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ABSTRACT: In this study, we propose Space-to-Depth and You Only Look Once Version 7 (SPD-YOLOV7), an
accurate and efficient method for detecting pests in maize crops, addressing challenges such as small pest sizes, blurred
images, low resolution, and significant species variation across different growth stages. To improve the model’s ability to
generalize and its robustness, we incorporate target background analysis, data augmentation, and processing techniques
like Gaussian noise and brightness adjustment. In target detection, increasing the depth of the neural network can lead
to the loss of small target information. To overcome this, we introduce the Space-to-Depth Convolution (SPD-Conv)
module into the SPD-YOLOV7 framework, replacing certain convolutional layers in the traditional system backbone
and head network. This modification helps retain small target features and location information. Additionally, the
Efficient Layer Aggregation Network-Wide (ELAN-W) module is combined with the Convolutional Block Attention
Module (CBAM) attention mechanism to extract more efficient features. Experimental results show that the enhanced
YOLOvV7 model achieves an accuracy of 98.38%, with an average accuracy of 99.4%, outperforming the original
YOLOvV7 model. These improvements represent an increase of 2.46% in accuracy and 3.19% in average accuracy. The
results indicate that the enhanced YOLOvV7 model is more efficient and real-time, offering valuable insights for maize
pest control.
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1 Introduction

As a leading agricultural country, China regards maize as one of its most crucial food crops, with its
production having a direct impact on both the national economy and public welfare [1]. Pests, including
maize aphids, grass armyworms, pelagic bugs, rice locusts, and Lucifer bifasciata, pose significant threats to
maize food security. Research indicates that, without effective pest control measures, corn yield losses due
to armyworms can reach as high as 48.35%, with ear damage rates reaching up to 98.91%. Infestations by
Laminaria biculata can result in yield reductions of 10% to 30% [2]. Traditional pest monitoring for maize
heavily relies on the agricultural expertise and experience of professionals and growers. While this method
can be effective on small-scale farms, it is inefficient, inaccurate, and overly dependent on the experience
of personnel.
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The swift progress in AI, machine learning, and deep learning has notably enhanced the ability to
detect plant pests. Research has demonstrated the potential of these technologies for more accurate pest
identification. Xiang et al. [3] utilized image feature extraction, segmentation, and classifier design.while
Venkateswara et al. [4] proposed an algorithm that integrates deep learning for pest monitoring and
classification, effectively addressing the issue of data imbalance. Deep learning techniques have notably
improved model accuracy and generalization in pest detection [5], which extract multi-scale features from
large datasets. However, challenges, such as small pest sizes, high feature similarity, and low image resolution,
still complicate detection in real-world agricultural settings [6,7].

Despite these advancements, maize pest detection remains challenging due to issues such as small
pest sizes, high feature similarity, and low image resolution. To overcome these challenges, this study
proposes an enhanced YOLOvV7 algorithm. A comprehensive dataset of common maize pests was constructed
based on data collected from the Xian Intelligent Agriculture Industrial Park in Northern Wilderness. To
enhance detection accuracy, we integrated the SPD-Conv module in place of conventional convolution layers,
minimizing the loss of essential details and boosting the identification of small pests, we integrated the hybrid
attention mechanism CBAM into the ELAN-W module, allowing the enhanced model to more effectively
capture and refine feature information across both channel and spatial domains. These optimizations
significantly improve detection accuracy, even in complex and cluttered environments. The proposed model
provides a robust and efficient solution for detecting maize pests in challenging natural settings. It offers a
valuable technical contribution to pest monitoring and control, ultimately supporting more effective pest
management practices in agriculture.

The paper is structured as follows: Section 2 provides a review of related studies in this area. In Section 3,
the proposed algorithm improvements are discussed in detail, highlighting key advances. Section 4 intro-
duces experimental parameters and experimental environment. In Section 5, experiments are carried out
and the results are comprehensively analyzed. In Section 6, we briefly summarize the algorithms introduced
in this study.

