
echT PressScience

Doi:10.32604/cmc.2025.065153

ARTICLE

Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot
Systems in Smart Factories with Mass Customization

Chenxi Lyu1, Chen Dong1, Qiancheng Xiong1, Yuzhong Chen1, Qian Weng1,* and Zhenyi Chen2

1College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
2Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
*Corresponding Author: Qian Weng. Email: fzuwq@fzu.edu.cn
Received: 05 March 2025; Accepted: 15 May 2025; Published: 03 July 2025

ABSTRACT: The rapid advancement of Industry 4.0 has revolutionized manufacturing, shifting production from
centralized control to decentralized, intelligent systems. Smart factories are now expected to achieve high adaptability
and resource efficiency, particularly in mass customization scenarios where production schedules must accommodate
dynamic and personalized demands. To address the challenges of dynamic task allocation, uncertainty, and real-
time decision-making, this paper proposes Pathfinder, a deep reinforcement learning-based scheduling framework.
Pathfinder models scheduling data through three key matrices: execution time (the time required for a job to
complete), completion time (the actual time at which a job is finished), and efficiency (the performance of executing
a single job). By leveraging neural networks, Pathfinder extracts essential features from these matrices, enabling
intelligent decision-making in dynamic production environments. Unlike traditional approaches with fixed scheduling
rules, Pathfinder dynamically selects from ten diverse scheduling rules, optimizing decisions based on real-time
environmental conditions. To further enhance scheduling efficiency, a specialized reward function is designed to
support dynamic task allocation and real-time adjustments. This function helps Pathfinder continuously refine its
scheduling strategy, improving machine utilization and minimizing job completion times. Through reinforcement
learning, Pathfinder adapts to evolving production demands, ensuring robust performance in real-world applications.
Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches, offering improved
coordination and efficiency in smart factories. By integrating deep reinforcement learning, adaptable scheduling
strategies, and an innovative reward function, Pathfinder provides an effective solution to the growing challenges of
multi-robot job scheduling in mass customization environments.

KEYWORDS: Smart factory; customization; deep reinforcement learning; production scheduling; multi-robot system;
task allocation

1 Introduction
As the Fourth Industrial Revolution progresses and Industry 4.0 evolves, artificial intelligence (AI)

emerges as a pivotal force in diverse sectors [1]. The advent and progression of robotics technology have
enabled the replacement of numerous conventional manual tasks, showcasing broad potential across various
domains. Robots find applications from factory production to healthcare, and from logistics to household
services, indicating their extensive future potential [2]. For instance, industrial robots significantly enhance
efficiency and quality on automated assembly lines [3], while medical robots achieve precision in surgeries
and diagnostics [4]. Additionally, smart home robots offer essential daily services. These advancements

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065153
https://www.techscience.com/doi/10.32604/cmc.2025.065153
mailto:fzuwq@fzu.edu.cn

3372 Comput Mater Contin. 2025;84(2)

not only improve productivity but also ensure precision and reliability in complex tasks, gaining extensive
recognition and significant interest from both academia and industry.

In contemporary society, smart factories epitomize the essence of Industry 4.0. These facilities incorpo-
rate cutting-edge technologies like Cyber-Physical Systems (CPS) [5], the Internet of Things (IoT) [6], big
data [7], multi-robot systems [8], and virtual reality [9], enabling automation, digitization, and intelligence
in manufacturing processes [10]. Distinguished from traditional manufacturing setups, smart factories
offer enhanced flexibility and efficiency. They support real-time monitoring, predictive maintenance, and
autonomous process optimization. These capabilities not only boost production efficiency and reduce
operational costs but also allow swift adaptation to market changes, securing a competitive advantage for
businesses [11].

In the realm of smart factories, industrial robots are indispensable, enhancing production and material
transport efficiencies significantly. These include robotic arms and autonomous mobile robots, which not
only reduce labor costs but also redirect human resources towards activities of higher value [12]. Extensive
research within both academia and industry has yielded innovative solutions for intelligent production.
These encompass areas such as production scheduling [13], resource allocation [14], logistics, storage [15],
and emergency management [16].

Traditional industrial production processes are rigid, with flexibility constrained by the limited number
of dedicated production lines. In contrast, dynamic customized production in smart factories demands
production lines capable of handling mixed and multi-batch dynamic tasks [17]. The shift towards intelligent
manufacturing emphasizes reconfigurable, multi-use dynamic production that can adapt in real-time to
produce various products by leveraging AI, robotics, sensors, and information communication technology.
However, this approach presents scheduling challenges, including time-varying machine structures, varying
processing speeds of parallel machines, and dynamic job arrivals.

In traditional industrial production scheduling, practitioners typically rely on manually selecting one
or more fixed scheduling rules based on past experience [18], requiring significant expertise. However, with
the increasing complexity and flexibility demanded by customized production and unexpected events, the
efficiency and robustness of scheduling cannot always be assured. Moreover, existing scheduling methods
often prioritize local optimization, lacking a global perspective, which results in reduced production
efficiency and resource utilization.

To address these challenges, Pathfinder, a scheduling approach, was developed by integrating deep
learning and reinforcement learning, enabling autonomous adaptation and optimization of scheduling
strategies in real-time production environments. Pathfinder efficiently manages uncertainties and dynamic
fluctuations, achieving global optimization to maximize production efficiency. Experimental results demon-
strate Pathfinder’s superior performance on various classic scheduling datasets, offering insights and
methodologies for advancing smart factory operations.

The main contributions include:

• A specialized reward function is designed to support dynamic task allocation and real-time adjustments,
creating a novel multi-robot job scheduling model tailored for smart factories. This approach improves
production efficiency and optimizes robot coordination.

• An adaptable approach was adopted by selecting ten diverse scheduling rules instead of fixed actions.
These rules enhance decision-making flexibility, with the optimal rule dynamically chosen based on
environmental conditions. This strategy addresses the challenge of reflecting changes in custom produc-
tion scheduling, allowing the model to adapt to dynamic scenarios and maintain optimal performance.

Comput Mater Contin. 2025;84(2) 3373

• A method called Pathfinder is proposed for decision-making in custom production job scheduling.
It transforms scheduling data into matrices of execution time, completion time, and efficiency. By
utilizing neural networks to extract features, Pathfinder optimizes machine utilization and minimizes
job completion times, adapting to dynamic production demands and ensuring robust performance in
real-world applications.

The paper is structured as follows: Section 2 reviews related work and motivation. Section 3 defines the
problem and models. Section 4 outlines the approach, followed by implementation in Section 5. Section 6
presents experimental validation, and Section 7 concludes with key contributions.

2 Related Work and Motivation
In this chapter, we present previous researchs on relevant issues and the challenges they have faced.

Additionally, we elucidate the motivation behind proposing this algorithm.

2.1 Related Work
Scheduling theory faces significant challenges in task allocation and sequencing within complex sys-

tems, particularly in multi-stage scheduling where genetic algorithms and ant colony optimization enhance
efficiency [19]. These systems, characterized by their NP-complete or NP-hard nature, necessitate heuristic
algorithms for practical solutions.

