
echT PressScience

Doi:10.32604/cmc.2025.065031

ARTICLE

Addressing Modern Cybersecurity Challenges: A Hybrid Machine Learning
and Deep Learning Approach for Network Intrusion Detection

Khadija Bouzaachane1,*, El Mahdi El Guarmah2, Abdullah M. Alnajim3 and Sheroz Khan4

1Department of Computer Sciences, Faculty of Sciences and Technology, L2IS, Cadi Ayyad University, Marrakech, 40000, Morocco
2Mathematics and Informatics Departement, Royal Air School of Aeronautics, L2IS, Marrakech, 40000, Morocco
3Department of Information Technology, College of Computer, Qassim University, Buraydah, 51452, Saudi Arabia
4Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges,
Onaizah 56447, Saudi Arabia
*Corresponding Author: Khadija Bouzaachane. Email: k.bouzaachane@uca.ac.ma or kbouzaachane@gmail.com
Received: 01 March 2025; Accepted: 19 May 2025; Published: 03 July 2025

ABSTRACT: The rapid increase in the number of Internet of Things (IoT) devices, coupled with a rise in sophisticated
cyberattacks, demands robust intrusion detection systems. This study presents a holistic, intelligent intrusion detection
system. It uses a combined method that integrates machine learning (ML) and deep learning (DL) techniques to improve
the protection of contemporary information technology (IT) systems. Unlike traditional signature-based or single-
model methods, this system integrates the strengths of ensemble learning for binary classification and deep learning
for multi-class classification. This combination provides a more nuanced and adaptable defense. The research utilizes
the NF-UQ-NIDS-v2 dataset, a recent, comprehensive benchmark for evaluating network intrusion detection systems
(NIDS). Our methodological framework employs advanced artificial intelligence techniques. Specifically, we use
ensemble learning algorithms (Random Forest, Gradient Boosting, AdaBoost, and XGBoost) for binary classification.
Deep learning architectures are also employed to address the complexities of multi-class classification, allowing for
fine-grained identification of intrusion types. To mitigate class imbalance, a common problem in multi-class intrusion
detection that biases model performance, we use oversampling and data augmentation. These techniques ensure
equitable class representation. The results demonstrate the efficacy of the proposed hybrid ML-DL system. It achieves
significant improvements in intrusion detection accuracy and reliability. This research contributes substantively to
cybersecurity by providing a more robust and adaptable intrusion detection solution.

KEYWORDS: Network intrusion detection systems (NIDS); NF-UQ-NIDS-v2 dataset; ensemble learning; decision
tree; K-means; smote; deep learning

1 Introduction
The use of networks, as one of the most exciting developments across diverse domains of applications

including smart-grids, has been resulting into gigantic volume of data. The smart-grids are designed as a
result of information technology coupled with electrical engineering to ensure optimal utilization of assets to
address shortcomings of existing electrical grids [1,2]. The use of mobile services has increased tremendously,
making a substantial number of devices and equipment monitored and managed remotely in compliant
manner, using specially designed applications. Consequently, this has resulted in cybersecurity risks at levels
whose severity is proportional to the volume of data [3,4]. Attackers can exploit software shortcomings to

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065031
https://www.techscience.com/doi/10.32604/cmc.2025.065031
mailto:k.bouzaachane@uca.ac.ma
mailto:kbouzaachane@gmail.com


2392 Comput Mater Contin. 2025;84(2)

gain access to networks and systems, exploiting the continuous flow of network traffic by undermining ML-
based detectors. These types of attacks can lead to data theft for the purpose of financial fraud, causing
significant financial and reputation damage.

To address the changing nature of cybersecurity threats, Network Intrusion Detection Systems (NIDS)
have proven to be area of intense research focus as a vital element of the defensive strategies being
developed. The utility of traditional signature-based NIDS lies in their ability to identify known cyber
threats; nevertheless, they lack the required adaptability to counter the constantly evolving strategies of
cybercriminals, who primarily target healthcare companies, ports, airports, water, oil, and energy utility
companies [5]. Apart from putting in place directives, policies, and regulations to better secure power
grids, specific security measures are emerging in the domains of capacity building and technical aspects
of security demanding careful authentication of the huge amount of data. There is thus a growing interest
in more advanced techniques, including those based on Artificial Intelligence, as a means to mitigate the
issues presented by equivalently intricate cyberattacks and thus to protect confidential information from
cybersecurity crimes.

Computational intelligence methods are powerful tools with intelligent architectural platforms to
recognize network traffic patterns and identify irregularities that indicate malicious activity. These techniques
can utilize valid and comprehensive datasets, allowing them to discover novel attack vectors that are capable
to adapt to evolving threats. However, the effectiveness of NIDS depends on the relevance and quality of the
learning dataset. Legacy datasets often lack representation of contemporary attack signatures and community
traffic characteristics. This hampers the models’ ability to generalize and perform optimally in real-world
scenarios [6].

Prior research has extensively investigated machine learning (ML) for Network Intrusion Detection
Systems (NIDS), utilizing algorithms like neural networks, decision trees, SVM, ensemble learning, ...,
etc., [7,8]. Despite these efforts, significant limitations persist. Many existing approaches are trained on
obsolete or unrepresentative datasets, hindering their ability to detect novel threats [9]. Furthermore, high
false positive/negative rates often plague these systems in real-world deployments. Crucially, computational
and real-time performance constraints, essential for practical application, are frequently neglected. This work
directly confronts these deficiencies by introducing a robust, scalable, and adaptive NIDS designed to meet
the demands of modern, dynamic network environments.

The NF-UQ-NIDS-v2 dataset [8–10] was selected based on its structural advantages and superior
representativeness compared to conventional datasets such as UNSW-NB15 and CICIDS2017. This dataset
synthesizes heterogeneous network flows from four distinct sources (UNSW-NB15, BoT-IoT, CSE-CIC-
IDS2018, and ToN-IoT), standardized into a uniform NetFlow format. Such standardization facilitates
cohesive modeling of contemporary network environments and attack vectors. The resulting comprehensive
corpus (75,987,976 flows) offers enhanced granularity, comprising 33.12% benign traffic and 66.88% diverse
attack patterns, including IoT/cloud hybrid scenarios absent in single-source datasets. Unlike UNSW-NB15,
which has been subject to criticism regarding temporal homogeneity and laboratory artifacts, NF-UQ-
NIDS-v2 retains essential metadata while eliminating redundant elements (e.g., IP addresses, ports) through
systematic preprocessing protocols. The dataset’s modular structure enables comparative performance
analysis across different network topologies through flow origin indicators. These characteristics address the
methodological requirements for research focused on feature optimization and cross-network generalization
capabilities, where traditional datasets exhibit coverage limitations and obsolete attack signatures.



