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ABSTRACT: The increasing fluency of advanced language models, such as GPT-3.5, GPT-4, and the recently
introduced DeepSeek, challenges the ability to distinguish between human-authored and AI-generated academic
writing. This situation is raising significant concerns regarding the integrity and authenticity of academic work. In
light of the above, the current research evaluates the effectiveness of Bidirectional Long Short-Term Memory (BiLSTM)
networks enhanced with pre-trained GloVe (Global Vectors for Word Representation) embeddings to detect AI-
generated scientific abstracts drawn from the AI-GA (Artificial Intelligence Generated Abstracts) dataset. Two core
BiLSTM variants were assessed: a single-layer approach and a dual-layer design, each tested under static or adaptive
embeddings. The single-layer model achieved nearly 97% accuracy with trainable GloVe, occasionally surpassing the
deeper model. Despite these gains, neither configuration fully matched the 98.7% benchmark set by an earlier LSTM-
Word2Vec pipeline. Some runs were over-fitted when embeddings were fine-tuned, whereas static embeddings offered
a slightly lower yet stable accuracy of around 96%. This lingering gap reinforces a key ethical and procedural concern:
relying solely on automated tools, such as Turnitin’s AI-detection features, to penalize individuals’ risks and unjust
outcomes. Misclassifications, whether legitimate work is misread as AI-generated or engineered text, evade detection,
demonstrating that these classifiers should not stand as the sole arbiters of authenticity. A more comprehensive approach
is warranted, one which weaves model outputs into a systematic process supported by expert judgment and institutional
guidelines designed to protect originality.

KEYWORDS: AI-GA dataset; bidirectional LSTM; GloVe embeddings; AI-generated text detection; academic
integrity; deep learning; overfitting; natural language processing

1 Introduction
The recent surge in advanced language model capabilities has introduced scenarios once confined

to speculative fiction: machines now produce scientific abstracts, literature reviews, and entire research
papers that appear convincingly human-like. OpenAI’s GPT-3 and GPT-4 exemplify this generative power,
offering coherent, contextually apt responses that rival or surpass human writing in surface quality [1,2]
while newer entrants like DeepSeek and Gemini are rapidly gaining traction in the market, demonstrating
advanced capabilities in both general language tasks [3] and specialized domains such as code intelligence [4].
Although the potential benefits for drafting, summarizing, and assisting in scholarly tasks are enticing, the

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.064747
https://www.techscience.com/doi/10.32604/cmc.2025.064747
mailto:danpav@uaic.ro


2606 Comput Mater Contin. 2025;84(2)

academic sphere faces a deep quandary—unregulated or undisclosed reliance on AI tools can easily erode
foundational principles of originality and integrity.

This tension manifests most starkly in the assessment of student work and scholarly manuscripts.
Traditional plagiarism-checking systems, which rely on cross-referencing known texts, struggle against AI’s
capacity to produce novel sequences that do not directly copy from any single source [5]. More recent
attempts at AI-specific detection tools have shown promise but remain imperfect, with tendencies toward
false alarms or missed instances [6]. Against this backdrop, researchers are compelled to explore robust
computational strategies that can better delineate human-authored text from machine-generated output.

The primary objectives of this research are as follows:

1. Develop a Deep Learning (DL) model by creating a BiLSTM-based model utilizing GloVe embeddings
that can effectively distinguish between human-authored and AI-generated scientific abstracts.

2. Evaluate embedding configurations to compare the performance of models with trainable embeddings
vs. those with non-trainable embeddings, examining how each approach affects accuracy and the risk
of overfitting.

3. Highlight the inability to achieve 100% accuracy by demonstrating that, despite advanced modeling
techniques, achieving perfect accuracy in detecting AI-generated text remains elusive, underscoring the
need for caution in relying solely on automated tools for punitive measures.

4. Advocate for comprehensive evaluation practices, to recommend that academic institutions combine
technological solutions with human oversight and policy development to ensure fair and accurate
assessments of scholarly work.

1.1 State-of-the-Art in AI-Generated Text Detection in Student Papers
The scholarly discourse on AI-generated content has intensified as language models have grown more

sophisticated. The ability of GPT-class models to produce coherent, contextually apt text has alarmed
educators and researchers, who worry about the erosion of authentic intellectual engagement. Cotton et al. [7]
documented how these tools create uncertainty in academic evaluations, blurring lines between original and
AI-assisted contributions. Bhullar et al. [8] identify this predicament in higher education, where students
might exploit AI text generators for assignments, undermining critical thinking and personal mastery
of material.

Limitations in detection tools exacerbate the situation. Standard plagiarism detectors, tuned to spot
copied or paraphrased content, prove inadequate when faced with genuinely novel, AI-fabricated prose [5].
Attempts to refine AI detection have shown some promise. For instance, Theocharopoulos et al. [9] reported
98.7% accuracy using LSTM networks and Word2Vec embeddings. Yet even these advancements do not close
the gap entirely, especially considering constraints such as computational resources and the ever-evolving
ingenuity of language models.

Although a scarcity of studies was published before 2024 that specifically address AI-generated text
detection in student papers, several recent works have investigated the broader challenge of detecting AI-
generated texts across various domains, and these address concepts closely related to the study. Thus, in the
last years, there has been research that highlighted the growing challenge of distinguishing AI-generated texts
from human-written content, emphasizing both technological and evaluative limitations. Hakam et al. [10]
found that neither researchers nor AI-detection software could reliably identify LLM-generated abstracts,
underscoring risks of false positives/negatives and the need for advanced detection methods like BiLSTM
networks enhanced with GloVe embeddings. Similarly, Lawrence et al. [11] reported that while ChatGPT-
generated abstracts were rated as lower in quality, evaluators’ confidence in their authorship remained
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comparable to human-written texts, revealing the subjectivity and inconsistency of manual assessments.
Further complicating detection, Nabata et al. [12] observed that only 40% of participants correctly identified
human abstracts, with 63% preferring AI-generated versions, suggesting inherent biases in human evalua-
tion. Kim et al. [13] reinforced these concerns, noting modest AI-detection rates (56%–87%) and low human
accuracy (53.8%), which collectively underscore the inadequacy of current tools. Shcherbiak et al. [14] added
that while human reviewers and GPTZero outperformed GPT-4 in detection tasks, inter-rater agreement
remained poor, highlighting systemic reliability issues. Finally, Cheng et al. [15] demonstrated that although
human evaluators achieved 93% detection accuracy, AI-generated abstracts exhibited significantly lower
quality, implying that qualitative analysis could complement automated methods. Together, these findings
illustrate the urgent need for robust, hybrid frameworks that integrate advanced computational models with
human oversight to mitigate risks to academic integrity.

Based on the importance of this topic for academics and in the pursuit of elaborating on the superiority
of DL techniques vs. the traditional ones, the recent advancements in detecting AI-generated academic text
are vividly illustrated by recently released studies. Chowdhury et al. [16] report outstanding performance
of DL approaches, noting that the majority of participating systems utilized fine-tuned transformer-based
models, with top-performing systems achieving F1 scores exceeding 0.98. Furthermore, it explicitly states that
“Nearly all submitted systems outperformed the n-gram-based baseline,” supporting the superiority of these
modern techniques over traditional n-gram methods. Specific system descriptions within the next research
showcase the sophistication and effectiveness of current DL strategies. Jiao et al. [17] achieved a near-perfect
F1 score (0.999) by leveraging features extracted from a Large Language Model (LLM), namely Llama-3.1-
8B, as a proxy, without the need for fine-tuning, and classifying these features with a Convolutional Neural
Network (CNN). Other highly successful approaches involved fine-tuning “cutting-edge transformer-based
models,” reaching F1 scores around 0.96–0.97 [18]. Additionally, fusion models combine pre-trained language
model embeddings with carefully engineered stylometric and linguistic features. They address known limi-
tations of previous detectors, such as high false-positive rates [19]. DL models dominated the top rankings,
even highly optimized feature-based methods achieved competitive F1 scores (e.g., 0.986 reported by [20]),
demonstrating the high performance benchmark set by current methodologies in education. Collectively,
these recent findings demonstrate the outstanding performance and rapid evolution of DL strategies for
AI-generated text detection, significantly advancing the state-of-the-art compared to traditional techniques.

Some other studies included in their analysis prove that state-of-the-art performance in AI-generated
text detection is often achieved by DL algorithms that integrate semantic understanding with stylistic feature
analysis. Additionally, other manuscripts highlight inherent stylistic differences exploitable by detection sys-
tems. For example, Varadarajan et al. [21] found that AI-generated text exhibits remarkably limited variance
in inferred psychological traits compared to human writing, offering a potential avenue for unsupervised,
style-based detection. However, the robustness of these detectors is challenged by the adversarial evasion
techniques, where Creo [22] demonstrated that homoglyph-based attacks can systematically circumvent
seven state-of-the-art detectors (including watermarking and transformer-based tools), reducing their
Matthews Correlation Coefficient from 0.64 to −0.01. This vulnerability arises because homoglyphs disrupt
tokenization and feature extraction pipelines, undermining both semantic and stylistic analysis. Although
highly tuned transformer models alone can achieve strong results according to [18], the trend towards
incorporating stylistic analysis alongside deep semantic representations underscores the sophistication of
current methods. The above-mentioned advanced DL strategies, leveraging the use of homoglyph as well as
semantic depth and stylistic nuances, demonstrate great performance that surpasses traditional techniques,
addressing the ongoing challenge and need for AI text detection in Academia.
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The increasing sophistication of AI-generated text has highlighted the urgent need for enhanced auto-
mated detection tools, as current models still struggle with false positives and domain-specific adaptation.
Kim et al. (2024) [13] found that while ChatGPT-generated abstracts were well-formatted, they exhibited
high plagiarism rates (20%–32%) and AI-detection scores (63%–87%), necessitating specialized models like
BiLSTM with GloVe to minimize misclassifications.

1.2 Ethical Considerations and Academic Misconduct
However, beyond technical advancements, ethical considerations underscore the need for a hybrid

evaluation approach. Khlaif et al. [23] stressed that while AI-generated texts maintain high quality, they
introduce significant integrity concerns, including plagiarism and authorship ambiguity, making transparent
policies and human oversight essential. Shcherbiak et al. [14] supported this view, suggesting that AI
can serve as a prescreening tool but should not replace expert judgment to prevent systematic errors.
Similarly, Cheng et al. [15] emphasized that the often low quality of AI-generated abstracts reinforces the
necessity of manual verification, even when automated detectors perform well. The study developed by
Kumar et al. [24] highlights the need for ethically grounded strategies in leveraging AI/GPT technology for
education, emphasizing that while AI can enhance learning, the role of human educators remains crucial
and should not be overshadowed by the potential benefits of technology.

The emergence of AI language models continues to raise significant concerns within academic institu-
tions, primarily due to their capacity to generate original content that students can easily plagiarize with a
reduced risk of detection [25]. This capability challenges traditional understandings of academic misconduct.
While previous research highlighted the role of perceived costs and benefits in students’ decisions to engage
in academic misconduct, the diminished detectability of AI language models-based plagiarism lessens the
perceived cost of being caught, thereby weakening the explanatory power of rational choice theory in this
context [25]. The above-mentioned authors argue that moral disengagement is a key factor influencing AI
language models-based plagiarism, with perceived benefits, punishment severity, and informal sanctions also
playing significant roles.