The evolution of smart factories has introduced complexities that require managing diverse production
tasks [20]. Innovations in this domain include Wang et al.’s adaptive scheduling using edge computing [21]
and Sharif et al.’s optimized resource allocation in health monitoring [22].

Edge computing’s pivotal role in intelligent manufacturing supports real-time applications such as aug-
mented reality [23] and resource-efficient scheduling algorithms like the Whale Optimization algorithm [24].

In collaborative robotics, efficient task allocation and multi-robot cooperation strategies are explored
by Baroudi et al., Dutta et al., and Wei et al. [25–27]. Quantum reinforcement learning for enhanced control
is also being investigated in smart factories [28].

Deep reinforcement learning (DRL) has been applied to dynamic scheduling, with models like Zhang
et al.’s DeepMAG integrating multi-agent systems for better decision-making [29]. Similar strategies were
explored by Han et al. and Zhou et al. to enhance production in smart factories [30,31]. Ma et al. introduced
a reliability-aware DRL approach for DNN tasks in mobile-edge computing [32]. Zhang et al. developed
a multi-agent manufacturing system using an improved contract network protocol and PPO-trained AI
scheduler, showing strong performance under disruptions [33]. Liu et al. proposed a hierarchical, distributed
architecture for dynamic job-shop scheduling using a Double Deep Q-Network with tailored state-action
spaces and reward shaping for efficient learning [34]. Alexopoulos et al. designed a DRL framework where
an agent selects dispatching rules, improving scheduling and makespan in a bicycle production case [35].
Gui et al. employed a composite action framework with a DDPG-trained policy network for job-shop
scheduling, outperforming traditional rules and DQN-based methods [36]. Li et al. applied DRL with PPO
and a recurrent neural network to parallel machine scheduling with family setup constraints, achieving
strong generalization and superior performance over heuristics [37].

2.2 Motivation
Traditional fixed production lines with multiple robots face challenges in adapting to the flexibility

needed for customized manufacturing. Existing methods lack the ability to reconfigure multi-robot tasks or
adjust to dynamic schedules, limiting flexible production management.

3374 Comput Mater Contin. 2025;84(2)

Maximizing net profit requires considering resource consumption, robot types, energy use, and load
balancing. Use of robot resources, including completion time and utilization rate, is vital.

We propose a reinforcement learning-based approach to optimize multi-robot task configurations in
complex environments, enhanced by deep learning for high-dimensional data processing. This improves
accuracy, efficiency, and flexibility through universal scheduling rules. Immediate rewards are tied to
scheduling efficiency and utilization rates for precise goal evaluation.

By modeling the scheduling problem as a Markov decision process and applying a Deep Q Network, our
method enables intelligent, collaborative, and adaptive robot scheduling in smart factories, ensuring robust
performance under dynamic conditions.

3 Problem Description and Formulation
In this chapter, we introduce the problem and provide a formal description of it. Then, we proceed to

establish the corresponding mathematical model.

3.1 Preliminaries
Reinforcement learning is used to learn action-selection strategies by modeling the scheduling problem

as a Markov Decision Process (MDP). An MDP assumes that future states and rewards depend solely on the
current state and action, not on past states. Thus, the problem must be framed accordingly. A standard MDP
is defined by a quintuple:

MDP =< S , A, Pa
ss′ , Ra

ss′ , γ > (1)

In this paper, the state space S = {s1 , s2, . . ., sT} represents all possible environmental configurations,
where each state includes matrices for execution time, completion time, and task efficiency per robot. The
action space A = {a1 , a2, . . ., aT} consists of ten common scheduling rules.

The transition probability Pa
ss′ defines the likelihood of reaching state s′ from s via action a, reflecting

varied outcomes from applying a rule:

Pa
ss′ =

1
number of reachable states

(2)

The immediate reward function Ra
ss′ quantifies the reward for such transitions, and the discount factor

γ balances short-term and long-term gains.
Training begins by estimating the action-value function Q(s, a), the expected return from taking action

a in state s. The optimal value Q∗(s, a) satisfies the Bellman equation and determines the best action to
maximize expected reward:

Q∗(s, a) = E[rt+1 + γ max
a′

Q∗(st+1 , at+1)∣st = s, at = a] (3)

Then, update the action value function by updating the Q-values. The update formula for Q-values is as
follows:

Q(s, a) ← Q(s, a) + α [r + γ max
a

Q(s′, a′) − Q(s, a)] (4)

here, α is the learning rate, controlling the extent to which new rewards affect the Q-values. The action-
value function is stored in the Q-table. This iteration process continues until the task is completed, and the

Comput Mater Contin. 2025;84(2) 3375

cumulative reward Rt = ∑T
t′ γt′−t rt reflects the total reward obtained by the agent before the interaction ends.

The entire process is illustrated in the Fig. 1.

Figure 1: Deep reinforcement learning scheduling model

3.2 Problem Description
In this scheduling problem, we have a manufacturing system with a set of orders O =

{Oi , i = 1, 2, . . . , N}. Each order Oi comprises a sequence of jobs Ji = {Ji j , j = 1, 2, . . . , N Ji}, where
N J = {N Ji , i = 1, 2, . . . , N} represents the total number of jobs for each order. These jobs must be executed
in a predefined order. Additionally, the system is equipped with a set of robots R = {Rm , m = 1, 2, . . . , M},
and each job is assigned to a specific robot. The constraint relationship set E = {Ei jm , i = 1, 2, . . . , N , j =
1, 2, . . . , N Ji , m = 1, 2, . . . , M} defines which robot can execute each job.

For robots to be effective in completing orders, a description is shown as follows:
Input: Set of orders O = {Oi , i = 1, 2, . . . , N}. Jobs for each order Ji = {Ji j , j = 1, 2, . . . , N Ji}. Total

number of jobs for each order N J = {N Ji , i = 1, 2, . . . , N}. Set of robots R = {Rm , m = 1, 2, . . . , M}. Con-
straint relationship set E = {Ei jm , i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji , m = 1, 2, . . . , M}. Execution time of orders
P = {Pi , i = 1, 2, . . . , N}, where Pi represents the actual time required to execute order Oi , meaning the total
time spent actively processing the order. This does not include any waiting time before execution starts.
Execution time of jobs PJ = {PJi j , i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji}.

Output: Completion time of orders C = {Ci , i = 1, 2, . . . , N}, where Ci represents the time when order
Oi is fully processed and considered completed. It includes both the waiting time before execution begins
and the execution time itself. Completion time of jobs CJ = {CJi j , i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji}.

Objective: Maximize Ū , the average utilization of manufacturing robots, by completing orders and
tasks in the minimum time. Representing each robot’s utilization as U = {Um , m = 1, 2, . . . , M}, the optimal
scheduling solution requires careful consideration of job sequences and robot availability.

3376 Comput Mater Contin. 2025;84(2)

3.3 Mathematical Model
In a smart factory, the job scheduling phase is critical to ensure that the manufacturing resources of

each robot are fully utilized. This utilization is primarily reflected in the production duration (makespan)
and the average machine utilization (Ū). Below are the specific formulas for calculating these metrics:

makespan =max
i

Ci (5)

where makespan represents the maximum completion time among all jobs, which serves as the production
cycle in job scheduling. Minimizing the makespan is closely tied to maximizing the utilization of robot
resources, as reducing the completion time allows for more efficient resource use.

