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ABSTRACT: Moving Target Defense (MTD) necessitates scientifically effective decision-making methodologies for
defensive technology implementation. While most MTD decision studies focus on accurately identifying optimal
strategies, the issue of optimal defense timing remains underexplored. Current default approaches—periodic or overly
frequent MTD triggers—lead to suboptimal trade-offs among system security, performance, and cost. The timing of
MTD strategy activation critically impacts both defensive efficacy and operational overhead, yet existing frameworks
inadequately address this temporal dimension. To bridge this gap, this paper proposes a Stackelberg-FlipIt game model
that formalizes asymmetric cyber conflicts as alternating control over attack surfaces, thereby capturing the dynamic
security state evolution of MTD systems. We introduce a belief factor to quantify information asymmetry during
adversarial interactions, enhancing the precision of MTD trigger timing. Leveraging this game-theoretic foundation,
we employ Multi-Agent Reinforcement Learning (MARL) to derive adaptive temporal strategies, optimized via a novel
four-dimensional reward function that holistically balances security, performance, cost, and timing. Experimental
validation using IP address mutation against scanning attacks demonstrates stable strategy convergence and accelerated
defense response, significantly improving cybersecurity affordability and effectiveness.

KEYWORDS: Cyber security; moving target defense; multi-agent reinforcement learning; security metrics; game
theory

1 Introduction
The pervasive digitization of societal infrastructure over two decades has rendered globally distributed

entities profoundly interconnected and interdependent, with cyberspace emerging as a contested domain for
adversarial engagements. Contemporary network systems increasingly exhibit automation, intelligence, and
integration. Paradoxically, sophisticated attacks often exploit simple tools/vectors, whereas defenses neces-
sitate complex coordinated mechanisms—an imbalance exacerbated by attackers’ asymmetric advantages in
reconnaissance and persistence.

Inspired by principles of dynamism, randomization, determinism, and diversity, Moving Target Defense
(MTD) dynamically manipulates system configurations (e.g., via shuffling, diversity, and redundancy) to
reduce attack surface predictability, forcing adversaries into perpetual reconnaissance cycles [1]. MTD
research clusters around three axes: “what to move” (spatial decisions), “when to move” (temporal decisions),
and “how to move” (technical implementation). The temporal decision-making of MTD aims to select the
optimal temporal strategy for transitioning an MTD system from its current state to a new state, thereby
invalidating the information or progress acquired by attackers under the current state while ensuring high
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defensive efficacy and low implementation costs. Consequently, determining how to identify the optimal
MTD temporal strategy through balancing system security and availability to guarantee both operational
efficiency and defensive effectiveness constitutes a critical research challenge. The primary objective of MTD
is to eliminate attackers’ asymmetric temporal advantage, underscoring that temporal strategy represents
an essential component of MTD. Key temporal parameters—including the interval between consecutive
MTD activations, the duration required for MTD deployment, the time attackers allocate to executing
their strategies, and the time required for successful attacks—exert significant influence on the overall
effectiveness of MTD implementations. Zhuang et al. [2] provided a preliminary exploration of MTD
temporal strategies by outlining fundamental issues and hypotheses. They posited that defining the probing
surface and attack surface through temporal and spatial MTD strategies could better model the dynamic
characteristics of MTD systems. However, their work did not establish a concrete theoretical framework for
temporal decision-making in MTD systems.

However, the temporal effectiveness of MTD strategies critically influences the operational success.
Overly aggressive MTD activation risks system instability or service degradation due to synchronization
overhead, resource contention, or interrupted legitimate workflows. Conversely, insufficiently reactive MTD
intervals grant attackers extended time windows to analyze system patterns, exploit vulnerabilities, or
escalate privileges, ultimately undermining defense objectives. To balance these trade-offs, Clark et al. [3]
proposed a time-based decoy deception detection technique, where a virtual network composed of decoys
records temporal log information such as query and response times for attempted node connections. By
analyzing the response times of nodes to probing packets, node types could be identified, and they derived
a closed-form solution for the expected detection time. While stochastic approaches obscure predictable
attack surfaces and complicate adversarial time-based reconnaissance, existing works struggle to rigorously
harmonize defensive efficacy with operational efficiency, which necessitates advanced decision frameworks
that holistically integrate temporal dynamics, adversarial behavior models, and system constraints. There-
fore, this paper addresses MTD timing optimization via a Stackelberg-FlipIt game framework integrated with
multi-agent Win or Learn Fast Policy Hill-Climbing (WoLF-PHC) algorithm. Key contributions include:

1. Abstracting the Network Attack-Defense Process as a Stackelberg-FlipIt Game and Introducing
Belief Factors to Control MTD Temporal Decisions. Tan et al. [4] modeled the MTD temporal
decision-making process as a FlipIt game, which effectively depicted the process of alternating control
of the attack surface between the attacker and the defender, so as to integrate the temporal strategy
into the game decision-making process. However, their design of the game is not accurate enough,
ignoring the problem of action sequence and information asymmetry in the real game. Therefore,
this paper introduces a Stackelberg game framework, constructing a Stackelberg-FlipIt game model
based on the integration of Stackelberg and FlipIt games. By designing and incorporating belief
factors to characterize the estimation differences between attackers and defenders regarding defense
thresholds, the model more accurately reflects the asymmetric nature of real-world network attack-
defense scenarios. This abstraction precisely captures the dynamics of actual network environments,
facilitating the dynamic learning and updating of MTD decision-making methods and optimizing the
judgment of triggering timing.