Comput Mater Contin. 2025;84(2) 2393

1.1 Contribution of the Study
Our contribution to the field of intrusion detection can be summarized as follows, with a visual

representation provided in Fig. 1.

NIDS Dataset

Data preprocessing

Kmeans

NIDS ML

NIDS DL

Normal

Attack

Display attack type

Binary Classification

Multiclass Classification

Collect data

Figure 1: The proposed NIDS security farmwork

- Data Pre-processing and Analysis: A meticulous exploratory data analysis (EDA) of the NF-UQ-NIDS-
v2 dataset was performed, employing the K-means clustering algorithm for dimensionality reduction
and feature extraction. This step aimed to improve the dataset’s quality and determine the most relevant
attributes, providing the scientific community with high-performance intrusion detection data.

- Binary Classification: We undertook a detailed examination of several prominent machine learning (ML)
algorithms, namely Support Vector Machine (SVM), Decision Trees (DT), Adaboost, XGBoost, Random
Forest (RF), Gradient Boosting (GB), and Logistic Regression (LR), to assess their effectiveness in binary
classification for distinguishing between normal and anomalous network traffic.

- Multi-class Classification: To further refine the classification of intrusion types, a diverse set of deep
learning (DL) architectures, including Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM),
Deep Belief Network (DBN), Deep Neural Network (DNN), and Autoencoder, have been utilized to
improve the accuracy and robustness of multi-class intrusion classification.

By integrating both Machine Learning (ML) and Deep Learning (DL), this combined strategy provides
specific benefits depending on the type of detection required. We leverage a traditional ML model, known
for its efficiency and reliability with well-defined features, for the crucial first step: binary classification.
This allows for rapid and robust initial filtering, effectively distinguishing general attack traffic from normal
network activity. However, identifying the specific type of attack requires a deeper analysis of complex
patterns, a task where DL models excel. Therefore, we employ a DL component specifically for multi-class
classification. Its ability to automatically learn intricate relationships within the network data enables more
granular identification of various attack categories once an initial potential threat is flagged. This synergistic
architecture allows each technique to operate in its area of strength—ML for efficient broad detection and
DL for detailed threat identification—leading to a more comprehensive and effective NIDS than could be
achieved using either method alone for both tasks.

Moreover, the proposed hybrid NIDS holds significant potential for real-world deployment in critical
sectors. Environments such as healthcare and transportation are increasingly reliant on interconnected
systems, making them prime targets for cyberattacks where disruptions can have severe consequences. Our



2394 Comput Mater Contin. 2025;84(2)

system’s architecture, combining the efficiency of ML for initial threat detection with the nuanced classifica-
tion capabilities of DL for identifying specific attack types, is well-suited to these demanding scenarios. For
instance, in a healthcare setting, it could monitor network traffic for anomalies that might indicate attempts
to access sensitive patient data or disrupt critical medical equipment. Similarly, in transportation networks,
it could help secure communication channels and control systems against intrusions that could compromise
safety or operational integrity. The ability to provide both rapid alerts and detailed attack information makes
this approach a practical step towards enhancing cybersecurity resilience in vital operational environments.

1.2 Structure of Paper
The organization of the remaining sections of this paper is detailed below: Section 2 reviewing the

relevant literature on Network Intrusion Detection Systems (NIDS) developed using machine and deep
learning techniques, focusing on research published between 2020 and 2024. Section 3 outlines our method-
ology, including a detailed description of the evaluation metrics employed and provides a comprehensive
exploration of the NF-UQ-NIDS-v2 dataset. Section 4 presents a discussion of the experimental results
presented. In conclusion, Section 5 provides a summary of the main results and suggests avenues for
future investigation.

2 Literature Review
A plethora of recent studies have investigated computational intelligence algorithms to enhance the

intrusion detection rates. The following sub-sections delve into research conducted between 2020 and 2024.
The significance of these studies is discussed based on the specific type of solution proposed. Table 1 presents
a concise synthesis of the relevant literature.

2.1 NIDS with Machine Learning
Automatic learning has become a very powerful tool for developing effective NIDS models to detect

network security intrusions. In [11], the authors aim to classify intrusions using Random Forest (RF), Linear
Discriminant Analysis (LDA), Classification and Regression Trees (CART). The effectiveness of this work
has been measured on the dataset KDD-CUP and compared with recent developments in the field.

The authors in [12–15] have used ten different popular Machine Learning (ML) algorithms, including
decision tree (DT), random forest (RF), Support Vector Machine (SVM), K-means, and Expectation-
Maximization (EM) for efficient network security and computer anomaly-based intrusion detection system
(AIDS). These algorithms have been tested using the most recent highly imbalanced multiclass dataset
CICIDS2017 that simulates real network attacks. The K-Nearest Neighbor (KNN)-AIDS, DT-AIDS and
NB-AIDS models performed better and demonstrated greater ability to detect web attacks.

The authors in [16] have conducted a comprehensive review of the literature utilizing the CSE-CIC-
IDS2018, UNSW-NB15, ISCX-2012, NSL-KDD, and CIDDS-001 datasets for developing Intrusion Detection
Systems (IDSs). This work, carefully investigated how well standard machine learning methods—specifically
Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Decision Trees (DT)—performed when
applied to aforementioned datasets. The results obtained offer useful insights for creating intelligent intrusion
detection systems (IDS) that use machine learning techniques.

The model presented in the study [17] utilizes the UNSW-NB15 dataset that has not only achieved supe-
rior accuracy compared to previous research works, but also has effectively identified all attack categories.
To enhance the performance of classifiers, the research addresses the problem of class imbalance by using



Comput Mater Contin. 2025;84(2) 2395

SMOTE. Subsequently, the classification techniques of Decision Tree (DT), Random Forest (RF), Logistic
Regression (LR), K-Nearest Neighbors (KNN) and Artificial Neural Network (ANN) have been employed.

In addition, recent major works [18–21] aimed to investigate the impact of data balancing and feature
selection on ML-based network intrusion detections. These studies have applied SMOTE or ADASYN to the
IDS dataset to deal with the imbalanced dataset before applying ML algorithms.

2.2 NIDS with Deep Learning
Deep learning algorithms have shown unrivaled potential for Network Intrusion Detection Systems

(NIDS). For instance, the authors in [22] have compared Recurrent Neural Net-works (RNN), Convolutional
Neural Networks (CNN), Restricted Boltzmann Machines (RBM), Deep Neural Networks (DNN), Deep
Belief Networks (DBN) and Deep Auto-encoders (DA) by using the CSE-CIC-IDS2018 dataset and the Bot-
IoT. Their results indicated strong performance across these models, with accuracy exceeding 90%. The
authors in [23] tackled network intrusion detection with imbalanced data. They used GANs to generate more
data, then applied a combined CNN and BiLSTM model for detection. Testing on the CIC-IDS 2017 dataset,
their proposed GAN-CNN-BiLSTM approach showed significantly better accuracy and efficiency compared
to traditional methods (like Random Forest, Decision Tree) and other models (SVM, DBN, CNN, BiLSTM).