Eq. (6) provides the formula for average machine utilization Ū :

Ū = 1
M

M
∑
m=1

∑N
i=1∑N Ji

j=1 PJi j

maxi Ci
= ∑N

i=1 Pi

M ⋅makespan
(6)

where M is the number of robots and∑N
i=1 Pi represents the total processing time of all jobs.

When ∑N
i=1 Pi and M are constants, minimizing the makespan is equivalent to maximizing machine

utilization. Thus, the objective is to minimize the makespan:

Minimize makespan =max
i

Ci =max
i

CJi(N Ji) (7)

This objective is subject to the following constraints:
1. Job Assignment Constraint: Each job is assigned to at most one robot:

M
∑
m=1

Xi jm ≤ 1, i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji (8)

where Xi jm is a binary variable indicating whether job Ji j is assigned to robot Rm .
2. Job Sequence Constraint: Jobs must be completed in the specified order:

CJi(j−1) + PJi j ≤ CJi j , i = 1, 2, . . . , N , j = 2, . . . , N Ji (9)

3. Completion Time Constraint: The completion time of each job must not exceed the maximum
completion time of its associated job sequence:

CJi j ≤ Ci , i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji (10)

4. Robot Occupancy Constraint: At any given time, a robot can only be assigned to one job:

N
∑
i=1

N Ji

∑
j=1

Ai jm ≤ 1, i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji (11)

where Ai jm is a binary variable indicating whether robot Rm is active during Ji j (1 if active, 0 otherwise).
5. Robot Availability Constraint: A robot can only execute a job if it is available at the given time:

Ai jm ≤ Bm(t), i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji , m = 1, 2, . . . , M , t ∈ T (12)

Comput Mater Contin. 2025;84(2) 3377

where Bm(t) is a binary variable indicating whether robot Rm is available at time t (1 if available, 0 otherwise).
This ensures that a job is only assigned to a robot when it is operational and not undergoing maintenance or
other constraints.

6. Task-Robot Feasibility Constraint: A specific job Ji j can only be assigned to a robot Rm if it is feasible
according to the constraint relationship set E:

Xi jm ≤ Ei jm , i = 1, 2, . . . , N , j = 1, 2, . . . , N Ji , m = 1, 2, . . . , M (13)

These conditions collectively define the optimization problem. The goal is to find the optimal assignment
of jobs to robots, minimizing the makespan, and ensuring compliance with the specified constraints.

3.4 Table of Mathematical Notations
For improved readability, this paper presents notations and meanings in the Table 1.

Table 1: Notation meanings of mathematical model

Notations Meanings
Oi The i-th order in the system
N Total number of orders
Ji Set of jobs belonging to order Oi , i.e., Ji = {Ji j}
Ji j The j-th job in order Oi , executed in sequence

N Ji Total number of jobs in order Oi
Rm The m-th robot in the system
M Total number of robots

Ei jm Feasibility constraint: Ei j = 1 if Ji j can be assigned to robot Rm , otherwise 0
Pi Execution time of order Oi (sum of job execution times)
Ci Completion time of order Oi

PJi j Execution time of job Ji j
CJi j Completion time of job Ji j
Um Utilization rate of robot Rm
Ū Average utilization of all robots

makespan The total time required to complete all orders (i.e., maxi Ci)
Xi jm Binary variable: 1 if job Ji j is assigned to robot Rm , otherwise 0
Ai jm Binary variable: 1 if robot Rm is processing Ji j, otherwise 0

4 Proposed Methodology
This chapter offers a thorough overview of the structure of Pathfinder and its complete algorithmic

process. Fig. 2 illustrates the overall framework of Pathfinder. Each string of small circles represents an order,
where each circle represents a job. The same color indicates that the jobs are executed by the same robot, and
the sequence is specified by the arrows. It mainly consists of the following stages.

• Stage I: Initialization.
– Step 1: Establish simulation environment.
– Step 2: Develop Neural Network.
– Step 3: Implement experience replay pool.

3378 Comput Mater Contin. 2025;84(2)

• Stage II: Extracting Experience for NN Training.
– Step 4: Sample experience data.
– Step 5: Train the network.

• Stage III: Training RL Model for Decisions.
– Step 6: Interact with virtual environment.
– Step 7: Update network parameters.
– Step 8: Store the state sequence (st , a, r, st+1) in the experience replay pool.

• Stage IV: Iterative Training and Online Scheduling.
– Step 9: Repeat training process.
– Step 10: Enable online job scheduling.

Pathfinder is introduced in Algorithm 1 in detail.

Figure 2: The structure and algorithm flow of Pathfinder

Comput Mater Contin. 2025;84(2) 3379

Algorithm 1: Pathfinder algorithm
1: Input: O, Ji, NJ, R, E, P, PJ
2: Output: C, CJ
3: D ← ∅, ∣D∣ = N
4: Q(⋅; θ) ← random, Q̂(⋅; θ−) ← Q(⋅; θ)
5: C1 , CJ1 , U1 ← 0
6: for i = 1 to MAX_EPISODES do
7: s1 ← (PJ , CJ1 , U1)
8: for t = 1 to MAX_TIMESTEPS do

9: at ←
⎧⎪⎪⎨⎪⎪⎩

random, w.p. ε

arg maxa Q(st , a; θ), otherwise
10: Execute at
11: Ct+1 , CJt+1 ← f (O , J , N J , R, E , at , PJ , CJt)

12: Ut+1 ←
PJ

CJt+1

13: st+1 = (PJ , CJt+1 , Ut+1)
14: rt ← pt

ct
− Ūt

15: D ← D ∪ (st , at , rt , st+1)
16: Sample (s j , a j , r j , s j+1) ∼ D

17: y j ←
⎧⎪⎪⎨⎪⎪⎩

r j , s j+1 terminal
r j + γ maxa′ Q̂(s j+1 , a′; θ−), otherwise

18: θ ← θ − η∇θ(y j − Q(s j , a j; θ))2

19: if t mod C = 0 then
20: θ− ← θ
21: end if
22: if ∀i , Ci > 0 then
23: break
24: end if
25: end for
26: end for

5 Details of Pathfinder
In this chapter, we will delve into the details of each stage in sequential order.

5.1 Establishment of Network Structure and Experience Replay Pool
In the stage 1, our primary focus was on constructing the neural network framework and establishing

the experience replay pool. Within this subsection, we’ll delineate the comprehensive structure of both the
network and the experience replay pool.

5.1.1 Network Structure
Our scheduling decision model employs a network (Fig. 3) that processes a 3D input matrix of execution

time, completion time, and efficiency. The convolutional layer uses square kernels without pooling to

3380 Comput Mater Contin. 2025;84(2)

preserve feature integrity. We maximize filters in the first layer and reduce them in later layers, keeping the
stride fixed at 1. The final convolutional output is flattened and passed to fully connected layers.

Figure 3: The structure of the Pathfinder scheduling decision model

As detailed in Table 2, the network is configured for a 10× 10 scheduling dataset. For larger datasets (e.g.,
over 200 job processes or 20 jobs/orders), a fourth convolutional layer is added to enhance generalization
via deeper hierarchical feature extraction.

