images, capitalizing on them
for the training process. We applied the same evaluation methodology as employed in previous experiments.
Due to the absence of a standard evaluation protocol for the Cityscapes dataset, we solely applied the
evaluation method from the Cityscapes dataset to our ablation experiments.

6.2 Implementation Details
In this paper, the complete network architecture was instantiated utilizing the TensorFlow framework,

and the model underwent training on an NVIDIA GeForce RTX 3070. The training process of unsupervised
monocular depth estimation and edge enhancement network for dynamic scenes is mainly as follows: firstly,
the image sequence dataset containing dynamic scenes is selected and preprocessed and data augmented.
Then, initialize the network parameters and define the loss function. During the training process, depth
prediction (extracting features and estimating depth maps), motion estimation (calculating optical flow
and optimization), and image reconstruction (generating intermediate images and enhancing edges) are
performed sequentially, and the training is optimized through learning rate adjustment, regularization,
and batch normalization. Thereinto, the deep prediction network and the motion estimation network were
trained for 106 iterations using the Adam optimizer with a learning rate set to 104. The training batch size was
set to 16, and the training RGB images had a resolution of 1248 × 128. The settings of several hyperparameters
in the loss function: In Eq. (8), αd e p is set to 10−3. In Eq. (11), αmot is set to 1.0, and βmot is set to 0.2. In Eq. (12),
αc yc is set to 10−3, and βc yc is set to 5 × 10−2. In Eq. (13), αr gb is set to 1.0, and βr gb is set to 0.8.
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6.3 Evaluation Metrics
Building upon Zhou’s [20] prior work, this paper cites five standard evaluation metrics and compares

accuracy and error against state-of-the-art methods on these five metrics. These metrics include: root mean
square error (RMSE), square relative error (Sq Rel), root mean square logarithmic error (RMSE log), absolute
relative error (Abs Rel), and threshold accuracy (δi , i i = 1, 2, 3). Each metric is calculated as follows:

δi =max(
ypred

yg t
,

yg t

ypred
) < thr (16)

Abs Rel = 1
n

n
∑

p

∣ypred − yg t ∣
ypred

(17)

Sq Rel = 1
n

n
∑

p

∣ypred − yg t ∣
2

ypred
(18)

RMSE =
�
��� 1

n

n
∑

p
(ypred − yg t)

2 (19)

RMSEl o g =
�
��� 1

n

n
∑

p
∣log (ypred) − log (yg t)∣

2 (20)

In the equation, ypred represents the predicted depth value for a pixel, yg t represents the true or ground
truth depth value for the same pixel, and n represents the total number of pixels for which true depth values
are available in the ground truth depth map.

6.4 Analysis of the Experimental Results
To demonstrate the effectiveness and superiority of the proposed improvement method in this paper, a

series of experiments were conducted on both the KITTI dataset and the Cityscapes dataset, comparing the
experimental results of this paper’s method with other unsupervised monocular depth estimation methods.
The quantitative results are summarized in Table 1, while the qualitative results are visually depicted in Fig. 12.
In the column labeled Motion Model, “

√
” means that a motion model is used, and “×” means that a motion

model is not used. The bold annotation indicates the optimal results of each evaluation metric when using
the motion model. For the red metrics, lower is better; for the green metrics, higher is better.

Table 1: Comparison of test results on the KITTI dataset

Method Resolution Motion Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [20] 128 × 416 × 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yin and Shi [22] 128 × 416

√
0.155 1.296 5.857 0.233 0.793 0.931 0.973

DDVO [28] 128 × 416
√

0.151 1.257 5.583 0.228 0.810 0.936 0.974
Casser [24] 128 × 416

√
0.141 1.026 5.291 0.215 0.816 0.945 0.979

Ranjan et al. [29] 256 × 832 × 0.148 1.149 5.464 0.226 0.815 0.935 0.973
Gordon [15] 128 × 416

√
0.128 0.959 5.230 0.212 0.845 0.947 0.976

Yang [30] 384 × 512 × 0.127 1.239 6.247 0.214 0.847 0.926 0.969
Luo et al. [23] 256 × 832 × 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Li [25] 128 × 416
√

0.130 0.950 5.138 0.209 0.843 0.948 0.978
Luo [31] 112 × 384

√
0.130 1.086 4.876 0.205 0.878 0.946 0.970

Zhou and Dong [32] 128 × 416
√

0.152 1.036 5.137 0.217 0.794 0.931 0.973
Tang et al. [33] 128 × 416

√
0.124 0.928 4.854 0.202 0.825 0.947 0.980

Zavadski et al. [34] 128 × 416
√

0.137 0.935 4.863 0.207 0.876 0.954 0.971

(Continued)
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Table 1 (continued)

Method Resolution Motion Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Marsal et al. [35] 128 × 416 × 0.126 0.957 4.852 0.218 0.864 0.953 0.979
Ours 128 × 416

√
0.118 0.916 4.778 0.227 0.881 0.956 0.982

Note: The bold in the table represents the optimal performance for each column.