2 Related Works

The You Only Look Once (YOLO) framework was developed by Redmon et al. [8]. This approach
made detection faster than methods like R-CNN [9]. YOLO divides the input image into a grid, predicting
bounding boxes and class probabilities for each cell. YOLOv2 [10] and YOLOV3 [11] enhanced accuracy
with multi-scale detection, anchor boxes, and a stronger backbone network for better small object detection.
YOLOV4 [12] introduced the Cross Stage Partial Darknet-53 (CSP-Darknet53) backbone and advanced train-
ing techniques, improving speed and accuracy for real-time applications. YOLOV5 [13] further optimized
speed and accuracy with a PyTorch implementation, gaining rapid industry adoption, which is a community-
driven release. The YOLOV7 [14] iteration offers even faster inference and outstanding performance, making
it highly effective for real-time tasks like pest detection in agriculture, where both speed and accuracy
are essential.

The YOLOV7 architecture is composed of three core components, illustrated in Fig. 1. The input layer
handles images with dimensions of 640 x 640 x 3, which are first preprocessed before being passed through
the backbone network. This backbone network is built on the foundation of the YOLOV5 architecture and is
enhanced with several key elements, including the Efficient Layer Aggregation Networks (ELAN) structure,
the Max Pooling 1 (MPI1) structure, and the CBS module. These components collaborate to efficiently
extract vital features from the input images, ensuring that important visual information is captured for the
subsequent stages of the model.
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Figure 1: The YOLOV7 network structure

The detection head, which generates the final predictions, incorporates advanced structures like Spatial
Pyramid Pooling and Cross Stage Partial Channel. These advanced structures enhance the model’s ability
to capture multi-scale features, contributing to better detection performance across various object sizes.
In addition, the detection head incorporates further feature extraction components like Efficient Layer
Aggregation Network-High (ELAN-H), Max Pooling x2 (MP2), and Re-parameterizable Convolution
(RepConv) layers, all of which support the refinement and fusion of feature maps generated by the backbone.
This fusion process enables multi-scale target detection, allowing the model to make predictions at three
distinct scales. As a result, YOLOV7 significantly improves detection accuracy, particularly for objects of
different sizes, in complex visual environments.

The outputs from the various backbone layers are refined and fused in the detection head, allowing for
multi-scale target detection. This fusion process enables the model to generate predictions at three distinct
scales, optimizing detection accuracy for different sizes of objects [15].

3 Methods

This section mainly introduces the relevant improvement algorithm of the paper, including the Space
to Depth module, Convolutional Block Attention Module (CBAM) attention mechanism, and improved
YOLOV7 model.
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3.1 Space to Depth Module

The SPD-Conv module consists of two main convolution operations: space-to-depth and non-strided
convolution layers [16]. It serves as a replacement for traditional step convolutions, mitigating the loss of
detailed information typically encountered in small object detection due to the limited pixel representation.
By utilizing SPD-Conv, the accuracy of small object detection is significantly enhanced, and more detailed
information is preserved. Fig. 2 shows the operation flowchart of SPD-Conv.
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Figure 2: The SPD-Conv structure model. Strided convolution and pooling layers are commonly used in CNN archi-
tectures. However, they often lead to the loss of fine-grained details and inefficient feature learning. To overcome this
limitation, SPDGConv (Space to Depth) has been proposed as a novel CNN block that replaces the traditional strided
convolution and pooling layers. This approach significantly improves the networK’s performance on low-resolution
images and enhances the detection of small targets, as illustrated in Eq. (1).

S S
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where X denotes any intermediate feature map of size (S x S x Cy). Typically, a feature map X can be
partitioned into sub-feature maps, each divisible by N. Consequently, each sub-feature map is downsampled
by a factor of N, as illustrated in Fig. 2. The four sub-feature maps are generated. They are then concatenated
along the channel dimension to produce the feature map X;, which exhibits a reduced spatial dimension and
an increased number of channels. After the SPD feature transformation layer, if N 2C, > C,, the next layer
feature map X, in Eq. (2) is further derived.

where C, represents the non-strided convolutional layer of the filter. Among them. This operation has the
advantage of down sampling the feature map while retaining the distinguishing feature information.

