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ABSTRACT: With the birth of Software-Defined Networking (SDN), integration of both SDN and traditional
architectures becomes the development trend of computer networks. Network intrusion detection faces challenges in
dealing with complex attacks in SDN environments, thus to address the network security issues from the viewpoint of
Artificial Intelligence (AI), this paper introduces the Crayfish Optimization Algorithm (COA) to the field of intrusion
detection for both SDN and traditional network architectures, and based on the characteristics of the original COA,
an Improved Crayfish Optimization Algorithm (ICOA) is proposed by integrating strategies of elite reverse learning,
Levy flight, crowding factor and parameter modification. The ICOA is then utilized for AI-integrated feature selection
of intrusion detection for both SDN and traditional network architectures, to reduce the dimensionality of the data
and improve the performance of network intrusion detection. Finally, the performance evaluation is performed by
testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN
dataset for SDN-based networks. Experimental results show that ICOA improves the accuracy by 0.532% and 2.928%
respectively compared with GWO and COA in traditional networks. In SDN networks, the accuracy of ICOA is 0.25%
and 0.3% higher than COA and PSO. These findings collectively indicate that AI-integrated feature selection based on
the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.

KEYWORDS: Software-defined networking (SDN); intrusion detection; artificial intelligence (AI); feature selection;
crayfish optimization algorithm (COA)

1 Introduction

1.1 Research Background
Network intrusion detection system is a crucial component of contemporary network security [1]. It not

only effectively protects network resources and data security, but also reduces security operating costs and
enhances the active defense capability of the network [2]. As network technology evolves, the significance of
intrusion detection systems will increasingly rise.

As a critical technology for realizing network intelligence, providing flexibility and programmability
to the network, Software-Defined Networking (SDN) separates the control logic from the data forwarding
functions of network equipment, allowing the network to be managed and orchestrated by a centralized
software controller [3]. SDN addresses the issues of traditional networks that are difficult to deploy, the non-
programmability of devices, and the difficulty of managing the network [4]. Due to the unique advantages of
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SDN, there are significant differences in security requirements and defense mechanisms between SDN and
traditional network structures.

1.2 Current State of Research
Intrusion detection identifies anomalous traffic and attack traffic in network behavior through extensive

features. However, extensive redundant data and irrelevant features exist in the raw data, which cause
intrusion detection systems to incur unnecessary time and cost overhead. Therefore, feature selection
becomes a key technology to improve the performance of intrusion detection systems.

Currently, Artificial Intelligence (AI) techniques, including machine learning and optimization algo-
rithms, are extensively applied in feature selection for intrusion detection. Many AI-integrated feature
selection approaches are employed in network intrusion detection. For example, Kareem et al. [5] presented a
feature selection model that utilizes a hybrid meta-heuristic algorithm for Internet of Things (IoT) intrusion
detection, and experiments proved that the proposed model achieves better convergence performance and
generates higher-quality solutions. Zhang et al. [6] created a detection technique that uses multiple-operator
cooperative evolution and combines an adaptive parallel quantum genetic algorithm with normalized mutual
information for feature selection. Results from experiments on actual datasets demonstrate that this approach
performs better than current detection methods. Babu et al. [7] implemented an improved flower pollination
algorithm for feature selection and utilized an improved monarch butterfly optimization algorithm to fine-
tune the parameters of an attention-based Nested U-Net, thereby enhancing the efficiency of the intrusion
detection system. Alkanhel et al. [8] proposed a novel intrusion detection system hybrid optimization
algorithm based on the grey wolf algorithm and dipper throated optimization algorithm for application
in the IoT, which better balances the exploitation and exploration phase. Our prior work [9,10] applies AI
algorithms to promote the performance of intrusion detection for traditional networks or SDN. The most
valuable subset of features can be found using an AI-integrated feature selection method, which can eliminate
unnecessary features and redundant data to improve intrusion detection system performance.

The Crayfish Optimisation Algorithm (COA) is a novel metaheuristic algorithm that mimics the
biological behavior of crayfish to find the optimal solution to a problem. It was first introduced in 2024 [11].
The COA has been applied to engineering problems, and related experiments have shown that the algorithm
has strong convergence and optimization-seeking ability [12,13]. Most metaheuristic algorithms face issues
such as slow convergence speed, weak optimality searching ability, and easy falling into local optimization.
COA faces the same problem. Particle Swarm Optimization (PSO) is prone to falling into local optimality
when processing high-dimensional data [14]. Grey Wolf Optimiser (GWO) relies on α, β, and δ wolves to
guide the search. If the leading wolf falls into the local optimum, it is difficult for the entire population to jump
out, resulting in premature convergence [15]. Genetic Algorithm (GA) has a crossover mutation process and
uses a large number of random processes, which will lead to slow convergence [16]. COA has two exploitation
stages and uses temperature and food factors to balance the survey and exploration stages, so it has a strong
convergence speed and ability. Therefore, this paper selects the COA for feature selection of AI integration.

1.3 Motivation and Innovation
(1) Differences in network environments: Considering the significant differences in intrusion detection

between traditional networks and SDN, the primary motivation of this paper is to design a feature
selection technology that can be effective in multiple network environments to improve the efficiency
of intrusion detection in different network environments.

