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ABSTRACT: In recent years, fungal diseases affecting grape crops have attracted significant attention. Currently, the
assessment of black rot severity mainly depends on the ratio of lesion area to leaf surface area. However, effectively and
accurately segmenting leaf lesions presents considerable challenges. Existing grape leaf lesion segmentation models have
several limitations, such as a large number of parameters, long training durations, and limited precision in extracting
small lesions and boundary details. To address these issues, we propose an enhanced DeepLabv3+model incorporating
Strip Pooling, Content-Guided Fusion, and Convolutional Block Attention Module (SFC_DeepLabv3+), an enhanced
lesion segmentation method based on DeepLabv3+. This approach uses the lightweight MobileNetv2 backbone to
replace the original Xception, incorporates a lightweight convolutional block attention module, and introduces a
content-guided feature fusion module to improve the detection accuracy of small lesions and blurred boundaries.
Experimental results show that the enhanced model achieves a mean Intersection over Union (mIoU) of 90.98%, a mean
Pixel Accuracy (mPA) of 94.33%, and a precision of 95.84%. This represents relative gains of 2.22%, 1.78%, and 0.89%
respectively compared to the original model. Additionally, its complexity is significantly reduced without sacrificing
performance,the parameter count is reduced to 6.27 M, a decrease of 88.5% compared to the original model, floating
point of operations (GFLOPs) drops from 83.62 to 29.00 G, a reduction of 65.1%. Additionally, Frames Per Second
(FPS) increases from 63.7 to 74.3 FPS, marking an improvement of 16.7%. Compared to other models, the improved
architecture shows faster convergence and superior segmentation accuracy, making it highly suitable for applications
in resource-constrained environments.
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1 Introduction
Grapes are one of the most widely consumed fruits globally and serve as the primary raw material

for wine production, making them an economically important crop cultivated extensively worldwide [1].
However, grape leaves are highly susceptible to various diseases caused by fungi, viruses, and bacteria,
influenced by environmental and climatic factors [2]. Black rot, a major fungal disease, can lead to substantial
damage to fruits and leaves if not promptly identified and controlled, thus impacting grape yield and quality
and causing economic losses for growers. Currently, the severity of black rot is primarily assessed based on
the proportion of lesion area on the leaf surface. Deep learning technology offers the potential for accurate
lesion segmentation on leaves, enabling rapid disease assessment and playing a critical role in the effective
health management of vineyards.
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Traditional disease detection methods primarily rely on visual inspection by agricultural experts, which
is inefficient on a large scale, requiring substantial labor and being heavily dependent on the subjective
experience of the evaluator [3]. With advances in image processing and computer technology, image
segmentation methods have evolved through three major stages: from classical segmentation to machine
learning-based segmentation, and finally to deep learning-based segmentation. Classical segmentation
techniques include thresholding, region-based, edge detection, and clustering methods. Babu et al. utilized
the Otsu multi-threshold method combined with the chimp optimization algorithm for segmenting disease
images of tomato leaves, demonstrating robust generalization [4]. Jaskaran et al. applied a region-based KNN
classifier with texture feature analysis for plant disease detection [5]. Additionally, Sudha et al. proposed
a machine learning model for detecting anthracnose in cashew leaves, combining random forest with the
K-Means algorithm to achieve effective leaf segmentation [6].