The paper [24] introduced a hybrid model using both CNNs and a Transformer encoder. After
applying under-sampling and oversampling to balance the data, the CNN extracted spatial features while
the Transformer captured temporal dependencies. This combined approach aimed to improve detection
accuracy and minimize errors (FPs/FNs). Experiments on the NSL-KDD and CICIDS2017 benchmarks
demonstrated superior performance, with higher accuracy and fewer false positives compared to existing
leading models.

In their work, the authors in [25] presented an intrusion detection system (IDS) for Internet of Things
(IoT) networks using deep learning with Long Short-Term Memory (LSTM). To improve the detection of
rare attacks despite imbalanced data, the SMOTE over-sampling technique is integrated. The authors chose
SMOTE for its simplicity and proven effectiveness in this field, compared to more complex alternatives
like GANs. Evaluated on the CICIDS2017, NSL-KDD, and UNSW-NB15 datasets, this combined LSTM-
SMOTE model showed superior performance compared to existing methods. This work offers a practical
and adaptable approach to enhance the security of IoT networks.

The research in [26] introduced a new two-stage deep learning model for intrusion detection that
integrates Long Short-Term Memory (LSTM) and Autoencoders (AE). Recognizing the need for better
defenses against constantly evolving cyber threats, the authors evaluated their LSTM-AE approach using
the CICIDS2017 and CSE-CIC-IDS2018 datasets. The study also considers other deep learning methods like
DNNs and CNNs as points of comparison. Experimental results indicate that the proposed hybrid LSTM-AE
model is effective at detecting attacks in modern network settings.

2.3 NF-UQ-NIDS-V2 Dataset
The NF-UQ-NIDS-v2 dataset has been constructed purposely for training and evaluating Network

Intrusion Detection Systems (NIDS) [27]. The dataset is publicly available for research purposes, allowing
researchers to develop and test new intrusion detection techniques. A brief overview of the research
methodology used to investigate the NF-UQ-NIDS-V2 dataset has been provided. The authors in [28]
suggested a hybrid model combining an Autoencoder (AE) and a Multi-Layer Perceptron (MLP) for DDoS
attack detection. The AE first extracts important features from network traffic, and then the MLP uses this
information to classify threats. This AE-MLP approach aims for better accuracy and fewer false alarms.



2396 Comput Mater Contin. 2025;84(2)

During tests on the recent NF-UQ-NIDS-V2 dataset, the model’s performance yielded an accuracy rate of
99.98%. The results suggest that this hybrid method performs better than several comparable techniques.
In [29], researchers introduced a new intrusion detection system that uses a Deep Neural Network. This
system performed exceptionally well on the NF-UQ-NIDS-V2 dataset, a standard benchmark, achieving
a reported accuracy exceeding 98%. The authors in [30] assessed an Extra Trees ensemble classifier using
the merged NF-UQ-NIDS data. The classifier achieved 97.25% accuracy for binary classification and 70.81%
accuracy for multiclass classification.

These studies have demonstrated that NIDS remain an active area of research, along with the growing
adoption of computational intelligence techniques, such as Random Forest, Decision Trees, Support Vector
Machines, K-Nearest Neighbor and Convolutional Neural Networks, Recurrent Neural Networks, Long
Short-Term Memory networks, etc. They have emphasized the importance of addressing data imbalance and
reducing reliance on labelled data for practical implementation reasons. Furthermore, because it is newer and
more balanced than previous datasets, the NF-UQ-NIDS-v2 dataset has been recognized as an invaluable
tool for training and evaluating NIDS models.

Table 1: Summary of the intrusion detection system

Ref. Dataset used Models Classification
type

Best accuracy

[11] KDD’99CUP RF Multi-class 99.81%
[12] CICIDS2017 ANN, DT, k-NN, RF, SVM,

CNN
Multi-class 99.52%

[13] CICIDS2017 Random forest (RF), linear
support vector machine
(LSVM), Gaussian Naive
Bayes (GNB), and logistic

regression (LG)

Multi-class 99% for RF

[14] CICIDS2017 Random Forest (RF), Bayes
Net (BN), Random Tree

(RT), Naive Bayes (NB), J48,
and Feature Selection

Multi-class 99.87%

[15] CICIDS2017
UNSW-NB15, ICS

LR, GNB, KNN, DT, AdaB,
RF, CNN, CNN-LSTM,

LSTM, GRU, RNN, DNN

Multi-class 99% accuracy, precision,
recall, and F-score for RF

and CICIDS-2017

[16]

CSE-CIC-IDS2018,
UNSW-NB15,

ISCX-2012,
NSL-KDD,
CIDDS-001

SVM, K-Nearest
Neighbors (KNN),
and Decision Trees

(DT),

Multi-class

99.92% DT
(CSE-CIC-IDS 2018)

99.92% DT for NSL-KDD
100% ISCX 2012

100% DT CIDDS-001
99.84%. DT UNSW-NB15

[17] UNSW-NB15 RF, DT, LR, KNN and ANN,
SMOTE

Multi-class 95% RF

[18] NSL-KDD,
UNSW-NB15

DT, RF and KNN. Multi-class 82.35% RF

(Continued)



Comput Mater Contin. 2025;84(2) 2397

Table 1 (continued)

Ref. Dataset used Models Classification
type

Best accuracy

[22] CSE-CIC-IDS2018,
Bot-IoT

DNNs RNNs

Multi-class Over 90% for all
models

CNNs RBMs
DBNs DBMs

DA
[23] CIC-IDS 2017 GAN-CNN-BiLSTM Multi-class 96.32%

[24] NSL-KDD
CICIDS2017

CNN +
Transformer

Multi-class 99.22 (NSL-KDD)
99.77 CICIDS2017)

[25]
CICIDS2017,
NSL-KDD,

UNSW-NB15
SMOTE + LSTM Binary

99.34% (CICIDS2017)
99.75% (NSL-KDD)

98.31% (UNSW-NB15)

[26] CICIDS-2017,
CSE-CICIDS-2018

LSTM-AE Multi-class 99.99% (CICIDS-2017)
99.10%

(CSE-CICIDS-2018)
[28] NF-UQ-NIDS-V2 AE-MLP DDOS

classification
99.98%

[29] NF-UQ-NIDS-V2 GNNs Multi-class Over 98%

[30] NF-UQ-NIDS ExtraTrees Binary 97.25%
Multi-class 70.81%

3 Methodology

3.1 Data Gathring
A comparative study by the authors in [31] established a framework for assessing the quality of modern

IDS datasets, encompassing dimensions such as variety, adequacy, balanced representation, attack diversity,
protocol diversity and labeling accuracy. The results obtained indicated that the NF-UQ-NIDS-v2 dataset
is the most comprehensive and of the highest quality among those evaluated, suggesting its adoption as
the primary dataset for IDS development to create more robust, accurate and generalizable models against
various threats.