(2) Disadvantages of COA: Wang et al. [17] proposed that COA has good optimization performance, but
still suffers from slow convergence speed and sensitivity to local optima. Maiti et al. [18] argue that
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COA suffers from a lack of exploitation capacity. To solve these problems, this paper introduces Levy
flight, crowding factor, elite reverse learning, and parameter modification strategies, and proposes an
Improved Crayfish Optimisation Algorithm (ICOA).

(3) Advantages of AI-integrated feature selection: Combining the ICOA with AI (K-Nearest Neighbours)
applied to optimize feature selection for traditional network and SDN intrusion detection, which
enhances the performance of intrusion detection.

1.4 Research Objectives and Contributions
(1) This paper first tries to utilize AI algorithms to solve the integration problem of intrusion detec-

tion for both SDN and traditional network architectures and proposes ICOA for AI-integrated
feature selection.

(2) In this paper, four improvement strategies are used to improve COA; elite reverse learning improves
the quality of the population, Levy flight improves the ability to jump out of the local optimum, and
parameter modification and crowding factor strategies balance the exploration phase and exploitation
phase. The convergence ability of ICOA is tested on benchmark functions, the feature selection ability
of ICOA is verified on the UCI dataset, the feature selection ability of ICOA to optimize traditional
network intrusion detection is verified on the NSL_KDD and UNSW_NB15 datasets, and its feature
selection ability to optimize SDN network intrusion detection is verified on the InSDN dataset.

1.5 Paper Organization
The rest of the paper is organized as follows. Section 2 describes the feature selection problem for

SDN and traditional network architectures. Section 3 introduces the characteristics and the concept of
COA. Section 4 explains four improvement strategies of the proposed ICOA. Section 5 constructs a feature
selection optimization model of AI-integrated using ICOA. Section 6 verifies the ability of the ICOA-based
AI-integrated feature selection model to optimize feature selection in different network intrusion detection
by testing traditional network datasets and SDN datasets. Section 7 provides a summary of this paper and
outlines potential directions for future research.

2 Problem Description
Both SDN and traditional network environments have a lot of features. Assuming that a dataset has n

features, there are 2n kinds of results for feature selection, which increases the time overhead of network
intrusion detection significantly.

Eq. (1) defines the data matrix D and the feature vector L.

D =
⎡⎢⎢⎢⎢⎢⎣

d11 ⋅ ⋅ ⋅ d1n
⋮ ⋱ ⋮

dm1 ⋅ ⋅ ⋅ dmn

⎤⎥⎥⎥⎥⎥⎦
, Li = (li1 , li2, ⋅ ⋅ ⋅ , lin) (1)

As shown in Eq. (1), m indicates the quantity of data, and n denotes the dimension of the data. Therefore,
the feature selection problem is to find k features from n features to form a feature subset H, and the data
selected by the feature subset H has the same classification effect as the original data.
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Eq. (2) describes the feature selection results through the binary vector H and calculates the filtered data
matrix D′.

D′ = D × (HT , HT , ⋅ ⋅ ⋅ , HT) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12
d21 d22

d13 ⋅ ⋅ ⋅ d1n
d23 ⋅ ⋅ ⋅ d2n

⋮ ⋮
dm1 dm2

⋮ ⋮ ⋮
dm3 ⋅ ⋅ ⋅ dmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 1

0 ⋅ ⋅ ⋅ 0
1 ⋅ ⋅ ⋅ 1

⋮ ⋮
1 1

⋮ ⋅ ⋅ ⋅ ⋮
1 ⋅ ⋅ ⋅ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
′

11 d
′

12
d
′

21 d
′

22 ⋅ ⋅ ⋅ d
′

1k
⋅ ⋅ ⋅ d

′

2k
⋮ ⋮
d
′

m1 d
′

m1⋮ ⋮
⋅ ⋅ ⋅ d

′

mk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Define the feature subset H = (h1 , h2 , ⋅ ⋅ ⋅ , hn), where the value of hi is 0 either 1, when a feature is
chosen, it is represented by 1, and when it is rejected, it is indicated by 0.

Feature selection diminishes data dimensionality and enhances intrusion detection performance by
identifying subsets of features that exhibit the strongest correlation. The fitness function used for feature
selection plays a crucial role. It is closely related to the classifier’s performance as well as the quantity of
features. Therefore, in this paper, the following fitness function is designed by considering both the number
of feature subsets and the error rate.

Fit = A× error + Featurese l ec ted

Featureal l
∗ B (3)

where error denote the error rate of this classification. Featurese l e c ted denotes the quantity of selected
features. Featureal l denote the overall count of features. A and B are the parameters which are 0.99 and
0.01, respectively.

Assume the time required to detect each feature of each sample is t i j , (i ∈ (1, m), j ∈ (1, n)). Therefore,
the detection time cost of this set of data is as shown in the formula.

