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ABSTRACT: Glaucoma, a chronic eye disease affecting millions worldwide, poses a substantial threat to eyesight
and can result in permanent vision loss if left untreated. Manual identification of glaucoma is a complicated and
time-consuming practice requiring specialized expertise and results may be subjective. To address these challenges,
this research proposes a computer-aided diagnosis (CAD) approach using Artificial Intelligence (AI) techniques for
binary and multiclass classification of glaucoma stages. An ensemble fusion mechanism that combines the outputs of
three pre-trained convolutional neural network (ConvNet) models–ResNet-50, VGG-16, and InceptionV3 is utilized in
this paper. This fusion technique enhances diagnostic accuracy and robustness by ensemble-averaging the predictions
from individual models, leveraging their complementary strengths. The objective of this work is to assess the model’s
capability for early-stage glaucoma diagnosis. Classification is performed on a dataset collected from the Harvard
Dataverse repository. With the proposed technique, for Normal vs. Advanced glaucoma classification, a validation
accuracy of 98.04% and testing accuracy of 98.03% is achieved, with a specificity of 100% which outperforms state-
of-the-art methods. For multiclass classification, the suggested ensemble approach achieved a precision and sensitivity
of 97%, specificity, and testing accuracy of 98.57% and 96.82%, respectively. The proposed E-GlauNet model has
significant potential in assisting ophthalmologists in the screening and fast diagnosis of glaucoma, leading to more
reliable, efficient, and timely diagnosis, particularly for early-stage detection and staging of the disease. While the
proposed method demonstrates high accuracy and robustness, the study is limited by the evaluation of a single dataset.
Future work will focus on external validation across diverse datasets and enhancing interpretability using explainable
AI techniques.

KEYWORDS: Classification; deep learning; early disease detection; ensemble learning; glaucoma; machine learning;
retinal fundus images

1 Introduction
Glaucoma, characterized by elevated intraocular pressure (IOP) and gradual impairment of the optic

nerve, is recognized as “the silent thief of sight” as it results in permanent and irreversible visual impairment.
The increased IOP causes damage to the optic nerve. Fluid accumulation within the eye raises IOP. Elevated
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IOP is triggered by either an abnormality in the drainage process or an excess of fluid, leading to optic nerve
damage. It can be defined by the damage to retinal ganglion cells (RGCs) which are crucial for vision. Diabetic
retinopathy (DR), age-related macular degeneration, cataracts, and glaucoma are the most common causes of
severe visual impairment and blindness [1]. As glaucoma is irreversible, timely intervention during the initial
stage has been observed to significantly mitigate the potential for permanent vision impairment [2]. Nearly
60 million people are affected by glaucoma, globally, every year. It has been observed that the prevalence of
the disease is higher among adults aged 40 and older. According to research, it is estimated that glaucoma will
affect roughly 80 million people by 2020 [3]. Similarly, in 2013, it was anticipated that 64.3 million individuals
globally would be suffering from glaucoma. However, estimations indicate that the number would increase
by 74% to 111.8 million in 2040 [4].

Glaucoma is commonly diagnosed using three main tests: optic nerve head (ONH) assessment, IOP
measurement, and visual field testing [5]. Among these, the ONH examination is widely regarded as the
most effective method [6,7]. Additional diagnostic tools include pachymetry (corneal thickness), gonioscopy
(angle assessment), tonometry (IOP), perimetry (visual field), and ophthalmoscopy (optic nerve evaluation).

All of these procedures, however, are manual, time-consuming, laborious, and susceptible to varying
opinions among specialists. As a result, CAD systems are required to assist ophthalmologists in obtaining
more precise and unbiased assessments. These sophisticated systems analyze data using AI techniques,
specifically Deep Learning (DL) techniques, enhancing diagnosis accuracy, standardizing methods, mini-
mizing subjectivity, and handling large datasets efficiently, such as optic nerve images, visual field tests, IOP,
and other important data. CAD systems consist of three fundamental phases: Pre-processing, Segmentation,
and Classification [8]. Retinal Fundus Images (RFIs) are eye images captured using a special camera (fundus
camera) to detect eye diseases such as glaucoma. These images provide key morphological characteristics for
early glaucoma diagnosis and typically include retinal vessels, fovea, optic cup (OC), and optic disc (OD).
Ophthalmologists often use hand-contouring of the cup and disc in RFIs to assess the cup-to-disc ratio
(CDR) and disc damage likelihood scale (DDLS). A high CDR–typically above 0.65–is a key indicator of
glaucoma [9]. Normal eyes usually have a CDR range from 0.3 to 0.5. A CDR value of 0.8 or higher leads to
complete vision loss.

In recent decades, many CDR-based segmentation methods have been proposed for glaucoma detec-
tion [10–12], but they often lack sensitivity and rely heavily on precise segmentation, ignoring other key
metrics. In contrast, feature-based methods–particularly those using ML–have shown better performance
but still require manual feature selection and are time-consuming on large datasets. DL overcomes these
limitations by automating feature extraction and improving diagnostic accuracy [13,14]. This paper intro-
duces a novel DL-based approach for early glaucoma detection and stage classification. By leveraging DL
architectures and ensemble methods, the proposed system offers high accuracy, reduced computational cost,
and practical value for clinical use. The key contributions of this work are:

1. Unlike conventional methods, this approach does not necessitate the use of OD and OC segmen-
tation for early glaucoma detection, simplifying the process and potentially reducing the time and
computational load.