The NF-UQ-NIDS-V2 dataset comprises network traffic data for intrusion detection from diverse
network setups and attack settings, integrating four datasets: NF-UNSW-NB15, NF-BoT-IoT, NF-TON-
IoT, and CSE-CIC-IDS2018. The NetFlow-based NF-UNSW-NB15 dataset is labeled with attack categories
and further classified into nine subcategories: Benign, Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic,
Reconnaissance, Shellcode, Worms. The NF-BoT-IoT dataset, an IoT NetFlow-based dataset, is derived from
the BoT-IoT dataset, with features extracted from pcap files and flows labeled with five attack categories:
Benign, Reconnaissance, DDoS, DoS, Theft. The NF-ToN-IoT dataset, another NetFlow-based IoT dataset,
utilizes ToN-IoT pcaps and includes categories like Benign, Backdoor, DoS, DDoS, Injection, MITM,
Password, Ransomware, Scanning, and XSS. The NF-CSE-CICIDS2018 dataset, a NetFlow-based dataset, was
created using the original CSE-CIC-IDS2018 pcap files with a distribution of Benign, BruteForce, Bot, DoS,
DDoS, Infiltration, and Web Attacks. The merged datasets form a comprehensive NIDS dataset emulating
diverse attack scenarios and network flows, totaling 75,987,976 logs categorized as benign (33.12%) and
malicious (66.88%), with specific attack category distribution detailed in Table 2.



2398 Comput Mater Contin. 2025;84(2)

Table 2: Distribution of attack categories

Class Count
Worms 164

Shellcode 1427
Analysis 2299

Theft 2431
Ransomware 3425

MITM 7723
Generic 16,560

Backdoor 18,978
Fuzzers 22,310
Exploits 31,551

Infiltration 116,361
Brute force 123,982

Bot 143,097
Injection 684,897
Password 1,153,323

XSS 2,455,020
Reconnaissance 2,633,778

Scanning 3,781,419
Dos 17,875,585

DDoS 21,748,351
Benign 25,165,295

3.2 Data Preparation
To manage computational demands of the large NF-UQ-NIDS-v2 dataset, each constituent dataset (NF-

UNSW-NB15-v2, NF-BoTIoT-v2, NF-ToN-IoT-v2, NF-CSE-CIC-IDS2018-v2) was processed independently.
Attack classes were categorized as unique or shared, with shared classes consolidated as in Table 3.

Table 3: Sample of unique and common attack classes within the NF-UQ-NIDS-v2 dataset, for benign and DDos class,
categorized by their source datasets

Class Original dataset Number of instances Total number of instances
Benign NF-UNSW-NB15-v2 2,295,222 25,165,295

NF-BoT-IoT-v2 135,037
NF-ToN-IoT-v2 6,099,469

NF-CSE-CIC-IDS2018-v2 16,635,567
DDoS NF-BoT-IoT-v2 18,331,847 21,748,351

NF-ToN-IoT-v2 2,026,234
NF-CSE-CIC-IDS2018-v2 1,390,270



Comput Mater Contin. 2025;84(2) 2399

3.3 Class Exploration
To address class overlap issues mentioned in [32], the “Exploit” class was excluded due to diverse

attack instances. Furthermore, the “Password” class, encompassing both brute-force and network sniffing
attacks [33], was also removed due to heterogeneity, especially the inclusion of network sniffing attacks
not represented elsewhere and differing significantly from brute-force methods. Web attacks, exploiting
application layer vulnerabilities, were categorized under “Web Attack,” including Injection, XSS, Infiltration,
Fuzzers, Generic, and Analysis, based on OWASP’s top ten critical web vulnerabilities [34].

3.4 Instance Sampling
To expedite model training, the dataset initially underwent Mini-Batch K-means clustering, a com-

putationally efficient variant of the K-means algorithm, to procure a representative sample for each class.
This algorithm distinguishes itself by processing data in smaller, manageable subsets. Specifically, only a
fraction of the complete dataset is loaded into Random Access Memory (RAM) during each iteration, thereby
substantially diminishing memory demands. This methodological choice not only accelerates the algorithm’s
execution time but also enhances the efficient allocation of computational resources. Furthermore, cluster
sampling was employed to select instances from individual CSV files, each containing homogeneous class
instances. This probabilistic sampling technique entailed the aggregation of original instances into clusters
based on their Euclidean distances, followed by the proportional extraction of instances from each cluster.

In practical implementation, CSV files corresponding to identical classes were segregated into distinct
folders. Subsequently, these files were concatenated and ingested into a ‘dataset’ DataFrame structure. For
illustrative purposes, the Denial of Service (DoS) class, which comprises 17,875,585 instances, is visually
represented in Fig. 2. Following this, the MiniBatchKMeans algorithm, sourced from the scikit-learn library,
was implemented to discern cluster centroids and subsequently group the instances.

Figure 2: List of DOS class instances with folder structure overview

The parameter ‘n-clusters’, representing the number of clusters, constitutes a hyperparameter that can
be optimized through diverse algorithmic approaches. However, for datasets exceeding 20,000 instances, a
cluster count of 1000 was determined to be sufficiently effective in enhancing computational efficiency within
this study. The ‘random-state’ parameter, which dictates the initialization of cluster centroids, was empirically
set to a value of 0.3.

The DOS dataset was subsequently sampled to yield approximately 2500 instances. The K-means
clustering process, coupled with the sampling operation, was iteratively applied to each file containing
instances of the same class.

Notably, the number of clusters was dynamically adjusted based on dataset size: reduced to 500 for
instances below 20,000, to 250 for instances below 10,000, and further reduced to 125 for instances below



2400 Comput Mater Contin. 2025;84(2)

5000. Subsequent to the sampling operation, a more balanced class distribution was observed, as evidenced
by the following diagrams, Fig. 3.