Furthermore, moral disengagement can amplify the impact of formal sanctions on AI language models-
based plagiarism. Wang and Cornely [26] highlight that ChatGPT’s advanced AI capabilities, while offering
transformative potential, have led to an increase in academic misconduct. Students are exploiting this tech-
nology to complete assignments, fabricate essays, and even cheat during examinations, which undermines
the fundamental principles of educational integrity. This necessitates a comprehensive strategy by academic
institutions to address these new forms of academic dishonesty, balancing technological advancements with
the need to uphold academic integrity [26].

These trends align with ethical concerns raised by Májovsky et al. [27], who demonstrated that ChatGPT
can generate fraudulent medical articles indistinguishable from human work, risking academic integrity.
Ethical imperatives, such as mitigating hallucination risks in AI-generated references [28], further reinforce
the need for a balanced strategy to uphold academic authenticity.

1.3 The Recent Outstanding Advances of DL for AI-Generated Text Detection
The recently published research reflects a sustained effort toward developing and evaluating sophisti-

cated techniques for detecting AI-generated text, with a notable emphasis on DL algorithms that have been
made, due to their potential to outperform traditional methods. The need for ongoing reassessment towards
detection capabilities in light of evolving AI models is a recurring theme, highlighted by researchers like
Wang and Zhou [29]. Other studies focus on the evaluation and comparison of different methodologies, and
in this respect, Onan and Çelikten [30] explored the effectiveness of various text representations coupled
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with both DL and Machine Learning (ML) classifiers specifically for identifying AI-generated scientific
abstracts. Extending the scope, Nabata et al. [12] evaluated several detection approaches within the context
of software reviews, indicating the broad applicability and ongoing refinement of these techniques across
different domains.

The following analyzed studies, primarily published in early 2025, strongly affirm the central importance
and outstanding performance of transformer-based DL architectures in the detection of AI-generated text.
Although not all of the studies reviewed focus explicitly on the detection of AI-generated text within student
essays—the primary applied context of this research—the following analysis aims to highlight ongoing efforts
by researchers to leverage DL methodologies in pursuit of high detection accuracy.

These models, particularly when fine-tuned, consistently establish high-performance benchmarks.
For example, Maktabdar Oghaz et al. [31] reported “exceptional performance,” achieving near-perfect F1
scores (around 0.99) using custom RoBERTa and DistilBERT models for classifying ChatGPT-generated
content, setting a significantly high baseline for current detection capabilities. Further evidence for the
general effectiveness of fine-tuning standard transformers like BERT, DistilBERT, and RoBERTa comes from
Yadagiri et al. [32], who demonstrated their success with optimized hyperparameters for the general text
detection challenge.

Based on the results published in recent manuscripts, RoBERTa proves to be a prominent transformer
variant, as it has been investigated extensively, showcasing its effectiveness through various approaches.
Beyond using custom models [31] and standard fine-tuning [32], more sophisticated strategies involving
RoBERTa have proven effective. Mobin and Islam [33] demonstrated the utility of RoBERTa-based ensembles
combined with specialized weighting techniques (such as inverse perplexity) to enhance robustness and
generalization across diverse text domains, achieving strong results even against adversarial manipulations
in competitive evaluations. Moreover, the critical importance of optimizing the fine-tuning process for
established encoder models like RoBERTa (and XLM-R) was underscored by Agrahari et al. [19]. Their
experiments revealed that careful selection of training epochs, maximum input size, and techniques for
handling class imbalance could improve performance by a significant 5–6% in absolute terms, highlighting
the crucial role of hyperparameter tuning in building effective and scalable RoBERTa-based detection
systems. For the case of multilingual settings, Marchitan et al. [34] employed Low-Rank Adaptation (LoRA)
to fine-tune XLM-Roberta-Base, achieving competitive results while maintaining computational efficiency.

DistilBERT is also highlighted as another widely used transformer, and demonstrates spectacular
versatility and effectiveness across various detection scenarios. Thus, DistilBERT (similar to RoBERTa)
achieved high performance in custom configurations for classifying ChatGPT content [31] and showed
effectiveness in general text detection via standard fine-tuning [32]. Specialized applications include Distil-
BERT successful use by Abiola et al. [35] to differentiate between human-written and machine-generated
text written in English, achieving notable performance on this binary classification task. Yadagiri et al. [32]
applied DistilBERT (alongside XLM-RoBERTa) to achieve high accuracies (up to 92.2%) in identifying AI-
generated essays. Moreover, Yadagiri et al. [32] employed the DistilBERT-based framework to tackle the
challenge of cross-domain machine-generated text detection, focusing on robustness against adversarial
manipulations, further highlighting the capabilities of this architecture.

Research extends beyond single-model fine-tuning, exploring diverse architectures, hybrid methods,
and innovative techniques. Other transformer variants like XLM-RoBERTa were utilized by Yadagiri
et al. [32] for AI essay detection and highlighted by Agrahari et al. [19] regarding the importance of optimized
fine-tuning parameters. Marchitan et al. [34] achieved top results by exploring both masked language models
and large causal models like Qwen. Their approach involved efficiently fine-tuning only the last layer and
classification head of the Qwen2.5-0.5B model, demonstrating the potential of partial model adaptation for
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detection tasks. Hybrid models combining multiple architectures have shown promise. Mohamed et al. [36]
demonstrated that a hybrid model integrating RoBERTa, T5, and GPT-Neo achieved an impressive 99%
detection accuracy, although they noted that further adaptation for specialized fields such as medicine
remains crucial. Consequently, for academic essay authenticity detection, AL-Smadi [37] achieved high
results (F1 scores of 99.7% and 98.4%) by combining fine-tuned ELECTRA/AraELECTRA transformer
models specifically with stylometric features. Such hybrid approaches, mentioned above, significantly
outperformed simpler baselines.

Integrating diverse feature types is another avenue for improvement. Zhang et al. [38] showcased
the benefit of combining semantic features derived from RoBERTa with probabilistic (stylistic) features
extracted from LLaMA3, leading to strong classification performance. Innovative training strategies are
also being developed. Emi et al. [39] introduced an active learning approach specifically for cross-domain
machine-generated text detection. Their method, leveraging a two-stage training procedure involving
mining high-error examples and retraining the model to mitigate undertraining, achieved state-of-the-art
performance on adversarial attack benchmarks, showcasing the potential of iterative learning strategies.
Across these varied approaches, the significance of meticulous hyperparameter tuning, as emphasized by
Singh et al. [19], remains a critical factor for optimizing DL-based detection systems.

These findings collectively highlight the power and adaptability of modern DL techniques in the
crucial challenge of AI-generated text detection, showcasing advancements in model architectures, training
strategies, and domain adaptation.

1.4 Mapping the Current within Existing Research
Further analysis of recent studies spotlights the growing challenges and advancements in detecting AI-

generated scientific abstracts, aligning closely with the focus of this research on BiLSTM networks with
GloVe embeddings. Mese [40] identified a significant rise in AI-generated content probabilities (3.8% to
5.7%) between 2022 and 2023 using a detection tool with 97.06% accuracy, emphasizing the need for reliable
methods like the proposed BiLSTM-GloVe model. Human evaluators’ limitations are starkly evident as
Makiev et al. [41] reported that orthopaedic experts identified AI-generated abstracts with only 31.7%–
34.9% accuracy, while AI detectors achieved 42.9%–66.6% accuracy, highlighting the critical gap that
advanced models must address. Similarly, Alencar-Palha et al. [42] found low human sensitivity (58%)
and specificity (62%) in distinguishing AI-generated dental abstracts, further justifying the shift toward
automated solutions.

The urgency for robust detection tools is amplified by trends showing increased AI adoption. In light
of the above, Carnino et al. [43] observed a post-ChatGPT surge in AI-generated text in otolaryngology
abstracts (34.36% to 46.53%), while Howard et al. [44] noted a 2.37-fold increase in AI content in ASCO
abstracts by 2023. Advanced detection frameworks are emerging to counter these challenges. Gralha
et al. [45] developed a classifier with 97%–99% accuracy using decision trees and Scikit-learn, while
Hamed and Wu [46] introduced xFakeSci, achieving F1 scores of 80%–94% through network models and
calibration heuristics. These studies validate the feasibility of high-accuracy models like the BiLSTM-GloVe
approach, which achieved 96%–97% accuracy but emphasized the need to balance overfitting risks (trainable
embeddings) and generalization (non-trainable embeddings). Weber-Wulff et al. [6] found that numerous
AI-detection tools struggle to surpass 80% accuracy, often biased toward misclassifying authentic text as AI-
generated. Gao et al. [47] documented the inconsistency of tools in detecting synthetic scientific abstracts,
particularly when AI content was paraphrased or translated. Thus, the consensus emerges: purely automated
tools cannot unerringly separate human from machine authorship. A more nuanced, multifaceted approach
that marries technology with informed human judgment seems inevitable.
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Finally, hybrid evaluation frameworks—integrating automated detection with human oversight—are
increasingly advocated. Makiev et al. [41] and Alencar-Palha et al. [42] both highlighted human evaluators’
biases and inconsistencies, supporting this study’s recommendation to combine BiLSTM outputs with
transparent policies and expert judgment.

The existing body of recent literature accentuates the complexities and ethical dilemmas posed by
AI-generated content in academia, emphasizing the need for robust detection mechanisms and balanced
evaluative frameworks. Therefore, this research proceeds to investigate the efficacy of BiLSTM networks with
GloVe embeddings in detecting AI-generated scientific abstracts, aiming to provide a valuable contribution
towards upholding academic integrity in this evolving landscape.

2 Methodology

2.1 Data Collection and Preprocessing
The research employed the AI-GA dataset [48] comprising 28,662 scientific abstracts equally divided

between human-authored and GPT-3-generated texts. The human-written abstracts, drawn from COVID-19
research, ensure topical relevance and consistency. For each human-authored abstract, GPT-3 generated a
corresponding AI abstract using the same title, thus enabling direct, controlled comparisons.

Data preprocessing (Fig. 1) directly affects the model’s ability to identify subtle distinctions between
human and AI-generated text. It removed extraneous HTML tags, special characters, numbers, and excessive
whitespace to yield cleaner input. Text was normalized to lowercase, and stopwords were removed [49] to
reduce noise and focus the model on meaningful content. Subsequently, each abstract was tokenized into
discrete lexical units, with sequences standardized through padding or truncation to accommodate batch
processing requirements. Quantitative analysis of the corpus revealed abstracts averaging 959.0 characters for
human-authored texts and 891.0 characters for AI-generated counterparts, translating to approximately 168
and 156 tokens per abstract, respectively, when using standard English tokenization assumptions. Based on
the above mentioned measurements, the authors established the maximum sequence length of 200 tokens,
providing sufficient accommodation for most abstracts while minimizing unnecessary padding. Only 17.3%
of the sequences required truncation at this threshold.