2. The research focuses on binary classification for early diagnosis of glaucoma and multiclass classification
to identify different stages of the disease. This approach enhances the utility of the model in clinical
settings by providing comprehensive diagnostic information.

3. It utilizes four distinct image class combinations, facilitating the detection of both early and advanced
stages of glaucoma. This approach broadens the scope of the model’s applicability and enhances its
diagnostic capabilities.
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4. This study employs an ensemble learning approach by integrating three pre-trained ConvNet architec-
tures (ResNet-50, VGG-16, and InceptionV3) for feature fusion and classification. The averaging-based
ensemble enhances diagnostic accuracy and robustness in staging glaucoma, achieving state-of-the-art
performance. The proposed ensemble method combines the strengths of multiple models to achieve
superior performance.

5. The proposed method achieves high classification accuracy without relying on extensive preprocessing
techniques. This not only enhances the reliability of the diagnosis but also saves computational time,
making it a more efficient solution for real-world clinical application.
The novelty of the proposed E-GlauNet ensemble approach lies in several key aspects: (i) the use of

customized and fine-tuned versions of ResNet-50, VGG-16, and InceptionV3 models specifically adapted
for glaucoma staging tasks; (ii) the adoption of an averaging-based fusion mechanism at the probability
output level, which differs from traditional majority voting or feature-level concatenation methods; (iii)
minimal reliance on extensive preprocessing steps, such as OC/disc segmentation, making it more suitable for
clinical deployment; and (iv) the achievement of significantly improved specificity and classification accuracy
compared to recent studies. These aspects collectively distinguish our work from existing ensemble-based
glaucoma detection methods.

2 Literature Review
Recent research studies have investigated various approaches for the automated detection of glaucoma.

Early methods relied on traditional image processing techniques, e.g., Zhu et al. [15] utilized the Hough
transform to identify localized OD borders. He employed Sobel operators to detect its edges and achieved
an accuracy of 90% on the DRIVE database. Abdullah et al. [16] presented a strategy for glaucoma detection
using morphological operations, circular Hough transformation, and the grow-cut algorithm. This approach
eliminated ocular diseases and enhanced the OD using morphological operations. Subsequently, the OD
border was segmented using the grow-cut technique, with the OD center estimated using the circular
Hough transform. Lu [17] utilized circular-based transformation methods to detect the edges of the OD.
The authors integrated segmentation and circular transformation into a unified framework for effective
OD identification.

Fink et al. [18] employed a k-nearest neighbor classifier (KNN) and utilized independent component
analysis (ICA) to extract features from color fundus images. ICA translated the detected retinal images of the
papilla into basis images that represent independent feature characteristics. Matching coefficients of images
were learned from a training batch of data, and the KNN classifier performed the classification using the L2
norm. This method achieved an accuracy of 90.8% in accurately categorizing 250 images with a resolution
of 256 × 256 pixels.

Nayak et al. [19] introduced ECNet, a non-handcrafted feature mining approach using RCGA to
optimize convolutional, compression, summation, and ReLU layers for feature extraction. Among various
classifiers, RCGA + ECNet with SVM achieved the highest accuracy of 97.20%. Parashar and Agrawal [20]
proposed a CAD system using Image Empirical Mode decomposition (IEMD) to break down images
into Intrinsic Mode Functions (IMFs), capturing pixel variations. Classification with LS-SVM resulted in
94.45%. Bock et al. [21] applied PCA and SVM for glaucoma classification, using OD fine lines in pre-
processed images. They introduced the Glaucoma Risk Index (GRI) by combining FFT, B-spline, and PCA.
Another study [22] used logistic classification to distinguish Normal vs. Early Glaucoma, Normal vs. (Early
+ Advanced Glaucoma), and Normal vs. Advanced Glaucoma cases.

Chen et al. [23] described a DNN based approach for glaucoma detection that utilizes a 6-layered deep
CNN. Al-Bander et al. [24] used an SVM classifier to determine whether the retinal image was normal
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or abnormal. For feature extraction, the Alexnet model with 23 convolutional layers, maxpooling, fully
connected, softmax, and dense layer was employed. The weights of the model were adjusted to match the
weights that Alexnet had taught it. According to the experimental results, the accuracy was 88.2%. Juneja
et al. [25] suggested a DL-based CoG-NET (Classification of Glaucoma Network) in 2022 to identify RFIs as
glaucoma or normal. Features and gradient activation maps were employed to establish its concentration in
the OD and OC. With 85 layers, the suggested model is an updated version of Xception. A logistic regression
strategy was used to categorize the data. Benzebouchi et al. [26] introduced a DL-based CNN for glaucoma
investigation. It employed two sets of CNNs, the first with an RGB-colored RFIs and the second with an Otsu
thresholded grayscale retinal image. The accuracy was 95.6% based on CNN1’s evaluation utilizing 25 epochs
and 10 iterations. CNN2 was supposed to achieve 96.95% accuracy across 25 epochs and 5 iterations.