Figure 3: K-means clustering-based sampling to create novel classes

3.5 Normalization
The subsequent step is to normalize the features after the sampling process. This conversion is required

to address the significant differences in scale among the various feature attributes. By normalizing these
ranges to a common interval, we ensure that all attributes contribute equally to the classification process. We
have chosen to normalize the minimum and maximum of the instances using the Eq. (1):

xscaled = (x − xmin) /(xmax − xmin) (1)

where: x is the original feature value, xmin and xmax are the minimum and maximum values of the feature.
This normalization technique entails scaling of each attribute value to a range between 0 and 1, effectively
creating a uniform scaling across all attributes.

3.6 Statistical Learning
This research has explored intrusion detection (ID) using a two-prong strategy. First, we have focused

on binary classification, employing a set of well-regarded machine learning models: Random Forest, Logistic
Regression, AdaBoost, Gradient Boosting, XGBoost, Support Vector Machine, and Decision Trees. Next, we
have addressed the more complex challenge of multi-class intrusion detection (ID). To capture the evolving
nature of network traffic, we have utilized powerful models such as LSTM, DNN, GRU, Autoencoder and
DBN. Before delving into multi-class analysis, we have prepared the data. To address the uneven distribution
of different types of intrusions, we have employed the Synthetic Minority Oversampling Technique (SMOTE)
to balance the dataset [19].

3.7 Benchmarking
The quantitative metrics are essential for a thorough evaluation of the algorithms. These metrics

provide objective measures of an algorithm’s effectiveness. The NF-UQ-NIDS-v2 dataset is used Within this
investigation to assess the performance of NIDSs, employing a combination of metrics.

3.7.1 Confusion Matrix
The confusion matrix allows for a complete evaluation of an IDS’s ability to accurately classify network

traffic as either attack or normal, resulting in four potential outcomes [35], as presented in Table 4.



Comput Mater Contin. 2025;84(2) 2401

Table 4: Confusion matrix for predicted vs. actual

Predicted class

Normal Attack

Actual class Normal True negative (TN) False positive (FP)
Attack False negative (FN) True positive (TP)

3.7.2 Precision
Precision, as expressed in Eq. (2), measures the proportion of actual positive cases correctly identified

by the model out of all cases the model predicted as positive.

Precision = TP
TP + FP

(2)

3.7.3 Recall
Recall is defined by the following Eq. (3):

Recall = TP
TP + FN

(3)

It calculates the percentage of actual positive cases that the model accurately predicted as positive.

3.7.4 Accuracy
Accuracy, a metric for evaluating performance, is calculated as the proportion of correct predictions,

considering both true positives (TP) and true negatives (TN). See Eq. (4) for the specific formula.

Accuracy = TN + TP
(FN + FP + TP + TN)

(4)

3.7.5 F1-Score
The F1-score seeks to establish an equilibrium between Precision and Recall, as illustrated by the Eq. (5).

F1 − score = 2 ∗ (Precision ∗ Recal l)
(Precision + Recal l)

(5)

3.7.6 Training and Prediction Time
This research evaluated two key performance indicators: training time and prediction time. Training

time encompasses the duration required for the model to learn from the provided training data. This includes
the time spent on data processing, hyperparameter tuning, and the subsequent model building phase.
Conversely, prediction time measures the length of time needed for the trained model to generate predictions
for novel, previously unseen data instances.

Prediction time is of paramount importance for real-time intrusion detection systems, where swift
response times are crucial for effectively mitigating potential threats.



2402 Comput Mater Contin. 2025;84(2)

3.7.7 Macro-Averaged AUC-ROC
Macro-Averaged AUC-ROC provides a measure of the model’s performance across all classes, where

each class contributes equally to the final score, without considering class size or relative importance.

3.7.8 Micro-Averaged AUC-ROC
Micro-Averaged AUC-ROC represents the overall performance of the model across all classes, consid-

ering the frequency of each class. It gives more weight to larger classes.

3.7.9 Computational Cost
Computational cost in deep learning quantifies the necessary computing resources—primarily pro-

cessing operations and memory—for a model’s training and inference phases. Factors like the model’s size
(parameter count), training time, and prediction speed directly indicate this cost.

4 Results
To assess accurately the performance of the proposed models, it is imperative to employ instances that

were not utilized during the training process. This requires the division of our dataset of 81,951 into two
distinct subsets: a training set of 80% of the overall dataset and a test set of 20% of the overall dataset. The
size of the training data is 65,560 and the size of the testing data is 16,391. Training of our proposed models
has been implemented on a workstation with the following specifications: Intel(R) Core(TM) i7-6600U,
CPU@2.60 GHz (4 CPUs), 16Go in RAM memory, and we used for this purpose Python programming
language and the Scikit-learn, keras, Numpy, and pandas libraries.

4.1 Binary Classification
This section evaluates several machine learning algorithms for binary attack classification. The models

tested include Logistic Regression (LR), Support Vector Machines (SVM), Decision Trees (DT), Random
Forests (RF), AdaBoost, Gradient Boosted Trees (GBT), and XGBoost. The dataset used for this task features a
balanced distribution between classes, as shown in Fig. 4. Before training, the dataset was thoroughly shuffled
to help ensure unbiased model learning and improve the models’ ability to generalize to new data. This
shuffling was performed using the shuffle function available in the Keras library.

Figure 4: Graphical representation of attack vs. benign classes



Comput Mater Contin. 2025;84(2) 2403

We trained each model using fixed hyperparameters. For the Support Vector Machine (SVM), the
regularization parameter was set to 50 to balance the classification margin and errors. We used the default
settings for the Logistic Regression (LR) and Decision Tree (DT) models. For Random Forest (RF), the
number of trees was set to 11. For the boosting algorithms, the number of boosting stages was set to 100
for Gradient Boosting (GBT), 100 for AdaBoost, and 240 for XGBoost. As detailed in Table 5, the training
process resulted in the following accuracies: 0.99 for SVM, 0.86 for LR, 1.0 for DT, AdaBoost, and RF, and
0.99 for GBT and XGBoost.

Table 5: Summary of training process

Models Training time (s) Accuracy
SVM 1.44427 0.99

LR 0.00417 0.86
DT 1.49690 1.0
RF 0.01253 1.0
GB 0.29613 0.99

Adaboost 0.28366 1.0
XGboost 0.01257 0.99

The performance metrics summarized in Table 6 clearly show that Logistic Regression (LR) performed
significantly worse than the other models, achieving only 85% across accuracy, precision, recall, and F1-score.
More critically, LR resulted in a very high number of false negatives (1129 instances), meaning it frequently
misclassified actual attacks as benign traffic. This level of performance is inadequate for a reliable intrusion
detection system.