2. Solving the Game Equilibrium by Using Multi-Agent WoLF-PHC Algorithm. Existing works [4–6]
tended to solve the equilibrium of their modeled temporal game by purely mathematical equations,
such as Min-Max solving and dynamic programming. However, with the sudden increase of the
dimension of the policy space, it is difficult for this kind of solutions to converge in an acceptable
time and may only converge to the suboptimal strategies. Therefore, this paper tends to utilize a
multi-agent reinforcement learning framework to simulate the game solving process. The WoLF-PHC
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algorithm is an adaptive reinforcement learning algorithm [7] with low computational complexity,
strong convergence properties, and the ability to adapt to dynamic environments. It can quickly learn
and adjust strategies, making it highly suitable for MTD temporal decision-making research based
on the Stackelberg-FlipIt game. Under the multi-agent framework, defenders and attackers act as
independent agents, optimizing their respective strategies through interactive learning. Defenders can
dynamically adjust MTD triggering times based on the attackers’ strategies, thereby achieving more
efficient defense.

3. Defining a Comprehensive Reward Function. The aforementioned methods are too simplistic to
evaluate the benefits of the strategy, and most of them are evaluated based on the cost of the strategy,
ignoring the benefits brought by the strategy in terms of security and other aspects. Therefore, this paper
designs a reward function based on Security, Performance, Affordability, and Belief Error to guide the
learning direction of the agents. The function references existing research frameworks [8–10], ensuring
the accuracy and generalizability of reward quantification. It comprehensively balances the costs,
defensive effects, and security of different MTD strategies while ensuring the optimal triggering timing.

The remainder of this paper is organized as follows: Section 2 reviews the relevant research progress in
MTD decision-making methods; Section 3 details the Stackelberg-FlipIt model and the multi-agent WoLF-
PHC algorithm; Section 4 validates the feasibility and effectiveness of the proposed method through a case
study on IP address dynamic hopping against scanning attacks; Section 5 concludes the paper and discusses
future directions for improvement.

2 Related Work
Decision-oriented MTD research focuses on two pivotal questions: “What to move” and “When to move”.

Current studies predominantly employ game theory—a mathematical framework for analyzing strategic
interactions among rational agents [11]—due to two inherent characteristics of MTD scenarios:

1. Resource Antagonism: Attackers exploit system vulnerabilities to expand breach surfaces, while
defenders constrain exposures via dynamic configuration shifts (e.g., randomization, diversifica-
tion) [12].

2. Interdependent Decision-Making: The efficacy of adversarial strategies hinges on mutual behavioral
adaptations [13].

These characteristics of MTD attack-defense interactions align with the features of game theory. Conse-
quently, a significant number of game-theoretic approaches have been employed to develop MTD solutions:
using game theory to model specific MTD attack-defense processes, proving equilibrium convergence, and
ultimately deriving equilibrium-based game strategies [14]. Relevant research can be primarily categorized
as follows:

1. Game Theory-Based MTD Spatial Decision-Making Methods: MTD spatial decision-making meth-
ods are divided into five main categories based on “what to move”: instruction layer, data layer, network
layer, platform layer, and runtime environment layer. For example, Ge et al. [15] proposed a game-
theoretic MTD approach based on server migration and user service mapping to enhance system
real-time performance and throughput elasticity. Carter et al. [16] utilized game theory to derive optimal
migration strategies across platforms. Manadhata et al. [17] introduced a two-player stochastic game
model, employing the concept of subgame perfect equilibrium to determine optimal MTD strategies
based on attack surface diversification. However, due to the single-trigger mechanism of these methods,
which only initiate countermeasures upon detecting an attack signal, they often leave room and time for
attackers to deploy C&C infrastructure. Further temporal methodology refinements remain imperative.
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2. Game Theory-Based MTD Temporal Decision-Making Methods: Based on “when to move”, MTD
temporal decision-making can be classified into three main categories: time-driven MTD, event-driven
MTD, and hybrid time and event-driven MTD.
• In time-driven MTD decision-making, Li et al. [5] modeled the defender’s joint migration and

temporal decisions as a semi-Markov decision process. However, their approach is based on
a static Stackelberg game, which significantly deviates from real-world network attack-defense
dynamics. Moreover, the derived temporal strategies consider only a single factor, achieving only
approximate optimality.

• In event-driven MTD decision-making, most existing MTD spatial decision methods and few
temporal decision methods rely on specific attack events to trigger defenses. Zhang et al. [6]
established an MTD temporal decision-making framework based on the Stochastic Markov Dif-
ferential Game, which characterizes the continuous-time randomness triggered by the strategy
through the Itō process, focusing on the multi-stage MTD offensive-defensive process and solved
the equilibrium by dynamic programming equation. However, the game is under the condition of
perfect information, which can hardly be applied to real-world attack and defense process. This kind
of method suffers from low accuracy in attack event identification, potential misjudgments, and the
risk of defensive responses lagging behind attack deployments. Consequently, such methods fail to
ensure both low overhead and security for the maintained systems.

• In hybrid time and event-driven MTD decision-making, Tan et al. [4] proposed an MTD temporal
model based on multidimensional transitions of the attack surface. They then integrated this model
with the system security state evolution of the FlipIt game [18] to establish an MTD spatiotemporal
decision model. They used the decision model to derive an optimal spatiotemporal defense strategy
selection algorithm. However, this algorithm relies on mathematical difference methods for solving
and cannot output adaptive decisions based on environmental changes.

In summary, while game theory-based MTD methods have made significant progress in both spatial
and temporal decision-making, challenges remain in terms of adaptability, accuracy, and real-time respon-
siveness. Further research is needed to address these limitations and enhance the practical applicability of
MTD solutions. In Table 1, we compare our methods with existing MTD temporal decision-making methods
in order to distinguish our game model and equilibrium algorithm.