Figure 12: Qualitative results analysis of selected methods corresponding to Table 1 on the KITTI dataset

From Table 1, the following observations can be made: (1) When motion models are used, our proposed
method consistently shows significant improvements over the optimal method across different resolutions.
Specifically, our model demonstrates reductions of no less than 8% in absolute relative error, 15% in square
relative error, and 2% in root mean square error compared to the best method. (2) At equivalent resolutions,
when compared to the optimal method without using a motion model, our proposed model exhibits decrease
of 4% in absolute relative error, 4% in square relative error, and 3% in root mean square error relative to the
best. (3) Under the same resolution and both using motion models, our proposed model shows a reduction
of 7% in absolute relative error, a decrease of 4% in square relative error, and a decrease of 7% in root
mean square error compared to the best method. (4) Compared with the latest monocular depth estimation
methods SDFA-Net [32], CATNet [33], PrimeDepth [34] and MonoProb [35], the proposed method still
achieves the best in multiple indicators, which shows the effectiveness of each module proposed in this paper.

To visually demonstrate the comparative effectiveness of our model against other models, we have
replicated a subset of the models from Table 1 and compared them with our method, as shown in Fig. 12.
Within Fig. 12, ‘Raw’ represents the original test image, while ‘Zhou et al. [20]’, ‘GeoNet [22]’, ‘DDVO [28]’,
‘Yang et al. [30]’, and ‘Li [25]’ correspond to the depth maps predicted by the models listed in Table 1. Regions
of particular interest enclosed by red circles are emphasized for observation. In the second column test image
(from left to right), we pay special attention to the area in front of the house, specifically the part with the
large tree. Our model’s predictions can clearly capture the trunk of the large tree and distinguish it from
the adjacent billboard pole. In contrast, the distinctions made by other models appear less clear and more
ambiguous. In the fourth column test image (from left to right), near the car, we can see a triangular road
sign. Our predicted depth map accurately captures the edges and contours of the triangular road sign, while
other test models either cannot distinguish the road sign’s outline or produce a more blurred representation.
Therefore, both qualitative and quantitative test results indicate that our proposed method outperforms
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previous methods in terms of depth estimation quality across different resolutions and whether or not a
motion model is applied.

6.5 Ablation Experiment
To validate the effectiveness of the edge-enhanced decoder proposed in this paper for improving depth

prediction capability, taking a resolution of 128 × 416 as an example, comparative ablation experiments were
conducted to analyze the impact of the main components of the edge-enhanced decoder, which include the
CBAM attention module and the stripe convolution module, on the prediction results. At the same time, we
also analyze the impact of edge regularization loss on the performance of the model proposed in this paper.
(1) Effectiveness analysis of CBAM attention module and strip convolution module

By adding stripe convolution to the baseline, the network takes better advantage of boundary and global
contextual features, resulting in an enhanced capture of discrete moving objects. As seen in Table 2, the
network shows improved accuracy as a result. Among them, the absolute relative Error, square relative error,
and root mean square error have reduced by 3%, 3%, and 8%, respectively. After adding the CBAM attention
module to the baseline, the network’s perception capability for different feature channels and spatial positions
is enhanced. Additionally, it improves the segmentation of moving objects within the motion network
and clarifies the spatial relationship between moving objects and the background. As shown in Table 2,
there is a slight improvement in accuracy as well. Among them, the absolute relative error, square relative
error, and root mean square error have reduced by 7%, 2%, and 6%, respectively, after adding the CBAM
attention module to the baseline. If both stripe convolution and CBAM attention modules are used on top
of the baseline, the network’s ability to extract and integrate edge information is maximized. This can be
qualitatively described as follows in Fig. 13: (1) Test the image on the first line, we can observe that the
baseline depth map does not clearly capture the pedestrian walking in the middle. However, when using
stripe convolution and the CBAM attention module, our depth map can capture the pedestrian in the middle.
(2) Test the images on the third, fourth, and fifth line, there are holes in the depth maps generated by the
baseline to describe vehicles. But with the addition of stripe convolution and CBAM attention modules, our
depth map is smoother. (3) In these five lines all test images, the baseline predicts blurred edges for moving
objects in the motion field. Additionally, some images exhibit edge omissions, such as the fifth test image.
Conversely, with the inclusion of stripe convolution and CBAM attention modules, the contours of moving
objects in our motion field are clearer, and edge omissions are not present. Based on the analysis of Table 2,
it can be observed that adding stripe convolution and the CBAM attention module to the baseline has led to
an reduce in the absolute relative error, square relative error, root mean square error, and root mean square
logarithmic error by 9%, 4%, 7%, and 1%, respectively. Lastly, as shown in Table 3, it can be observed that
the selected 1 × 3 stripe convolution in this paper can maximize the utilization of boundary information and
fully harness the potential of stripe convolution to its fullest extent.