Table 2: Pathfinder neural network structure configuration

Layer Input state Filter size Number
of filters

Stride Padding Activation function Output

Conv1 10 × 10 × 3 1 64 1 0 ReLU 10 × 10 × 64
Conv2 10 × 10 × 64 2 32 1 0 ReLU 9 × 9 × 32
Conv3 9 × 9 × 32 3 16 1 0 ReLU 7 × 7 × 16

Conv4∗ – 6 16 1 0 ReLU –
Dense1 1 × 784 – – – – ReLU 1 × 512
Dense2 1 × 512 – – – – – 1 × 10

Our Q-network’s loss function, central to training, is defined as:

L(w) = E [(r + γ max
a′

Q(s′, a′, w) − Q(s, a, w))2] (14)

Here, L(w) is the loss function measuring the difference between predicted and target Q-values. r is the
immediate reward received after transitioning from state s to s′ via action a, with γ as the discount factor for
future rewards. a′ is the next action, and w denotes the neural network weights.

With the target Q network, the loss function incorporates target Q-values alongside current Q-values,
promoting more stable and effective training:

L(w) = E [(r + γ max
a′

Q(s′, a′, w−) − Q(s, a, w))2] (15)

where w− represents the weight parameters of the target Q network.

Comput Mater Contin. 2025;84(2) 3381

5.1.2 Experience Replay Pool
Pathfinder employs an experience replay pool to improve learning efficiency and stability by reusing

past experiences, enhancing sample efficiency and reducing update correlation. Unlike traditional online
learning, which updates parameters using only current samples, experience replay enables random sampling
from historical data.

This broadens state-action mapping and improves real-time scheduling decisions. As a result, training
becomes more efficient, with demonstrated gains in performance and stability.

5.2 State Representation
In stage 2, scheduling data from the experience replay pool is used to train the network. This section

explains the state representation in the data.
To address dynamic job scheduling, a three-channel input overlays matrices for machines, job attributes,

and scheduling efficiency. For example, in the ft06 dataset (Fig. 4), rows represent orders and column pairs
denote jobs–odd columns indicate assigned machines, even columns show execution times. The total number
of columns is based on the maximum jobs per order. In the red box example, job 1 of order 1 runs on robot
2 with an execution time of 1.

Figure 4: Illustration of the ft06 dataset matrix

The state is formally defined as a tuple of three time-dependent matrices: st = (PJ , CJt , Ūt). Fig. 5
presents the state matrix after scheduling all jobs for order 1 in the ft06 dataset. The leftmost matrix, PJ,
represents the job execution time, where each element PJi j denotes the time required to execute job Ji j. The
central matrix, CJt , corresponds to the completion time at a given time slice t, with each entry CJt

i j indicating
the completion time of job Ji j at time t. On the right, the efficiency matrix Ūt is computed as the ratio of job
execution time to completion time, where Ūti j quantifies the efficiency of completing the individual job Ji j.

Figure 5: Schedule state matrix for ft06

3382 Comput Mater Contin. 2025;84(2)

5.3 Reinforcement Learning Scheduling Algorithm
In stage 3, environmental data is collected to train the reinforcement learning model, guiding algo-

rithm updates and decision-making. This section defines the action space, decision implementation, and
reward function.

5.3.1 Action Space
In customized production, scheduling is more complex than in games with clear legal actions due to

job dependencies and dynamic production demands. A job may follow different scheduling paths over time,
making fixed action outputs insufficient to capture real-world variability.

To address this, we adopt general scheduling rules instead of specific actions, improving adaptability to
changing conditions. Ten commonly used rules are summarized in Table 3.

Table 3: Scheduling rules and interpretations

Serial number Abbreviation Rule explanation
1 SJF Shortest Job First
2 LJF Longest Job First
3 SNJ Shortest Next Job
4 LNJ Longest Next Job
5 SRJF Shortest Remaining Job First
6 LRJF Longest Remaining Job First
7 SRM Shortest Remaining Time
8 LRM Longest Remaining Time
9 LRPT Least Remaining Processing Time
10 MRPT Most Remaining Processing Time

5.3.2 Action Decision
In our framework, an action is taken after each job completion, where the agent selects the next

scheduling rule.
We use the ε-greedy strategy, which balances exploration and exploitation as follows:

π(a ∣ s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − ε
∣A(s)∣(∣A(s)∣ − 1), for the greedy action,

ε
∣A(s)∣ , for the other ∣A(s)∣ − 1 actions

(16)

here, π(a ∣ s) denotes the probability of selecting action a in state s, ε ∈ [0, 1] is the exploration rate, and
∣A(s)∣ is the number of possible actions. The ε-greedy strategy encourages exploration to discover better
scheduling rules, while greedy selection favors the action with the highest Q-value. To ensure convergence,
ε decreases over time.

To improve efficiency on large-scale scheduling data, we introduce the cur_policy strategy: when ε < 0.2,
the model increasingly selects actions with the highest estimated value.

As training progresses, Q-value estimates are continually updated. Unlike traditional Q-learning, deep
reinforcement learning approximates Q-values via neural networks. The updated Q-value is computed

Comput Mater Contin. 2025;84(2) 3383

as follows:

Q(s, a, w) ← Q(s, a, w) + α [r + γ max
a′

Q(s′, a′, w−) − Q(s, a, w)] (17)

here, Q(s, a, w) is the Q-value for action a in state s, with network parameters w. α is the learning rate, r
the immediate reward, and γ the discount factor. maxa′ Q(s′, a′, w−) is the target Q-value for next state s′,
using target network parameters w−.

5.3.3 Reward Design
The learning effectiveness of intelligent agents is directly impacted by the design of rewards. A well-

crafted reward function plays a crucial role in ensuring the algorithm’s learning performance.
This paper examines the immediate reward rt obtained by applying a scheduling rule at time t. This

reward reflects the change in average machine utility resulting from the rule’s enforcement and is defined as:

rt = ¯Ut+1 − Ūt (18)

here, Ūt denotes the average machine utilization rate at time t, given by:

Ūt =
1

N ⋅ N Ji

N
∑
i=1

N Ji

∑
j=1

PJi j

CJt
i j

(19)

here, CJt represents the completion time of job at time t.
To evaluate the overall workload performance, the total reward over a scheduling horizon T is

computed as:

R =
T
∑
t=1

rt (20)

where R represents the cumulative reward, which reflects the scheduling efficiency over the entire workload
execution. This formulation ensures that the agent optimizes scheduling decisions across different job
workloads rather than at individual time steps.

6 Experiment Results and Analysis
This chapter will evaluate the performance of the proposed job scheduling decision model by sim-

ulating both static and dynamic job scheduling environments. We will use classic scheduling data from
the OR-library as a benchmark. Details regarding the specific test data, scale, and sources are presented
in Table 4 below.