Table 1: Comparison with existing MTD temporal decision-making methods

References Information Game category Equilibrium
algorithm

Payoff
configuration

Temporal
decision
pattern

Li et al. [5] Imperfect Bayesian-
Stackelberg

game

Min-Max Migration cost Time-driven

Zhang
et al. [6]

Perfect Markov
differential

game

Dynamic
programming

Attack surface
resource rate

and cost

Event-driven

Tan et al. [4] Perfect FlipIt game Saddle point Time and cost Hybrid Time
and

Event-driven

(Continued)
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Table 1 (continued)

References Information Game category Equilibrium
algorithm

Payoff
configuration

Temporal
decision
pattern

Our method Imperfect Stackelberg-
FlipIt
game

Multi-agent
WoLF-PHC

Security,
performance,

and
affordability

Hybrid Time
and

Event-driven

3 Model and Methodology
In the real network attack and defense, there is a time series dependence and mutual stimulation of

the actions of the two sides: (i) defense triggers may expose defense logic and induce attackers to adjust
their strategies, and (ii) attack heuristics may reveal blind spots of the defense system and drive defense
strategy iterations. However, existing MTD temporal decision methods often rely on simple random triggers
or fixed intervals, neglecting the above dynamic interactions between attackers and defenders, leading to
an approximately static defense logic: MTD actions are not directly coupled with the attack behavior, and
cannot be optimized based on the attacker’s real-time tentative feedback. Besides, information asymmetry
is not exploited. The defender does not strategically hide the temporal features of MTD decisions, which
reduces the learning cost of the attacker. To address this, we propose a Stackelberg-FlipIt game model, where
the defender, as the “leader”, plans defenses in advance, and the attacker, as the “follower”, adjusts strategies
dynamically. This model better reflects real-world scenarios, enhancing defense precision and effectiveness.

We also extend a multi-agent reinforcement learning framework. Both attackers and defenders use
reinforcement learning to optimize their temporal strategies. Defenders minimize costs and maximize
effectiveness, while attackers maximize rewards. This approach balances dynamic behaviors and fine-tunes
network attack-defense processes.

The network attack-defense processes discussed in this paper are constructed based on the Cyber
Kill Chain model to establish a Stackelberg-FlipIt game in cyberspace. Both attackers and defenders are
intelligent agents utilizing reinforcement learning algorithms, capable of making decisions by observing
the environment. The multi-agent game relies on reinforcement learning algorithms to solve for the game’s
equilibrium points [19]. Section 3.1 models the Stackelberg-FlipIt game, defining and explaining each
component of the model. Section 3.2 introduces the MTD decision-making method based on this game.

3.1 Stackelberg-FlipIt Game Model
In MTD temporal decision methods, dynamically adjusting the triggering timing of defense strategies

is a core challenge. Existing MTD approaches often assume symmetric knowledge of network states between
attackers and defenders, neglecting the process by which attackers gradually learn defense thresholds through
trial and error. This assumption makes it difficult to precisely control the timing of defense strategies, thereby
compromising defense effectiveness and system performance. To address this issue, we introduce a belief
factor B, capturing the estimation differences between attackers and defenders regarding defense thresholds.
The design is based on:

1. Asymmetric Cognitive Modeling. Defenders know the actual thresholds but estimate attackers’
perceptions, while attackers iteratively approximate thresholds through trial and error. The belief factor
dynamically reflects these differences, enabling precise defense timing.
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2. Dynamic Learning and Updating. The belief factors are updated as the attack-defense process evolves.
Defenders adjust estimates by observing attackers, while attackers refine estimates through feedback.
This allows defense strategies to adapt to changing conditions, enhancing system adaptability.

3. Optimized Defense Timing. Using the belief factor, defenders can trigger strategies before attackers
fully learn thresholds, minimizing attack surface exposure. Trigger frequency can also be adjusted to
balance defense effectiveness and system performance.

By introducing the belief factor, the proposed MTD temporal decision method effectively addresses the
following issues:

1. Precise Control of Defense Timing. It quantifies cognitive differences, enabling dynamic adjustments
to avoid premature or delayed triggers.

2. Dynamic Characterization of Attack-Defense Interactions. Its updates reflect strategic adjustments,
capturing the dynamics of network attack-defense.

3. Balancing Defense Effectiveness and Performance Overhead. Defense strategies based on the belief
factor ensure effective protection while minimizing system performance overhead, thereby improving
the overall efficiency of the MTD system.

We propose a Stackelberg-FlipIt game under the leader-follower paradigm, modeled as a 9-tuple <
P, AS , S , T , A, B, R, C , π > to comprehensively account for real-world network attack-defense parameters
and variables.

• P = {PD , PA} denote the participants in the attack-defense game, where PD represents the defender and
PA represents the attacker.

• AS denotes the common resource contested by both parties in the attack-defense game, i.e., the attack
surface, which represents the exploitable surfaces in the system that attackers can discover and utilize.
In the game, attacker aim to take control of it and then compromise it, while defenders aim to shift it and
protect it from attackers’ detection. For convenience, ASP

t represents the AS controlled by participant P
at time t.

• St = {Snorm
t , S f ra

t , Sd am
t , Srec

t } are the possible network states at time t. Each network state S = (s1 , s2, s3),
where s1 denotes the attack frequency, s2 denotes the system load, and s3 denotes the AS exposure time.
The transition of each state is shown in Fig. 1.
∎ Snorm : The network is in a normal state, with no detected attack behaviors or potential threats. In

this state, the attack frequency is low, the system load remains within normal ranges, and the AS is
either not exposed or has minimal exposure time.

∎ S f ra : The network is in a fragile state, indicating the presence of potential threats and a possible
imminent attack. In this state, the attack frequency gradually increases, the system load exhibits
abnormal fluctuations, and the exposure time of the AS is prolonged.

∎ Sd am : The network is in an under-damage state, where some systems or services have already been
compromised. In this state, the attack frequency is high, the system load has significantly increased,
and the exposure time of the AS is prolonged.