In this study, to tackle the issue of detail loss caused by step convolution, modifications are made to
the MP-1 and MP-2 modules in both the Backbone and Detection Head. Specifically, the CBS convolution
following the max pooling layer is replaced with the SPD-Conv module, as shown in Fig. 3. This change aims
to preserve more intricate details by avoiding the information loss typically associated with step convolutions.
The third CBS convolution at the input side of the Backbone is also substituted with the SPD-Conv module,
further enhancing the model’s ability to retain crucial features.
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Figure 3: Improved front MP1 and MP2 modules

3563

These adjustments significantly improve the model’s performance, particularly in scenarios involving

small object detection, where retaining fine-grained details is essential for accurate predictions. The SPD-
Conv module is designed to reduce detail loss. It also improves the network’s overall efficacy in various tasks.
This ensures that important features are preserved during feature extraction. Fig. 4 shows the structure of
the improved module and the enhancements made to the model architecture.
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Figure 4: Improved SCMP-1 and SCMP-2 modules
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3.2 CBAM Module

Fig. 5a shows a lightweight and powerful attention mechanism for efficient feature refinement. It
includes two main components. Upon receiving the intermediate feature map, CBAM independently
processes both the channel and spatial dimensions. It improves the overall feature representation. After
processing, the resulting attention maps are fused with the original feature map, enabling the model to
adaptively refine the features based on both channel-wise and spatial-wise importance. This fusion process
allows for more effective feature optimization, leading to better performance in various tasks.

Input feature F
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Max and Average pooling Convolutional layer
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Figure 5: The structural framework of CBAM. (a) CBMM overall structure. (b) Channel attention mechanism
overview. (c) Overview of the spatial attention mechanism

Fig. 5b shows the channel attention mechanism. It works by applying global average pooling (GAP) and
GMP to the input feature map. These pooled feature maps are then merged and processed using a shared
multi-layer perception (MLP) for ascending and descending operations. The final channel attention map is
generated through an activation function. This approach allows CBAM to prioritize important features.
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Fig. 5¢ shows the spatial attention mechanism. The input feature map undergoes GAP and GMP,
creating two separate channel feature representations that capture both global and local contextual infor-
mation. These two feature maps are then concatenated, combining the complementary information from
each pooling method. The concatenated feature map is passed through a 7 x 7 convolutional layer to refine
the features. This helps the model focus on the most relevant features, improving its ability to prioritize key
information and boosting overall performance.

This study modifies the ELAN-W module to improve the detection of small target pests in complex
environments. Specifically, the final convolutional layer is replaced with a CBAM attention mechanism,
as illustrated in Fig. 6. This modification enables more efficient extraction of key local detail features of
pests, significantly improving the learning and feature representation capabilities of the neural network. As
a result, the model’s accuracy in detecting small target pests is enhanced, thereby increasing its robustness
and performance in practical applications.
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Figure 6: Before and after the improvement of ELAN-W3.3 SPD-YOLOV7 model

As the convolutional neural network’s depth grows, the probability of losing fine details about small
target pests increases, primarily due to the convolutional stride and pooling operations. To solve this,
we enhance the MP-1 and MP-2 in the Backbone and Head of YOLOV7 by replacing the CBS module
with the SPD-Conv module. This enhancement significantly boosts the detection accuracy of small target
pests. Furthermore, to enhance the feature extraction and learning capabilities for maize crop pests, the
final convolutional layer of the ELAN-W module is substituted with a CBAM attention mechanism. The
model adjusts attention in both the channel and spatial dimensions. This highlights key features like
color, shape, and texture of the pests while suppressing redundant features. It ensures precise extraction of
relevant information. Fig. 7 shows the improved SPD-YOLOv7 model. The modified parts are highlighted
in the green dotted box. These improvements make the network more suitable for target detection in
complex environments.
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Backbone

Figure 7: The SPD-YOLOV7 structure diagram was improved

4 Experimental Setup

This section describes the small object datasets utilized in the study, providing details on their
implementation and key evaluation metrics. Additionally, it covers the experimental parameters and the
setup of the experimental environment.