For word representation, authors implemented and compared two distinct embedding methodologies:
1. GloVe Embeddings [50]—the Stanford NLP Group’s Global Vectors for Word Representation uses 100-

dimensional vectors trained on a corpus of 6 billion tokens from Wikipedia and Gigaword 5. GloVe
embeddings operate on the principle of factorizing a word-context co-occurrence matrix, capturing
both global statistical information and local contextual relationships.

2. Word2Vec Embeddings [51]—300-dimensional vectors derived from the Google News Corpus, which
use Neural Network architectures to learn word associations from large text corpora, emphasizing local
context windows through either continuous bag-of-words or skip-gram approaches.
Both embedding strategies were evaluated under two configurations:

1. Static Embeddings (trainable = False): In this configuration, the pre-trained vectors remained
unchanged during model training. This approach represents pure transfer learning, leveraging the
established semantic relationships without modification. Its advantages include reduced computational
demands, prevention of catastrophic forgetting of general language knowledge, and mitigation of
overfitting risks by constraining the parameter space.

2. Dynamic embeddings (trainable=True): Implementation involved leveraging pre-trained word embed-
dings as initial weights within the embedding layer. This constituted an adaptive transfer learning
strategy, enabling the model to fine-tune the embedding space and capture nuanced, domain-specific
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semantic relationships prevalent in the scientific abstract corpus. While this specialization held the
potential to enhance task performance, it inherently increased the model’s parameter space, conse-
quently elevating the susceptibility to overfitting. This fine-tuning mechanism was selectively applied
to GloVe embeddings, informed by preliminary experimental results that demonstrated negligible
performance gains from training Word2Vec embeddings, notwithstanding their significantly greater
computational cost.

Figure 1: Tokenization and embedding pipeline for AI-generated text detection

The vocabulary was constructed by mapping each token to a numerical index and was limited to 20,000
tokens—a threshold established by analyzing the frequency distributions in the corpus to balance coverage
against computational efficiency and diminishing returns associated with extremely rare terms.

2.2 Model Architecture
The proposed architecture incorporates a BiLSTM network to facilitate the contextual analysis of

sequential textual data, enabling the model to leverage information from both preceding and subsequent
elements within each sequence [52]. This design acknowledges that natural language often contains cues
that appear either before or after a given token, making a unidirectional pass insufficient in certain
instances. At the heart of this arrangement is the LSTM cell, introduced by Hochreiter and Schmidhu-
ber [53], which addresses the shortcomings of vanilla Recurrent Neural Networks (RNNs) in retaining
long-range dependencies.

An LSTM cell employs a gated architecture—comprising a forget gate, input gate, and output gate—to
regulate the flow of information through the network. The forget gate discards irrelevant past states while
the input gate determines which new information to store and the output gate controls how much of the
hidden state is passed forward. By allowing these selective updates, LSTM cells mitigate the vanishing and
exploding gradient issues frequently encountered in conventional RNNs. When arranged bidirectionally (i.e.,
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processing the sequence in both forward and backward directions), the network can extract richer contextual
signals surrounding each token, thereby enhancing its representational capacity [52].

The proposed BiLSTM architecture (check Fig. 2) begins with an Embedding layer initialized using pre-
trained GloVe embeddings [50], which serves as a lookup table mapping each token to its corresponding
vector representation. Depending on whether the embedding is set to “trainable = True” or “trainable =
False,” the network may further refine or preserve these word vectors during training. Immediately following
the embedding, a SpatialDropout1D layer prevents overfitting by randomly zeroing entire feature maps,
encouraging reliance on distributed activations rather than overly specific patterns. Next, the first BiLSTM
layer (256 units) is configured with return_sequences = True to forward a series of hidden states to the
subsequent recurrent block, thereby maintaining sequential continuity. The dropout rate within the LSTM
cell (0.1) and the recurrent dropout rate (0.5) further prevent overfitting by deactivating selected neural
connections in both the input and recurrent pathways. Subsequently, Batch Normalization [54] is applied to
stabilize shifting input distributions. The second BiLSTM layer, containing 32 units, refines the higher-level
representations by discarding unhelpful features while reinforcing salient sequence patterns. A subsequent
batch normalization layer harmonizes the activation magnitudes, aiding smoother convergence. The model
then transitions into a Dense layer with 128 units, compacting the learned temporal features into a form
suitable for final classification. Applying dropout (0.3 rate) both before this dense transformation and
before the final output provides an additional safeguard against overfitting. Finally, a single sigmoid neuron
produces a probability score for binary classification.

2.3 Hyperparameter Search and Structural Evaluation
Neural Network performance depends heavily on architecture configuration and hyperparameter

selection—especially in sequence models like BiLSTMs, where multiple design choices interact to create a
vast combinatorial search space. Our dual approach consisted of a systematic exploration via Hyperband
optimization followed by targeted ablation studies to both identify optimal configurations and understand
the contributions of architectural components.

2.3.1 Hyperband Optimization Framework
Traditional grid search or manual tuning methods are computationally prohibitive for DLmodels

with numerous hyperparameters. Given the inherent computational limitations imposed by the Kaggle
environment—namely, constrained GPU memory and limited session durations—it was imperative to
adopt an optimization strategy that maximized exploration while judiciously allocating resources. The
Hyperband algorithm [55] synthesizes the concept of successive halving with ideas from multi-armed bandit
formulations. In essence, it adaptively distributes computational resources (e.g., the number of training
epochs) across different hyperparameter configurations. Models exhibiting strong preliminary performance
receive additional resources, whereas those with weaker metrics are curtailed early. By prioritizing promising
configurations, Hyperband can explore a much broader set of hyperparameter values than would be feasible
under a fixed computational budget using traditional search strategies.

For building BiLSTM architecture, the authors conducted 16 trials, examining multiple hyperparameter
dimensions (see Table 1).
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Figure 2: Dual BiLSTM model architecture with GloVe embeddings for binary text classification
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Table 1: Hyperparameter configuration space for BiLSTM model optimization

Parameter category Parameter name Search domain Description
First Layer LSTM

Units
{64, 128, 192, 256} Number of units in the first

bidirectional LSTM layer.

Network
Structure

Second Layer
LSTM Units

{32, 64, 96, 128} Number of units in the
second bidirectional LSTM

layer.
Dense Layer Units {32, 64, 96, 128} Number of units in the

fully connected layer
preceding the output.

Spatial Dropout
Rate

{0.1, 0.2, 0.3, 0.4,
0.5}

Dropout rate applied to
entire feature maps in the

spatial dropout layer.
LSTM Dropout {0.1, 0.2, 0.3, 0.4,

0.5}
Dropout rate applied to

input connections of
LSTM layers.

Regularization LSTM Recurrent
Dropout

{0.1, 0.2, 0.3, 0.4,
0.5}

Dropout rate applied to
recurrent connections

within LSTM cells.
Dense Dropout {0.3, 0.4, 0.5, 0.6,

0.7}
Dropout rate applied after

the dense layer.
Output Dropout {0.3, 0.4, 0.5, 0.6,

0.7}
Dropout rate applied

before the output
neuron(s).

Optimization Learning Rate 10−2, 10−3, 10−4 Step size used during
gradient descent

optimization.

Each configuration underwent early stopping (patience = 3 on validation loss) to prevent overfitting
while maximizing computational efficiency.

2.3.2 Component-Wise Ablation Methodology
Beyond hyperparameter tuning, it is often necessary to dissect model components to understand their

individual contributions to overall performance—a process known as an ablation study [56]. Ablation studies
involve selectively modifying or removing specific architectural elements (e.g., spatial dropout layers, batch
normalization layers, or entire recurrent layers) and quantifying how these changes affect performance
metrics. While hyperparameter optimization focuses on fine-tuning numerical values, ablation studies
address structural decisions, revealing which segments of the architecture offer substantial contributions.

The proposed ablation study focused on the following two fronts:

1. Hyperparameter Sensitivity Analysis: A targeted investigation into the model’s sensitivity to learning
rates {10−2, 10−3, 10−4} and batch sizes {32, 64, 128, 256}. For each combination, authors trained
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a BiLSTM model and evaluated performance on a held-out validation set using accuracy and F1-
score metrics.

2. Architectural Component Analysis: A separate process involving strategic removals or modifications of
architectural elements (e.g., dropout layers, normalization strategies, and the number of LSTM layers).

Following this two-pronged ablation study, researchers concretized the various architectural configura-
tions under scrutiny. In particular, they examined six structural variants—from a simple baseline LSTM to
a fully optimized BiLSTM approach—under both static and dynamic embedding settings (Table 2).

Table 2: BiLSTM architectural variants

Model
variant

Embedding
trainable?

Spatial
dropout

LSTM layers Normalization Notable differences

Baseline True/False None 1× Unidirectional
LSTM (256 units)

None Represents a simple foundational model.
Comprises a single LSTM layer (256
units), followed by a dense layer (128

units), concluding with a sigmoid output.
No Spatial
Dropout

True/False None
(Explicitly)

2× Bidirectional LSTM
(256 units & 32 units)

None Eliminates the SpatialDropout1D layer
found in certain variants. Instead, stacks
two BiLSTM layers; first with 256 units,

then a second with 32 units.
No Batch

Norm
True/False Present

(0.1 rate)
2× Bidirectional LSTM
(256 units & 32 units)

Omitted Preserved spatial dropout while removing
batch normalization. Primarily aims to
gauge how batch normalization affects

stability and performance.
Single LSTM True/False Present

(0.1 rate)
1× Bidirectional LSTM

(256 units)
Batch Nor-
malization

(1 layer)

Consolidates the architecture to a single
BiLSTM layer rather than two. Useful for

understanding if a deeper LSTM stack
substantially improves classification.

Full Model True/False Present
(0.1 rate)

1× BiLSTM (256 units,
return sequences),

followed by 1×
BiLSTM (32 units)

with Dropout &
Recurrent Dropout as

tuned

Batch Nor-
malization
(2 layers)

Incorporates all hyperparameters from the
Hyperband outcomes, including double

BiLSTM, batch normalization, and
dropout. Represents the most feature-rich.

Optimized
Model

True/False None
(Removed)

1× BiLSTM (256 units,
return sequences),

followed by 1×
BiLSTM (32 units)

with Dropout &
Recurrent Dropout as

tuned

Batch Nor-
malization
(2 layers)

Similar to the Full Model but excludes
spatial dropout, reflecting ablation

findings that suggested better
performance without it.

In each variant, the dense layers following the LSTM blocks typically involve a 128-unit dense layer,
sometimes accompanied by dropout before the final sigmoid output. For approaches retaining spatial
dropout, the dropout rate was selected based on Hyperband tuning. Models labeled “trainable = True” or
“trainable = False” indicate whether the embedding layer’s weights are updated during backpropagation,
allowing a direct comparison between frozen (pre-trained only) and learnable embeddings.

2.4 Model Training and Performance Evaluation
After refining the architectural and hyperparameter configurations via Hyperband optimization and

ablation studies, the next phase involved systematically training each candidate model and assessing
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generalization performance on unseen data. To accomplish this, the authors employed the binary cross-
entropy objective [57]—appropriate for binary classification tasks—with model weights updated via the
Adam optimizer [58] at a base learning rate of 0.001, as established by prior experiments.