Deep learning provides a more effective solution for segmentation tasks to address the high image
quality requirements of classical segmentation methods and the complexity of machine learning approaches.
In recent years, the rapid advancement of deep learning technology has significantly driven progress in image
segmentation. Long et al. introduced the fully convolutional network (FCN), which enabled the application
of deep learning in semantic segmentation by replacing fully connected layers [7]. Subsequent models
like SegNet [8] and DeconvNet [9] refined the FCN structure through an encoder-decoder architecture,
enhancing detail recovery. To improve multi-scale object recognition, PSPNet introduced global pyramid
pooling for multi-scale information integration [10]. Deepak Kumar et al. advanced the field with a multi-
stage model (PSGIC) based on PSPNet and fuzzy rules, enabling applications in multi-stage scenarios [11].
Mask R-CNN [12] added a parallel branch for generating segmentation masks on top of Faster R-CNN [13],
achieving both object detection and pixel-level segmentation. U-Net captured contextual information by
combining encoding and decoding paths, refining the FCN architecture, and improving segmentation
accuracy with a skip connection mechanism [14]. Yi et al. [15] further enhanced U-Net by integrating VGG
as the backbone with dual attention modules for channel and spatial dimensions, enabling segmentation of
disease-affected areas on grape leaves. BiSeNet [16] balances speed and accuracy with a dual-path design
but compromises precision for small objects. OCRNet [17] enhances segmentation via object-contextual
relations, yet its heavy backbone reduces efficiency. Lightweight models like ENet [18] and Fast-SCNN [19]
prioritize speed, struggling with fine details and edges due to shallow architectures. In contrast, these
methods often fail to address the specific challenge of segmenting small, irregularly shaped targets like grape
leaf lesions, where both efficiency and precision are paramount.

To enhance the ability to capture image details, the DeepLab series introduced Atrous Spatial Pyramid
Pooling to expand the receptive field, progressively optimizing multi-scale feature extraction capabilities
from DeepLab [20] to DeepLabv3+ [21]. DeepLabv3+ demonstrates high accuracy in semantic segmentation
and has been widely applied to complex image segmentation tasks [22]. However, DeepLabv3+ and related
models face significant limitations in lightweight design, detail recovery, and edge detection, particularly
when addressing the challenges of segmenting small targets prevalent in current research. First, its backbone
network Xception, exhibits a high parameter count and computational complexity, impeding its deployment
in large-scale, real-time detection tasks, such as vineyard monitoring [23]. Second, Spatial reduction in
feature extraction loses fine details vital for small lesion detection, and poor edge restoration affects boundary
accuracy for irregular or blurred lesions. These deficiencies are not unique to DeepLabv3+; for instance,
U-Net and FCN similarly struggle with spatial detail loss, while PSPNet sacrifices local precision for
global context.
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We proposes an improved segmentation model, SFC_DeepLabv3+1, to address the limitations of
DeepLabv3+ in terms of parameters, training time, and detail extraction. Our model effectively enhances
segmentation accuracy for small lesions and edge features while reducing parameters and computational
complexity, supporting efficient agricultural disease management and decision-making. The main contribu-
tions of our work are as follows.

1. We proposed a lightweight segmentation model SFC_DeepLabv3+. It utilizes MobileNetV2 as the
backbone, integrates Strip Pooling, CBAM and CGAFusion. It effectively detects blurred edges and
small lesions in leaf disease segmentation, achieving an mIoU of 90.98%, mPA of 94.33%, and precision
of 95.84%, improvements of 2.22%, 1.78%, and 0.89% over baseline. The model reduces parameters to
6.27 M (88.5% decrease), GFLOPs to 29.00 G (65.1% reduction), and increases processing speed to 74.3
FPS (16.7% improvement), making it ideal for resource-constrained agricultural applications.

2. Through ablation experiments and heatmap analysis, we demonstrated the individual and combined
contributions of these modules to segmentation performance. By integrating all enhancements, the
model achieved improvements in mIoU, mPA, and Precision, highlighting the effectiveness of multi-
scale feature fusion and dynamic attention mechanisms. Compared to segmentation models on public
datasets, including DeepLabv3+, Unet and HRNet, SFC_DeepLabv3+ exhibited superior performance.

3. We have proposed the dataset used in this study along with its annotation files, trained model
weights, and complete source code. This not only ensures reproducibility of the research but also
provides valuable support for further research and practical applications in the field of agricultural
disease segmentation.