Time = Sum(ti j ⋅ HT) (4)

Feature selection should take into account not only the validity of the feature subset but also the time
factor. Therefore, the evaluation indexes in this paper include both Eqs. (3) and (4)

3 Crayfish Optimization Algorithm (COA)
The COA is a metaheuristic algorithm that simulates the summer resort behavior, competition behavior,

and foraging behavior of crayfish. The COA is divided into two phases, which are the exploration phase and
the exploitation phase. The exploration phase includes summer resort behavior. The competition behavior
and the foraging behavior represent the exploitation phase.

3.1 Summer Resort Stage
When Temp ≥ 30&&rand < 0.5, it represents that the temperature is excessively high and the cave is

not crowded, crayfish will enter the cave directly. The location of the populations and the cave is updated as
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follows.

Temp = rand × 15 + 20 (5)
Xshad e = (Xbest posi t ion + Xg l obal posi t ion)/2 (6)
C1 = 2 − t/T (7)
Xt+1

i , j = Xt
i , j + C1 × rand1 × (Xshad e − Xt

i , j) (8)

where X t+1
i , j indicates the location of the ith crayfish in the t + 1 cycle. rand indicates a random value

ranging from 0 to 1. X g l obal posi t ion represents the optimal position obtained so far by iterations. Xbest posi t ion
indicates the optimal position within the current population. Xshad e represents the location of the cave. C1
is a decreasing curve, t represents the number of the current iteration, T represents the maximum number
of iterations.

3.2 Competition Stage
When Temp ≥ 30&&rand ≥ 0.5, it represents that the temperature is excessively high and the cave is

too crowded, crayfish compete for the position in the cave. The location is updated as follows.

Xt+1
i , j = Xt

i , j − Xt
z , j + Xshad e (9)

z = round(rand (N − 1)) + 1 (10)

where X t
z , j represents the position of a randomly selected crayfish. z is a generated random integer in the

range (1, N). In the competition stage, crayfish compete for cave positions. Cave locations are updated based
on randomly selected locations of crayfish z.

3.3 Forage Stage
When Temp < 30, crayfish enter foraging phase, and the foraging approach of crayfish is determined

by the food size Q. When Q ≤ (C2 + 1)/2, crayfish will forge directly. The location is updated as follows.

Q = C2 × rand × ( f itnessi/ f itness f ood) (11)
Xt+1

i , j = (Xt
i , j − X f ood) × p + p × rand × Xt

i , j (12)

X f ood = exp(− 1
Q
) × X f ood (13)

where X f ood indicates the location of the food, p indicates the intake of crayfish, f itness f ood indicates the
fitness value of the food, f itnessi represents the fitness of the current individual and C2 shows the food
factor and the value is constant 3. Q is determined by the fitness value of the food and the current individual.
X f ood obeys the exponential distribution function.

When Q > (C2 + 1)/2, it implies that the food size is excessively large. Crayfish uses its second and third
legs to break down food and forage alternately. The location is updated as follows.

Xt+1
i , j = Xt

i , j + X f ood × p × (cos (2 × π × rand) − sin (2 × π × rand)) (14)

3.4 Characteristics of COA
The advantages of the COA are as follows. Firstly, the COA has a strong exploitation capability due to its

two exploitation phases. Secondly, by altering the temperature, the algorithm moves through several steps.
This method more effectively balances the COA’s exploration and exploitation capabilities. The disadvantages
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of the COA mainly originate from the exploitation phase. Due to the existence of two exploitation phases,
the COA is likely to enter a local optimum in the latter iteration, which could result in the issue of
sluggish convergence.

4 Improvement Strategies of COA
Aiming at the shortcomings of the COA, this paper introduces four improvement strategies. Through

the elite reverse learning strategy, the population’s quality is improved. Introducing the Levy flight strategy
in the iteration process increases the step length of random wandering, which can prevent getting stuck in
a local optimum. The ICOA uses Euclidean distance to describe the degree of crowding. Finally, the food
factor is adjusted to balance the processes of alternate foraging and direct foraging, ensuring a more effective
search strategy.

4.1 Elite Reverse Learning Strategy
The elite reverse learning strategy is divided into two stages. Firstly, for the initial population, each X i

obtains its reverse solution X_o through reverse learning [19–21]. The reverse learning formula is as follows.

X_o = k × (L −U) − Xi (15)

where k is a random value ranging between 0 and 1. L and U represent the minimum and maximum values
of the feasible solution. After that, the elite strategy compares the fitness values of X and X_o. The optimal
individual is selected for updating the position of the population individual. The position update formula is
as follows.

Xi =
⎧⎪⎪⎨⎪⎪⎩

Xi i f f itness (X⃗i) > f itness(Xi)
X_o el se

(16)

4.2 Levy Flight Strategy
The Levy flight can explain many random phenomena, such as Brownian motion, random walks, and

so on [22]. The Levy flight can be applied to the field of optimization. For example, the Levy flight strategy
is used in the cuckoo algorithm for position updating, and PSO also employs this technique to escape from
local optima. Levy flight increases the diversity of the population and expands the search range [23,24], so
the Levy flight strategy is incorporated into the ICOA. The Levy flight strategy position update formula is as
follows.