All models benefited from a suite of callbacks designed to prevent overfitting and guide training:

1. Early Stopping [59]: Monitors validation loss and halts training once incremental improvement
stagnates (patience parameter).

2. Model Checkpointing: Saves the model parameters at the epoch yielding the minimal validation loss,
thereby preventing any subsequent regression in performance from overwriting an optimal checkpoint.

3. Learning Rate Reduction on Plateau [60]: Monitors validation loss and reduces the learning rate by a
factor whenever improvement stalls for a specified number of epochs (patience), allowing the optimizer
to fine-tune the model weights.

4. Learning Rate Scheduler: In some configurations, a custom scheduler exponentially decreased the
learning rate past a certain epoch, fine-tuning updates as training proceeded.

5. Resource Logging: For deeper insight, a custom callback recorded GPU and CPU resource usage, which
proved beneficial when operating under limited Kaggle GPU budgets.

The trained models were evaluated on a held-out test set comprising 20% of the data (with an additional
10% of the training split serving as a validation set). To comprehensively assess model performance, it was
employed a range of evaluation metrics:

• Accuracy: The overall proportion of correct predictions made by the model.
• Precision: The ratio of true positive predictions to the total number of positive predictions made by the

model, indicating the model’s ability to avoid false positives.
• Recall (Sensitivity): The ratio of true positive predictions to the total number of actual positive instances,

reflecting the model’s ability to detect all positive instances.
• F1-Score: The harmonic means of precision and recall, providing a balance between the two metrics.
• Confusion Matrix Analysis: A detailed breakdown of true positives, true negatives, false positives, and

false negatives, offering insights into the types of errors made by the model.

For more stringent evaluation, certain setups underwent 5-fold Stratified Cross-Validation, ensuring
balanced class distribution in each fold. In this procedure, one fold is used as the test set while the remaining
folds serve as training/validation data, and the final metrics are averaged across all folds. Additionally,
extended training (up to 20 epochs) was explored for selecting GloVe-based BiLSTM variants.

2.5 Benchmarking against Baseline Approaches
In addition to the BiLSTM-based architectures described above, our methodology also involved

constructing and evaluating a collection of baseline approaches ranging from traditional ML classifiers
to simplified DL modules. This comparative exploration positions the proposed models in a broader
context and illustrates how classic algorithms or less complex neural networks perform relative to the
hyperparameter-optimized, ablated BiLSTMs.

For traditional ML classifiers, authors of the current study combined feature extraction methods (e.g.,
TF-IDF or simple Bag-of-Words) with widely recognized algorithms:

1. Logistic Regression [61]: A linear model that optimizes a logit-based cost function, offering interpretable
decision boundaries and being adept at classification tasks with high-dimensional sparse features.

2. Naïve Bayes [62]: A probabilistic model under the simplifying assumption that input features are
conditionally independent, typically efficient and surprisingly effective in text classification.
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3. Random Forest [63]: An ensemble of decision trees that harnesses data and feature subsampling, thereby
reducing variance. While random forests can handle a variety of data distributions, they can become
quite large in parameter count.

4. Gradient Boosting Machines [64]: An iterative ensemble strategy that adds weak learners (usually small
decision trees) stage by stage, each attempting to correct errors left by the preceding trees.

5. XGBoost [65]: A highly optimized gradient boosting library that can substantially outperform less
specialized implementations of boosted decision trees, especially when carefully tuned.

Textual input for these pipelines was first transformed using either TF-IDF or Count Vectorizer
methods, restricting feature numbers for computational tractability. Each model was then fit to the extracted
feature vectors, with hyperparameters (e.g., the number of estimators or maximum iterations) modestly
optimized to ensure stable convergence within environmental constraints. For every baseline, test predictions
were recorded and evaluated using the same performance metrics (accuracy, F1, precision, recall).

On the simplified DL front, researchers introduced two smaller architectures:

1. CNN-based Model: A one-dimensional convolutional layer with a fixed kernel size, followed by a global
max-pooling mechanism [66]. This configuration retains the ability to detect n-gram-like patterns in
text while avoiding the parameter scale of recurrent networks.

2. Unidirectional LSTM [67]: A single-layer LSTM that processes input sequences from left to right, thus
removing the bidirectional capacity. Though more compact than a BiLSTM, it provided an instructive
baseline regarding how much bidirectionality improves classification of textual abstracts.

All baseline models were evaluated using the same train–test partitioning to facilitate a consistent and
transparent comparison.

2.6 Statistical Evaluation and Significance Testing
Beyond conventional metrics, a robust experimental design calls for statistical checks that determine

whether observed differences between model predictions are likely to persist beyond the particularities of
a single sample. In this part, authors incorporated the several statistical tests and validation strategies, as
follows:

1. McNemar’s Test [68]: Specifically tailored for paired nominal data, McNemar’s test scrutinizes two
different classifiers’ predictions on the same test set. A 2 × 2 contingency table counts how often each
model is correct or incorrect on the same instance. If one model repeatedly misclassifies cases that the
other handles correctly, McNemar’s statistic flags whether the improvement is statistically nonrandom.

2. Paired t-tests for K-fold Cross-Validation [69,70]: When K-fold cross-validation was employed, it
captured performance metrics (accuracy, F1, etc.) across each of the K folds. The distribution of
these metrics allowed for paired t-tests that compare two models’ fold-wise outcomes. Alignment of
each fold’s training and validation sets, was performed to minimize confounding factors arising from
partition variability.

3. Confidence Intervals for Cross-Validation Metrics: To quantify uncertainty in mean performance, 95%
confidence intervals were calculated around the cross-validation metrics. This measure is beneficial
because a mere average can be misleading. Intervals illustrate the plausible spread of the model’s
performance due to sample variation in each fold [71].

Taken together, the above mentioned statistical procedures provide a multi-angle approach that
strengthens the claim that any numerical advantage in F1 or accuracy is statistically grounded rather than an
artifact of a single data partition or ephemeral noise.
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3 Results

3.1 Embedding Configuration Comparison
As mentioned in Section 2.1, the choice of embedding approach exerted a considerable influence on

how effectively the model disentangled subtle semantic cues. The GloVe embeddings successfully mapped
17,278 of the 20,000 most frequent tokens in our corpus, yielding an 86.39% coverage rate. This relatively high
coverage suggests strong alignment between the academic vocabulary of COVID-19 research and the general
language corpus used to train GloVe. The unmapped terms (13.61%) primarily consisted of domain-specific
terminology, acronyms, and compound words particular to COVID-19 research that were absent from the
general Wikipedia and Gigaword corpora.

Conversely, Word2Vec embeddings, despite being trained on a substantially larger corpus and having
higher dimensionality (300 D vs. 100 D) achieved lower lexical coverage at 81.66%, representing 16,333
mapped tokens. The 4.73% percentage point difference in coverage contradicts the intuitive expectation
that the larger training corpus of Word2Vec would yield higher range. This discrepancy likely stems from
the nature of the Google News corpus, which, while extensive, may contain less academic and scientific
terminology than the one used for GloVe and also, based on recency of the COVID-19 specific terminology.

Within these embedding approaches, trainable versus non-trainable configurations brought further
nuance. Making an embedding layer adaptive permits localized fine-tuning—thereby pushing accuracy
into the 97% range—but at the cost of higher variance and occasional overfitting. In contrast, keeping the
same embeddings static generally stabilized validation results close to 96%, requiring fewer epochs and
somewhat mitigating the risk of memorizing transient idiosyncrasies. These patterns confirmed that while
trainable embeddings can tap into domain nuances, they require careful regulation through dropout or
batch normalization.

3.2 Hyperparameter Tuning and Ablation Framework
3.2.1 Results of Hyperband Tuning

After meticulously exploring multiple configurations, Hyperband converged on a set of parameters
that consistently improved validation accuracy while preserving robust generalization. Notably, a learning
rate of 0.001 emerged as especially effective at promoting stable updates without pushing the network
into oscillatory territory. Likewise, a moderate dropout of 0.1 in the recurrent layers proved sufficient for
addressing overfitting, whereas the dense layer benefitted from a slightly higher dropout of 0.3. This nuanced
interplay of numeric settings indicates the importance of calibrating regularization to reflect the network’s
size and the subtleties of textual input sequences.

Interestingly, many trials that employed a higher dropout in the LSTM layers (e.g., 0.4 or 0.5) demon-
strated either slower convergence or a tendency to plateau at moderate accuracy levels, presumably due to
the underutilization of the model’s capacity. Conversely, extremely low dropout did not adequately control
overfitting, leading to inflated training accuracy with weaker validation outcomes. The eventual “sweet spot”
balanced these trade-offs and was validated across multiple runs. A further noteworthy trend emerged
around LSTM layer dimensions: while 256 units in the first LSTM layer added considerable representational
power, the second layer needed far fewer units—namely 32—to refine the captured features without
saturating memory or training time. This separation of responsibilities between a larger, more encompassing
first layer and a more compact second layer appeared to bolster generalization in the final model.

3.2.2 Ablation Findings
Ablation studies serve as powerful instruments for pinpointing which components or hyperparam-

eters have a tangible impact on a model’s predictive strength. In this investigation, two separate ablation
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experiments were conducted—one in which the embedding layer remained frozen (trainable = False),
and another where the embedding layer was updated during backpropagation (trainable = True). Each
scenario measured (1) baseline hyperparameter sensitivity and (2) the effect of removing or altering distinct
architectural components.

When the embedding layer was kept non-trainable, the model leveraged static pre-trained word vectors
without adjusting them to the dataset’s nuances. When the authors focus on the learning rate and batch size
(see Fig. 3), the best outcomes consistently arose for a learning rate of 0.001 and smaller batch sizes (especially
32). A moderate learning rate ensured stable convergence without the rapid oscillations occasionally
witnessed at 0.01. The top three parameter sets, ranked by F1 score, were {LR = 0.001, BS = 32}, {LR =
0.001, BS = 64} and {LR = 0.001, BS = 128}. Among these, an F1 of 0.9064 was the highest encountered. The
ablation logs also demonstrated a striking jump in F1 (from 0.9255 to 0.9592) when the spatial dropout was
removed, suggesting that spatial dropout might be superfluous or even detrimental for this text classification
task in a static-embedding setting. While the “Full Model” included every recommended feature from
the Hyperband search, it did not necessarily yield the highest F1 (0.9084), potentially indicating over-
regularization or an excessive parameter count. In contrast, the “no_spatial_dropout” variant performed best
overall, balancing depth with a more streamlined dropout approach. For the static embeddings, the ablation
study indicated that and employing a learning rate of 0.001 with a batch of 32 consistently outperformed
more complex alternatives.

Figure 3: Impact of hyperparameters and architecture on F1 scores

Shifting to trainable embedding layers allowed the model to refine word embeddings in tandem with
the classification objective, offering a more flexible feature space. According to the data produced by the
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ablation study, the learning exerted a marked influence on performance. A moderate rate of 0.001, coupled
with a batch of 32, once again surfaces as the optimal trade-off. Statistical analyses confirmed the statistical
significance of the learning rate effects for trainable embeddings (F = 8.38, p = 0.008799), while variations
in the batch size had a considerably smaller effect and were more pronounced in non-trainable settings
despite not reaching statistical significance (F = 2.20, p = 0.165861). Within the range of {0.0001, 0.001,
0.01}, the synergy between a 0.001 learning rate and the smaller batch size delivered an F1 score of up to
0.9169, reinforcing the notion that granular updates at moderate scale can exploit the flexibility of trainable
word embeddings.