In the following sections, Section 2 provides a detailed description of the dataset and our
SFC_DeepLabv3+. Section 3 discusses the experimental setup and the results. Section 4 analyses the results
of the experiment. Finally, Section 5 presents the conclusions of this study.

2 Material and Methods

2.1 Dataset
This study utilized the publicly available PlantVillage dataset [24], which contains 61,486 RGB images of

plant leaves and backgrounds across 39 different categories. To focus on the segmentation of black rot lesions
in grape leaves, 400 grape leaf images exhibiting black rot symptoms were selected and verified by experts in
grape disease. To enhance data quality and model generalization while mitigating over fitting, traditional data
augmentation techniques were applied after dataset construction, including rotation, mirroring, brightness
adjustment, Gaussian noise addition, and random masking. We employed an 8:1:1 split strategy, dividing the
augmented set of images into three subsets. Cross-validation was not utilized in this study, this partitioning
approach was designed to effectively leverage the augmented dataset. Image annotation was performed using
the open-source tool Labelme, which recorded information such as the original image name, leaf contours,
and black rot lesion coordinates. Fig. 1 shows examples of original images and their corresponding mask
annotations in the dataset.

1https://github.com/xiayuchao/SFC_DeepLabv3Plus (accessed on 29 April 2025)

https://github.com/xiayuchao/SFC_DeepLabv3Plus
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JPEGImages

SegmentationClass

Figure 1: Examples from the segmentation-labeled dataset. JPEGImages represents the original images.
SegmentationClass represents the corresponding mask annotations. Green indicates leaf contours and red denotes
black rot lesions

2.2 SFC_DeepLabv3+
DeepLabv3+ employs an encoder-decoder architecture. In the encoder, feature extraction is achieved

using a deep convolutional neural network (DCNN) to generate shallow and deep feature layers at different
spatial resolutions. Atrous convolution and Atrous Spatial Pyramid Pooling (ASPP) are introduced to
capture multi-scale features, with depthwise separable convolutions and residual connections in the Xception
network enhancing feature extraction. The ASPP structure leverages atrous convolutions with varying rates
to capture features at multiple scales, and a 1 × 1 convolution is used to adjust the channel count for the fused
feature layer. In the decoder, bilinear upsampling is applied to align shallow and deep feature layers, followed
by 1 × 1 and 3 × 3 convolutions for further feature extraction, producing the final prediction results.

We propose a lightweight black rot leaf segmentation model, SFC_DeepLabv3+, based on the
DeepLabv3+ architecture to address issues in the original model, such as high parameter count and imprecise
lesion and edge segmentation. MobileNetV2 [25] is adopted as the backbone network to reduce the parameter
count and optimize computational complexity. Additionally, the global average pooling branch in ASPP is
replaced with Strip Pooling [26], and a CBAM [27] attention mechanism is introduced at the input stage. We
designed a content-guided attention feature fusion module (CGA Fusion [28]) to improve detection accuracy
for small lesions and blurred edges. It incorporates dynamic upsampling technology (DySample_UP [29])
for feature fusion, balancing efficiency and performance. The input image is processed by MobileNetV2,
producing a feature map enhanced by CBAM. This map enters ASPP, where Strip Pooling and atrous
convolutions generate multi-scale features ( fd8, fd16). CGA Fusion combines these with the shallow feature
flow, creating a refined feature map (low_level_features). The decoder upsamples and applies convolutions
to produce the final segmentation, as shown in Fig. 2.
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Figure 2: Architecture of SFC_DeepLabv3+

2.2.1 Backbone Network
MobileNetV2 is adopted as the backbone for SFC_DeepLabv3+ to address the high parameter count and

computational complexity of traditional segmentation models. Selected for its superior efficiency-feature
extraction balance, MobileNetV2 outperforms EfficientNet [30] by avoiding computationally intensive
network scaling strategies, and surpasses MobileViT [31] in handling fine-grained lesion boundaries through
its convolution-based design. The network’s efficiency stems from its inverted residual structure: 1 × 1
convolutions first expand feature dimensions, followed by lightweight 3 × 3 depthwise separable convolutions
for spatial feature extraction, and finally project back to lower dimensions. Combined with ReLU activation
for feature preservation, this architecture achieves effective preliminary feature fusion while maintaining low
computational costs, making it ideal for resource-constrained leaf disease segmentation tasks.