Xt+1
i = Xt

i + α ⊕ Lev y (λ) i = 1, 2, ⋅ ⋅ ⋅ , n (17)

where α denotes the control step sizes, ⊕ represents the point-to-point multiplication, Lev y (λ) represents
the search path, and are satisfied as follows.

Lev y ∼ u = t−λ1 < λ ≤ 3 (18)

s = u
∣v∣1/β

(19)

u ∼ N (0, σ 2
u) , v ∼ N (0, σ 2

v ) (20)

σu =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ (1 + β) sin ( π×β
2 )

Γ (1 + β) × β × 2
β−1

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

1
β

, σv = 1 (21)
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where s represents the step size, u and v follow a normal distribution, and β typically has a value of 1.5.

4.3 Crowding Factor Strategy
The COA employs a random function to choose between the summer resort stage and the competition

stage of the crayfish. In the ICOA, a crowding factor is introduced to select the summer resort stage or
competition stage. The distance between each individual in the population and the burrow is calculated to
derive the crowding factor h. The level of cave crowding is then determined based on the value of h. The
crowding factor is defined as follows.

Li =
√
(Xi ,1 − Xshad ei ,1)2 + (Xi ,2 − Xshad ei ,2)2 + ⋅ ⋅ ⋅ (Xi , j − Xshad ei , j)2 (22)

Lmean =
1
N

i
∑
h=1

Lh (23)

h = m
N

(24)

where Li represents the distance from the population to the cave, Lme an represents average distance. m
represents the number of populations within a distance of Lme an .

4.4 Parameter Modification Strategy
The crowding judgment of the original algorithm is based on fixed values. In the ICOA, at the beginning

of the algorithm, a larger number of individuals are allowed to approach the optimal position to achieve
rapid convergence. In the later stages, individuals can jump out of the local range as much as possible to find
the optimal, avoiding falling into the local optimum. Therefore, the original crowding judgment is modified.
The new crowding judgment is as follows.

h < 1 − t/T (25)

Parameter Q determines how crayfish feed. In the ICOA, the food size Q judgment is as follows.

Q<(max ( f itness) +min ( f itness))/2 (26)

4.5 Effectiveness of Improvement Strategies
Fig. 1 shows the effect graphs of the four improved strategies. A graph shows that the population after

elite reverse learning is closer to the optimal solution, which confirms the effectiveness of the strategy. The
b graph represents the iteration curves of the four strategies and the original algorithm in the process of
optimization searching. From the figure, it can be seen that each strategy converges faster than the original
algorithm, has high convergence accuracy, and is not easy to fall into a local optimum. Therefore, it can be
assumed that the four improved strategies have some improvement effect on the original algorithm.
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Figure 1: Comparison chart of improvement effects. (a) Comparison of elite reverse learning effectiveness.
(b) Convergence trends for different improvement strategies

5 AI-Integrated Feature Selection Using ICOA

5.1 Improved Crayfish Optimisation Algorithm (ICOA)
As explained in Section 4, the ICOA is developed using four improvement strategies, and its pseudo-

code is presented in Algorithm 1. First, the elite reverse learning strategy enhances both population
quality and convergence speed. Second, introducing both the crowding factor strategy and the modification
parameters strategy balances the exploration and exploitation phases. Finally, the Levy flight strategy is
employed to prevent getting stuck in local optima during the later stages.

Algorithm 1: Pseudo-code of the ICOA
1. Define the population size N, the iterations T, and the dimension dim.
2. Calculate fitness value f itnessi and the global optimum f itnessg l obal
3. Whil et < T
4. For each Xi
5. Updated the position of the population using Eqs. (15)–(16) //elite reverse
6. Calculate the factor Temp using Eq. (5)
7. I f Temp > 30
8. Define cave Xshad e according to Eq. (6)
9. Calculate the crowding factor h using Eqs. (22)–(24) //crowding factor
10. I f h < 1 − t/T //paramter modification
11. Modified the position of the search agent using Eq. (8)
12. El se
13. Modified the position of the search agent using Eq. (9)
14. end
15. Else
16. Calculate the food size Q using Eq. (11).

(Continued)
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Algorithm 1 (continued)
17. I f Q<(max ( f itness) +min( f itness))/2
18. Updated the position of the search agent using Eq. (12)
19. Else
20. Updated the position of the search agent using Eq. (14)
21. End
22. Updated the position of the population using Eqs. (17)–(21) //Levy flight
23. End
24. Update fitness value Xshad e , X f ood
25. t = t + 1
26. End

The time complexity of COA is shown in Eq. (27), N indicates the population size, D represents the
population dimension, T represents the number of iterations, and C represents the cost of the evaluation
function. In each iteration of ICOA, the time complexity of crowding factor strategy and parameter
modification strategy is O(1), the elite reverse learning strategy and Levy flight strategy exist at the beginning
and end of each iteration, the time complexity is O(N), and the population update time complexity of COA
is O(N × D), so 1 ≪ N ≪ N × D. Therefore, the complexity of time for ICOA is almost the same as for COA.

O (COA) ≅ O(T × N × (C + D)) (27)

Table 1 shows the specific differences between ICOA and the comparison algorithms. Elite reverse
learning is used in the initialization phase, and a crowding factor is added in the balancing phase to balance
the development and detection phases. ICOA has the same time cost as several other compared algorithms
in terms of time complexity.