4.1 Experimental Data Set

The experimental data for this study were collected from the Xian Intelligent Agriculture Industrial
Park, located in the northern wilderness of Heilongjiang Province [17]. To ensure the authenticity and
generalizability of the data, approximately 1 mu (0.0667 hectares) of experimental field was selected for
data collection. The imaging equipment used included a Canon D600 digital camera, equipped with a
35-135 mm medium telephoto lens and a 100 mm macro lens for capturing close-up images of corn crop
pests. Data collection took place between mid-June and early August 2023, focusing on three primary
maize pests: locusts, armyworms, and Lucifer bimaculate. During the data screening process, images of
poor quality—due to issues such as blurring or overexposure—were excluded, resulting in a dataset of 1340
images, with approximately 400 samples per pest species. Fig. 8 displays sample images, with rows 1 to 3
illustrating examples of locusts, armyworms, and firefly beetles. These carefully collected and curated data
enable accurate identification and analysis of maize pests.
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Figure 8: Maize pest dataset

4.2 Data Processing

To reduce training time and improve efficiency, this study applies image compression and normalization
techniques to ensure compatibility with the video memory and computational resources required by the
YOLOV7 network model. The original resolution of the maize pest dataset was 5472 x 3648 pixels, which
was uniformly compressed to 1080 x 720 pixels. For data annotation, the Labeling tool was used to label the
three pest species, with annotations in the VOC format, saved in XML files. To ensure compatibility with
the YOLO model, Python scripts were employed to convert the annotations into the YOLO format and save
them in TXT files.

Efforts were made to balance the sample sizes for each maize pest species. However, discrepancies
remained across different growth stages. For instance, only about 100 adult armyworm samples were
collected, while 380 larvae samples were available. To simulate the real-world growing conditions of maize
pests and address the issue of imbalanced data that could degrade model performance, additional data
processing was performed. These included adding Gaussian noise and applying dark and light adjustments
to simulate varying lighting conditions. These augmentations increased the total number of pest images to
3000. Finally, it was divided into training, validation, and test sets with an 8:L:1 ratio. Fig. 9 shows sample
images after augmentation.

(a) Original Image (b) Gaussian Image (c) Brightening Image (d) Dark Image

Figure 9: Data enhance example
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4.3 Experimental Parameter Setting
4.3.1 Experimental Environment and Hyperparameter Setting

The experiments were carried out on a system running Windows 11. The hardware setup includes an
AMD Ryzen 7 7735H processor with Radeon Graphics and an RTX 4060 GPU with 8 GB of memory.
PyTorch was used as the deep learning framework, and Python 3.8.18 was the programming language. The
development environment was PyCharm 2025. Table 1 provides the hyperparameter configurations for the
experimental training.

Table 1: Experimental hyperparameter settings

Argument Parameter value
Learning rate 0.01
Momentum 0.937
Weight 0.0005
Iteration cycle 300
Lot size 16
Image size 640 x 640

Learning rate attenuation method Cosine annealing algorithm

4.4 Evaluation Index of Model Training

This study uses standard evaluation metrics for target detection. These include precision (P), recall
(R), mean average precision (mAP), detection speed (FPS), and the loss function. These metrics provide
a comprehensive assessment of the model’s performance, evaluating accuracy, recall, multi-class average
precision, and real-time detection speed in target detection tasks. While additional cross-validation was not
performed in this work, we recognize that further validation through cross-validation or other robustness
measures would enhance the confidence in the reported performance across different contexts and datasets.
We acknowledge the limitations of the current approach in the manuscript and believe the selected metrics
offer strong evidence of the model’s generalizability. Future work will aim to include these additional
validation measures.