Table 6: Summary of results of testing process

LR SVM DT RF Adaboost GBT XGB
Time of prediction (s) 0.010 6.025 0.0109 0.031 0.848 0.08 0.045

Accuracy 0.85 0.998 0.999 1.0 0.999 0.999 0.9999
Precision 0.858 0.998 0.999 1.0 0.999 0.999 0.999

Recall 0.858 0.998 0.999 1.0 0.999 0.999 0.999
F1-score 0.858 0.998 0.999 1.0 0.999 0.999 0.999

FN count 1129 12 3 0 1 0 0

In contrast, all other evaluated models demonstrated excellent performance. SVM, DT, AdaBoost, GBT,
and XGB all achieved accuracy, precision, recall, and F1-scores of 99.8% or 99.9%. While highly effective,
these models still produced a small number of false negatives (ranging from 0 for RF to 3 for DT). Random
Forest (RF) stood out as the top performer, achieving perfect scores across all metrics: 100% accuracy,
precision, recall, and F1-score. Crucially, RF resulted in zero false negatives, meaning it correctly identified
every single attack instance in the test set, Fig. 5.



2404 Comput Mater Contin. 2025;84(2)

Figure 5: Confusion matrix



Comput Mater Contin. 2025;84(2) 2405

When considering computational efficiency (Tables 5 and 6), LR offered the fastest training time
(0.00417 s), but its poor accuracy makes this irrelevant. SVM was notably slow to train (1.44427 s). RF
exhibited moderate training (0.01253 s) and prediction times (0.031 s), which are practical for real-world
applications where high accuracy and reliability are paramount.

4.2 Multi-Class Classification
This section evaluated five different deep learning models—LSTM, GRU, DNN, DBN, and

Autoencoder—for the complex task of classifying network traffic into 13 distinct categories, including various
attack types and benign traffic.

A key challenge was the significant imbalance in the dataset, with the ‘Shellcode’ attack class being
heavily underrepresented (Table 7). To ensure fair and robust model training, we applied the SMOTE
technique to synthetically generate more ‘Shellcode’ examples, creating a more balanced distribution for the
models to learn from (as shown in Fig. 6).

Figure 6: Class distribution after SMOTE application

Table 7: Distribution of attack categories

Class Count
Benign 41,002

Web attacks 14,667
DDos 2506

Reconnaissance 2498
DOS 2497

Ransomware 2493
Bot 2489

Brute force 2485
Backdoor 2485
Scanning 2500

MITM 2471
Theft 2431

Shellcode 1427



2406 Comput Mater Contin. 2025;84(2)

During training, we monitored both training and validation accuracy to guide the learning process
for each model (Fig. 7). In the final testing phase, the Deep Belief Network (DBN) model clearly stood
out. It achieved the highest test accuracy at 99% (Fig. 8a), significantly outperforming the other four
models evaluated.

Figure 7: Training and validation accuracy of DL models

Furthermore, The Receiver Operating Characteristic (ROC) curve analysis provided further strong
evidence of the DBN’s effectiveness (Fig. 8b). Both the micro-averaged and macro-averaged Area Under the
Curve (AUC) scores were nearly perfect at 0.9996. This highlights the DBN’s outstanding ability to reliably
distinguish between different attack types and normal traffic with very high sensitivity and specificity.



Comput Mater Contin. 2025;84(2) 2407

Figure 8: (a) DL model performance: test accuracy comparison; (b) ROC curve analysis of DBN model for attack type

We assessed the computational characteristics of each model (summarized in Table 8). This revealed
significant differences:

• The Autoencoder model was the fastest to train (134 s) and offered instant predictions (1 s), but had the
highest number of parameters (32,503), indicating greater model complexity.

• The Deep Belief Network (DBN), after its pre-training phase, resulted in a final classifier with the fewest
parameters (10,765). It also achieved very fast predictions (1 s), with a moderate training time (527 s).

• Recurrent models, LSTM and GRU, showed considerable complexity (28,237 and 21,389 parameters)
and required the longest training times (587 s and 540 s, respectively), though their prediction speeds
remained quick (3–4 s).

• The standard Deep Neural Network (DNN) had moderate complexity (14,605 parameters) and fast
predictions (2 s), but unexpectedly took the longest to train in our setup (660 s).

Table 8: Performance comparison of deep learning models for multi-class attack classification

DL models GRU LSTM DBN DNN Autoencoder
Training time (s) 540 587 527 660 134

Time of prediction (s) 4 1 3 2 1
Computational cost (parameters) 21,389 28,237 10,765 14,605 32,503

5 Discussion and Conclusions
This study aimed to identify an effective machine learning model for Network Intrusion Detection

Systems (NIDS). After evaluating several algorithms on NF-UQ-NIDS-v2 dataset, we selected a hybrid
approach combining Random Forest (RF) and Deep Belief Network (DBN). The results showed that RF
performs very well on the initial task of binary classification (separating normal from attack traffic), achieving
high accuracy “100%”. This efficient filtering step means only suspected malicious traffic is passed to the DBN
model. The DBN specializes in the more complex multiclass classification needed to determine the specific
type of attack. This two-stage architecture leverages the RF’s speed and accuracy for initial filtering, and the
DBN’s capability to model complex relationships for detailed attack categorization.



2408 Comput Mater Contin. 2025;84(2)

Despite its potential, the hybrid RF-DBN method involves inherent limitations that must be carefully
addressed for effective real-world deployment. Error propagation stands out as the most critical limitation.
Specifically, if the initial Random Forest (RF) incorrectly flags benign traffic as an attack (a False Positive),
it triggers unnecessary processing by the Deep Belief Network (DBN). This can lead to false alerts if the
DBN fails to correct the initial misclassification. To mitigate this, one practical approach is to train the
DBN specifically on the False Positives generated by the RF, enabling it to potentially rectify errors from the
first stage.

Furthermore, the issue of interpretability arises. While Random Forests are already less transparent than
simple decision trees, DBNs are notoriously opaque “black boxes.” Consequently, understanding precisely
why the system classified a particular network flow as a specific type of attack becomes difficult. This lack of
clarity complicates the analysis of security alerts and can hinder trust in the system’s decisions. To address
this challenge, tools like SHAP or LIME can be employed. These techniques provide local explanations for
the model’s outputs by identifying the features that most influenced a given prediction.

Another significant concern relates to the system’s ability to generalize to new, previously unseen attacks
(Zero-Day threats). Because the model is trained only on known attack types present in the dataset, it may
struggle to correctly identify entirely novel threats or significant variations of existing attacks that were not
part of its training experience. Several strategies can help address this:

• Firstly, implementing a process for regularly retraining both models using recent network data that
includes newly identified threats is crucial.

• Secondly, supplementing the RF-DBN architecture with an unsupervised model, such as an Autoen-
coder, can be beneficial. Such models excel at detecting highly unusual behavior, even if it doesn’t match
any known attack signature, effectively acting as a safety net.