Table 1: Differences between ICOA and comparison algorithms

PSO GWO COA ICOA
Population

initialization
Random

initialization
Random

initialization
Random initialization Elite reverse learning

Balanced
strategy

Dynamic inertia
weight

Adaptive
parameters

Adaptive temperature
parameters

Adaptive temperature,
crowding factor

parameters
Time

complexity
T × N × (C + D) T × N ×

(C + D)
T × N × (C + D) T × N × (C + D)

5.2 Applying ICOA to Utilise AI-Integrated Feature Selection
As to the integration problem of network intrusion detection for both SDN and traditional architectures,

the proposed ICOA can be applied to find the optimal value subset of features by utilizing its advantages
of fast convergence speed and high convergence accuracy to promote AI-integrated feature selection, as
demonstrated in Fig. 2. Initially, ICOA is used to initialize the features, followed by an iterative search
conducted through the biological behavior of ICOA. Once the termination condition is satisfied, the optimal
subset is then output.
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Figure 2: Application of ICOA in utilizing AI-integrated feature selection of network intrusion detection for both SDN
and traditional architectures

5.3 AI-Integrated Feature Selection Model
When applying ICOA to optimize feature selection for network intrusion detection, the most valuable

subset of features is selected and then combined with the KNN algorithm for classification to construct an
AI-integrated feature selection model, which improves the performance of network intrusion detection for
both SDN and traditional architectures. The AI-integrated feature selection model is then shown in Fig. 3.

As demonstrated in Fig. 3, the AI-integrated feature selection model consists of the following steps.
Step 1: Preprocess input SDN and traditional data.
Step 2: Make training and test datasets out of the data.
Step 3: Perform feature selection for the training dataset based on ICOA to obtain the optimal subset

of features.
Step 4: Reduce the dimensionality of the test dataset based on the optimal subset of features and use the

KNN algorithm for classification.
Step 5: Calculate the evaluation metrics for SDN and traditional networks based on the predic-

tion results.
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Figure 3: AI-integrated feature selection model of network intrusion detection for SDN and traditional architectures

6 Experimental and Analysis
This section concentrates on the setting and outcomes of the experiment. Firstly, the convergence

performance of ICOA is tested using benchmark functions. Secondly, the effect of ICOA on optimizing
feature selection is tested on the UCI dataset. Finally, the effectiveness of AI-integrated feature selection using
ICOA in optimizing feature selection for different network intrusion detection is validated using the NSL-
KDD dataset, the UNSW_NB15, and the InSDN dataset. The NSL-KDD dataset is widely used in network
intrusion detection, which was developed to fix problems with the KDD Cup 1999 dataset and enhance
data quality by removing redundant records and rebalancing the sample [25]. On one side, the NSL-KDD
dataset is a common dataset used in network intrusion detection research. On the other, it does not fully
reflect the modern network environment [26]. The UNSW-NB15 dataset contains modern normal cyber
activities and current attack behaviors, which better reflect the current network threat environment [27,28].
Moreover, UNSW-NB15 contains rich features and a large amount of data. The InSDN dataset is specially
designed for SDN environments and contains various attacks that can occur on SDN controllers and network
devices [29,30].
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6.1 ICOA Capability Test
6.1.1 Experimental Environment

The experimental tests are conducted in a single environment to ensure the objectivity and fairness
of the experiment. The processor, which is the 13th Gen Intel(R) Core (TM) i7-13620H with a speed of
2400 MHz, 10 cores, and 16 logical processors, MATLAB 2022b and the Windows 11 operating system are
also used in the experimental configurations. In the experiment, the two learning factors of PSO were set to
1.5, the number of iterations of each algorithm was 500, and the population size was 30. Each experiment
was run independently 30 times. Several studies have shown that KNN achieves superior performance in
classification tasks compared to other machine learning models. Therefore, this paper also uses the KNN
algorithm for experiments. In COA, the authors have confirmed that C2 = 3 has relatively good results on
the CEC14_3, CEC14_9, CEC14_24, and CEC14_25 datasets.

6.1.2 Benchmark Function Test
In this part, 6 benchmark functions are used for testing, including 2 single-peak functions (F1–F2)

and 4 multi-peak functions (F3–F6). The initial population in each experiment is maintained the same, and
different algorithms are used to evaluate the performance of the benchmark functions, which are executed
independently multiple times. As shown in Table 2, the benchmark functions are displayed. Table 3 shows
the outcomes of the benchmark function tests, and the convergence curves for the four algorithms are
demonstrated in Fig. 4.