Joshi et al. [27] developed an ensemble technique on three publically avaliable data sets and one
private data set (PSGIMSR, DRISHTI-GS, DRIONS-DB, and HRF). Three alternative ConvNet designs were
employed in this study, including ResNet-50, VGG-16, and GoogLeNet. Trained NNs produce output by
merging them into a prediction vector, and a decision was decided by a majority vote. Juneja et al. [28]
presented a CNN model with 76 layers. Logistic regression was used for classification purpose of images.
Drishti and RIM-ONE datasets were used for this model. Cropping, augmentation, and denoising were used
for the pre-processing of input images. It gained an accuracy of 97.51%. The researcher [29] suggested a
13-layer CNN trained to extract features from HRF, Origa, Drishti, and fundus images. De Sales Carvalho
et al. [30] offered an automated glaucoma diagnostic system based on 3DCNNs.This strategy does not impose
the use of OD segmentation or data augmentation. Even without data augmentation, the model produced
good results. The grayscale volume set yields the best results.

In 2024, Xavier [31] employed the Retinex method for image enhancement, followed by Modified
DeepLabV3 segmentation to extract Regions of Interest and detect anomalies. The DeepLabV3 parameters
were optimised with the Improved Rain Optimisation Algorithm (IROA). ODMNet, a hybrid DenseNet-
MobileNet model optimised with IROA, was employed to classify glaucoma. Sujithra and Jerome [32]
performed blood vessel segmentation on RFIs. They used the Grey Wolf Optimization approach to improve
a ResNet-50 DL-based model. Recently, Elmannai et al. [33] proposed an improved DL framework for
automated OD localization and glaucoma detection, achieving notable performance through enhanced
feature extraction strategies. Such advancements highlight the growing role of DL in ophthalmic image
analysis and motivate the exploration of ensemble approaches like the proposed E-GlauNet.

While feature-based ML methods have provided initial advances, they often require extensive pre-
processing and handcrafted feature extraction. DL models have improved automatic feature learning but
can still suffer from overfitting and dataset dependency. Ensemble learning approaches have demonstrated
performance improvements but often lack clinical interpretability or require heavy preprocessing. The
proposed E-GlauNet model addresses these gaps by integrating multiple lightweight CNN architectures
through simple probability fusion, achieving high accuracy without the need for complex preprocessing,
while maintaining potential for future explainability enhancements. The proposed model is particularly
beneficial in the early risk assessment of glaucoma, which is crucial for intervention during its initial phases.

3 Materials and Methods
The datasets used in this research, the proposed methodology and its implemented are presented in

this section.
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3.1 Dataset Description
The dataset used in this research was obtained from the publicly available repository of Harvard

Dataverse, accessible through the DOI [34]. The data was collected at Kim’s Eye Hospital in Seoul, South
Korea. Researchers employed a specialized non-mydriatic auto fundus camera to capture the images. The
dataset contains 1544 RFIs. Table 1 presents details of the dataset, while sample RFIs are presented in Fig. 1.

Table 1: Dataset details

Description Value Description Value
No. of classes 3 Normal controls 788

Early glaucoma 289 Advanced glaucoma 467
Total images 1544 Resolution of images 240 × 240

Figure 1: Sample retinal fundus images from dataset [34]

3.2 Image Preprocessing and Augmentation
To address class imbalance and enhance generalization, various image augmentation techniques were

applied. The proposed approach begins by resizing images to dimensions of 224 × 224 × 3, which is the
minimum input size required for models including ResNet-50, VGG-16, and InceptionV3. By utilizing these
augmentation techniques, the diversity of data available for model training is significantly increased, thereby
enhancing generalization and performance when dealing with the dataset’s imbalanced classes. Different
augmentation steps on a sample RFI are presented in Fig. 2.

Figure 2: Various augmentation steps applied on a sample retinal fundus image [34]
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3.3 Model Architectures
Three pre-trained architecture, namely ResNet-50, VGG-16 and InceptionV3, are selected for feature

extraction after customizations done to these models. Details of these architectures are provided below.

3.3.1 ResNet-50 Configuration and Customization
Residual networks, such as ResNet-50, comprises of convolution, pooling, activation, and fully con-

nected (FC) layers that are connected to each other via identity connections. This is represented by Eq. (1),
where f(a) is a function of the residual block using identity mapping between input and output. The under-
lying architecture diagram of ResNet-50 is shown in Fig. 3, whereas the building blocks of ResNet-50 [35]
are presented in Fig. 4.

F(a) = f (a) + a (1)

Figure 3: ResNet-50 architecture

Figure 4: Building blocks of ResNet-50, Ref. [35]
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In this study, several customizations and enhancements are applied to the ResNet-50 model to tailor
it for the specific task of glaucoma staging and prediction. Custom layers are added to improve the feature
extraction capabilities of the base ResNet-50 model. A dense layer with a ReLU activation function is
incorporated after the global average pooling layer. The dense layer helps in reducing the dimensionality
of the feature vector while at the same time capturing more abstract and higher-level features relevant to
glaucoma detection.

To facilitate the binary and multiclass classification tasks, the output layer of the model is customized.
The dense layer has one neuron with a sigmoid activation function for binary classification, and the output
is a probability score indicating the presence of glaucoma. In contrast, a dense layer with multiple neurons
corresponding to the number of classes and a softmax activation function is used for glaucoma staging. In
this configuration, the model outputs probabilities for each class, facilitating accurate stage prediction. As
the ResNet-50 model is pre-trained on the ImageNet dataset, it provides a strong base of general features.
The RFI dataset is used to fine-tune the pre-trained weights of the model during training to better capture
features specific to glaucoma detection.