• Finally, continuous monitoring of key performance indicators, like detection rates and false alert
frequencies, is essential. Any degradation in performance should be investigated promptly, as it might
signal the emergence of new, undetected threats.

Although we used SMOTE to address the dataset’s initial class imbalance, we need to consider how
the model would perform with severely unbalanced data. In real-world situations, some critical attacks are
extremely rare, creating much greater imbalance than addressed in this study. This extreme rarity poses a
challenge: the initial Random Forest stage might fail to detect these infrequent attacks, and even if they
reach the Deep Belief Network, learning their patterns effectively can be difficult, despite oversampling.
Consequently, the system’s ability to detect these rare but important threats could be reduced. To handle such
scenarios better, future work could explore more advanced strategies beyond standard SMOTE. Options
include adaptive sampling techniques (like ADASYN), cost-sensitive learning (which gives more weight to
errors on rare classes), or ensemble methods specifically designed for imbalanced data. Evaluating the model
under these demanding, highly imbalanced conditions is crucial for ensuring its reliability in real-world
network environments

In conclusion, while the hybrid RF-DBN model demonstrates significant potential for intrusion
detection due to its specialized two-stage structure, its successful deployment hinges on acknowledging and
proactively managing its inherent limitations. Implementing practical solutions, such as those suggested for
error propagation, interpretability, and zero-day detection, will be vital for building a robust, reliable NIDS
capable of adapting to the constantly evolving threat landscape.

Acknowledgement: The authors would like to express their gratitude to all the editors and anonymous reviewers for
their insightful comments and suggestions. They also wish to thank the College of Computer, Qassim University in
Saudi Arabia, L2IS laboratory at Cadi Ayyad University in Marrakech and the College of Engineering and Information



Comput Mater Contin. 2025;84(2) 2409

Technology at Onaizah Colleges in Saudi Arabia for their support. The researchers would like to thank Onaizah College
of Engineering and Information Technology, Onaizah Colleges, for funding the publication of this project.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Khadija
Bouzaachane, Abdullah M. Alnajim; draft manuscript preparation: Khadija Bouzaachane, El Mahdi El Guarmah;
funding acquisition and supervision: Khadija Bouzaachane, El Mahdi El Guarmah, Abdullah M. Alnajim, Sheroz Khan;
review: Khadija Bouzaachane, El Mahdi El Guarmah, Abdullah M. Alnajim, Sheroz Khan. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this study are available
within the article in Section 2.3, in this link: https://staff.itee.uq.edu.au/marius/NIDS_datasets/ [27] (accessed on 18
May 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Radoglou Grammatikis P, Sarigiannidis P, Efstathopoulos G, Panaousis E. ARIES: a novel multivariate intrusion

detection system for smart grid. Sensors. 2020;20(18):5305. doi:10.3390/s20185305.
2. Yan Y, Qian Y, Sharif H, Tipper D. A survey on cyber security for smart grid communications. IEEE Commun

Surv Tutor. 2012;14(4):998–1010. doi:10.1109/SURV.2012.010912.00035.
3. AlHaddad U, Basuhail A, Khemakhem M, Eassa FE, Jambi K. Ensemble model based on hybrid deep learning for

intrusion detection in smart grid networks. Sensors. 2023;23(17):7464. doi:10.3390/s23177464.
4. Kavre M, Gadekar A, Gadhade Y. Internet of things (IoT): a survey. In: 2019 IEEE Pune Section International

Conference (PuneCon); 2019 Dec 18–20; Pune, India. p. 1–6. doi:10.1109/punecon46936.2019.9105831.
5. Zhang C, Patras P, Haddadi H. Deep learning in mobile and wireless networking: a survey. IEEE Commun Surv

Tutor. 2019;21(3):2224–87. doi:10.1109/COMST.2019.2904897.
6. Abdullahi M, Baashar Y, Alhussian H, Alwadain A, Aziz N, Capretz LF, et al. Detecting cybersecurity attacks in

Internet of Things using artificial intelligence methods: a systematic literature review. Electronics. 2022;11(2):198.
doi:10.3390/electronics11020198.

7. Al-Riyami S, Lisitsa A, Coenen F. Cross-datasets evaluation of machine learning models for intrusion detection
systems. In: Proceedings of Sixth International Congress on Information and Communication Technology.
Singapore: Springer; 2021. p. 815–28. doi:10.1007/978-981-16-2102-4_73.

8. Apruzzese G, Pajola L, Conti M. The cross-evaluation of machine learning-based network intrusion detection
systems. IEEE Trans Netw Serv Manag. 2022;19(4):5152–69. doi:10.1109/tnsm.2022.3157344.

9. Vourganas IJ, Michala AL. Applications of machine learning in cyber security: a review. J Cybersecur Priv.
2024;4(4):972–92. doi:10.3390/jcp4040045.

10. Luay M, Layeghy S, Hosseininoorbin S, Sarhan M, Moustafa N, Portmann M. Temporal analysis of NetFlow
datasets for network intrusion detection systems. arXiv:2503.04404. 2025.

11. Saranya T, Sridevi S, Deisy C, Chung TD, Khan MKAA. Performance analysis of machine learning algorithms in
intrusion detection system: a review. Procedia Comput Sci. 2020;171(4):1251–60. doi:10.1016/j.procs.2020.04.133.

12. Maseer ZK, Yusof R, Bahaman N, Mostafa SA, Foozy CFM. Benchmarking of machine learning for anomaly
based intrusion detection systems in the CICIDS2017 dataset. IEEE Access. 2021;9:22351–70. doi:10.1109/access.
2021.3056614.

13. Al Lail M, Garcia A, Olivo S. Machine learning for network intrusion detection—a comparative study. Future
Internet. 2023;15(7):243. doi:10.3390/fi15070243.

https://staff.itee.uq.edu.au/marius/NIDS_datasets/
https://doi.org/10.3390/s20185305
https://doi.org/10.1109/SURV.2012.010912.00035
https://doi.org/10.3390/s23177464
https://doi.org/10.1109/punecon46936.2019.9105831
https://doi.org/10.1109/COMST.2019.2904897
https://doi.org/10.3390/electronics11020198
https://doi.org/10.1007/978-981-16-2102-4_73
https://doi.org/10.1109/tnsm.2022.3157344
https://doi.org/10.3390/jcp4040045
https://doi.org/10.1016/j.procs.2020.04.133
https://doi.org/10.1109/access.2021.3056614
https://doi.org/10.1109/access.2021.3056614
https://doi.org/10.3390/fi15070243


2410 Comput Mater Contin. 2025;84(2)

14. Kurniabudi K, Stiawan D, Idris MYB, Bamhdi AM, Budiarto R. CICIDS-2017 dataset feature analysis with
information gain for anomaly detection. IEEE Access. 2020;8:132911–21. doi:10.1109/access.2020.3009843.