Table 2: Benchmark function expressions

Function expressions Dimension Range fmin
F1 (X) = ∑n

i=1 X2
i 30 [−100, 100]n 0

F2 (X) = ∑n
i=1 ∣Xi ∣ + ∏n

i=1 ∣Xi ∣ 30 [−10, 10]n 0
F3(X) = ∑n

i=1(∣Xi + 0.5∣)2 30 [−100, 100]n 0
F4 (X) = π

n{10sin2 (πyi)+ 30 [−50, 50]n 0
∑n−1

i=1 (yi − 1)2 [1 + 10sin2 (πyi+1)] + (yn − 1)2} +∑n
i=1 u (Xi , 10, 100, 4) ,

yi = 1 + 1/4 (Xi + 1)u (Xi , 10, 100, 4) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k(Xi − a)m , Xi > a
0,−a ≤ Xi ≤ a
k(−Xi − a)m , Xi < −a

F5 (X) = 0.1{sin2 (3πXi) +∑n−1
i=1 (Xi − 1)2 [ 30 [−50, 50]n 0

1 + sin2 (3πXi+1)] + (Xn − 1) [1+sin2 (2πXn)]} +∑n
i=1 u (Xi , 5, 100, 4) ,

F6 (X) = −∑7
i=1[(X − ai)(X − ai)T + ci]−1 4 [0, 10]n −10

Table 3: Benchmark function test results

Function Algorithms Min Max Ave Std
F1 COA 0.00E + 00 5.33E − 01 1.65E − 03 2.85E − 02

ICOA 0.00E + 00 2.46E − 01 5.18E − 04 1.12E − 02
PSO 1.83E − 03 1.44E + 00 2.02E − 02 1.09E − 01

GWO 6.40E − 60 1.51E + 00 8.22E − 03 8.85E − 02

(Continued)
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Table 3 (continued)

Function Algorithms Min Max Ave Std
F2 COA 0.00E + 00 1.15E + 00 3.51E − 03 6.06E − 02

ICOA 0.00E + 00 5.10E − 01 1.16E − 03 2.36E − 02
PSO 4.53E − 01 3.09E + 00 5.23E − 01 2.68E − 01

GWO 5.14E − 34 3.17E + 00 2.85E − 02 2.26E − 01
F3 COA 1.74E − 07 3.43E + 00 7.40E − 02 2.78E − 01

ICOA 1.80E − 15 3.29E + 00 1.20E − 01 4.42E − 01
PSO 1.34E − 02 4.37E + 00 6.26E − 02 3.03E − 01

GWO 4.18E − 02 7.09E + 00 1.21E − 01 4.58E − 01
F4 COA 6.69E − 02 2.72E + 00 1.10E − 01 2.11E − 01

ICOA 6.67E − 19 1.58E + 00 1.07E − 02 9.87E − 02
PSO 2.28E − 02 1.49E + 00 3.84E − 02 8.60E − 02

GWO 2.15E − 02 4.57E + 00 5.99E − 02 2.71E − 01
F5 COA −3.28E + 00 −1.70E + 00 −3.24E + 00 1.84E − 01

ICOA −3.31E + 00 −2.10E + 00 −3.29E + 00 1.08E − 01
PSO −3.19E + 00 −1.59E + 00 −3.18E + 00 1.26E − 01

GWO −3.27E + 00 −1.54E + 00 −3.21E + 00 1.31E − 01
F6 COA −5.09E + 00 −2.77E + 00 −5.04E + 00 2.57E − 01

ICOA −5.09E + 00 −3.40E + 00 −5.06E + 00 1.31E − 01
PSO −5.09E + 00 −2.69E + 00 −5.07E + 00 1.62E − 01

GWO −5.09E + 00 −2.35E + 00 −4.98E + 00 2.27E − 01

Figure 4: Convergence curves of fitness. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f) F6
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As indicated in Fig. 4 and Table 3, when evaluating single-peak functions (F1–F2), the ICOA and the
COA demonstrate comparable convergence accuracy in finding the optimal value, whereas the PSO and
the GWO show lower convergence accuracy than the COA and the ICOA. Additionally, ICOA exhibits
the fastest convergence speed. Therefore, in single-peak function tests, the ICOA outperforms in terms of
convergence accuracy and speed. When evaluating multi-peak functions (F3–F6), the ICOA consistently
achieves the best convergence accuracy. The ICOA can find values with higher accuracy within the same
number of iterations, indicating an advantage in convergence speed as well. Analysis of the convergence
curve reveals that the ICOA possesses strong global optimization capabilities and can escape local optima in
later iterations. Based on the benchmark function test results, it can be concluded that the ICOA performs
better than other algorithms in terms of speed and convergence accuracy.

6.1.3 UCI Datasets
This section uses three UCI datasets (Ionosphere, Heatstatlog, WDBC) for classification performance

testing. Table 4 gives specifics on the UCI datasets.

Table 4: Selected UCI datasets

Number Dataset name Sample size Number of features
1 Ionosphere 351 34
2 Heatstatlog 270 13
3 WDBC 569 30

Table 5 presents the test results for the UCI datasets. The ICOA achieves the best results in the
Ionosphere and WDBC datasets. In the Heatstatlog dataset, ICOA ranks third lowest in terms of precision. In
the other metrics, it scores the highest. The ICOA algorithm demonstrates excellent classification capabilities,
as evidenced by the test results across the UCI datasets.