3.3.2 VGG-16 Configuration and Customization
VGG-16 is a deep neutral network comprises of 16 layers. It consists of 13 convolutional layers and 3 FC

layers. In the modified version of VGG-16 architecture, a global average pooling layer is added, while the
flatten layer and the first FC layer are removed to make it lightweight and reduce the risk of overfitting. In
the start, the network uses smallest filter of size 64. the filter size is gradually increased by a factor of 2 after
each max-pool layer. The final size of the filter is 512. The input layer of the network takes 224 × 224 color
images with three RGB channels. The images are first passed through a series of convolutional layers, each
using small receptive filters of size 3 × 3 and a stride of 1.

This customized configuration captures the intricate features from the images. After the images are
passed through the convolutional layers, max pooling layers are applied with a filter size of 2 × 2 and a stride
of 2. These max pooling layers reduce the feature maps while retaining the most critical information. The
global average pooling layer reduces the feature maps from 7 × 7 × 512 to 1 × 1 × 512. The final layers are fully
connected, leading to a sigmoid (for binary classification) or softmax classifier (for multiclass classification)
that output the probabilities for each class. The proposed modifications to VGG-16 reduce computational
cost and preserve spatial information, leading to faster training and inference while potentially improving
performance on tasks that require spatial awareness. The graphical illustration of the modified VGG-16
architecture is presented in Fig. 5.

Figure 5: VGG-16 architecture
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3.3.3 InceptionV3 Configuration and Customization
InceptionV3 model is a 48 layers deep architectural model. It comprises convolutional layers, max-

pooling layers with a 3 × 3 filter size and a stride of 2, and inception modules. The inception modules include
convolutional layers with filter sizes of 1 × 1, 3 × 3, and 5 × 5, allowing the model to capture features at
different scales. The outputs of these convolutional layers are concatenated and fed to the next layer. For
classification, the final layers of the model include a flattened layer and a dense layer, followed by a dropout
layer with a 0.2 dropout ratio, to prevent overfitting. A dense layer with 2 units for binary and 3 units for
multiclass classification is used. The sigmoid and softmax activation function is employed to produce the
final probability distribution for each class. The architectural diagram of InceptionV3 is illustrated in Fig. 6.

Figure 6: InceptionV3 architecture

3.4 Proposed Ensemble Learning Method
To leverage the strengths of different ConvNet architectures, an ensemble model was created using

averaging fusion of output probabilities. Ensemble approaches in ML and statistics combine several learning
algorithms to get better predicted results than could be achieved with just one of the individual learning
algorithms [36]. The proposed ensemble method for multiclass classification is presented in this section and
illustrated in Fig. 7. The proposed ensemble approach integrates three different ConvNet models: ResNet-50,
VGG-16, and InceptionV3. Initially the RFIs are divided into three subsets: training, testing, and validation
with a split of 70%, 10% and 20%, respectively.

To address the class imbalance, image augmentation techniques such as zoom, shear, horizontal flip,
random distortion, and brightness adjustment are applied to the fundus images, resulting in balanced
classes. Three distinct ConvNet architectures (ResNet-50, VGGNet-16, and InceptionV3) pre-trained on the
ImageNet dataset are utilized. Features are extracted considering the deep structural characteristics of the
fundus images using the three pre-trained ConvNet architectures. The proposed ensemble method integrates
three distinct pre-trained ConvNet architectures–ResNet-50, VGG-16, and InceptionV3.

Features extracted from each model are combined using an averaging fusion mechanism to produce a
unified prediction. This fusion approach capitalizes on the diversity of the base models, reducing overfitting
and improving the robustness of predictions. Based on the ensemble model’s decision, RFIs are classified
into three categories: early-stage glaucoma, advanced stage glaucoma, and normal eye. The mathematical
representation of the ensemble model is given in Eq. (2).

Output(Ensemble Model) =
N1(x) + N2(x) + N3(x)

3
(2)

In this equation N1(x), N2(x) and N3(x) represents the outputs of the ResNet-50, VGG-16 and
InceptionV3 models, respectively. The output probabilities from multiple models are averaged, leveraging
their strengths and increasing accuracy. The proposed technique reduces variance and makes the ensemble
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less sensitive to noise and overfitting. The fusion mechanism combines the probability outputs of ResNet-
50, VGG-16, and InceptionV3 models. Each model contributes unique feature representations due to its
architectural differences. The ensemble averages these outputs, leveraging the complementary strengths of
the models to mitigate individual biases and enhance prediction accuracy. This approach is particularly
effective for multiclass classification, where feature diversity is crucial for distinguishing between subtle
variations in disease stages. In this study, simple averaging of output probabilities was adopted as the
fusion technique due to its straightforward implementation and reduced computational overhead, making
it suitable for real-time clinical applications.

Figure 7: Proposed ensemble model architecture

4 Experimental Results and Discussion
The evaluation parameters, experimental design and results achieved from all experiments are presented

in this section. For implementation of the proposed approach, a system with 32 GB RAM and a 1 THz
processor is used. A comparative analysis of the proposed approach results are also conducted with the
state-of-the-arts techniques in this domain.

4.1 Evaluation Metrics
The evaluation parameters used for this research include accuracy, precision, recall, and F1 score to

analyze the performance of the proposed approach. The mathematical representations of these parameters
are illustrated in Eqs. (3) to (6).