In sharp contrast to the fixed embedding scenario, the architectural ablation demonstrated that the
single bidirectional LSTM layer was the most effective configuration, slightly outperforming the models
without batch normalization and without spatial dropout. This suggests that when embeddings can adapt
during training, the representational capacity gained from trainable word vectors reduces the need for
complex recurrent structures. The “Full Model” continued to deliver respectable accuracy, but its margin
over the baseline was negligible. As a result, the simpler “single_LSTM” design took precedence, presumably
avoiding the risk of overfitting that can arise when embeddings and multiple dropout layers are all
learned simultaneously.

3.2.3 Model Configurations Trained
Building on the insights gleaned from ablation and tuning, a variety of model variants were ultimately

trained. Table 3 outlines these configurations, which differed along three principal axes: (i) the choice of
embedding source and whether it was trainable or static, (ii) the single-layer vs. dual-layer BiLSTM design,
and (iii) whether standard or “optimized” hyperparameters (identified by hyperband and ablation studies)
were employed. Additionally, a subset of models underwent extended training (20 epochs instead of 10) or
5-fold cross-validation to provide more robust estimates of performance generalization.

Table 3: Overview of trained BiLSTM variants

Model name/K-Fold Embedding Trainable? BiLSTM layers Batch size Epochs
Glove Single BiLSTM

(Trainable)
GloVe Yes Single (256 units) 32 10

Glove Single BiLSTM
(Static)

GloVe No Single (256 units) 32 10

Word2Vec Single
BiLSTM (Trainable)

Word2Vec Yes Single (256 units) 32 10

Word2Vec Single
BiLSTM (Static)

Word2Vec No Single (256 units) 32 10

Glove BiLSTM (Static) GloVe No Dual (256 -> 32 units) 128 10
Glove BiLSTM

(Trainable)
GloVe Yes Dual (256 -> 32 units) 128 10

Glove BiLSTM
(Optimized, Static)

GloVe No Dual (256 -> 32 units) 32 10

Glove BiLSTM
(Optimized, Trainable)

GloVe Yes Dual (256 -> 32 units) 32 10

Word2Vec BiLSTM
(Static)

Word2Vec No Dual (256 -> 32 units) 128 10

(Continued)
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Table 3 (continued)

Model name/K-Fold Embedding Trainable? BiLSTM layers Batch size Epochs
Word2Vec BiLSTM
(Optimized, Static)

Word2Vec No Dual (256 -> 32 units) 32 10

Glove BiLSTM
(Trainable, Extended)

GloVe Yes Dual (256 -> 32 units) 128 20

K-Fold Glove BiLSTM
(Trainable)

GloVe Yes Dual (256 -> 32 units) 128 10

K-Fold Glove BiLSTM
(Trainable, Extended)

GloVe Yes Dual (256 -> 32 units) 128 20

K-Fold GloVe Single
BiLSTM (Trainable)

GloVe Yes Single (256 units) 32 10

K-Fold GloVe Single
BiLSTM (Trainable,

Extended)

GloVe Yes Single (256 units) 32 20

Each model’s name reflects whether the embeddings were static (non-trainable), trainable, or if the
architecture was optimized. “Single” denotes using a single BiLSTM layer with 256 units, while “Optimized”
references the lack of a spatial dropout layer as per ablation study results. Extended training and cross-
validation runs were carried out to more rigorously validate the stability of each model’s performance.

3.3 Training Dynamics and Evaluation of the Proposed Architecture
The Full Model, as devised from the model architecture proposed and the preceding explo-

rations, employs the dual BiLSTM layout augmented by dropout layers and batch normalization. This
section analyzes the training behavior and performance characteristics of our proposed model with
both static and adaptive embeddings, along with extended training experiments to determine optimal
convergence properties.

3.3.1 Training Trajectories: Static vs. Adaptive GloVe Embeddings
A. Static GloVe Embeddings (trainable = False)

One core objective was to gauge the performance of our Full Model when employing GloVe word vectors
as “frozen” embeddings. The reasoning is that pretrained embeddings already encode semantic relationships,
thereby limiting the capacity of the network to overfit by shifting these representations to idiosyncratic traits
in the training data. Fig. 4 shows the training and validation accuracies across ten epochs. After initialization,
the training accuracy began near 0.7806 and climbed to 0.9466, an improvement of approximately 16.6
percentage points. By epoch 8, the model had effectively converged. As signaled by the minimal gains in
validation performance thereafter. Notably, the validation accuracy at epoch 8 was 0.9629, which in fact
exceeded the same epoch’s training accuracy by a modest margin. This performance pattern, where validation
accuracy exceeds training accuracy—represents an uncommon but theoretically grounded phenomenon
in Neural Network training. The inversion of the typical accuracy relationship (where training accuracy
normally exceeds validation) stems from the interaction between several model characteristics. First, the
application of dropout layers affects only training-phase computation, artificially suppressing training accu-
racy while validation runs utilize the full network capacity. Second, batch normalization layers demonstrate
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different statistical behaviors during training vs. inference, potentially favoring validation instances when the
underlying data distributions have particular properties [72]. Third, the use of static embeddings constrains
the model’s capacity to overfit to training data, enforcing more generalized representational learning focused
on sequence patterns rather than lexical memorization. The steady convergence patterns observed in both
training and validation loss curves (decreasing from 0.4606 to 0.1419 for training, and 0.4523 to 0.1302 for
validation) further support this interpretation. Hence, the architecture was able to isolate discriminative
patterns despite lacking the flexibility to reshape word vectors.

Figure 4: Training performance curves of static embedding model

B. Adaptive GloVe Embeddings (trainable = True)

Subsequently, the embedding layer was configured to be trainable, thereby enabling the model to
adjust word vectors dynamically during backpropagation. This step introduces extra parameters and can,
in principle, help the architecture internalize domain- or task-specific semantics that might not be compre-
hensively captured by the original GloVe corpus. The training curve in Fig. 5 (left panel) conveys a steeper
rise than in the static scenario: the initial training accuracy of 0.7985 culminated at 0.9874 by epoch 10,
an increase of nearly 18.9 percentage points. The validation accuracy, starting near 0.8395, attained 0.9725
by the final epoch, consistently trailing the training curve by about 1–2%. That relatively small gap signals
moderate regularization success, especially given that the embedding space is not subject to fine-tuning.
From a loss perspective, Fig. 5 (right panel), the training curve dropped sharply from 0.4265 to 0.0351,
while validation loss diminished to around 0.0818. The network did exhibit slight fluctuations in validation
metrics past the midpoint of training, which might foreshadow potential overfitting had the researchers
continued for substantially more epochs. However, the final gap between training and validation results
(about−0.0149 in accuracy) indicates that the model’s capacity to overfit was tempered effectively by dropout,
batch normalization, and an adaptive learning rate schedule.
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Figure 5: Training performance curves for trainable GloVe model

3.3.2 Model Classification Results
A. Static GloVe Model

On the test set (5732 samples evenly split between original and AI-generated abstracts), the final static
model achieved 0.9513 accuracy and an F1 score of 0.9508 (see Table 4). From the confusion matrix, it is
observed that 2758 of the original abstracts were correctly identified (true negatives), with only 108 false
positives. Similarly, the model labeled AI-generated texts accurately 2695 times, with 171 false negatives,
as can be seen in Table 4. The resultant recall for AI-generated detection was 0.9403, meaning that while
performance is robust, the network occasionally struggles to detect certain AI-specific lexical cues. The
precision score of 0.9615 indicates that when the model classified a text as AI-generated, it was correct in the
majority of cases, reflecting a high degree of reliability in its positive classifications.

Table 4: Evaluation metrics for static and trainable GloVe configurations

Metric Static GloVe model Trainable GloVe model
Accuracy 0.9513 0.9698
F1 Score 0.9508 0.9701
Precision 0.9615 0.9622

Recall 0.9403 0.9780
Specificity 0.9623 0.9616

True negatives (correctly identified Original) 2758 2756
False positives (Original misclassified as AI-Generated) 108 110
False negatives (AI-Generated misclassified as Original) 171 63

True positives (correctly identified AI-Generated) 2695 2803
False positive rate 0.0377 0.0384
False negative rate 0.0597 0.0220
Overall error rate 0.0487 0.0302



Comput Mater Contin. 2025;84(2) 2625

Interestingly, the false-negative rate (~5.97%) surpassed the false-positive rate (~3.77%). In tasks that
prioritize detecting AI-generated content (e.g., editorial workflows or plagiarism detection), such a difference
can be critical: missing real AI-generated texts (false negatives) may pose a bigger concern than occasionally
misclassifying an authentic human-written document. Nonetheless, the overall error of 4.87% is fairly
modest, reflecting that the static embedding approach in a well-regularized BiLSTM can deliver strong
generalization.

B. Trainable GloVe Model

Upon evaluation, the trainable-embedding version of the Full Model reached 0.9698 accuracy and an
F1 score of 0.9701. The slight edge over the static variant is most visible in recall, which rose from 0.9403
to 0.9780. In other words, the model with adaptive embeddings caught more of the AI-generated texts that
the previous approach missed. The cost is a minor dip in specificity (from 0.9623 to 0.9616), meaning it
occasionally re-labeled real abstracts as AI-generated. For tasks where identifying AI-generated content is
paramount, a higher recall might be preferable.

Comparing the two configurations shows that trainable embeddings yield about 1.95%–2.05% absolute
improvement in key metrics (accuracy, F1) but at the expense of increased sensitivity to training epochs and
possible overfitting. Despite the great complexity, the model converged around epoch 8–9, similar to the
static version. The end result is a noticeable improvement in capturing AI-specific attributes, signaled by a
~38% reduction in overall error rate.

3.3.3 Longer Training Regime Analysis
Prior experiments concluded around epochs 8–10, frequently due to the activation of early stopping

criteria. However, it was hypothesized that extending the training duration might yield further performance
improvements or, conversely, lead to significant overfitting. To investigate this potential, the trainable-
embedding Full Model was allocated a training budget of up to 20 epochs, with intermediate metrics such
as precision, recall, and F1 score monitored throughout the training process.