Table 5: Test results of the UCI datasets

Datasets Algorithms Accuracy Precision Recall F1-score

Ionosphere

COA 0.943 0.930 0.985 0.957
ICOA 0.952 0.931 1.000 0.964
PSO 0.886 0.857 0.985 0.917

GWO 0.924 0.904 0.985 0.943

Heatstatlog

COA 0.840 0.848 0.867 0.857
ICOA 0.864 0.854 0.911 0.882
PSO 0.840 0.864 0.844 0.854

GWO 0.827 0.897 0.778 0.833

WDBC

COA 0.971 0.972 0.981 0.977
ICOA 0.982 0.973 1.000 0.986
PSO 0.976 0.964 1.000 0.982

GWO 0.976 0.972 0.991 0.981
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6.2 NSL-KDD Dataset
The NSL-KDD dataset comprises 41 features and a corresponding classification label. First, the dataset

is preprocessed, which includes data cleaning, numerical transformation, and normalization. The dataset
contains four attack types, which are U2R, Dos, Probe, and R2L. When testing the NSL-KDD data, 50% of
the data in KDDTrain+ is used for training, and the data in KDDTest+ is used for testing. Table 6 provides
the classification results of the NSL-KDD dataset, and Fig. 5 shows the Fitness and ROC curves of the NSL-
KDD dataset.

Table 6: Classification results of the NSL-KDD dataset

Metrics COA ICOA GWO PSO
Accuracy (%) 87.134 90.062 89.530 84.694
Precision (%) 95.037 94.397 94.570 94.258

Recall (%) 81.417 87.559 86.378 77.559
F1-score (%) 87.701 90.850 90.288 85.097

Time (s) 0.030 0.015 0.016 0.025
Number of features 15 6 8 13

Figure 5: Fitness and ROC curves of the NSL-KDD dataset. (a) Fitness curve. (b) ROC curve. (c) NSL-KDD result.
(d) Confusion matrix
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As shown in Table 6, the ICOA is higher than other algorithms by about 0.532% to 5.368% in terms
of accuracy. The high accuracy indicates that the ICOA can differentiate the data types better. Similarly, the
ICOA is higher than other algorithms in both recall and F1-score. The ICOA has a high recall rate, which
indicates that the ICOA is capable of recognizing the attack types of data. The high F1 score suggests that the
ICOA can better balance the precision and recall rates. Although in terms of precision rate, the performance
of the ICOA is not excellent, it still reaches 94.397%, which is 0.64% less than COA and 0.173% lower than
GWO. Regarding the number of features, the ICOA has the fewest number of features. The time test on the
selected feature subset showed that ICOA requires the least time, taking only 0.015 s. The fitness curve can
better reflect the convergence ability and convergence speed of the algorithm. A higher fitness value means a
higher convergence accuracy. Based on the fitness curve in Fig. 5, the ICOA demonstrates a strong ability to
find the optimum compared to the COA. It can escape local optima later, improving both the convergence
speed and precision. The ROC curve represents the ability to categorize the data, and the ROC curve of the
ICOA has the largest area underneath it, which means the ICOA has the best performance in classifying the
data and can reduce the rate of false positives. The confusion matrix exhibits the prediction results of ICOA-
based intrusion detection, showing that ICOA can categorize the data classes well. From the experimental
results, ICOA-based AI-integrated feature selection performs better in network intrusion detection than
other AI algorithms.

6.3 UNSW-NB15 Dataset
There are 175,341 network data points in the UNSW-NB15 dataset. This dataset provides the training

and testing sets; therefore, after removing redundant features manually from the dataset, data preprocessing
and normalization are done. Selected portions of the training and test sets are tested. In total, about 10,000
data are selected for this experiment. The test results are displayed in Fig. 6 and Table 7.

Figure 6: (Continued)
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Figure 6: Fitness and ROC curve of UNSW-NB 15. (a) Fitness curve. (b) ROC curve. (c) UNSW_NB15 result.
(d) Confusion matrix

Table 7: Classification results of UNSW-NB 15

Metrics COA ICOA GWO PSO
Accuracy (%) 86.198 88.967 86.562 84.993
Precision (%) 80.345 81.406 80.865 78.858

Recall (%) 98.597 98.366 98.443 98.712
F1-score (%) 88.540 89.086 88.793 87.675

Time (s) 0.133 0.106 0.111 0.129
Number of features 14 13 12 16

From the results in Table 7, it is evident that ICOA is the best in all the metrics except for the number
of features and recall. ICOA has one fewer feature than the original algorithm, one more feature than GWO,
and three fewer features than PSO, but ICOA takes the least time. In terms of accuracy, ICOA is about 2.405%
to 4.004% higher than other algorithms. In precision rate, is 2.548% higher than the PSO algorithm. In the
F1-score, ICOA is 0.546% higher than COA, 0.293% higher than GWO, and 1.411% higher than PSO. As can
be seen from Fig. 6, the convergence performance and classification performance of ICOA are also optimal.
As shown in the confusion matrix, almost all of the attack types are detected, which proves the effectiveness
of the ICOA-based intrusion detection approach. Experimental results from the UNSW-NB15 dataset show
that ICOA-based AI-integrated feature selection minimizes the number of features while optimizing the
performance of traditional network intrusion detection.