2.2.2 CGA Fusion
In DeepLabv3+, feature maps from different layers vary significantly in scale and semantic content,

making simple fusion strategies inadequate for capturing multi-scale information, especially for small lesion
detection where high-level features may lose spatial details. To address this, we propose Content-Guided
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Attention Fusion (CGA Fusion) which dynamically fuses features to enhance detection accuracy, adaptability
to diverse scales, and segmentation performance. Using a content-guided attention mechanism, CGA Fusion
optimizes channel contributions during fusion. The detailed process is outlined in Algorithm 1 and its
structure is depicted in Fig. 3.

Algorithm 1: Content-guided attention fusion (CGA Fusion) algorithm
1: Input: Feature maps flow, fd8, fd16 from the DCNN backbone
2: Output: Fused feature map low_level_features
3: Initialization:
4: fd16_up ← DySample( fd16) ⊳ Upsample fd16 to match fd8 resolution
5: Step 1: First Fusion
6: ffuse1 ← CGAFusion( fd8, fd16up) ⊳ Fuse mid- and high-level features
7: Step 2: Upsampling
8: ffuse1_up ← DySample( ffuse1) ⊳ Upsample ffuse1 to match flow resolution
9: Step 3: Second Fusion
10: low_level_features← CGAFusion( flow, ffuse1up) ⊳ Fuse with low-level features
11: Return: low_level_features
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Figure 3: Structure of CGA fusion

The CGA module dynamically computes channel weightsW as defined in Eq. (1), which transforms
input features F into weighted features F′ per Eq. (2). The FUSE module subsequently combines low-level
Flow and high-level Fhigh features through the weight-adaptive fusion described in Eq. (3).

W = σ(FC(GAP(F))) (1)
F′ =W ⋅ F (2)
Ffuse = Flow ×W + Fhigh × (1 −W) (3)

2.2.3 Strip Pooling
Atrous Spatial Pyramid Pooling (ASPP) performs well in multi-scale information processing. However,

it often fails to retain fine spatial details when using global average pooling for capturing contextual
information, especially in edge refinement and small object detection. Strip Pooling provides an alternative
approach, focusing on modeling long-range dependencies in isolated regions, allowing the network to
effectively integrate global and local information. Its structure is shown in Fig. 4. Strip Pooling applies
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elongated pooling kernels along either the horizontal or vertical dimension to capture global information
over long-range dependencies. In the remaining spatial dimensions, it retains a narrow kernel shape to obtain
detailed local context information. For a feature map of size H ×W , strip pooling is applied horizontally
and vertically to form H × 1 and 1 ×W shapes (Eq. (4)). The results are convolved and expanded, then fused
using a 1 × 1 convolution and Sigmoid function (Eq. (5)).

Xhorizontal = AveragePool(X , size = H × 1), Xvertical = AveragePool(X , size = 1 ×W) (4)

Xexp = Expand(Conv(Xhorizontal + Xvertical)), Xfinal = Sigmoid(Conv(Xexp)) ⋅ X (5)