Table 4: Test data and data sources

Data source Test data
ft06(6 × 6), ft10(10 × 10) Fisher

orb1-5(10 × 10) Applegate and Cook
la11-15(20 × 5), la16-20(10 × 10), la21-25(15 × 10), la26-30(20 × 10) Lawrence

abz5(10 × 10), abz7-9(20 × 15) Adams, Balas and Zawack
ta61-63(50 × 20), ta71-72(100 × 20) Taillard

3384 Comput Mater Contin. 2025;84(2)

6.1 Algorithm Parameter Settings
This section outlines parameter settings used in model training. Key parameters for decision iteration,

neural network hyperparameters, and reinforcement learning updates are listed in Table 5. We set 1000
training episodes, a replay pool size of 60000, and a batch size of 256. The target network updates every 200
steps, using the Adam optimizer with a learning rate of 0.0001.

Table 5: Experimental parameter settings

Type Parameter name Configuration

Decision training
parameters

Episode 1000
Replay pool 60000

Sampling training method Random sampling
Training waiting time steps 1000

Neural network
hyperparameters

Batch size 256
Optimizer Adam

Leaning rate 0.0001
Loss function Mean square error

Target Q network update time steps 200

Reinforcement learning
parameters

Explore step Episode ×Number of jobs × 0.4
Exploration probability ε 1 −min(1, cur_step/ex plore_step)

Q-value update learning rate α 0.9
Discount factor γ 0.9

Exploration spans 40% of training, with ε decaying linearly. The learning rate and discount factor
are both 0.9. For larger datasets like ta61 and ta71, the cur_policy strategy is enabled when ε < 0.2 to
accelerate training.

6.2 Model Convergence Analysis
This section evaluates the convergence of the decision model using the maximum scheduling comple-

tion time (makespan) as a criterion, with the benchmark abz5 chosen for testing. Results will be analyzed
under different settings, including various batch data sizes, sampling training methods, exploration patterns,
and numbers of scheduling rules.

To evaluate convergence without labeled data, makespan is used as a proxy loss. Over 1000 training
rounds, average performance per 20-round period is reported.

Fig. 6a shows that larger batch sizes (e.g., batch256) enhance convergence speed and stability, especially
under the cur_policy strategy. Fig. 6b indicates cur_policy accelerates convergence with more stable out-
comes, while ε-greedy achieves better peak scores. Fig. 6c compares sampling methods, where prioritized
experience replay improves convergence smoothness and reduces variance but increases training time and
reduces sample diversity. Fig. 6d shows that excluding weaker rules (action8) prevents long completion times,
confirming the positive impact of combining diverse rules.

Comput Mater Contin. 2025;84(2) 3385

Figure 6: Convergence analysis plot under different parameter conditions

6.3 Experimental Results Comparative Analysis
Section 5 defines the model’s output as the scheduling rule best suited to the current situation. This

section compares each scheduling rule’s performance. Table 6 presents results on small-scale benchmarks
(6 × 6, 10 × 10, 20 × 5, and 15 × 10), evaluated against the optimal scheduling outcomes.

Table 6: Experimental scheduling results

OPT SJF LJF SNJ LNJ SRJF LRJF SRM LRM LRPT MRPT Pathfinder

Optimal result ratio (OPT/current scheduling) %
ft06 55 83 79 89 70 94 67 76 74 67 78 55

66.3% 69.6% 61.8% 78.6% 58.5% 82.1% 72.4% 74.3% 82.1% 70.5% 100%
ft10 930 1399 1284 1471 1441 1530 1178 1351 1527 1141 1234 1028

66.5% 72.4% 63.2% 64.5% 60.8% 78.9% 68.8% 60.9% 81.5% 75.4% 90.5%
orb1 1059 1532 1410 1345 1510 1489 1495 1444 1457 1376 1426 1127

69.1% 75.1% 78.7% 70.1% 71.1% 70.8% 73.3% 72.7% 77.0% 74.3% 94.0%
orb2 888 1303 1435 1346 1261 1370 1094 1208 1294 1152 1332 982

68.2% 61.9% 66.0% 70.4% 64.8% 81.2% 73.5% 68.6% 77.1% 66.7% 90.4%
orb3 1005 1405 1466 1379 1482 1463 1345 1723 1455 1280 1475 1142

71.5% 68.6% 72.9% 67.8% 68.7% 74.7% 58.3% 69.1% 78.5% 68.1% 88.0%
orb4 1055 1466 1621 1631 1582 1556 1251 1428 1777 1348 1569 1133

72.0% 65.1% 64.7% 66.7% 67.8% 84.3% 73.9% 59.4% 78.3% 67.2% 93.1%
orb5 887 1199 1184 1184 1235 1296 1195 1318 1217 1279 1113 1032

74.0% 74.9% 74.9% 71.8% 68.4% 74.2% 67.3% 72.9% 69.4% 79.7% 85.9%
la11 1222 1625 1474 1470 1289 1653 1316 1398 1297 1353 1385 1224

75.2% 82.9% 83.1% 94.8% 73.9% 92.9% 87.4% 94.2% 90.3% 88.2% 99.9%
la12 1039 1330 1264 1330 1173 1423 1167 1291 1149 1171 1200 1063

78.1% 82.2% 78.1% 88.6% 73.0% 89.0% 80.5% 90.4% 88.7% 86.6% 97.7%

(Continued)

3386 Comput Mater Contin. 2025;84(2)

Table 6 (continued)

OPT SJF LJF SNJ LNJ SRJF LRJF SRM LRM LRPT MRPT Pathfinder

Optimal result ratio (OPT/current scheduling) %
la13 1150 1642 1298 1484 1299 1517 1191 1377 1215 1336 1312 1170

70.0% 88.6% 77.5% 88.5% 75.8% 96.6% 83.5% 94.7% 86.1% 87.7% 98.3%
la14 1292 1663 1438 1904 1341 1669 1292 1387 1292 1362 1328 1292

77.7% 89.8% 67.9% 96.3% 77.4% 100% 93.2% 100.0% 94.9% 97.3% 100%
la15 1207 1583 1535 1580 1389 1900 1415 1486 1466 1371 1428 1234

76.2% 78.6% 76.4% 86.9% 63.5% 85.3% 81.2% 82.3% 88.0% 84.5% 97.8%
la16 945 1557 1251 1565 1274 1371 1118 1094 1245 1111 1381 1032

60.7% 75.5% 60.4% 74.2% 68.9% 84.5% 86.4% 75.9% 85.1% 68.4% 91.6%
la17 784 1236 1053 1135 1060 1461 1004 1044 1020 1107 1147 850

63.4% 74.5% 69.1% 74.0% 53.7% 78.1% 75.1% 76.9% 70.8% 68.4% 92.2%
la18 848 1259 1204 1283 1090 1353 983 1177 1021 1147 1488 896

67.4% 70.4% 66.1% 77.8% 62.7% 86.3% 72.0% 83.1% 73.9% 57.0% 94.6%
la19 842 1352 1302 1225 1134 1302 1089 1368 1139 1234 1207 934

62.3% 64.7% 68.7% 74.3% 64.7% 77.3% 61.5% 73.9% 68.2% 69.8% 90.1%
la20 902 1331 1343 1453 1228 1477 1076 1123 1244 1242 1321 970

67.8% 67.2% 62.1% 73.5% 61.1% 83.8% 80.3% 72.5% 72.6% 68.3% 93.0%
la21 1046 1719 1500 1907 1441 1806 1314 1422 1392 1509 1730 1163