6.4 InSDN Dataset
The InSDN dataset contains three files, which are known as Ovs.csv, metasploitable-2.csv, and Nor-

mal_data.csv. The InSDN dataset contains seven attack classes and one normal class. After preprocessing the
InSDN, manually remove some unnecessary features, such as ID, IP address, and so on. Then, the 7 attack
types are binary coded as 1, and normal types are coded as 0. The training set and test set are divided for
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testing. In this experiment, 11,753 data as the training set and 2000 data as the test set are randomly selected
for testing. The experimental results are shown in Table 8 and Fig. 7.

Table 8: Classification results of InSDN

Metrics COA ICOA GWO PSO
Accuracy (%) 98.650 98.900 98.700 98.600
Precision (%) 98.699 98.802 98.798 98.503

Recall (%) 98.600 99.000 98.600 98.700
F1-score (%) 98.649 98.901 98.699 98.601

Time (s) 0.035 0.024 0.028 0.044
Number of features 10 4 9 13

Figure 7: Fitness and ROC curve of InSDN. (a) Fitness curve. (b) Roc curve. (c) InSDN result. (d) Confusion matrix
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As seen from Table 8, the test results of ICOA are optimized in all the metrics. The accuracy and
precision are about 0.3% higher than those of the PSO. The ICOA is 0.4% higher than the COA and GWO
for the recall rate. In the F1-score, ICOA is about 0.2%~0.3% higher than the other three algorithms. The
number of features in ICOA is only 4, which is half of COA. The highest number of features is PSO, which
has 13 features. ICOA also takes the least time, only 0.024 s. As seen in Fig. 7, the convergence speed and
accuracy of ICOA are improved compared to COA. At the later iteration stage, ICOA does not easily fall into
local optimality and can find better fitness values. From the ROC curve, the ICOA-based feature selection
has better classification performance. As shown in the confusion matrix, the ICOA-based intrusion detection
approach can accurately identify the data class in SDN networks with a high level of recognition of both
normal and intrusion data. From the experimental results on the InSDN dataset, it is clear that ICOA-based
AI-integrated feature selection can better optimize SDN network intrusion detection compared to other
comparison algorithms.

6.5 Summary of Experiments
In the NSL-KDD dataset, ICOA has the optimal effect for all metrics except precision rate, with an

accuracy of 90.062%, which is 0.532% higher than GWO, and the number of features is only 6. In the
UNSW_NB15 dataset, ICOA does not have the least number of features, but the accuracy rate is 2.405%
higher than GWO and 2.769% higher than COA. In the InSDN dataset, ICOA has the best results for all
metrics, including the number of features and runtime, so it is proven from the experiments that the feature
selection of ICOA-based AI-integrated can better optimize network intrusion detection.

7 Conclusions and Future Work
The main contribution of this paper is to utilize the ICOA in enhancing AI-integrated feature selection

for both traditional network intrusion detection and SDN intrusion detection. Four improvement strategies
of the ICOA are proposed according to the shortcomings of the original COA for AI-integrated feature
selection. First, the quality of the population is improved by the elite reverse learning strategy in each iteration
to accelerate the convergence speed. Second, the Levy flight strategy is added to randomly expand the
wandering step length to avoid falling into the local optimum in the late stage. Finally, the exploration phase
and the exploitation phase are balanced by the crowding factor, and parameters are adjusted to improve
convergence accuracy. By testing the benchmark functions, ICOA can find the optimal value faster and has
better optimality-finding ability on both single-peak and multi-peak functions. The feature selection ability
of ICOA-based AI-integrated is tested on the UCI dataset with an accuracy of 95.2% on the Ionosphere
dataset, 98.2% on the WDBC dataset, and 86.4% on the Heatstatlog dataset, which demonstrates the feature
selection ability of the proposed model on all three datasets. In addition, experiments on different network
intrusion detection datasets show that ICOA-based AI-integrated feature selection can reduce the number of
features and improve the performance of intrusion detection in both traditional and SDN-based networks.
For example, the number of features of the ICOA model is only 6 in NSL-KDD, and the number of features
in SDN networks is only 4, which is less than all other algorithms. It can be concluded that AI-integrated
feature selection based on the ICOA can promote intrusion detection for both SDN and traditional network
architectures in a better way compared to other evaluated AI algorithms.

Although this study demonstrates the effectiveness of ICOA-based AI-integrated feature selection for
binary classification in traditional and SDN intrusion detection systems, there are several limitations worth
discussing:

1. Multi-classification and binary classification problems: The current experiment only focuses on binary
classification experiments. Although it simplifies the evaluation framework, it cannot fully represent



3072 Comput Mater Contin. 2025;84(2)

the model performance in the real world. However, the feature selection model we proposed can be
extended to multi-classification problems.

2. Parameter sensitivity analysis: Although we use a comparative study and all common parameters are
set the same, the impact of key parameters on model performance needs to be systematically studied.

3. Dataset constraints: Each dataset has certain limitations. Although some limitations have been solved,
problems such as limited dataset samples and failure to reflect the actual network status still exist.

Future directions: Apply the model to multi-classification problems, verify parameter sensitivity
through experiments, build a real SDN network environment, and collect SDN datasets for experiments.
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