∎ Srec : The network is in a recovery state, where the attack has been mitigated, and the system is
gradually returning to normal operation. In this state, the attack frequency decreases, the system
load is progressively restored to normal levels, and the exposure time of the AS is reduced.
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Figure 1: State transitions in the Stackelberg-FlipIt game

The conditions for classifying the four states are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Snorm = {S ∣ s1 ≤ θ1 , s2 ≤ θ2, s3 ≤ θ3}
S f ra = {S ∣ s1 > θ1 , s2 ≤ θ2, s3 ≤ θ3}
Sd am = {S ∣ s1 > θ1 , s2 > θ2, s3 > θ3}
Srec = {S ∣ s1 ≤ θ1 , s2 > θ2, s3 ≤ θ3}

(1)

where Θ = (θ1 , θ2, θ3) is the vector of thresholds for S = (s1 , s2, s3). These three thresholds are only transpar-
ent to the defender, while the attacker can only gradually approximate them through continuous exploration.
This setup aligns more closely with real-world network attack-defense dynamics. Whether these thresholds
are exceeded depends on the actions of both the attacker and the defender. For example, a state transition
S f ra

t−1 → Sd am
t hints that at time t AS is FLIPPED and controlled by the attacker. This aspect will be further

elaborated in the subsequent description of actions and the algorithm.

• T = T D + T A, which denotes the total time required for the attack-defense game, which is the sum of
the total time the attacker controls the AS (T A = Td am) and the total time the defender controls the AS
(T D = T norm + T f ra + Trec). To simplify the analysis, we assume that the attack-defense game unfolds
within a finite and discrete time frame, i.e., T = {t1 , t2, . . . , ti} , i ∈ N+.

• A = {AD , AA} denote the actions in the attack-defense game. The attacker’s action set is represented
as AA = {aA

1 , aA
2 , . . . , aA

m} , m ∈ N+ which, for simplicity, is categorized into three levels, as shown
in Table 2. Similarly, the defender’s action set is represented as AD = {aD

1 , aD
2 , . . . , aD

n } , n ∈ N+, and
categorized into three levels. At any discrete time t, both the attacker and the defender may take actions
to gain control of the AS.

Table 2: The relationship among action levels, states, and costs

Action level For attacker For defender
Low High attack frequency and low costs Low system load, high AS exposure time,

and low costs
Medium Medium attack frequency and medium

costs
Medium system load, medium AS
exposure time, and medium costs

High Low attack frequency and high costs High system load, low AS exposure time,
and high costs

• Belief factor BP = (bP
1 , bP

2 , bP
3 ) represents the participants’ estimated values of the thresholds Θ perceived

by the attacker, as shown in Table 3. It is a crucial factor influencing the temporal decisions of participants
in the Stackelberg-FlipIt game. As the game progresses, BA gradually approaches the actual values.
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Therefore, for the attacker, the primary goal is to quickly converge BA to the actual values, as mastering
the true thresholds enables prolonged control over the AS. For the defender, although the thresholds are
transparent, waiting until the attacker learns the actual values before taking action would prolong the
loss of control over AS, potentially leading to defense failure. Thus, the defender also needs to estimate
BA, denoted as BD . The defender determines the timing of strategy triggers based on ΔBD = ∣Θ − BD ∣,
which represents the difference between the defender’s estimated network state values and the attacker’s
estimated thresholds. This ensures targeted and timely implementation of defense measures.

Table 3: Initial and updated values of belief factor

Belief factor Initial value Update Formula
BA Random values or

estimates based on prior
knowledge

by trial and observation
on defender’s reaction

bA
i ← bA

i + ηA
i ⋅ (θi − bA

i ) (2)

BD Known threshold by observation on
attacker’s reaction and

network

bD
i ← bD

i + ηD
i ⋅ (θi − bD

i ) (3)

Note: (ηP
1 , ηP

2 , ηP
3 ) are the learning rate of participants’ belief factor, and defaulted as (0.1, 0.1, 0.1).

• R = {RD , RA} denote the reward functions, satisfying:

RP = w1 ⋅ RSEC +w2 ⋅ RPERF +w3 ⋅ RAFF − BE (4)

where w1, w2, and w3 are the weights that satisfy w1 +w2 +w3 = 1. BE is the belief error, satisfying

{BEA = ∑i bA
i − θi

BED = ∑i bD
i − bA

i
(5)

R mainly rely on three categories of reward evaluation RSEC , RPERF , and RAFF , which evaluate the
security, performance, and affordability respectively. The design of BE is primarily aimed at guiding strategy
updates. In our presumption, the weights are configurable, so that our method can be applicable to various
MTD systems, e.g., a lightweight system that aims to offer modest security and system performance with
the least cost, or, a large defense system that pursues as much as possible a highly secure defense without
focusing much on cost. This design is motivated by the following two reasons:

1. A multi-dimensional evaluation framework provides a more holistic assessment of strategy effective-
ness, capturing various aspects of performance, security, and cost.

2. Existing MTD decision-making methods often lack clear and well-defined reward structures, which
limits their practical applicability.

Clarification of reward design in our model addresses it by designing a robust and transparent reward
function considering former evaluation metrics of MTD technologies over the past decade. These metrics
ensure that the reward function is both comprehensive and grounded in established research, enhancing the
practicality and effectiveness of the proposed method.

Assumption 1: The values of each component in the reward function are normalized to the range [0,1].
This design choice is justified because the evaluations underlying the reward function are all derived from
probabilities or ratios, which naturally fall within this range.
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∎ RSEC

♦ For defender: Availability Probability

To quantify the effectiveness of the defense system in terms of security, we use AP (Availability
Probability) [20,21] to measure the probability that the defender controls the AS over a period T. The formula
is defined as:

AP = T D

T
(6)

♦ For attacker: Mean Time to Compromise Ratio

MTTCR (Mean Time to Compromise Ratio) [8,22] represents the ratio of the time the attacker controls
the AS to the total time, which is essentially the probability of the attacker controlling AS. This metric
indirectly reflects the attacker’s ability to fully access and exploit AS.

MTTCR = T A

T
(7)

∎ RPERF

♦ For defender: Escape Probability

EP (Escape Probability) [10,23] represents the probability that the defender transfers the AS after
detecting that the attacker has gained control of it. This metric emphasizes the system’s ability to promptly
defend itself upon detecting an attack. The formula is expressed as:

EP = p (Snorm ∣S f ra) + p (Srec ∣Sd am) (8)

where p (S′t ∣St , aD
t , aA

t ) represents the probability of reaching state S′t from state St in which the defender
takes action aD and the attacker takes action aA.