Precision (P) is the ratio of correctly identified objects to the total number of identified objects, both
correct and incorrect. The mathematical expression is shown in Eq. (3).

TP

P=——
TP + FP

(3)
here, TP is the number of corn pest images correctly detected by the model. FP (False Positive) is the number
of pest images incorrectly identified by the model. Recall (R) is the ratio of correctly detected targets to the
total number of actual targets, including the missed ones. The mathematical expression for recall is given
in Eq. (4).

TP

R=——— (4)
TP+ FN

here, FN denotes the number of pest images on corn crops that the model failed to detect. Mean Average
Precision (mAP) is computed by evaluating the accuracy at different recall thresholds and averaging these
accuracies to assess the model’s performance across various recall levels. It is a widely used metric for
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objectively assessing the performance of target detection models. The mathematical formula for mAP is
provided in Eq. (5).

mAP = - i AP (k) (5)
N k=i

here, N represents the total number of maize pest classes, while K is the threshold value. AP (k) refers to
the Average Precision (AP) for the detected pest class k. FPS measures the number of frames the model
processes or detects per second, reflecting the model’s detection speed. To evaluate the stability of the model’s
performance, classification loss is used in this study. This loss represents binary classification, typically
calculated using the sigmoid or SoftMax functions. The formula for this loss is provided in Eq. (6).

1 N C
Leg=-—Y.> glogsf (6)
N i=1 c=1

where N represents the total number of image samples collected. g denotes the number of pest individuals
correctly detected. C indicates the number of corn crop pest images that were incorrectly detected.

5 Results and Analysis of the Experiment

This section presents the experiment results, including visual and data analysis. It also provides a
comparison of the experimental outcomes, focusing on both subjective and objective evaluations.

5.1 Comparative Analysis of Experiments before and after Improvement

The training results before and after the improvements are shown in Fig. 10. In Fig. 10a, with training
parameters held constant for both the YOLOv7 and SPD-YOLOv7 models, the loss values for both models
decrease steadily as the number of training epochs increases, indicating the absence of overfitting. Both
models reached optimal performance after 300 epochs. At this stage, the loss value of the SPD-YOLOv7
model was 0.008. Moreover, the convergence of confidence loss for the SPD-YOLOv7 model was faster and
consistently lower compared to YOLOV?Z.

1.0
4 IOl —— SPD-YOLOv7| § IW%WWW e
7] . 1 L
27" YOLOV7 2 oglm e
3008] B 3
' 064" i
0,06+
1 0.4
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(a) Loss curve (b) Precision curve

Figure 10: (Continued)
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Figure 10: Experimental results graph

The improved SPD-YOLOvV7 model achieved a 2.9 percentage point increase in accuracy, a 6.8 per-
centage point increase in recall, and a 3.19 percentage point increase in mAP. The training curve became
more stable as well. The specific details are shown in Fig. 10b-d. The loss value serves as a key indicator
of training quality; a lower loss indicates a smaller gap between predicted and actual bounding boxes,
reflecting improved detection performance. While these results highlight the effectiveness of the proposed
improvements, further validation, such as cross-validation or other robustness measures, would be beneficial
to confirm the generalizability of the reported performance across different datasets and real-world scenarios.

Fig. 11 displays the confusion matrix, which allows for a visual examination of the classification
outcomes for each category. In this matrix, each row corresponds to the predicted category, each column
represents the actual category, and the diagonal elements show the proportion of correct classifications. An
analysis of the results in the matrix shows that the majority of the targets are accurately predicted, suggesting

that the model performs effectively.
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Figure 11: Confusion matrix diagram
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5.2 Comparison of Test Results

YOLOvV7 and SPD-YOLOV7 were tested on the same set of pest images to visually evaluate their
detection performance. Fig. 12 illustrates that the improved SPD-YOLOvV7 model greatly reduced false and
missed detections compared to the original YOLOv7 model. The SPD-YOLOv7 model achieved higher
detection accuracy than the original model. Experimental results confirm that the enhanced SPD-YOLOv7
model offers superior detection performance and improved detection capabilities.