60.8% 69.7% 54.9% 72.6% 57.9% 79.6% 73.6% 75.1% 69.3% 60.5% 89.9%
la22 927 1392 1422 1428 1407 1736 1135 1368 1275 1414 1443 1061

66.6% 65.2% 64.9% 65.9% 53.4% 81.7% 67.8% 72.7% 65.6% 64.2% 87.4%
la23 1032 1480 1423 1555 1354 1737 1258 1547 1234 1467 1605 1101

69.7% 72.5% 66.4% 76.2% 59.4% 82.0% 66.7% 83.6% 70.3% 64.3% 93.6%
la24 935 1561 1501 1687 1281 1621 1178 1387 1225 1273 1538 1072

59.9% 62.3% 55.4% 73.0% 57.7% 79.4% 67.4% 76.3% 73.4% 60.8% 87.0%
la25 977 1691 1382 1717 1422 1849 1209 1580 1465 1294 1541 1106

57.8% 70.7% 56.9% 68.7% 52.8% 80.8% 61.8% 66.7% 75.5% 63.4% 88.3%

Table 7 shows the best performance of individual scheduling rules across benchmarks. LRJF consistently
ranks highest, followed by LRPT, while others perform well only in specific cases. Our proposed method
outperforms all single rules in terms of maximum completion time on small to medium-scale benchmarks.
A paired t-test confirms it achieves at least 90% of optimal performance (p = 0.013), indicating statistical
significance. Fig. 7 shows Pathfinder’s robot utilization closely matches OPT and significantly exceeds the
Best Rule, confirming its overall effectiveness.

Table 7: Results of experimentation on larger scale data scheduling

OPT SJF LJF SNJ LNJ SRJF LRJF SRM LRM LRPT MRPT Pathfinder

Optimal result ratio (OPT/current scheduling) %
la26 1218 1856 1723 1896 1666 1989 1439 1767 1629 1634 1789 1398

65.6% 70.7% 64.2% 73.1% 61.2% 84.6% 68.9% 74.8% 74.5% 68.1% 87.1%
la27 1235 2004 1732 2137 1853 2161 1595 1847 1700 1571 1818 1452

61.6% 71.3% 57.8% 66.6% 57.1% 77.4% 66.9% 72.6% 78.6% 67.9% 85.1%
la28 1216 2013 1775 1858 1600 2145 1631 1785 1637 1629 1774 1480

60.4% 68.5% 65.4% 76.0% 56.7% 74.6% 68.1% 74.3% 74.6% 68.5% 82.2%

(Continued)

Comput Mater Contin. 2025;84(2) 3387

Table 7 (continued)

OPT SJF LJF SNJ LNJ SRJF LRJF SRM LRM LRPT MRPT Pathfinder

Optimal result ratio (OPT/current scheduling) %
la29 1152 1993 1597 1821 1714 2154 1452 1867 1595 1604 1722 1370

57.8% 72.1% 63.3% 67.2% 53.5% 79.3% 61.7% 72.2% 71.8% 66.9% 84.1%
la30 1355 2100 1876 2129 1600 2444 1566 1804 2005 1706 1939 1495

64.5% 72.2% 63.6% 84.7% 55.4% 86.5% 75.1% 67.6% 79.4% 69.9% 90.6%
abz7 656 1105 976 1067 936 1082 797 930 886 848 1146 735

59.4% 67.2% 61.5% 70.1% 60.6% 82.3% 70.5% 74.0% 77.4% 57.2% 89.7%
abz8 645 1020 1027 1038 986 1114 900 1058 945 929 1150 803

63.2% 62.8% 62.1% 65.4% 57.9% 71.7% 61.0% 68.3% 69.4% 56.1% 80.3%
abz9 661 1092 1110 1113 1025 1159 944 968 1066 966 990 841

60.5% 59.5% 59.4% 64.5% 57.0% 70.0% 68.3% 62.0% 68.4% 66.8% 78.6%
ta61 2868 4586 4280 4783 4230 5246 3535 4436 3723 3717 4491 3361

62.5% 67.0% 60.0% 67.8% 54.7% 81.1% 64.7% 77.0% 77.2% 63.9% 85.3%
ta62 2902 4768 4461 4641 4381 4818 3651 4269 4151 3816 4798 3506

60.9% 65.1% 62.5% 66.2% 60.2% 79.5% 68.0% 69.9% 76.0% 60.5% 81.8%
ta63 2755 4213 4087 4443 4227 4927 3375 4328 3578 3623 4383 3264

65.4% 67.4% 62.0% 65.2% 55.9% 81.6% 63.7% 77.0% 76.0% 62.9% 84.4%
ta71 5464 7318 6936 7708 7019 7888 6247 7331 6482 6284 7171 5988

74.7% 78.8% 70.9% 77.8% 69.3% 87.5% 74.5% 84.3% 87.0% 76.2% 91.2%
ta72 5181 7661 7075 7293 6798 8015 5834 6548 5874 6016 7384 5738

67.6% 73.2% 71.0% 76.2% 64.6% 88.8% 79.1% 88.2% 86.1% 70.2% 90.3%
ta73 5568 7633 7411 7616 6849 8080 6373 7196 6592 6473 7456 6306

72.9% 75.1% 73.1% 81.3% 68.9% 87.4% 77.4% 84.5% 86.0% 74.7% 88.3%

Figure 7: Comparison of utilization among OPT, Best Single Rule and Pathfinder

The model’s performance on larger-scale datasets (Table 7) shows a slight decline compared to smaller-
scale results (Table 6), especially in benchmarks like abz8-9, la28, and ta62. This is likely due to increased
scenario complexity, suggesting the need for more diverse scheduling rules, as single rules often yield only
60%–70% of the optimal.

A t-test confirms Pathfinder achieves at least 83% of optimal performance (p = 0.032), indicating statisti-
cal significance. Fig. 8 compares Pathfinder, Q-learning, and Actor-Critic methods. Pathfinder demonstrates
strong performance and stability across scales, consistently approaching optimal solutions more closely than
other methods.

3388 Comput Mater Contin. 2025;84(2)

Figure 8: Comparison of scheduling performance among various algorithms

Comparison of the maximum completion time ratios shows that Pathfinder, QL, and AC algorithms
outperform single optimal rules, following similar trends due to the shared set of ten scheduling rules.
Among them, the Actor-Critic algorithm converges fastest but may sacrifice exploration diversity, leading to
performance gaps compared to Pathfinder and QL.

QL calculates rewards based on changes in machine utilization and stores Q-values in a table. While
effective at small scales, its scalability is limited due to exponential growth in state space, restricting its
application to 15 × 10 scheduling. Pathfinder and AC, using neural approximators, avoid this issue.

In conclusion, Pathfinder’s rule-based scheduling achieves superior performance over single rules.
However, scheduling quality still depends on rule effectiveness, especially at larger scales. Expanding the rule
set may further enhance performance.

6.4 Decision Time and Robustness
Single scheduling rules exhibit the fastest completion results across all test benchmarks, completing

about 20–50 times faster than the Pathfinder algorithm. Both the Pathfinder and AC algorithms demonstrate
similar execution times in all benchmarks listed in Table 8. Even when facing scheduling data of size
50 × 20, the Pathfinder algorithm can complete job scheduling within 1 s. However, both the GA algorithm
and the optimal results obtained through brute force experience significant increases in scheduling time as
the scheduling scale grows, with the solution time of the optimal algorithm becoming intolerable in practical
scheduling scenarios.