♦ For attacker: Successful Attack Probability

SAP (Successful Attack Probability) [8,24] represents the probability that the attacker, after gaining
control of the AS, proceeds with the next attack while avoiding detection and triggering an AS transfer by
the defender. This metric primarily reflects the attacker’s ability to conduct stealthy attacks. The formula is
expressed as:

SAP = p (Sd am ∣S f ra) + p (Sd am ∣Sd am) (9)

∎ RAFF , the same as C = {AC , DC}
♦ For defender: Defense Cost

DC (Defense Cost) represents the cost incurred by the defender when executing defense strategies to
counter attacks. This metric measures the expenses associated with defensive actions. Due to the multi-
stage nature of the attack-defense design, this indicator indirectly incorporates the time costs of both parties
into consideration. Since the costs of strategies vary, no specific formula is provided; instead, the costs are
comprehensively calculated after each action.

♦ For attacker: Attacker Cost

Similar to DC, AC (Attack Cost) measures the overhead incurred by the attacker when executing attack
strategies. Likewise, it is only necessary to comprehensively calculate the costs after each action.



3774 Comput Mater Contin. 2025;84(2)

• πP (St , aP
t ) denotes the policy function, representing the probability that participant P takes action aP

t
at a given time t and state St . Its update formula is:

πP (St , aP
t ) ← πP (St , aP

t ) + αP ⋅ ΔπP (St , aP
t ) (10)

where αP is the policy learning rate for participant P. The learning rate dynamically adjusts based on policy
performance to adapt to rapidly changing environments [25]. When the current policy outperforms the
average policy, the learning rate decreases as αP

w in to reduce the magnitude of policy adjustments. Conversely,
when the current policy underperforms, the learning rate increases as αP

l earn to quickly learn better strategies,
improving the responsiveness and precision of MTD temporal decisions. This fast-slow adaptation balances
the trade-off between the effectiveness and cost of temporal strategies. Its selective formula is:

αP =
⎧⎪⎪⎨⎪⎪⎩

αP
w in if ∑aP

t
πP (St , aP

t )RP (St , aP
t ) > ∑aP

t
πP (St , aP

t )RP (St , aP
t )

αP
l earn otherwise

(11)

where ΔπP (St , aP
t ) is the policy gradient:

ΔπP (St , aP
t ) = RP (St , aP

t ) −∑aP
t+1

πP (St+1 , aP
t+1)R

P
(St+1 , aP

t+1) (12)

3.2 Multi-Agent WoLF-PHC for Stackelberg-FlipIt-MTD Scenarios
Given the setting of the game model, we model the MTD attack-defense process as a multi-stage

Stackelberg-FlipIt game, incorporating the MTD scenario into the attack-defense game evolution through
the asymmetric projections of both parties. Finally, the proposed multi-agent WoLF-PHC algorithm is
applied to solve the MTD temporal decision-making method.

3.2.1 Stackelberg-FlipIt Game for MTD
For the attacker, the knowledge about the system network evolves as the penetration deepens. The

attacker’s belief factor about the network system continuously changes, and the attacker can only perceive
and attack the network system through continuous probing and observation of potential defense strategies.
Moreover, due to the dynamic movement of the AS in MTD, this local projection may also deviate from
objective reality. In contrast, the system administrator (defender) has absolute physical control over the
system, along with sufficient security assessment and penetration testing capabilities.

In MTD scenarios, the existence of unknown vulnerabilities does not diminish the defender’s absolute
cognitive advantage over the attacker. However, since MTD typically involves high defense costs, the set of
movable strategies is generally limited, and defensive measures are not taken in every game. Therefore, MTD
temporal decision-making methods are crucial. The defender needs to adjust the estimated belief factor of
the attacker by observing the attacker’s behavior, enabling precise and effective transfer of the attack surface
to resist attacks while minimizing costs and avoiding aimless actions.

In summary, in MTD scenarios, the defender can proactively adjust system security configurations,
while the attacker can only passively respond to these dynamic changes. Given this, we model the proactive
and reactive relationship between the attacker and defender using the Stackelberg-FlipIt game model,
defining the defender as the “leader” and the attacker as the “follower”. Each game stage is divided into two
sub-stages:

1. Defender’s turn: The defender selects one of the MTD movable states or chooses not to act as a defense
strategy based on BD , aiming to hinder or delay the attacker’s updates of BA and maintain control
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over AS for as long as possible within the time period T. In most cases, the defender does not need
to trigger defense strategies aimlessly. Relevant experiments [26,27] have shown that even when the
attacker perceives potential security configuration changes (even if none actually occur), it can increase
cognitive load and delay or prevent attack activities.

2. Attacker’s turn: The attacker initiates attacks based on the initial BA and continuously adjusts it during
the process to avoid detection and triggering AS transferring by the defender, also aiming to gain control
over AS for as long as possible within the time period T.

It is evident that the differences in the estimation of the belief factor cause the attacker and defender to
operate within entirely different frameworks during the game. This asymmetric interaction is a key feature of
the proposed Stackelberg-FlipIt game model, enabling a more realistic and dynamic representation of MTD
attack-defense processes.

3.2.2 Multi-Agent WoLF-PHC for MTD Temporal Decision-Making
In the Stackelberg-FlipIt game, the participants’ actions occur in a specific sequence. Typically, the

“leader” guides the game toward a globally optimal state for themselves. Leveraging cognitive advantages,
the defender can conduct multi-stage risk analysis on AS to assess the impact of various MTD strategies on
risk, which serves as the basis for the “leader’s” decisions. Meanwhile, the attacker, as a rational “follower”,
selects the optimal attack strategy based on their current cognition. The Stackelberg game mechanism is
implemented through a subsequential action signal. When the signal is 0, the defender observes and selects
an action, and the signal changes to 1. Upon receiving the signal as 1, the attacker observes and selects an
action, and the signal changes back to 0. This cycle repeats until the game period T ends.