Fig. 6 provides a detailed visual overview of the model’s extended training, showing how accuracy, loss,
precision, recall, and F1-score changed over time. It also includes the final confusion matrix, confidence
intervals calculated using bootstrapping, and the time taken for each training cycle (epoch). The model
underwent a total of 15 training epochs but implemented an early stopping mechanism, terminating training
when the validation loss plateaued and subsequently exhibited a marginal increase. A cursory glance at
the accuracy and F1 charts demonstrates that most improvements occurred before epoch 10, with marginal
gains at epochs 8–9. Notably, the best validation accuracy was 0.97 at epoch 8—remarkably close to the
standard 10-epoch schedule used previously. The best validation loss was found as well at epoch 8, the
subsequent epochs offering negligible advantage or a mild regression. Compared to the earlier 10-epoch
run with trainable embeddings, researchers observed that extended training neither harmed performance
drastically nor delivered major leaps forward. Rather, it refined certain aspects (like a narrower difference
between training and validation) but left the final evaluation metrics roughly in the same ballpark.
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Figure 6: Prolonged training evaluation

To assess the stability and reliability of the model’s final predictions, a bootstrap resampling procedure
comprising 1000 iterations was conducted. The 95% confidence interval for accuracy ranged from 0.9620
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to 0.9712. Similar intervals for F1 spanned 0.9614 to 0.9709, with narrower bounds on precision (0.9696–
0.9811) and a slightly wider range for recall (0.9505–0.9648). Thus, any random partitioning variations in
the test set are unlikely to produce major shifts beyond a fraction of a percent, signifying that the model’s
performance is fairly stable. From an operational standpoint, extended training added about 5 more epochs
beyond the usual stopping point, consuming an extra 12–13 min of GPU time for an overall 39.97-min run.
The final “best” checkpoint still occurred at epoch 8, so the additional epochs were effectively superfluous.
An improvement of only around +0.04% in validation accuracy was detected from epoch 10 to epoch 9—
well within the margin of random fluctuations. Hence, while a maximum of 20 epochs gave the model an
opportunity to search for superior solutions, early stopping rendered those additional iterations moot.

Though the trainable embeddings model performed slightly better in terms of raw metrics, its pattern
of validation loss and the need for careful interpretation cannot be overlooked. Both models approached,
but did not surpass, earlier benchmarks set by LSTM-Word2Vec research [9]. More critically, neither
configuration approached 100% accuracy, reminding us that even refined neural architectures cannot
unequivocally guarantee flawless detection.

3.4 K-Fold Cross-Validation Analysis
The generalization capabilities were thoroughly investigated using a rigorous 5-fold stratified Cross-

Validation (CV) procedure. The stratification ensured an equal representation of both classes (human and
AI-generated) across all partitions, preserving the balanced distribution present in the dataset comprising
28,662 abstracts equally divided between the two classes. Each fold consisted of approximately 5732 abstracts,
maintaining the class ratio precisely at 50% per category.

The cross-validation experiments were conducted on four model configurations designed to elucidate
the effects of architectural complexity (single-layer vs. dual-layer BiLSTM) and training duration (standard
vs. extended training epochs). Specifically, the models under scrutiny were: (1) Single-layer BiLSTM trained
for 10 epochs; (2) Single-layer BiLSTM trained for 20 epochs (extended training); (3) Dual-layer BiLSTM
(trainable GloVe embeddings) trained for 10 epochs; (4) Dual-layer BiLSTM (trainable GloVE embeddings)
trained for 20 epochs (extended training).

3.4.1 K-Fold Model Convergence and Accuracy Profiles
Fig. 7 displays two panels that track the validation accuracy and validation loss at each training epoch,

averaged across all folds for each model. A detailed observation of the validation accuracy plot reveals
a generally rapid convergence trajectory across all configurations, with notable increments within the
initial three to four epochs, suggesting that the neural architectures quickly adapted to capture the main
features distinguishing human from AI-generated abstracts. Particularly, the single-layer BiLSTM models,
irrespective of epoch count, display the steepest ascent initially, achieving higher accuracy earlier relative to
dual-layer counterparts.
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Figure 7: K-fold cross-validation convergence analysis

Turning attention to the validation loss convergence, the models uniformly illustrate sharp decreases
within the initial epochs, rapidly reaching a plateau phase between epochs four and six. Single BiLSTM
(10 epochs) shows substantial fluctuation in loss during intermediate epochs, indicating higher volatility in
optimization, likely due to stochastic variations in data subsets. However, it eventually stabilizes, aligning
closely with the other configurations at the final stages. Both dual-layer architectures show a consistent
and uniform reduction in loss, suggesting more predictable convergence dynamics, potentially due to
the regularizing influence of increased network complexity and parametrization. Paired statistical tests,
performed on the fold-level metrics, reveal that these extended vs. standard training differences typically lack
significance (p-values > 0.05), reinforcing that simply running more epochs does not guarantee a tangible
jump, therefore proving empirical evidence that prolonged training contributes negligible benefit to model
generalization capacity.

3.4.2 Fold-Specific Performance Distribution and Comparison
Fig. 8 provides a detailed analysis of the F1-scores obtained across the different folds of the

cross-validation procedure (top panels). Furthermore, it aggregates these results into distribution-based
comparisons (bottom panels), enabling a thorough evaluation of each model’s performance consistency and
robustness when exposed to diverse partitions of the dataset.

Across folds 1–5, the single layer architecture trained for 20 epochs attains the highest mean F1 (0.9745),
accompanied by a low coefficient of variation (~0.17%), reflecting very consistent performance. In contrast,
the extended dual-layer BiLSTM exhibits more pronounced variability (~0.53 CV), including occasional dips
in a certain fold. Further statistical scrutiny via t-tests on fold-level F1 revealed that the minor improvements
afforded by 20-epoch training in the single-layer design were not large enough to reach significance (p =
0.4000). Equally, the dual-layer’s slight decline under extended training was not statistically meaningful (p =
0.6681). However, contrasting the single-layer model with the dual-layer model did uncover a statistical
advantage for the former (p = 0.0155), implying that additional architecture complexity did not translate into
performance improvements commensurate with its computational costs.
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Figure 8: Individual fold analysis across all K-fold models

Taken together, the results from the cross-validation validate the core observations from single-
split experiments by providing substantive evidence supporting architectural simplification in this specific
text classification task. The combination of superior absolute performance, enhanced stability across data
partitions, and reduced parameter count renders the single-layer BiLSTM architecture clearly preferable to
the dual-layer configuration.

3.5 Cross-Architecture Performance Review
In an effort to contextualize the BiLSTM architectures detailed in Section 3.2.3, the authors expanded the

comparisons to include two additional neural baselines from Section 2.5: a CNN with GloVe embeddings and
unidirectional LSTM with GloVe embeddings. By juxtaposing these simpler DL setups with our more evolved
bidirectional models, the authors aimed to determine whether the added complexity of bidirectionality or
refined hyperparameter tuning genuinely translated into substantive gains.
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3.5.1 Comparison of Neural Architectures and Embeddings
Fig. 9 presents a comparative analysis of classification performance across multiple models, showcasing

their respective accuracy, F1-score, precision, and recall metrics. The high-level takeaway is that BiLSTM
architectures consistently outperform both the CNN and the unidirectional LSTM on nearly every metric,
thereby providing evidence that the capacity to integrate context from both preceding and subsequent
tokens substantially enhances the model’s ability to detect subtle attributes of AI-generated text. Even the
simpler single-layer BiLSTM variants, operating with moderate hyperparameter tuning, noticeably surpass
the best performances recorded by the CNN or unidirectional LSTM. In particular, the gap in F1 often hovers
between 0.02 and 0.05, a difference that repeated significance tests (including McNemar’s test on classification
disagreements) confirm is unlikely due to random fluctuation.

Figure 9: Multi-model classification metrics

In parallel, a close look at the embedding source reveals that GloVe-based BiLSTMs generally reach
or exceed 0.96 F1, with top contenders pushing beyond 0.97 or even 0.98. Word2Vec-based models
occasionally cross the 0.96 threshold—especially with static embeddings—but more commonly settle around
0.95–0.96. This moderate shortfall can be traced to the coverage disparities noted earlier, when GloVe’s
pretraining corpus appears to align more closely with academic vocabulary, giving it a slight edge on domain
terms and nuanced phrasing typical of scientific abstracts. Nonetheless, Word2Vec remains a valid choice
in contexts where the end goal tolerates a small performance deficit for some other advantage (e.g., if
Word2Vec embeddings are already in use for a multi-task pipeline). Certain Word2Vec models do, in fact,
outperform suboptimal GloVe configurations, underscoring that well-tuned Word2Vec systems are still
broadly competitive if carefully managed.
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Multiple “optimized” versions—broadly referencing the ablation-driven removal or reduction of spatial
dropout, along with a few additional hyperparameter tweaks—demonstrate that these targeted adjustments
can sometimes yield a modest boost. For instance, “Optimized GloVe BiLSTM (Static)” achieves about
+0.7 percentage points in accuracy relative to the non-optimized static counterpart, largely attributable to
removing spatial dropout in a scenario where overfitting was less of a concern. However, the story is not
universal: “Optimized GloVe BiLSTM (Trainable)” falls slightly below the standard trainable GloVe BiLSTM,
suggesting that ablation insights like removing certain dropout layers do not always produce net benefits
once the embeddings themselves are allowed to adapt. The same pattern recurs in Word2Vec: “optimized”
sometimes yields better performance, other times not. From a practical standpoint, these results imply that
optimization measures directed by ablation studies can help in static-embedding contexts (where the model
has fewer trainable parameters to regulate) but may prove less advantageous or even detrimental when
embeddings are also being updated.

Ultimately, the findings consistently reaffirm that single-layer BiLSTM architectures, particularly those
comprising 256 hidden units, constitute a robust and highly performant configuration. Some single-layer
GloVe models comfortably surpass dual-layer versions by 1–2 percentage points in F1 or recall. This disparity
emerges most clearly in the cross-validation fold-level data, where single-layer networks appear to converge
more robustly and exhibit fewer fluctuations across folds than their dual-layer counterparts. Significance
tests, including paired t-tests on fold metrics, occasionally yield p-values around 0.015, suggesting the
differences are meaningful and not mere sampling noise. With Word2Vec, a second layer might sometimes
help mitigate coverage shortfalls, but the best single-layer GloVe configurations are rarely eclipsed.

From a deployment perspective, the findings underscore that extending a BiLSTM architecture to
two layers or incorporating multiple optimizations does not inherently yield a net performance benefit. A
carefully tuned single BiLSTM with GloVe embeddings—preferably trainable if one can manage the risk
of overfitting—tends to furnish the highest F1 scores while maintaining strong recall. Indeed, these top
configurations markedly outdistance simpler neural baselines (CNN or unidirectional LSTM), verifying
that bidirectionality and judicious hyperparameter decisions can yield real improvements in detecting
AI-generated text.

3.5.2 Statistical Perspective on Model Comparisons
The quantitative differences observed across the various model configurations discussed in the pre-

ceding subsections—including BiLSTM architectures, single-split vs. cross-validation data partitioning, and
diverse embedding strategies—warrant a systematic statistical analysis. This study employed a variety of
statistical procedures—most prominently McNemar’s test for pairwise classification comparisons, plus cer-
tain paired t-tests on per-fold metrics in the cross-validation context—to approximate whether performance
differentials are stable across sampling perturbations. The impetus behind these tests is to avoid over-reliance
on a single-split metric that might unintentionally favor one model’s luck with a particular partition.