There is false check/missed check Low accuracy  Error-free check/missed check  High accuracy

Locust

Fall
Armyworm

B33097

Monolepto »
hieroglyphico

YOLOv7 SPD-YOLOV7

Figure 12: Test effect picture

5.3 Analysis of Ablation Results

Ablation experiments were conducted to evaluate the impact of each improvement on the maize pest
detection model and validate the effectiveness of the enhancements. This study designed four sets of ablation
experiments with different model configurations, and the results are presented in Table 2.

Table 2: Comparison of ablation performance

Test No. Model P R mAP FPS
1 YOLOv7 95.92 9227 96.21 717
2 YOLOv7-SPD 9850 94.32 9789 68.3
3 YOLOv7-CBAM 96.41 98.23 99.20 72.0
4 TOLOv7-SPD-CBAM 98.38 99.51 99.40 69.0

As presented in the data in Table 2. Experiment 1 used the original YOLOvV7 model. It performed well
in maize pest detection with an accuracy of 95.92%, a recall rate of 92.27%, a mAP of 96.21%, and an
EPS of 71.7. In Experiment 2, the SPD-Conv modules were added to both the Backbone and Head of the



3572 Comput Mater Contin. 2025;84(2)

original model. The results indicated that, compared to Experiment 1, the mAP increased by 1.68 percentage
points, reaching 98.50%, and accuracy improved by 2.58 percentage points. These enhancements suggest
that the SPD-Conv module effectively reduces detail loss and improves feature extraction for small target
objects. While these results underscore the effectiveness of the proposed improvements, further validation
through cross-validation or other robustness measures would be beneficial to confirm the consistency and
generalizability of the reported performance across varied datasets and scenarios.

In Experiment 3, the original model was enhanced by incorporating the CBAM attention mecha-
nism.The results showed further improvement, with the mAP increasing by 2.99 percentage points to 99.20%,
and the recall rate increasing by 3.91 percentage points compared to Experiment 1. This shows that the CBAM
attention mechanism effectively focuses attention on both channel and spatial dimensions, enhancing recall
and detection accuracy for small target pests.

Experiment 4 combined the improvements from Experiments 2 and 3. While the detection speed was
slightly reduced, the accuracy, recall rate, and mAP increased by 2.46, 7.24, and 3.19 percentage points,
respectively. The SPD-YOLOv7 model proposed in this study achieved the best overall performance, with
an accuracy of 98.38%, a recall rate of 99.51%, a mAP of 99.40%, and an FPS of 69.5. The results from the
ablation experiment confirm that the proposed improvements contribute significantly to the performance
enhancement of the improvement in the performance of the YOLOV7 target detection model.

5.4 Comparison Experiment of Mainstream Target Detection Algorithms

The improved YOLOV7 algorithm exceeds Faster R-CNN, YOLOv3, YOLOv4, and YOLOV5 in accuracy;,
recall rate, and average precision in Table 3. Although the improved YOLOV7 exhibits a slightly lower
detection speed compared to YOLOVS5, it still demonstrates superior overall performance. Specifically, the
improved YOLOV7 achieves a 3.78-9.41 percentage point increase in accuracy, a 9.32-17.67 percentage
point improvement in recall rate, and a 4.15-8.56 percentage point gain in average precision compared to
other mainstream models. These results further highlight the enhanced target detection capabilities of the
improved YOLOvV7 algorithm.