The multi-agent WoLF-PHC algorithm continuously optimizes strategies while minimizing environ-
mental influences to achieve faster learning speeds and better performance. Based on its characteristics, we
design Algorithm 1 to solve the MTD temporal decision-making method.

Algorithm 1: Multi-agent WoLF-PHC for Stackelberg-FlipIt MTD
Input: < P, AS , S , T , A, B >, episode_num, batch_size
Output: πD∗ and πA∗

initialize πD and πA, πD and πA, αD and αA, (ηD
1 , ηD

2 , ηD
3 ) and (ηA

1 , ηA
2 , ηA

3 )
while episode_num > 0 do

for k = 1 to batch_size do
for t = 0 to T do

S0 ← Snorm , T D , T A= 0
if signal = 0

defender takes αD
t according to πD (St , aP

t ) and ΔBD

St → St+1
if St+1 belongs to Snorm , S f ra , and Srec

T D = T D + 1
updates bD

i , BED and ΔBD

observes RD (St , aD
t )

calculates ΔπD (St , aD
t )

updates πD (St , aD
t ) and πD (St , aD

t ) ← (1 − β) πD (St , aD
t ) + β ⋅ πD (St , aD

t )
(Continued)
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Algorithm 1 (continued)

adjusts αD =
⎧⎪⎪⎨⎪⎪⎩

(1 − ΔBD) ⋅ αw in if RD > RD

(1 − ΔBD) ⋅ αl earn otherwise
t ← t + 1
signal = 1

else
attacker takes αA

t according to πA (St , aA
t )

St → St+1
if St+1 belongs to Sd am

T A = T A + 1
updates bA

i and BEA

observes RA (St , aA
t )

calculates ΔπA (St , aA
t )

updates πA (St , aA
t ) and πA (St , aA

t )

adjusts αA =
⎧⎪⎪⎨⎪⎪⎩

αw in if RA > RA

αl earn otherwise
t ← t + 1
signal = 0

end for
end for

end while

4 Experiment
In this section we aim to validate the effectiveness of our proposed method through experiments on IP

address dynamic hopping (short as IP hopping) against scanning attacks. The experimental design focuses on
evaluating algorithm performance, optimizing strategy triggering timing, and assessing practical application
value, ensuring that the proposed model and algorithm are not only theoretically innovative but also feasible
in real-world scenarios.

We use simulation experiments to demonstrate the superior performance of the proposed algo-
rithm. Section 4.1 details the design of the simulation environment, including the strategies of both attackers
and defenders, as well as other critical elements. Section 4.2 compares and selects hyperparameters for the
algorithm. Section 4.3 compares our algorithm with other classical algorithms and provides experimen-
tal analysis.

4.1 Experimental Setup
The IP address is a critical target for attackers launching scanning attacks, DDoS attacks, and other types

of subsequent attacks. Therefore, IP hopping defense [28] is one of the key technologies in MTD. Defenders
use MTD techniques to randomly change host IP addresses, achieving attack evasion. Existing research
has shown that IP hopping is an effective method against scanning attacks. However, blindly triggering IP
hopping without perceiving or accurately perceiving the attacker’s behavior can lead to two issues:

1. It may fail to achieve the desired defensive effect and could provide attackers with more information
to counteract.

2. It may result in unnecessary system resource overhead, leading to inefficiencies.
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The experimental algorithm is run on OpenAI Gym, which provides a multi-agent game simulator for
simulating complex network attack-defense scenarios. The experimental environment is deployed in an SDN
network controlled by an OpenFlow controller [29]. We use Mininet [30] to create an OpenFlow switch
network as the data plane of the SDN, while the control plane is constructed and deployed using the Ryu
platform to implement the IP address dynamic defense system, as shown in Fig. 2. In this network, 400 hosts
are randomly distributed across 20 subnets, with the subnets connected through OpenFlow switches.

controller

switch 1

switch 2 switch 3 switch 20

subnet 1 subnet 2 subnet 20

Figure 2: Virtual network topology on Mininet

The experiment simulates real-world scanning attacks and IP hopping defense techniques. The network
system state S = (s1 , s2, s3) involved information in the attack-defense process that includes attack frequency,
system load, and exposure time of real IP addresses. The system load is influenced by both the attacker and
the defender, as the defense system may stop services after receiving a large number of data packets, thereby
reducing QoS. The individual threshold parameters of the states are normalized as a middle vector with
Θ = (0.5, 0.5, 0.5) to simplify the multi-agent reinforcement learning process.

The attacker employs a coordinated scanning approach, where a certain number of hosts simultaneously
initiate scanning attacks by sending probe packets to the IP addresses of the defense network. In the
experiment, we assume 50 to 200 scanning hosts targeting 400 defense network hosts. The attacker is assumed
to know the IP address resource pool of the defense network and can divide the entire IP address space of the
defense network, evenly distributing it among the scanning hosts. These hosts perform random scans on their
assigned IP address segments with a uniform distribution. The attacker’s goal is to detect the IP addresses
currently in use by online hosts to build an attack list, providing a foundation for subsequent attacks.
Cautious attackers typically avoid rescanning already scanned IP addresses to minimize the likelihood of
detection failure [31]. In the experiment, the scanning attack is designed to be propagative, meaning that
detected online hosts are compromised and become new scanning hosts. The unscanned IP address ranges
are redistributed among the new set of scanning hosts, with an infection time step of 1.

Each scanning host has two attribute characteristics:

1. Frequency of Scanning Packet (FSP): The average number of probe packets sent per second.
2. Proportion of Scanning Packet (PSP): The ratio of probe packets to the total packets sent.