Table 2: Comparative analysis of ablation experiment results on the cityscapes dataset

Method Stripe convolution CBAM Abs Rel Sq Rel RMSE RMSE log δ< 1.25 δ< 1.252 δ< 1.253

Baseline × × 0.131 0.952 5.142 0.230 0.851 0.952 0.978

Ours

√ × 0.126 0.925 4.692 0.232 0.862 0.932 0.981
× √

0.122 0.931 4.832 0.230 0.873 0.939 0.989√ √
0.118 0.916 4.778 0.227 0.881 0.956 0.989

Note: The bold in the table represents the optimal performance for each column.
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Figure 13: Qualitative analysis of using an edge-enhanced decoder vs. Not using an edge-enhanced decoder on the
cityscapes dataset

Table 3: Comparative analysis of ablation experiment results on the cityscapes dataset

Method Size of stripe convolution Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.131 0.952 5.142 0.230 0.851 0.952 0.978

Ours

9 × 1 0.125 0.982 5.031 0.231 0.862 0.946 0.979
9 × 3 0.125 0.975 5.152 0.233 0.859 0.939 0.981
11 × 1 0.121 0.932 4.873 0.240 0.873 0.949 0.980
11 × 7 0.126 0.951 4.801 0.231 0.878 0.943 0.975
11 × 3 0.118 0.916 4.778 0.227 0.881 0.956 0.982

Note: The bold in the table represents the optimal performance for each column.

The ablation experiments demonstrate that each component of the edge-enhanced decoder in this paper
contributes effectively to improving the network’s accuracy, and the best results are achieved when both
components are combined.
(2) Effectiveness analysis of edge regularization method

In order to verify the effectiveness of the edge regularization proposed in this paper, we also carried
out the corresponding ablation experiment analysis, and analyzed the convergence of the overall network by
analyzing the change of rotation and translation scale factors with the increase of training steps to evaluate
its performance. Specifically, when applying depth regularization, motion regularization, consistency regu-
larization, and subsequently adding edge regularization atop the initial three, accompanied by an increase in
training iterations (epochs) and variations in rotation and translation scale factors, as illustrated in Fig. 14a,b.
Both for rotational scale factors and translational scale factors, after adding edge regularization, both the
rotational and translational scale factors converge after approximately 550 k steps, while without adding edge
regularization, both the rotational and translational scale factors converge after about 770 k steps, resulting
in a 28% increase in convergence speed when edge regularization is applied. At the same time, the motion
network without edge regularization tends to experience a sharp increase in gradients around 550 k steps.
With the addition of edge regularization, gradient changes become more uniform, leading to smoother
network learning and better convergence results.
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Figure 14: The changes in scale factors of the motion network during the training process. Among them, (a) represents
the change of the rotation scale factor before and after the regularization of the network is added in the training process,
and (b) represents the change of the translation scale factor before and after the regularization of the network is added
in the training process

7 Conclusions
In view of the challenge of monocular depth estimation in dynamic scenes, this paper proposes an edge-

enhanced unsupervised monocular depth estimation algorithm for dynamic scenes, which solves the current
problems of edge blurring and difficult capture of moving objects in dynamic scenes. By designing an edge-
enhanced decoder and a new edge loss function, the performance of the model when dealing with dynamic
targets is effectively improved. The edge-enhanced decoder uses the CBAM module and strip convolution
technology to enhance the ability to capture the edge features of moving objects. At the same time, the
edge loss function based on the Laplace operator accelerates the convergence of the model and avoids the
gradient explosion problem. Experiments on KITTI and Cityscapes datasets show that compared with the
existing technologies, the proposed method has a significant improvement in depth estimation accuracy,
with an RMSE reduction of 4.8% and a 36% increase in model convergence speed. These results show that the
proposed method has obvious advantages in the fine processing of depth map edges and the accurate capture
of moving targets in dynamic scenes, which effectively enhances the prediction ability of the network on the
edge region and provides an effective technical solution for the depth perception of autonomous vehicles.
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