Accuracy = TP + TN
TP + TN + FP + FN

(3)
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Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

F1 score = TP
TP + 1

2(FP + FN)
(6)

4.2 Experimental Setup
The proposed research work is focused on both binary and multi-class classification of RFIs for glau-

coma identification and its staging. The research is divided into a number of experiments each targeting either
binary or multi-class classification tasks. Four experiments are performed for binary classification, and two
experiments for multi-class classification. Experiments 1–5 are carried out using three deep models: ResNet-
50, VGG-16, and InceptionV3, whereas experiment 6 is performed through the proposed ensemble DL
model. The selection of ResNet-50, VGG-16, and InceptionV3 was based on their established performance,
ease of fine-tuning, and proven effectiveness in fundus image classification tasks. These architectures offer
a favorable trade-off between performance, training complexity, and interpretability, which are critical for
clinical adoption.

1. Experiment-1: Binary Classification (Normal Control vs. (Early + Advanced Glaucoma))
2. Experiment-2: Binary Classification (Normal Control vs. Advanced Glaucoma)
3. Experiment-3: Binary Classification (Normal Control vs. Early Glaucoma)
4. Experiment-4: Binary Classification (Early Glaucoma vs. Advanced Glaucoma)
5. Experiment-5: Multiclass Classification (Normal Control vs. Early Glaucoma vs. Advanced Glaucoma)
6. Experiment-6: Multiclass Classification using Ensemble Approach

For the first experiment, early and advanced glaucoma classes are combined and treated as a single
positive class against normal control (negative class). The purpose is to create a broad classifier that can
differentiate between normal and diseased conditions, regardless of the glaucoma stage. This may be helpful
for initial screening of the subjects to decide if more detailed examination is required.

The second experiment classifies normal controls and advanced glaucoma subjects. This experiment
learns the pronounced features characterizing advanced glaucoma in RFIs. This may help to identify the
individuals who need more intensive and immediate treatment to avoid further vision impairment.

Third experiment classifies normal control and early glaucoma to enable the model to identify glaucoma
in its early stage. In the early stage of glaucoma, the disease is often asymptomatic but is treatable. It is essential
to diagnose disease in its early stage to prevent its progression and avoid any vision impairment.

Fourth experiment classifies early glaucoma and advanced glaucoma to learn the differences between
RFIs characterizing the explicit features between various stages of the disease. Understanding the progression
of the disease is vital for devising new treatment strategies.

Multi-class classification (Normal Control, Early Glaucoma, Advanced Glaucoma) is also conducted
on the same models. Subsequently, in last experiment, an averaging ensemble of these models is devised to
detect normal, advanced, and early glaucoma stages. The ensemble technique combines the outputs of the
individual models to make more accurate and robust predictions for the multi-class classification task.

The hyperparameters that are used by classification models are shown in Table 2.
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The optimizer used for all models was Adam, with an initial learning rate of 0.001. A learning rate
decay mechanism was applied, reducing the learning rate by a factor of 0.1 after 5 epochs if no improvement
in validation loss was observed. The batch size was set to 32, and the models were trained for 10 epochs
in all experiments, as summarized in Table 2. Data augmentation settings included random zoom in the
range of 0.8 to 1.2, random shear intensity of 0.2 radians, random brightness adjustments within a range
of ±20%, and random horizontal flipping. These enhancements were selectively applied to address the class
imbalance, particularly in the early and advanced classes of glaucoma. The dataset was divided into training
set (70%), validation set (20%), and testing set (10%), ensuring stratified sampling across all classes. Early
stopping with patience of 3 epochs was also used to prevent overfitting during model training. To mitigate
overfitting, several regularization strategies were implemented, including the use of dropout layers with a 0.5
dropout rate, extensive data augmentation, early stopping based on validation loss, and monitoring validation
performance at each epoch.

Table 2: Hyperparameters used for training and testing of pre-trained CNN approaches

Batch size Epochs Optimizer Activation hidden layer Activation (Output
layer)

32 10 Adam optimizer with
learning rate 0.001

ReLU Sigmoid for binary class.

Softmax for multiclass.

4.3 Binary Classification Results
4.3.1 Experiment-1: Normal Control vs. (Early + Advanced Glaucoma)

This experiment is conducted for binary classification of Normal Control vs. (Early + Advanced
Glaucoma). Classification is performed using ResNet-50, VGG-16 and InceptionV3 to classify the images
as either Normal or Glaucoma. The ResNet-50 showed promising results as compared to others. The
graphical representation of the accuracy and loss graphs using ResNet-50, VGG-16 and InceptionV3 is shown
in Figs. 8–10, respectively.

Figure 8: Accuracy and loss graph using ResNet-50 for Experiment-1
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Figure 9: Accuracy and loss graph using VGG-16 for Experiment-1

Figure 10: Accuracy and loss graph using InceptionV3 for Experiment-1

4.3.2 Experiment-2: Normal Control vs. Advanced Glaucoma
Normal control images used in this experiment total 551. Therefore, augmentation is applied on the

advanced glaucoma images to produce a total of 551 images for training, to avoid the problem of data
imbalance. The graphical representation of the accuracy and loss graphs using ResNet-50, VGG-16 and
InceptionV3 is shown in Figs. 11–13, respectively.