15. Elmrabit N, Zhou F, Li F, Zhou H. Evaluation of machine learning algorithms for anomaly detection. In: 2020
International Conference on Cyber Security and Protection of Digital Services (Cyber Security); 2020 Jun 15–19;
Dublin, Ireland. p. 1–8. doi:10.1109/cybersecurity49315.2020.9138871.

16. Kilincer IF, Ertam F, Sengur A. Machine learning methods for cyber security intrusion detection: datasets and
comparative study. Comput Netw. 2021;188:107840. doi:10.1016/j.comnet.2021.107840.

17. Ahmed HA, Hameed A, Bawany NZ. Network intrusion detection using oversampling technique and machine
learning algorithms. PeerJ Comput Sci. 2022;8(1):e820. doi:10.7717/peerj-cs.820.

18. Barkah AS, Selamat SR, Abidin ZZ, Wahyudi R. Impact of data balancing and feature selection on machine
learning-based network intrusion detection. JOIV: Int J Inform Visualization. 2023;7(1):241–8. doi:10.30630/joiv.7.
1.1041.

19. Jiao X, Li J. An effective intrusion detection model for class-imbalanced learning based on SMOTE and attention
mechanism. In: 2021 18th International Conference on Privacy, Security and Trust (PST); 2021 Dec 13–15; Auckland,
New Zealand. p. 1–6. doi:10.1109/pst52912.2021.9647756.

20. Ahsan R, Shi W, Corriveau JP. Network intrusion detection using machine learning approaches: addressing data
imbalance. IET Cyber Phys Syst Theory Appl. 2022;7(1):30–9. doi:10.1049/cps2.12013.

21. Karatas G, Demir O, Sahingoz OK. Increasing the performance of machine learning-based IDSs on an imbalanced
and up-to-date dataset. IEEE Access. 2020;8:32150–62. doi:10.1109/access.2020.2973219.

22. Ferrag MA, Maglaras L, Moschoyiannis S, Janicke H. Deep learning for cyber security intrusion detection:
approaches, datasets, and comparative study. J Inf Secur Appl. 2020;50(1):102419. doi:10.1016/j.jisa.2019.102419.

23. Li S, Li Q, Li M. A method for network intrusion detection based on GAN-CNN-BiLSTM. Int J Adv Comput Sci
Appl. 2023;14(5):507–15. doi:10.14569/ijacsa.2023.0140554.

24. Chen H, You GR, Shiue YR. Hybrid intrusion detection system based on data resampling and deep learning. Int J
Adv Comput Sci Appl. 2024;15(2):121–35. doi:10.14569/ijacsa.2024.0150214.

25. Sayegh HR, Dong W, Al-madani AM. Enhanced intrusion detection with LSTM-based model, feature selection,
and SMOTE for imbalanced data. Appl Sci. 2024;14(2):479. doi:10.3390/app14020479.

26. Hnamte V, Nhung-Nguyen H, Hussain J, Hwa-Kim Y. A novel two-stage deep learning model for network
intrusion detection: lSTM-AE. IEEE Access. 2023;11:37131–48. doi:10.1109/access.2023.3266979.

27. Sarhan M, Layeghy S, Portmann M. Towards a standard feature set for network intrusion detection system datasets.
Mob Netw Appl. 2022;103(1):108379. doi:10.1007/s11036-021-01843-0.

28. Adeniyi O, Sadiq AS, Pillai P, Aljaidi M, Kaiwartya O. Securing mobile edge computing using hybrid deep learning
method. Computers. 2024;13(1):25. doi:10.3390/computers13010025.

29. Gu Z, Lopez DT, Alrahis L, Sinanoglu O. Always be pre-training: representation learning for network intrusion
detection with GNNs. arXiv:2402.18986v1. 2024.

30. Sarhan M, Layeghy S, Moustafa N, Portmann M. NetFlow datasets for machine learning-based network intru-
sion detection systems. In: Big data technologies and applications. Cham, Switzerland: Springer International
Publishing; 2021. p. 117–35. doi: 10.1007/978-3-030-72802-1_9.

31. Pavlov A, Voloshina N. Dataset selection for attacker group identification methods. In: 2021 30th Conference of
Open Innovations Association FRUCT; 2021 Oct 27–29; Oulu, Finland. p. 171–6.

32. Zoghi Z, Serpen G. UNSW-NB15 computer security dataset: analysis through visualization. Secur Priv.
2024;7(1):e331. doi:10.1002/spy2.331.

33. Derbyshire R, Green B, Prince D, Mauthe A, Hutchison D. An analysis of cyber security attack taxonomies. In:
2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW); 2018 Apr 23–27; London, UK.
p. 153–61. doi:10.1109/EuroSPW.2018.00028.

34. Ben Fredj O, Cheikhrouhou O, Krichen M, Hamam H, Derhab A. An OWASP top ten driven survey on web
application protection methods. In: Risks and security of internet and systems. Cham, Switzerland: Springer
International Publishing; 2021. p. 235–52. doi: 10.1007/978-3-030-68887-5_14.

35. Gulshan K. Evaluation metrics for intrusion detection systems—a study. Int J Comput Sci Mobile Appl.
2014;2(11):11–7.

https://doi.org/10.1109/access.2020.3009843
https://doi.org/10.1109/cybersecurity49315.2020.9138871
https://doi.org/10.1016/j.comnet.2021.107840
https://doi.org/10.7717/peerj-cs.820
https://doi.org/10.30630/joiv.7.1.1041
https://doi.org/10.30630/joiv.7.1.1041
https://doi.org/10.1109/pst52912.2021.9647756
https://doi.org/10.1049/cps2.12013
https://doi.org/10.1109/access.2020.2973219
https://doi.org/10.1016/j.jisa.2019.102419
https://doi.org/10.14569/ijacsa.2023.0140554
https://doi.org/10.14569/ijacsa.2024.0150214
https://doi.org/10.3390/app14020479
https://doi.org/10.1109/access.2023.3266979
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.3390/computers13010025
https://doi.org/10.1007/978-3-030-72802-1_9
https://doi.org/10.1002/spy2.331
https://doi.org/10.1109/EuroSPW.2018.00028
https://doi.org/10.1007/978-3-030-68887-5_14

	Addressing Modern Cybersecurity Challenges: A Hybrid Machine Learning and
obreakspace Deep Learning Approach for Network Intrusion Detection
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Results
	5 Discussion and Conclusions
	References