Table 8: Comparison of scheduling times

Test benchmarks Scheduling methods

Single rule Pathfinder AC GA OPT
ft06 (6 × 6) 1.12 × 10−3 s 0.06 s 0.06 s 3.96 s 1.72 s

ft10 (10 × 10) 3.20 × 10−3 s 0.11 s 0.12 s 15.88 s >2 h
la26 (20 × 10) 7.90 × 10−3 s 0.21 s 0.23 s 84.56 s >2 h
ta61 (50 × 20) 6.85 × 10−2 s 0.99 s 1.09 s 685.71 s >5 h

Real-world scheduling faces uncertainties such as processing time fluctuations and machine failures.
Traditional methods like mathematical programming and metaheuristics must re-execute under such
changes, incurring extra time costs. In contrast, deep reinforcement learning can adapt to stochastic
environments and respond quickly.

Comput Mater Contin. 2025;84(2) 3389

We test the trained Pathfinder model on datasets of varying scales with random job and machine seeds.
Some job execution times fluctuate by up to 10% to simulate real-world variability. Results, averaged over
100 random datasets, are compared with the AC algorithm and the best single scheduling rule. As shown
in Fig. 9, Pathfinder consistently delivers optimal performance across all scales.

Figure 9: Experimental results of random scheduling of data

7 Conclusion
Dynamic customized production introduces complex scheduling challenges. We model it as a multi-

stage decision process and propose a deep reinforcement learning approach adaptable to diverse settings.
The model achieves over 90% efficiency on small-scale tasks and maintains at least 85% on larger ones,
outperforming traditional methods in both speed and adaptability.

Acknowledgement: We would like to thank the College of Computer and Data Science, Fuzhou University, for their
technical support and assistance during the research process.

Funding Statement: This work is supported by National Natural Science Foundation of China under Grant No.
62372110, Fujian Provincial Natural Science of Foundation under Grants 2023J02008, 2024H0009.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Chenxi Lyu;
methodology, Chen Dong; software, Qiancheng Xiong; validation, Yuzhong Chen; formal analysis, Qian Weng; data
curation, Qiancheng Xiong; writing—original draft preparation, Chenxi Lyu; writing—review and editing, Chenxi Lyu;
visualization, Zhenyi Chen; funding acquisition, Yuzhong Chen. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available within the article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest regarding the present study.

References
1. Jan Z, Ahamed F, Mayer W, Patel N, Grossmann G, Stumptner M, et al. Artificial intelligence for industry 4.0:

systematic review of applications, challenges, and opportunities. Expert Syst Appl. 2023;216(9):119456. doi:10.1016/
j.eswa.2022.119456.

2. Mia MR, Shuford J. Exploring the synergy of artificial intelligence and robotics in Industry 4.0 applications. J Artif
Intell General Sci. 2024;1(1):17–20.

3. Daneshmand M, Noroozi F, Corneanu C, Mafakheri F, Fiorini P. Industry 4.0 and prospects of circular economy:
a survey of robotic assembly and disassembly. Int J Adv Manufact Techno. 2023;124(9):2973–3000. doi:10.1007/
s00170-021-08389-1.

https://doi.org/10.1016/j.eswa.2022.119456
https://doi.org/10.1016/j.eswa.2022.119456
https://doi.org/10.1007/s00170-021-08389-1
https://doi.org/10.1007/s00170-021-08389-1

3390 Comput Mater Contin. 2025;84(2)

4. Yip M, Salcudean S, Goldberg K, Althoefer K, Menciassi A, Opfermann JD, et al. Artificial intelligence meets
medical robotics. Science. 2023;381(6654):141–6. doi:10.1126/science.adj3312.

5. Ryalat M, ElMoaqet H, AlFaouri M. Design of a smart factory based on cyber-physical systems and Internet of
Things towards Industry 4.0. Appl Sci. 2023;13(4):2156. doi:10.3390/app13042156.

6. Soori M, Arezoo B, Dastres R. Internet of things for smart factories in Industry 4.0, a review. Int Things Cyber-Phys
Syst. 2023;3:192–204. doi:10.1016/j.iotcps.2023.04.006.

7. Yu W, Liu Y, Dillon T, Rahayu W, Mostafa F. An integrated framework for health state monitoring in a smart factory
employing IoT and big data techniques. IEEE Int Things J. 2021;9(3):2443–54. doi:10.1109/jiot.2021.3096637.

8. Kalempa VC, Piardi L, Limeira M, de Oliveira AS. Multi-robot task scheduling for consensus-based fault-resilient
intelligent behavior in smart factories. Machines. 2023;11(4):431. doi:10.3390/machines11040431.

9. Alpala LO, Quiroga-Parra DJ, Torres JC, Peluffo-Ordóñez DH. Smart factory using virtual reality and online multi-
user: towards a metaverse for experimental frameworks. Appl Sci. 2022;12(12):6258. doi:10.3390/app12126258.

10. Büchi G, Cugno M, Castagnoli R. Smart factory performance and Industry 4.0. Technol Forecast Soc Change.
2020;150(3):119790. doi:10.1016/j.techfore.2019.119790.

11. Osterrieder P, Budde L, Friedli T. The smart factory as a key construct of Industry 4.0: a systematic literature review.
Int J Prod Econ. 2020;221(4):107476. doi:10.1016/j.ijpe.2019.08.011.

12. Arents J, Greitans M. Smart industrial robot control trends, challenges and opportunities within manufacturing.
Appl Sci. 2022;12(2):937. doi:10.3390/app12020937.

13. Lei J, Hui J, Chang F, Dassari S, Ding K. Reinforcement learning-based dynamic production-logistics-integrated
tasks allocation in smart factories. Inte J Product Res. 2023;61(13):4419–36. doi:10.1080/00207543.2022.2142314.

14. Hussain RF, Salehi MA. Resource allocation of industry 4.0 micro-service applications across serverless fog
federation. Future Generat Comput Syst. 2024;154(2):479–90. doi:10.1016/j.future.2024.01.017.

15. Flores-García E, Jeong Y, Liu S, Wiktorsson M, Wang L. Enabling industrial internet of things-based digital
servitization in smart production logistics. Int J Product Res. 2023;61(12):3884–909. doi:10.1080/00207543.2022.
2081099.

16. Tricomi G, Scaffidi C, Merlino G, Longo F, Puliafito A, Distefano S. A resilient fire protection system for software-
defined factories. IEEE Int Things J. 2021;10(4):3151–64. doi:10.1109/jiot.2021.3127387.

17. Shi Z, Xie Y, Xue W, Chen Y, Fu L, Xu X. Smart factory in Industry 4.0. Syst Res Behav Sci. 2020;37(4):607–17.
doi:10.1002/sres.2704.