Based on these two characteristics, the attacker’s scanning behavior can be classified into three levels,
corresponding to the action classification in the Stackelberg-FlipIt game model, as shown in Table 4.
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Table 4: Attacker’s action level

Scanning level FSP PSP Cost
Low 0~0.5/s 0%~20% 0.1

Medium 0.5~1/s 20%~40% 0.5
High 1~2/s 40%~80% 1

The defense mechanism assigns each host within the system both a fixed real IP address and a time-
varying virtual IP address. IP address alteration operates via two distinct modes: periodic time-triggered IP
hopping (low-level defense), and event-driven IP hopping (mid-level and high-level defense). The periodic
mode introduces fault tolerance for defensive event adjudication, providing a buffer mechanism to mitigate
security risks when event determination errors occur. IP hopping behaviors are hierarchically classified into
three tiers based on two metrics as systematically detailed in Table 5:

1. Hopping Frequency (HF): The frequency of IP address hops.
2. Hopping Range (HR): The span of address space covered during hopping.

Table 5: Defender’s action level

IP hopping Level HP HR Cost
Low 0~0.05/s 0%~25% 0.5

Medium 0.05~0.1/s 25%~50% 1
High 0.1~0.2/s 50%~75% 2

4.2 Hyperparameters Configuration
The experiment employs 1000 episodes with T = 100 steps per episode and 100 independent trials.

Hyperparameter configurations are summarized in Table 6, with the following design rationales:

• Learning rate α is parameterized with two tiers:
♦ αw in must be sufficiently large to ensure rapid convergence when policy performance is favorable

but must avoid excessive magnitudes that induce destabilizing oscillations. Usually, αw in ∈ [0.1, 0.5].
♦ αl earn should remain small to prioritize cautious adjustments during suboptimal policy execution,

preventing abrupt deviations from near-optimal strategies, while avoiding undersized values that
hinder convergence speed. Usually, αl earn ∈ [0.01, 0.1].

• Smoothing parameter β (average policy update) functions as a learning rate for updating the average
policy. A smaller β emphasizes historical policy performance through slower updates, while a larger β
prioritizes recent policy behaviors with faster adaptation. Empirically, β ∈ [0.01, 0.1].

• Reward weight coefficient w directly governs optimization objectives and algorithmic performance.
Weight assignments must jointly consider:
♦ Security (high priority, as the core objective of MTD), w1 ∈ [0.4, 0.6].
♦ Operational performance (moderate weight to ensure user experience and service continuity), w2 ∈
[0.2, 0.3].

♦ Defense overhead (constrained to reasonable levels to prevent resource overconsumption), w3 ∈
[0.1, 0.2].
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Table 6: Values configuration of learning rate, smoothing parameter, and reward weight coefficient

No. αw in αl e arn β w1 w2 w3

1 0.5 0.1 0.1 0.6 0.3 0.1
2 0.2 0.05 0.05 0.5 0.3 0.2
3 0.2 0.1 0.1 0.6 0.2 0.2
4 0.1 0.05 0.05 0.5 0.3 0.2

Through a series of preliminary experiments, we rigorously validated the guaranteed convergence
of the algorithm within 1000 episodes. These experiments further enabled the determination of optimal
hyperparameter configurations to maximize algorithmic performance, as shown in Fig. 3.

Figure 3: Defender’s reward after 1000 episodes under different hyperparameters

As demonstrated in Fig. 3 and Table 7, Config. 3 (0.2, 0.1, 0.1, 0.1, 0.6, 0.2, 0.2) achieves the optimal
performance, exhibiting both the fastest convergence and the highest final policy reward.

Table 7: Comparison of different configurations

No. Convergence episode Policy reward
1 453 1.387
2 587 1.563
3 421 1.970
4 504 1.475

Configs. 1 and 3 exhibit accelerated convergence due to their larger αw in and αl earn , enabling rapid
stabilization of near-optimal policies. Conversely, Configs. 2 and 4 converge more slowly and prolong policy
refinement. Despite its rapid convergence, Config. 1 yields the lowest reward because its excessive allocation
to w1, which leads to the time-occupancy weight prioritizing adversarial engagement duration at the expense
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of strategy cost optimization, of which the imbalance diminishes the overall reward efficacy. Hence, Config.
3 achieves superior rewards by balancing weights to harmonize security, performance, and affordability
objectives. In actual application, the configuration of reward weight coefficients can be manually changed
regarding what the goal of the task is, e.g., a lightweight defense system aiming at modest security and
performance with the least cost. Here, we mainly focus on the balance among security, performance, and
affordability with the weight coefficient being (0.6, 0.2, 0.2).

4.3 Experiment Analysis
In the following experiments, by comparing three IP hopping methods—OF-RHM [32], SEHT [33],

and DDS [34]—we comprehensively analyze the results from three perspectives: security, performance,
and affordability. As for security analysis, Host Survival Ratio (HSR) and Host Survival Average Time
(HSAT) are utilized to evaluate the network security under different algorithms. As for performance and
affordability analysis, Actual IP Hopping Frequency (AHF) and Network Channel Resource Occupancy
(NCRO) are utilized.

4.3.1 Security Analysis
The experiment assumes that the attacker performs a uniformly distributed and non-repetitive random

scan on the IP address space used by the defense network. The metric HSR represents the proportion of
remaining hosts Hsurv that are not detected and included in the attacker’s attack list, relative to the total
number of hosts H in the defense network [35]. This metric is a crucial indicator of the security performance
of the relevant algorithms.

Under the settings of 50, 100, 150, and 200 scanning hosts performing coordinated scans on 400 hosts in
the defense network, the comprehensive results are shown in Fig. 4. In a network without MTD deployment,
the HSR approaches 0 after approximately 100–300 s. The DDS method performs similarly to OF-RHM,
while our method and SEHT significantly reduce the decline in survival rate. The final HSR of our method
consistently remains above 0.5. It is evident that our algorithm performs slightly better than DDS, as our
method can precisely determine the timing of defense strategy triggers, guiding the defense network to
perform IP hopping to evade scanning attacks.