A. McNemar’s Test for Paired Classifications

The analysis identified multiple statistically significant distinctions among the model variants. The
Single BiLSTM with trainable GloVe embeddings emerged as statistically superior to multiple competing
architectures, registering 16 significant victories in pairwise comparisons. This robust statistical performance
stands in marked contrast to the CNN-GloVe architecture, which demonstrated statistical superiority in only
four pairwise comparisons. Several notable patterns emerged from the McNemar analysis (see Fig. 10). First,
architectural complexity did not necessarily correlate with statistical superiority—the simpler Single BiLSTM
architectures frequently outperformed their more complex dual-layer counterparts. Second, embedding
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adaptability proved statistically advantageous, with trainable embedding configurations consistently out-
performing their static counterparts. Third, Word2Vec-based models demonstrated competitive statistical
performance despite their lower absolute metrics, suggesting effective feature extraction from their higher-
dimensional embedding space. Particularly notable was the absence of statistically significant differences
between certain model pairs. The Trainable GloVe BiLSTM and the Extended Training BiLSTM variant
showed statistically indistinguishable performance (p = 0.3823), suggesting that additional training epochs
provided minimal classification advantage beyond standard training duration. Similarly, Single BiLSTM with
GloVe static embeddings and trainable GloVe BiLSTM demonstrated statistically equivalent performance
(p= 0.5585), indicating that architectural simplification and embedding trainability may represent alternative
pathways to similar performance levels.

Figure 10: Matrix of McNemar’s test outcomes for model pairs
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B. Practical Significance via Odds Ratios and Confidence Intervals
While statistical significance establishes the existence of performance differences, effect size quantifies

their magnitude and practical relevance. The authors calculated odds ratios and their corresponding 95%
confidence intervals for each pairwise comparison to assess practical significance. Fig. 11 presents these effect
sizes as a forest plot for the most noteworthy comparisons.

Figure 11: Effect sizes from McNemar’s test with 95% confidence intervals

The effect size analysis revealed considerable practical differences between specific pairs of models.
The most pronounced effect emerged in the comparison between Static BiLSTM and Single BiLSTM with
trainable GloVe embeddings (OR = 3.704, 95% CI: [2.742,5.002]), indicating that the odds of correct
classification by the Single BiLSTM with trainable embeddings were approximately 3.7 times higher than for
the Static BiLSTM when the models disagreed. Similarly, the Optimized BiLSTM demonstrated substantially
higher odds of correct classification compared to Single BiLSTM with trainable GloVe (OR = 3.038, 95%
CI: [2.227,4.143]). Intriguingly, the largest effect sizes generally occurred in comparisons involving Single
BiLSTM architectures, reinforcing the finding that architectural simplification effectively enhanced classifi-
cation performance. This suggests that model complexity reduction not only simplified the architecture but
substantially improved its ability to correctly classify instances where more complex models failed. Narrower
intervals, such as those for comparisons involving extensively validated models, indicate more precise effect
size estimation and greater confidence in the practical significance of observed differences.
C. Additional Validation Methods and Significance Tests

In addition to McNemar’s test, paired t-tests were conducted across cross-validation folds to further
assess statistical significance. In that scenario, each of the five folds yields a performance figure—accuracy,
F1, or some other measure—for each model, thereby creating matched pairs across folds. The t-test on these
paired results can detect whether the average difference in F1 (for instance) is likely to be zero or not. The
text reveals that certain comparisons, such as single vs. dual BiLSTM for standard training, do not show
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significance, while single-layer extended training vs. single-layer standard training often yields p-values well
above 0.05, indicating no robust difference. Notably, occasionally yields borderline statistical significance for
isolated metrics—such as recall or precision—yet these effects are inconsistent and do not reliably generalize
across other performance across other metrics or data folds. The upshot is that extended training presumably
helps in some cases but remains far from mandatory, especially when the differences remain within the
noise margin.

Summarizing across all significance tests, three principal conclusions about the deep models stand
out: (1) numerous advanced BiLSTM configurations significantly outperformed the baseline CNN and
unidirectional LSTM systems; (2) single-layer BiLSTMs with trainable GloVe embeddings exhibit either a
marked advantage or, at minimum, performance parity relative to deeper or ostensibly optimized variants—
with several comparisons yielding statistically significant results favoring the simpler architecture; and (3)
Word2Vec models can keep up in certain contexts but seldom dethrone the top GloVe systems. These
overarching patterns echo the raw, metric-based ranking presented in earlier sections; however, the appli-
cation of statistical analysis ensures that performance differentials are interpreted through the framework
of classification disagreements and repeated fold-based validation, rather than relying solely on single-split
evaluation snapshots.

3.5.3 Contrasting Advanced Neural Architectures with Classic ML
In tandem with the neural comparisons, the study also conducted a comparative benchmark to evaluate

the performance of modern BiLSTM architectures relative to more traditional classification pipelines. These
classical pipelines included linear classifiers (such as logistic regression) and ensemble approaches (e.g.,
random forests, gradient boosting, and Naïve Bayes), each appended to a TF-IDF or Bag-of-Words vectorizer
for textual feature extraction. Although earlier research has shown these methods can be durable and
transparent, the question was whether they could match or surpass the best BiLSTM solutions.

Upon evaluating TF-IDF-based classifiers (see Table 5), it is evident that a well-configured pipeline
(often featuring XGBoost or logistic regression at the end) can reliably surpass older DL baselines, including
simpler CNN models or unidirectional LSTM structures. In fact, the top-tier classical methods approached or
exceeded F1 scores around 0.960—an achievement that was once unattainable for older RNN-based systems
in earlier studies of textual classification. This evidently indicates that if one’s sole comparison were Naïve
Bayes (hovering near 0.86–0.88 F1) or a more primitive neural architecture, these classical approaches might
appear quite compelling. However, they generally did not keep pace with a refined single-layer trainable
BiLSTM, which repeatedly climbed toward 0.97 or 0.98 in F1, thus constituting a difference that was not
merely random but shown to be statistically tangible in the McNemar analyses. The underlying reasons
for this disparity between advanced neural approaches and traditional pipelines likely stem from multiple
factors. One key dimension is that a BiLSTM with pre-trained embeddings can exploit both local sequential
structure and deeper semantic similarities among words. Traditional ML systems dependent on TF-IDF
or Bag-of-Words operate as purely lexical-level scorers, weighting tokens that appear frequently in certain
classes. While they benefit from simpler optimization and clarity in interpretability (weights can be inspected
to see which n-grams the model favors), they can falter when confronted by synonyms or domain-specific
terms that do not manifest in the training distribution. In an AI detection context, LLMs frequently produce
text that is not simply a rehash of training set tokens, but a more cunning rearrangement or paraphrase. The
capacity of neural embeddings to cluster semantically adjacent vocabulary presumably empowers them to
generalize beyond the discrete n-grams that classical methods require. Furthermore, in tasks that revolve
around subtle textual cues—such as the slightly off-kilter transitions or certain lexical-linguistic anomalies
that hint at an AI-generated passage—BiLSTMs harness memory cells to integrate information across
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sentence boundaries. In contrast, traditional pipelines weigh each n-gram (or collection of words in a limited
window) almost independently, failing to capture the ephemeral but potentially revealing transitions in style
or syntax. As evidenced, while XGBoost or logistic regression might do a respectable job of capturing highly
discriminative phrases, they can be outmaneuvered by the flexible gating mechanisms of LSTMs, especially
when these gates adapt to new forms of AI text that do not match any previously seen lexical pattern.

Table 5: Ranked F1 model performances across methods

Rank Model Category F1 score Accuracy Precision Recall
1 GloVe Single BiLSTM

(Trainable)
Single Layer BiLSTM 0.9768 0.9768 0.9763 0.9773

2 K-fold Extended Training
Single BiLSTM

Single Layer BiLSTM 0.9745 0.9743 0.9693 0.9798

3 K-fold Single BiLSTM
(Trainable)

Single Layer BiLSTM 0.9734 0.9735 0.9793 0.9675

4 Word2Vec Single
BiLSTM (Static)

Single Layer BiLSTM 0.9722 0.9723 0.9751 0.9693

5 GloVe Single BiLSTM
(Static)

Single Layer BiLSTM 0.9715 0.9714 0.9675 0.9756

6 GloVe BiLSTM
(Trainable)

Dual Layer BiLSTM 0.9701 0.9698 0.9622 0.9780

7 Extended Training GloVe
BiLSTM (Trainable)

Dual Layer BiLSTM 0.9681 0.9679 0.9618 0.9745

8 Word2Vec Single
BiLSTM (Trainable)

Single Layer BiLSTM 0.9673 0.9674 0.9688 0.9658

9 Optimized GloVe
BiLSTM (Trainable)

Dual Layer BiLSTM 0.9657 0.9653 0.9531 0.9787

10 Word2Vec BiLSTM
(Static)

Dual Layer BiLSTM 0.9638 0.9635 0.9567 0.9710

11 TF-IDF + Logistic
Regression

Traditional ML 0.9630 0.9634 0.9719 0.9543

12 Optimized Word2Vec
BiLSTM (Static)

Dual Layer BiLSTM 0.9628 0.9627 0.9598 0.9658

13 TF-IDF + XGBoost Traditional ML 0.9602 0.9602 0.9618 0.9585
14 Optimized GloVe

BiLSTM (Static)
Dual Layer BiLSTM 0.9583 0.9580 0.9515 0.9651

15 GloVe BiLSTM (Static) Dual Layer BiLSTM 0.9508 0.9513 0.9615 0.9403
16 Unidirectional LSTM

GloVe
DL Baseline 0.9483 0.9471 0.9276 0.9700

17 TF-IDF + Random Forest Traditional ML 0.9404 0.9386 0.9129 0.9696
18 TF-IDF + Gradient

Boosting
Traditional ML 0.9315 0.9328 0.9503 0.9135

19 CNN GloVe DL Baseline 0.9281 0.9279 0.9257 0.9306
20 BoW + Naïve Bayes Traditional ML 0.8587 0.8538 0.8307 0.8887
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Despite their lower ultimate ceiling, classical methods remain relevant in situations where immediate
interpretability or minimal computational overhead outrank the quest for the absolute highest F1. An
organization with strict resource limitations, or one that must produce a transparent record of which token-
level features swayed the decision, might favor a logistic regression pipeline. Clearly, logistic regression or
random forest can be trained in a fraction of the time that a BiLSTM typically requires, circumventing
repeated epochs of forward and backward passes through a large embedding space. Consequently, users
may be inclined to accept an F1 score in the vicinity of 0.96, as opposed to 0.97 or 0.98, particularly when
such a marginal reduction in accuracy is considered acceptable within production settings characterized by
frequent model retraining or the processing of exceptionally large text corpora.

The category-level analysis presented in Fig. 12, which aggregates average F1-scores and accuracy,
provides further empirical support for these findings. Traditional ML methods, as a broad category, achieve
an average F1 in the lower 0.93 range, overshadowing older neural baselines (such as unidirectional LSTM or
CNN with an F1 around 0.928–0.948) but lagging behind modern single-layer BiLSTMs, which average above
0.97. The presence of a small standard deviation among the top ML models indicates that some approaches,
like XGBoost or logistic regression with TF-IDF, push near 0.96 or 0.963, but none appears poised to breach
the 0.97 threshold that single-layer GloVe accomplishes. The synergy between coverage, gating dynamics,
and learned embeddings evidently fosters a margin that simpler pipelines cannot close.