Figure 11: Accuracy and loss graph using ResNet-50 for Experiment-2
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Figure 12: Accuracy and loss graph using VGG-16 for Experiment-2

Figure 13: Accuracy and loss graph using InceptionV3 for Experiment-2

4.3.3 Experiment-3: Normal Control vs. Early Glaucoma
Augmentation is applied to the early glaucoma images to generate a total of 551 images for training,

to avoid the problem of data imbalance. The graphical representation of the accuracy and loss graphs using
ResNet-50, VGG-16 and InceptionV3 is shown in Figs. 14–16, respectively.

Figure 14: Accuracy and loss graph using ResNet-50 for Experiment-3
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Figure 15: Accuracy and loss graph using VGG-16 for Experiment-3

Figure 16: Accuracy and loss graph using InceptionV3 for Experiment-3

4.3.4 Experiment-4: Early Glaucoma vs. Advanced Glaucoma
In this experiment, augmentation is applied to the early glaucoma images to generate an equal number

of samples for both advance and early glaucoma images. ResNet-50 showed promising results compared
to the others. The graphical representation of the accuracy and loss graphs using ResNet-50, VGG-16 and
InceptionV3 is shown in Figs. 17–19, respectively.

Figs. 20–22 represent the confusion matrices obtained for binary experiments using ResNet-50, VGG-
16, and InceptionV3, respectively. The validation accuracy, testing accuracy, precision, recall and F1-Score
obtained for all four binary experiments against each of the three models are presented in Table 3.
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Figure 17: Accuracy and loss graph using ResNet-50 for Experiment-4

Figure 18: Accuracy and loss graph using VGG-16 for Experiment-4

Figure 19: Accuracy and loss graph using InceptionV3 for Experiment-4
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Figure 20: Confusion matrices for binary classification using ResNet-50

Figure 21: Confusion matrices for binary classification using VGG-16

Figure 22: Confusion matrices for binary classification using InceptionV3

Table 3: Results of binary classification (%)

Model Validation accuracy Testing accuracy Precision Recall F1-score
Experiment 1

ResNet-50 98.39 96.77 97 97 97
VGG-16 96.77 96.77 97 97 97

InceptionV3 88.71 87.09 87 87 87

Experiment 2
ResNet-50 98.04 98.03 98 98 98
VGG-16 94.12 94.11 95 94 94

InceptionV3 90.20 94.11 94 94 94

(Continued)
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Table 3 (continued)

Model Validation accuracy Testing accuracy Precision Recall F1-score
Experiment 3

ResNet-50 93.18 90.91 92 91 91
VGG-16 86.36 84.09 84 84 83

InceptionV3 88.64 81.81 81 82 81

Experiment 4
ResNet-50 93.55 90.32 98 98 90
VGG-16 74.19 74.19 80 74 74

InceptionV3 61.29 58.06 57 57 58

4.4 Multiclass Classification Results
4.4.1 Experiment-5: Multiclass Classification Using ResNet-50, VGG-16, and InceptionV3

In this experiment, augmentation is applied to both early and advanced glaucoma images to generate
a total of 551 images for each class. ResNet-50, VGG-16 and InceptionV3 are fined-tuned on the training
set for the multiclass classification of RFIs into three classes: Advanced Glaucoma, Early Glaucoma, and
Normal Control. The graphical representation of the accuracy and loss graphs using ResNet-50, VGG-16
and InceptionV3 is shown in Figs. 23–25, respectively, while confusion matrices are presented in Fig. 26. The
results obtained for this experiment are shown in Table 4.

Figure 23: Accuracy and loss graph of Experiment-5 using ResNet-50
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Figure 24: Accuracy and loss graph of Experiment-5 using VGG-16

Figure 25: Accuracy and loss graph of Experiment-5 using InceptionV3

Figure 26: Confusion matrices of Experiment-5 (a) ResNet-50, (b) VGG-16, and (c) InceptionV3
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Table 4: Results (%) of multiclass classification using individual models as well as ensemble approach

Model Validation accuracy Testing accuracy Precision Recall F1-score
ResNet-50 87.30 90.47 91 90 91
VGG-16 85.71 87.30 88 87 87

InceptionV3 73.02 71.42 67 71 68
Proposed ensemble method 93.65 96.82 97 97 97

4.4.2 Experiment-6: Multiclass Classification Using Ensemble Approach
In this experiment, an ensemble technique is employed to classify RFIs into three categories: Advanced

Glaucoma, Early Glaucoma, and Normal Control. Pre-trained models ResNet-50, VGG-16, and InceptionV3
are fine-tuned on the training set for multiclass classification using the ensemble method. The output of these
three models is then merged, and an averaging approach is used to create the ensemble output. The graphical
representation of the accuracy and loss graphs is shown in Fig. 27. The confusion matrix for this experiment
is presented in Fig. 28. Table 4 also illustrates the results obtained from this experiment.