Figure 4: (Continued)
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Figure 4: HSRs under different scanner numbers. (a) HSRs under 50 scanners; (b) HSRs under 100 scanners; (c) HSRs
under 150 scanners; (d) HSRs under 200 scanners

After a successful scanning attack, the attacker may launch follow-up attacks such as worm propagation,
DDoS, or other subsequent attacks based on the Hit List, aiming to gain deeper control over the AS. These
attacks require a certain amount of time to deploy and achieve their intended effects. Therefore, the longer the
HSAT of hosts in the attack list, the more opportunities it provides for the attacker. This metric is primarily
interpreted as the duration between the scanning host receiving a response packet from a malicious probe
and the IP hopping of the defense network host. The smaller this metric, the lower the success rate of the
attacker’s subsequent attacks [35].

Under the settings of 50, 100, 150, and 200 scanning hosts performing coordinated scans on 400 hosts
in the defense network, the comprehensive results are shown in Fig. 5. Compared to other methods, as the
number of scanning hosts increases, our method significantly reduces HSAT, effectively suppressing the
development of subsequent attacks.

Figure 5: (Continued)
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Figure 5: HSATs (s) under different scanner numbers. (a) HSRs under 50 scanners; (b) HSRs under 100 scanners; (c)
HSRs under 150 scanners; (d) HSRs under 200 scanners

4.3.2 Performance and Affordability Analysis
When hosts in the defense network undergo IP hopping, new forwarding flow tables must be promptly

configured to maintain normal network services. This process can cause transient high latency, reducing
the network QoS of the defense system and impacting normal network operations. Therefore, the flow table
configuration rate and IP hopping frequency are critical factors affecting network performance. Since the
former is beyond the scope of this paper, we focus on analyzing the AHF and NCRO metrics. As for AHF,
A low AHF alone does not indicate the quality of the method; it must be analyzed in conjunction with the
HSR. Specifically, under the same HSR condition, a lower AHF results in less impact on network QoS and
better network performance. Additionally, the AHF reflects defense costs due to less triggering.

As shown in Table 8, our method achieves the lowest AHF across different HSR levels, indicating the
lowest defense cost. This is because our method dynamically adjusts the IP hopping strategy trigger frequency
based on the belief factor, ensuring that each hopping is effective.

Table 8: AHFs (time/s) of different algorithms under different HSRs

HSR OF-RHM SEHT DDS Our method
0.2 0.032 0.027 0.031 0.030
0.4 0.066 0.051 0.061 0.042
0.6 0.123 0.114 0.125 0.098

Real-time sensitive strategies may require the reservation of dedicated channel resources to avoid
congestion, which can limit the flexibility of network resource reuse and increase the marginal cost per unit
of traffic. Therefore, NCRO can intuitively reflect the performance and affordability of the output strategies.
The lower NCRO, the temporal strategy can perform better under the same HSR condition.

As shown in Table 9, our method outperforms NCRO under different security conditions, close to SEHT.
Although these temporal strategies may enhance system robustness, their frequent triggering may lead to
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a decrease in effective data throughput, essentially converting overhead into bandwidth procurement costs.
Therefore, providing modest security with NCRO under 150 kb/s [35] is the ideal solution for related methods.
Under this circumstance, both SEHT and our method can be applicable.

Table 9: NCROs (kb/s) of different algorithms

HSR OF-RHM SEHT DDS Our method
0.2 137 101 125 97
0.4 199 135 161 122
0.6 273 196 225 191

In summary, our method outperforms existing approaches in the comparative experiments. We attribute
this to: (i) A game model that more closely aligns with real-world network attack-defense processes; (ii) The
positive influence of the belief factor on strategy trigger timing; (iii) The decision-making adaptability of
the multi-agent WoLF-PHC algorithm; (iv) A comprehensive reward function that guides holistic strategy
optimization. These factors collectively contribute to the superior performance of our proposed method.

5 Conclusion
We proposed an innovative MTD temporal decision-making method in the field of MTD. The core

components of this method include the novel Stackelberg-FlipIt game and the Multi-agent WoLF-PHC
algorithm, which can be mainly concluded as follows:
• Firstly, by introducing the hierarchical decision-making structure of Stackelberg game and combining it

with the dynamic process modeling of FlipIt game, we constructed the Stackelberg-FlipIt game model.
The concept of belief factor was incorporated to influence the timing and planning of decisions for both
attackers and defenders.

• Secondly, the multi-agent framework was integrated into the WoLF-PHC algorithm, enabling both
attackers and defenders to autonomously learn and adapt their strategies in dynamic environments,
which allowed them to respond to evolving network states and adversarial behaviors in real time.

• Thirdly, for the first time, four key metrics—security, system performance, affordability, and belief
error—were integrated into the reward function of multi-agent reinforcement learning, which provided
a new perspective for the multi-dimensional quantification of network defense strategies, helping our
method output strategies with the strongest overall capabilities.

• Lastly, the effectiveness of the proposed model and algorithm was validated through experiments on IP
hopping against scanning attacks. The results demonstrated the algorithm’s performance, showing that,
with appropriate parameters, the proposed model and algorithm significantly enhanced the adaptability
and efficiency of MTD temporal decision-making methods.
In conclusion, the proposed method offers a robust and practical solution for MTD temporal decisions,

balancing security, performance, and affordability while adapting to dynamic network environments.
Although the model and algorithm proposed in this paper have achieved good results in simulation
experiments, there are still some limitations and directions for future work:
• A more adversarial game model: The premise given is that both the attacker and the defense are

rational, so the attacker in this paper will not consume defense resources through deception, that is, the
“intelligence level” is not high enough. Future research can lead to the construction of more sophisticated
attacker models to simulate more realistic cyberattack behaviors.
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• Dynamically adjust hyperparameters: The selection of hyperparameters is mainly based on experiments
and experience, and in the future, hyperparameters can be dynamically adjusted through automated
methods to adapt to different network environments and attack and defense scenarios.

• Actual deployment and testing: Our model and algorithm have not yet been deployed and tested in a
real-world network environment, and these methods can be applied to real-world network systems in
the future to evaluate their effectiveness and robustness in the real world.
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