Figure 12: (Continued)
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Figure 12: Category-wise performance overview (neural vs. traditional)

4 Discussion
The discourse surrounding the detection of AI-generated text has reached a critical juncture, especially

as LLMs continue to evolve with increasing flexibility across successive iterations. While the BiLSTM
architectures employed in this study, powered by GloVe embeddings, achieved commendable levels of
accuracy, they nevertheless fell short of providing a foolproof solution. In what follows, three separate
sections explore the technical observations regarding BiLSTM performance, the broader academic context
around fairness and the hazards of automated penalties, and the limitations that shape the scope of the
present research.

4.1 Technical Observations on Architecture and Embedding Strategies
The internal dynamics and performance outcomes of the BiLSTM models offer several instructive

lessons regarding neural design and the pitfalls of pursuing endless complexity. The experiments that
compared a “smaller” single-layer BiLSTM (256 units) to a deeper dual-layer variant revealed that a more
compact architecture at times performed just as well—if not slightly better—than a network with additional
stacked layers, at least when the problem is constrained to classifying synthetic vs. human-generated
abstracts. This phenomenon emerged in both single-split experiments and K-fold cross-validation. One
plausible explanation is that a single BiLSTM, when combined with well-selected hyperparameters and
properly managed dropout, can capture the essential word transitions needed to differentiate AI-driven text
from authentic human writing.

A recurring theme was the trade-off between trainable and static embeddings. Allowing GloVe vectors
to be updated during backpropagation yielded slightly higher accuracy (peaking near 97%), along with a
decrease in missed AI-generated samples (i.e., fewer false negatives). However, these refinements occasion-
ally came at the cost of instability in validation curves, suggesting a tendency to overfit. Batch normalization,
spatial dropout, and learning-rate scheduling alleviated this risk but did not remove it entirely. While many
DL projects apply large or multiple LSTM layers in pursuit of higher capacity, these trials suggest that
more complicated structures do not always produce proportionally better performance. In fact, the deeper,
dual-layer BiLSTM risked over-parameterization, especially when embeddings themselves were already
fine-tuned. Hence, the most pleasing balance in our scenario emerged when a single BiLSTM architecture
combined adaptive word vectors with moderate dropout and an early-stopping policy.

The results also hint at the significance of domain suitability in pre-trained embeddings. Even though
Word2Vec embeddings were larger in dimensionality (300 D) and originated from a broad corpus (Google
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News), their coverage for specialized medical and academic terms was somewhat limited compared to
GloVe’s 100 D vectors. The coverage shortfall, about 81.66% for Word2Vec vs. 86.39% for GloVe, is arguably
enough to tip classification performance in GloVe’s favor, especially when detecting AI-generated abstracts in
COVID-19-related research. In principle, an embedding corpus that closely mirrors the specialized domain—
whether that is biomedical, epidemiological, or a different academic field—can make a substantial difference
for classification tasks of this nature.

Risks of overfitting were mitigated through various strategies. Foremost, once the embedding layer
was set to “trainable,” the model had increased flexibility in shaping how it conceptualized textual input.
This flexibility required more regularization. During ablation studies, authors discovered that removing
spatial dropout entirely in certain static-embedding configurations boosted performance, since untrainable
embeddings do not shift and thus may not over-memorize ephemeral patterns. Conversely, the models with
adaptive embeddings typically benefited from having dropout inside the recurrent cells and in the dense
layers, plus a stable learning-rate schedule. Early stopping on validation loss further kept overfitting in check,
ensuring that the network did not spiral into memorizing idiosyncrasies in the training set.

An additional noteworthy observation is that smaller batch sizes, typically 32 or 64, facilitated more
stable convergence in numerous model configurations. Such a finding is broadly consistent with research
that suggests moderate batch sizes can strike a better balance between gradient noise and stable param-
eter updates [58]. This pattern was shown in multiple ablation runs, where going above a batch size of
128 sometimes produced suboptimal or vacillating validation results. On top of that, certain advanced
techniques—like Hyperband optimization—proved beneficial for scanning broad hyperparameter spaces
within the limited runtime environment that was used Li et al. [55].

Taken together, these experiments underscore the notion that, in certain cases, a simpler approach may
be more effective. A single BiLSTM layer, combined with adaptive GloVe embeddings, moderate dropout,
and a well-chosen learning rate, delivered performance that nearly matched or even surpassed more elaborate
or deeper designs. That outcome is a salutary reminder: model complexity is no guarantee of superior
classification, and smaller networks with fewer parameters often demonstrate more stable results, especially
under practical constraints such as Kaggle’s GPU resource limitations or when focusing on specialized tasks
like detecting AI-generated abstracts.

4.2 Academic Perspective on Imperfect Detection and Potential Consequences
Throughout the evolution of LLMs—spanning GPT-3, GPT-4, DeepSeek, and their rapid successors,

one consistent theme emerges. These models can produce text that can fool both automated detection tools
and human reviewers as shown by Hakam et al. [10], Nabata et al. [12]. As progress in text-generation
accelerates, the probability of achieving 100% classification success becomes even more remote. Despite
achieving near 97% accuracy under optimal conditions, the experiments outlined here still resulted in the
misclassification of a small subset of texts. That modest gap might seem acceptable to some, but in an
academic context, even a small rate of false positives is enough to have considerable repercussions for
students and researchers whose original work is unfairly labeled as machine-produced.

The evidence from this research, and referenced publications, indicates that detection systems are
imperfect, and it is erroneous to treat a detection score as incontrovertible evidence of misconduct [6,13].
When institutions adopt a policy of penalties or zero-tolerance measures based purely on such tools, they
create an environment where genuine originality may be questioned unfairly. Even the best DL solutions
cannot account for all nuances of human creativity, disciplinary language, or specialized jargon. Some authors
might use distinctive phrasings that overlap with AI-driven patterns, and these legitimate texts can be
misread as synthetic.
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It is also unrealistic to believe that a comprehensive detection system covering every domain, every
new AI model, and every emergent writing style can be achieved. The rapidly evolving landscape—where
new LLMs emerge on an almost weekly basis, continually fine-tuned on progressively diverse corpora—
ensures that the classification challenge will remain a moving target. If a solution cannot deliver perfect or
near-perfect reliability on a controlled set of GPT-3 abstracts, it becomes even less plausible to hope for
total coverage across every discipline, model, and style. The risk of “hallucinations,” where advanced text-
generation systems produce plausible but inaccurate references or facts [28], only adds another layer of
complexity in detection. Consequently, any strategy that treats automated outputs as the final word risks
undue harm to students or authors.

In addition, fairness considerations suggest that educators should not penalize individuals solely based
on a questionable detection score. A more balanced approach involves using these computational tools as
preliminary filters, followed by thorough human review. In certain instances, the best safeguard is instructing
students and researchers on responsible AI usage, clarifying how such systems may or may not be employed,
and promoting learning and evaluation methods that require personal reflections, practical demonstrations,
or contextual arguments that an automated text generator would struggle to replicate. Rather than placing
our faith in a single numeric threshold from a detection model, academia might integrate such tool as part
of a broader policy framework that includes training, transparent rules, and a measured process for further
investigation. If, for instance, a piece of writing is flagged as “likely AI-generated,” a department could provide
the author with a chance to discuss or clarify how the text was produced before rendering any judgment.

Another important consideration revolves around fairness in grading and peer review. Students should
not be penalized if a detection system incorrectly flags their authentic work. Likewise, if an advanced system
evades detection by skillfully imitating academic style, educators should be prepared for the possibility that
not everything that “looks real” is guaranteed to be genuine. Both educators and administrators thus face
an ethical imperative to rely on multi-pronged methods that combine computational screening, domain
expertise, and robust support for genuine academic inquiry. This viewpoint aligns with arguments made by
Lawrence et al. [11], who caution that subjective impressions of textual quality do not always match authorship
origin and can lead to misguided evaluations.

4.3 Limitations
Although the present study sheds considerable light on BiLSTM-based strategies for AI-text detection,

several constraints limit the generalizability and broader applicability of the observed outcomes.
First, the investigation focused on GPT-3-generated abstracts from the AI-GA dataset [48], and these

texts were paired with authentic COVID-19 abstracts. The domain specificity means that word usage and the
rhetorical structures in the dataset may not represent other fields or more varied writing styles. In addition,
GPT-3 is only one member of the LLM ecosystem, and the differences between GPT-4, DeepSeek, and other
emergent models may pose new challenges. Performance might deviate if the system is tested on text from
advanced, domain-tuned AI models or entirely different subject matter.

Second, although Hyperband optimization was employed to traverse a broad hyperparameter space,
memory and runtime constraint in the Kaggle environment restricted the scope of exploration. More
extensive searches or more specialized hyperparameters (e.g., focusing on even smaller or larger LSTM
units, different decay schedules, or more exhaustive embedding sets) could potentially yield slightly higher
accuracy or better generalization.

Third, the study’s focus remained on performance metrics (accuracy, precision, recall, F1), without
implementing methods to explain which textual cues the BiLSTM used to classify a text as AI-generated.
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This limitation means that instructors or administrators might find it difficult to justify a detection result
if asked to provide evidence beyond the model’s numeric output. Additional techniques such as attention-
weight visualization or layer-wise relevance propagation could clarify the signals that drive classification,
offering a more transparent approach.

LLMs are updated continuously, and their capacity to produce more humanlike or domain-specific text
expands over time. A classifier built around GPT-3 patterns risks gradual obsolescence if GPT-4 or emerging
models introduce new phrasing habits, lexical patterns, or contextual depth that the original system did
not anticipate. The immediate adoption of weekly or monthly model variations by malicious actors or even
curious students implies that detection solutions require frequent re-validation and updating.

5 Conclusion
The comparison of single-layer and dual-layer BiLSTM architectures revealed that larger models do not

always guarantee superior classification outcomes, particularly when the goal is to isolate AI-generated text
among scientific abstracts. In many trials, a single bidirectional LSTM with 256 units, combined with pre-
trained GloVe vectors, either met or surpassed the deeper network’s performance. Although the trainable
embedding option provided added precision and recall gains, it also introduced overfitting risks, thereby
requiring careful tuning of dropout layers and learning rates. Even when best-case scenarios approached the
98.7% accuracy plateau achieved with previous LSTM-Word2Vec work [9], none of the models managed
complete error-free detection.

These findings reaffirm that, regardless of their sophistication, automated classifiers cannot serve as
the definitive authority in determining authorship. The danger of penalizing genuine text or overlooking
meticulously crafted AI output underscores the value of a multi-layered approach, where computational
methods serve as preliminary checkpoints rather than unilateral judges. Guidelines on responsible AI
usage, along with assignments that invite reflections and unique insights, can further deter misuse and
sustain true intellectual exploration. Rather than placing unwavering faith in a numeric verdict, one can
integrate detection tools with well-planned academic policies, transparent review processes, and a clear path
for authors to demonstrate the authenticity of their work. By adopting this more balanced perspective, it
becomes possible to maintain a high standard of integrity and originality in a landscape where AI-driven
text generation is advancing in sophistication every day.
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