Figure 27: Accuracy and loss graph for Experiment-6 using ensemble approach
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Figure 28: Confusion matrix for Experiment-6 using ensemble approach

4.5 Performance Comparison and Analysis
4.5.1 Summary of Classification Performance

ResNet-50 achieved the best results across all four binary classification experiments. The validation
accuracy of ResNet-50 in Experiment-1 for Normal vs. (Early + Advanced Glaucoma) is 98.39%, while
VGG-16 and InceptionV3 achieved 96.77% and 88.71%, respectively. Similarly in Experiment-2, ResNet-50
achieved an accuracy of 98.04% for Normal vs. Advanced Glaucoma, compared to VGG-16 and InceptionV3,
which achieved accuracies of 94.12% and 90.20%, respectively. In Experiment-3, ResNet-50 attained 93.18%
accuracy for Normal Control vs. Early Glaucoma, while VGG-16 and InceptionV3 reaches 86.36% and
88.64% accuracy, respectively. In Experiment-4, for Early Glaucoma vs. Advanced Glaucoma, ResNet-50
achieved an accuracy of 93.55%, whereas VGG-16 and InceptionV3 achieved 74.19% and 61.29%, respectively.
As a result, it can be concluded that ResNet-50 outnumbered VGG-16 and InceptionV3 in all four scenarios
of binary classification in this study.

4.5.2 Performance of the Ensemble Model
The proposed ensemble approach for multiclass classification outperforms ResNet-50, VGG-16, and

InceptionV3, achieving the highest values for precision, recall, F1 score, and accuracy, as shown in Fig. 29
and Table 4. The validation accuracy of proposed ensemble approach is 93.65%, whereas ResNet-50, VGG-16
and inceptionV3 achieved an accuracy of 87.30%, 85.71%, and 73.02%, respectively. The proposed ensemble
approach demonstrates significant improvement over individual models (ResNet-50, VGG-16, InceptionV3),
with an average accuracy gain of 14.60%. This improvement highlights the effectiveness of the fusion
mechanism in leveraging diverse feature representations and reducing model-specific biases and variances.
For binary classification (e.g., Normal vs. Advanced Glaucoma), the ensemble approach ensures higher
specificity (100%) compared to standalone models.
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Figure 29: Graphical representation of the results for multi-class classification

4.5.3 Comparative Analysis with State-of-the-Art
Most of the research in this field focuses solely on binary classification to distinguish between glaucoma-

affected and healthy eye images. However, Ahn et al. [22] categorize normal vs. (Early + Advanced
Glaucoma), normal vs. Advanced Glaucoma, and Normal vs. Early Glaucoma using logistic regression and
DL. In comparison to the other works in this area, our research achieved a commendable result of 98.39%
using ResNet-50 with only 10 epochs for Normal vs. (Early + Advanced Glaucoma) whereas [22] achieved
only 77.2% accuracy for this scenario. Table 5 shows the comparison of results. Furthermore, this study
achieved the highest accuracy of 93.18% for Normal vs. Early Glaucoma.

Table 5: Comparison of various experiments on binary classification

Reference Dataset Model Validation Accuracy (%)

Normal vs.
(Early +

Advance)

Normal vs.
Advanced

Normal vs.
Early

Early vs.
Advance

[22] Harvard
dataverse

Logistic
classification

77.2 98.06 73 –

Proposed
approach

Harvard
dataverse

ResNet-50 98.39 98.04 93.18 93.55

As shown in Table 6, a major achievement of this work in binary classification is attaining 100%
specificity, meaning that it correctly classified all healthy images and 98.04% accuracy compared to other
studies for normal vs. advanced glaucoma. The comparison table for multiclass classification is shown
in Table 7. The proposed ensemble approach achieved the best result compared to state-of-the-art methods.
In particular, this research provides an efficient binary and multiclass classification of glaucoma.
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Table 6: Comparison of binary classification (Normal vs. Advanced Glaucoma) with State-of-the-Art

References Dataset Validation
accuracy (%)

Sensitivity
(%)

Specificity (%)

[27] DRIONS-DB, HRF,
DRISHTI-GS, PSGIMSR,

Drishti-GS, RIM-One

88.96 81 95.53

[25] REFUGE, ACRIMA 95.3 95 99
[28] Drishti-GS, RIM-One 97.51 98.78 96.20
[20] Harvard dataverse,

RIM-One
94.45 95.20 93.72

Proposed
approach

Harvard dataverse 98.04 97 100

Table 7: Comparison table for multiclass classification

References Validation accuracy (%) Sensitivity (%) Specificity (%)
[20] 93.14 94.30 96.10
[37] 85.20 — —

Proposed approach 96.82 97 98.57

4.5.4 Interpretation of Results and Dataset Sensitivity
Performance variability across experiments was observed, reflecting sensitivity to data splits and the

intrinsic difficulty of different classification tasks. Classifying between Normal and Advanced Glaucoma,
where morphological differences are more pronounced, resulted in higher accuracy. In contrast, distinguish-
ing Normal from Early Glaucoma, which involves subtler changes in OD and OC morphology, proved more
challenging. This highlights the importance of considering intrinsic feature similarity when interpreting
performance metrics. Future work will incorporate k-fold cross-validation and stratified sampling to
comprehensively assess model robustness across varying data conditions.

The confusion matrix analysis reveals that the proposed ensemble model achieves particularly high
true positive rates for advanced glaucoma detection while maintaining high specificity for normal controls.
Importantly, early glaucoma, which typically presents subtle visual features, is detected with a high sensitivity
of 97%, supporting the model’s clinical applicability for early intervention.