18. Baker KR, Trietsch D. Principles of sequencing and scheduling. Hoboken, NJ, USA: John Wiley & Sons; 2013.
19. Cebi C, Atac E, Sahingoz OK. Job shop scheduling problem and solution algorithms: a review. In: 2020 11th

International Conference on Computing, Communication and Networking Technologies (ICCCNT); 2020 Jul 1–3.
Kharagpur, India: IEEE; 2020. p. 1–7.

20. Marzia S, AlejandroVital-Soto, Azab A. Automated process planning and dynamic scheduling for smart manufac-
turing: a systematic literature review. Manufact Letters. 2023;35:861–72. doi:10.1016/j.mfglet.2023.07.013.

21. Wang J, Liu Y, Ren S, Wang C, Ma S. Edge computing-based real-time scheduling for digital twin flexible job shop
with variable time window. Robot Comput Integr Manuf. 2023;79:102435. doi:10.1016/j.rcim.2022.102435.

22. Sharif Z, Tang Jung L, Ayaz M, Yahya M, Pitafi S. Priority-based task scheduling and resource allocation in edge
computing for health monitoring system. J King Saud Univ-Comput Inform Sci. 2023;35(2):544–59. doi:10.1016/j.
jksuci.2023.01.001.

23. Um J, Gezer V, Wagner A, Ruskowski M. Edge computing in smart production. In: Advances in Service and
Industrial Robotics: Proceedings of the 28th International Conference on Robotics in Alpe-Adria-Danube Region
(RAAD 2019) 28. Cham, Switzerland: Springer; 2020. p. 144–52.

24. Mangalampalli S, Karri GR, Kose U. Multi objective trust aware task scheduling algorithm in cloud computing
using whale optimization. J King Saud Univ-Comput Inform Sci. 2023;35(2):791–809. doi:10.1016/j.jksuci.2023.
01.016.

25. Baroudi U, Alshaboti M, Koubaa A, Trigui S. Dynamic multi-objective auction-based (DYMO-auction) task
allocation. Appl Sci. 2020;10(9):3264. doi:10.3390/app10093264.

https://doi.org/10.1126/science.adj3312
https://doi.org/10.3390/app13042156
https://doi.org/10.1016/j.iotcps.2023.04.006
https://doi.org/10.1109/jiot.2021.3096637
https://doi.org/10.3390/machines11040431
https://doi.org/10.3390/app12126258
https://doi.org/10.1016/j.techfore.2019.119790
https://doi.org/10.1016/j.ijpe.2019.08.011
https://doi.org/10.3390/app12020937
https://doi.org/10.1080/00207543.2022.2142314
https://doi.org/10.1016/j.future.2024.01.017
https://doi.org/10.1080/00207543.2022.2081099
https://doi.org/10.1080/00207543.2022.2081099
https://doi.org/10.1109/jiot.2021.3127387
https://doi.org/10.1002/sres.2704
https://doi.org/10.1016/j.mfglet.2023.07.013
https://doi.org/10.1016/j.rcim.2022.102435
https://doi.org/10.1016/j.jksuci.2023.01.001
https://doi.org/10.1016/j.jksuci.2023.01.001
https://doi.org/10.1016/j.jksuci.2023.01.016
https://doi.org/10.1016/j.jksuci.2023.01.016
https://doi.org/10.3390/app10093264

Comput Mater Contin. 2025;84(2) 3391

26. Dutta A, Czarnecki E, Ufimtsev V, Asaithambi A. Correlation clustering-based multi-robot task allocation: a tale
of two graphs. ACM SIGAPP Appl Comput Rev. 2020;19(4):5–16. doi:10.1145/3381307.3381308.

27. Wei C, Ji Z, Cai B. Particle swarm optimization for cooperative multi-robot task allocation: a multi-objective
approach. IEEE Robot Automa Letters. 2020;5(2):2530–7. doi:10.1109/lra.2020.2972894.

28. Yun WJ, Kim JP, Jung S, Kim JH, Kim J. Quantum multi-agent actor-critic neural networks for internet-connected
multi-robot coordination in smart factory management. IEEE Internet Things J. 2023;10(11):9942–52. doi:10.1109/
jiot.2023.3234911.

29. Zhang JD, He Z, Chan WH, Chow CY. DeepMAG: deep reinforcement learning with multi-agent graphs for
flexible job shop scheduling. Knowl Based Syst. 2023;259(5):110083. doi:10.1016/j.knosys.2022.110083.

30. Han BA, Yang JJ. Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access.
2020;8:186474–95. doi:10.1109/access.2020.3029868.

31. Zhou T, Tang D, Zhu H, Zhang Z. Multi-agent reinforcement learning for online scheduling in smart factories.
Robot Comput Integr Manuf. 2021;72(2):102202. doi:10.1016/j.rcim.2021.102202.

32. Ma H, Li R, Zhang X, Zhou Z, Chen X. Reliability-aware online scheduling for DNN inference tasks in mobile
edge computing. IEEE Internet Things J. 2023;10(13):11453–64. doi:10.1109/jiot.2023.3243266.

33. Zhang Y, Zhu H, Tang D, Zhou T, Gui Y. Dynamic job shop scheduling based on deep reinforcement learning
for multi-agent manufacturing systems. Robot Comput Integr Manuf. 2022;78(3):102412. doi:10.1016/j.rcim.2022.
102412.

34. Liu R, Piplani R, Toro C. Deep reinforcement learning for dynamic scheduling of a flexible job shop. Int J Product
Res. 2022;60(13):4049–69. doi:10.1080/00207543.2022.2058432.

35. Alexopoulos K, Mavrothalassitis P, Bakopoulos E, Nikolakis N, Mourtzis D. Deep reinforcement learning for
selection of dispatch rules for scheduling of production systems. Appl Sci. 2024;15(1):232. doi:10.3390/app15010232.

36. Gui Y, Tang D, Zhu H, Zhang Y, Zhang Z. Dynamic scheduling for flexible job shop using a deep reinforcement
learning approach. Comput Indust Eng. 2023;180:109255. doi:10.1016/j.cie.2023.109255.

37. Li F, Lang S, Hong B, Reggelin T. A two-stage RNN-based deep reinforcement learning approach for solving
the parallel machine scheduling problem with due dates and family setups. J Intell Manufact. 2024;35(3):1107–40.
doi:10.1007/s10845-023-02094-4.

https://doi.org/10.1145/3381307.3381308
https://doi.org/10.1109/lra.2020.2972894
https://doi.org/10.1109/jiot.2023.3234911
https://doi.org/10.1109/jiot.2023.3234911
https://doi.org/10.1016/j.knosys.2022.110083
https://doi.org/10.1109/access.2020.3029868
https://doi.org/10.1016/j.rcim.2021.102202
https://doi.org/10.1109/jiot.2023.3243266
https://doi.org/10.1016/j.rcim.2022.102412
https://doi.org/10.1016/j.rcim.2022.102412
https://doi.org/10.1080/00207543.2022.2058432
https://doi.org/10.3390/app15010232
https://doi.org/10.1016/j.cie.2023.109255
https://doi.org/10.1007/s10845-023-02094-4

	Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization
	1 Introduction
	2 Related Work and Motivation
	3 Problem Description and Formulation
	4 Proposed Methodology
	5 Details of Pathfinder
	6 Experiment Results and Analysis
	7 Conclusion
	References