Table 3: Comparison of results of mainstream target detection algorithms

Model P R mAP FPS

Faster-RCNN  93.48 83.89 91.07 46
YOLOV3 88.97 81.84 9233 59
YOLOv4 92.06 8414 90.84 65
YOLOvV5 94.60 90.19 9525 74

SPD-YOLOv7 9838 99.51 9940 69.0

5.5 Model Practicality Analysis

To assess the practicality of the improved YOLOv7 algorithm, we first compared the number of
parameters of the improved YOLOv7 with that of other algorithms. This comparison helps evaluate the
model’s efficiency based on computational complexity and resource needs.

The comparative analysis in Table 4 shows that the improved YOLOv7 model has fewer parameters and
is more compact than the other models. This not only results in a smaller model size but also enhances
efficiency in terms of storage and transfer. Despite the reduced number of parameters, the improved YOLOv7
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model still requires higher hardware specifications. To ensure the model’s portability, pre-training on the
dataset can be performed, followed by deployment of the pre-trained model to the application for execution.

Table 4: Comparison of parameters of mainstream target detection algorithms

Model Parameter quantity/M Model size/Mb
Faster-RCNN 3.8 54.3
YOLOvV3 6.0 25.6
YOLOv4 5.6 28.3
YOLOV5 5.8 144
SPD-YOLOvV?7 3.6 12.8

Based on the comparative analysis of the parameter count in Table 4, the enhanced YOLOvV7 model
used in this study demonstrates a smaller number of parameters and is more compact than other models.
Additionally, the reduced model size leads to lower storage and transfer requirements, improving overall
efficiency. Although the improved YOLOv7 model has fewer parameters, it still demands higher hardware
specifications. To enhance model portability, pre-training can be conducted using the target dataset, and
the pre-trained model can then be deployed on mobile applications. This approach effectively reduces
hardware demands while ensuring the model’s compatibility across various devices. In Fig. 13, the model was
successfully deployed on different mobile devices, utilizing an embedded system for precise pest detection
in maize crops.

YOLO TEST YOLO TEST YOLO TEST YOLO TEST

Figure 13: Effect diagram of mobile app detection

The image on the right in Fig. 13 shows the output from the high-end mobile phone client, demon-
strating how the system leverages the pre-trained model within the mobile app for target detection. While
detection accuracy is slightly lower compared to more powerful hardware configurations, the model’s
lightweight design allows it to operate efficiently on mobile devices. Future improvements could focus on
further reducing the model size through techniques such as pruning, quantization, and the integration of ROI
pooling layers to accelerate computation. Additionally, to enhance accuracy, the model could be deployed
on a cloud server with more robust processing power. Image data could then be uploaded to the cloud
for analysis, with the final classification results sent back to the mobile device. This approach enables the
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system to work smoothly on mobile devices with different hardware configurations. It is ideal for real-world
applications like precision agriculture, where real-time detection and analysis of crops, pests, or diseases on
mobile devices is crucial. Real-time detection and analysis of crops, pests, or diseases via mobile devices
is critical. By incorporating the proposed YOLO model into these practical applications, the system could
significantly streamline agricultural workflows, improving both efficiency and accuracy in field operations.

6 Conclusion

To address challenges in maize pest detection, including small size, low resolution, and variability
across growth stages, we propose an enhanced YOLOv7-based algorithm. By incorporating the lightweight
CBAM hybrid attention mechanism, the model improves accuracy and real-time performance, particularly
in extracting small target features in complex environments. Field-captured dataset brightness adjustments
simulate real-world conditions and increase training difficulty, while the SPD-Conv module reduces infor-
mation loss, enriches feature extraction, and boosts detection accuracy for small pests. Experimental results
demonstrate notable improvements in detection accuracy while maintaining speed.

Furthermore, while the proposed method shows clear benefits, there are limitations, such as the lack of
cross validation and other robustness measures for validation. Future work will address these considerations.
The scalability of the model will be explored. Its applicability to a wider range of real-world scenarios will
also be examined. In addition, future research will focus on adding more validation measures. These will
help assess the model’s generalization ability and reliability.
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