4.5.5 Limitations and Future Improvements
While the proposed E-GlauNet model achieves high accuracy and specificity on the Harvard Dataverse

dataset, there are inherent limitations that must be acknowledged. The dataset, although widely used, is
relatively limited in size compared to larger ophthalmic datasets and may possess intrinsic biases related
to imaging device characteristics, patient demographics, and data acquisition protocols. These factors may
affect the generalizability of the model to broader, real-world clinical populations.

Another important limitation of the current study is the lack of direct clinical validation or feed-
back from ophthalmologists. While the computational performance metrics are promising, assessing the
model’s usability, interpretability, and clinical trustworthiness through expert evaluation remains crucial.
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Future work will include collaboration with ophthalmologists to obtain qualitative and quantitative feed-
back, validate diagnostic decision support capabilities, and refine the model for practical deployment in
clinical environments.

While high validation and testing accuracies were achieved, it is recognized that some risk of overfitting
remains, particularly given the moderate size and limited diversity of the Harvard Dataverse dataset. External
validation on independent datasets will be essential to more rigorously assess the model’s generalization
capability and further confirm the robustness of the reported results.

Although the ensemble fusion mechanism improves robustness and accuracy, it also introduces
increased computational complexity and resource requirements compared to single-model solutions. How-
ever, the use of relatively lightweight ConvNet architectures (ResNet-50, VGG-16, and InceptionV3) and
the choice of simple averaging fusion mitigate some of this overhead. Although the ensemble approach
enhances classification robustness and accuracy, it also reduces model interpretability by obscuring the
specific contribution of individual base models. This trade-off highlights the need for future work exploring
ensemble transparency methods, such as contribution analysis, uncertainty modeling, and attention-based
fusion mechanisms, to provide clearer insights into decision-making processes and support clinical adoption.

In addition to the above results, the proposed E-GlauNet ensemble model demonstrates notable
advancements over previous studies. Unlike traditional ensemble methods relying on simple voting
mechanisms [27], our probability-averaging strategy allows better uncertainty handling and enhances
robustness across multiple glaucoma stages. Furthermore, the customization of pre-trained models for
glaucoma-specific features, without extensive segmentation or preprocessing, contributes to improved clin-
ical applicability. To further highlight the superiority of our approach, Table 8 presents a direct comparison
with recent state-of-the-art studies.

Table 8: Comparison with recent state-of-the-art studies

Reference Method Preprocessing
required

Fusion
technique

Specificity
(%)

Accuracy
(%)

[27] ResNet-50, VGG-16,
GoogLeNet
Ensemble

Yes
(Segmentation)

Majority
voting

95.53 88.96

[28] CNN model Yes (Cropping,
Denoising)

Logistic
regression

96.20 97.51

[20] LS-SVM + IEMD Yes SVM-based
fusion

93.72 94.45

Proposed
E-GlauNet

ResNet-50, VGG-16,
InceptionV3
(Fine-tuned)

No Averaging at
probability

level

100 96.82

5 Conclusion and Future Work
Glaucoma, a retinal disease, affects millions of people worldwide each year. If left untreated, glaucoma

can cause significant vision loss in a large portion of the world’s population. As a result, early detection is
critical to prevent its progression to permanent vision loss. Traditional diagnostic approaches, such as mea-
suring the dimensions of the OC and OD, are tedious, slow, and subjective, making early identification and
diagnosis challenging. The proposed work aims to provide more efficient and accurate identification of the
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stages of glaucoma, helping to timely diagnosis and intervention to prevent vision loss and improve patient
outcomes. This study presents four different experiments, each focused on improving the differentiation
between advanced glaucoma, early glaucoma, and normal control. It achieves a validation accuracy of 98.39%
for Normal vs. (Early + Advanced Glaucoma), 98.04% for Normal vs. Advanced Glaucoma, 93.18% for
Normal vs. Early Glaucoma and 93. 55% for Early vs. Advanced Glaucoma. The research correctly classified
healthy images by attaining a specificity of 100%. The proposed ensemble model achieved a state-of-the-art
precision of 96. 82%, with 97% sensitivity and 98.57% specificity for multiclass classification of glaucoma.

Future work will involve integrating and benchmarking newer architectures, such as EfficientNet and
Transformer-based models, within the ensemble framework to further enhance classification accuracy
and robustness across diverse retinal fundus datasets. Moreover, exploring alternative ensemble fusion
techniques, including weighted averaging and feature-level stacking with an additional classifier, will be
prioritized in future studies to further optimize model performance and robustness. Currently, the model
has been evaluated only on the Harvard Dataverse dataset; however, external validation using independent
datasets such as DRIONS-DB, RIM-ONE, and REFUGE is planned as future work to comprehensively assess
the robustness and clinical applicability of the proposed approach. Although AUC-ROC and decision curve
analysis (DCA) could provide additional insights regarding clinical utility across various decision thresholds,
it was not conducted in this study due to the absence of patient-level outcome data. Incorporating AUC-
ROC and DCA will be a priority in future extensions involving larger, clinically annotated datasets. While
the current study focuses on classification performance metrics, enhancing model interpretability remains a
critical future direction. Techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM) and
other explainable AI (XAI) tools will be incorporated in future work to visualize and better understand the
specific regions influencing model predictions. These efforts will further enhance the clinical transparency
and trustworthiness of the proposed ensemble model. Future work will also explore model compression
techniques, such as knowledge distillation and pruning, to optimize the ensemble for real-time deployment
and resource-constrained environments.
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