Figure 4: Structure of strip pooling

2.2.4 Upsampling Operation
The upsampling operation adjusts the size of the input feature map to enable the model to segment leaves

at varying scales effectively. In the original DeepLabv3+ architecture, bilinear interpolation is commonly
used for upsampling. However, this method may fail to fully recover high-level feature details and edge
information, potentially leading to the loss of fine details essential for preserving the original characteristics
of the image. DySample is a point-sampling-based upsampling approach that avoids the complexity of
dynamic convolutions, enhancing the feature fusion capability of the network. The structure of DySample is
shown in Fig. 5, where the input feature, upsampled feature, offset generation, original sampling grid, and
Sigmoid function are represented by X, X′, O, G and σ , respectively.
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2.2.5 CBAM
CBAM (Convolutional Block Attention Module) is introduced into DeepLabv3+ to effectively address

the uneven distribution of feature importance. By integrating CBAM into DeepLabv3+, we enhance the
model’s focus on task-critical features. CBAM sequentially applies channel and spatial attention mechanisms,
amplifying relevant channels and regions while suppressing noise. This improvement boosts segmentation
accuracy, particularly for blurred boundaries and small lesions in grape leaf analysis. The Channel Attention
sub-module employs global average and max pooling to weigh channels through an MLP (Eq. (6)), while
the Spatial Attention sub-module generates a spatial map using a 7 × 7 convolution (Eq. (7)), as illustrated
in Fig. 6.

Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F))) (6)

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (7)

MaxPool
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Input Features Output Features

Chanel 
Attention

Spatial 
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Figure 6: CBAM attention module structure
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3 Results

3.1 Experimental Setup
All deep learning models in this study were trained and tested on a machine with a 32-core Intel(R)

Xeon(R) Gold 6326 CPU at 2.9 GHz and an NVIDIA RTX A4000 GPU. All model training was conducted
in PyTorch 1.13.1 using Python 3.8 and CUDA 11.7.

The training process consisted of frozen training and unfrozen training. Initially, to facilitate rapid and
stable convergence, the backbone parameters of a model were frozen, with training focused solely on the top
layers. After a predetermined number of training cycles, all network layers were unfrozen for full parameter
updating to further optimize the performance of a model.

All models were trained and tested under identical conditions using the same dataset to ensure fairness
in network performance evaluation and comparability of results. All experiments utilized images at a
resolution of 512 × 512 pixels, with a batch size of 4 and a total of 150 training epochs. The optimization
used Stochastic Gradient Descent (SGD) with a momentum of 0.9 and weight decay of 1 × 10−4 to prevent
overfitting. The learning rate started at 7 × 10−3, with a minimum of 7 × 10−5, following a cosine annealing
decay. Batch size scaling adjusted the learning rate dynamically, with bounds of 1 × 10−1 and 5 × 10−4. Random
shuffling was enabled to improve robustness, and class weights were set to 1.0 for balanced loss.

Fig. 7 demonstrates the training dynamics of SFC_DeepLabv3+ with three key observations: (1) Train-
ing and validation losses co-converge to values below 0.1 within 150 epochs; (2) Validation loss fluctuations
remain bounded within ±0.02 without showing training-validation divergence; (3) Stable convergence
persists under aggressive data augmentation including random cropping and color jittering. These results
confirm the model learns generalizable features without overfitting or data dependency.

Figure 7: The evolution of both raw and smoothed loss values across training epoch

3.2 Evaluation Metrics
We employ mean intersection over union (mIoU), mean pixel accuracy (mPA) and precision to evaluate

segmentation performance of models. mIoU represents the mean intersection over union across all classes,
where TPc , FPc , and FNc denote the true positives, false positives, and false negatives for class c, respectively.
mPA is the average pixel accuracy across all classes. Precision assesses the proportion of correctly predicted
positive samples among all predicted positives. They are computed as follows.
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3.3 Ablation Study
An ablation study was conducted by sequentially replacing and adding modules using Xception as the

backbone on the dataset used in this study to evaluate the contribution of each improvement module to
segmentation performance. The experimental steps included: substituting MobileNetV2 for Xception as the
backbone, replacing the traditional global average pooling branch in the ASPP module with Strip Pooling,
adding CBAM before ASPP on shallow features, and finally introducing the CGA Fusion module to enhance
feature fusion. The experimental configuration and parameters are detailed in Section 3.1, and the specific
results of this ablation study are presented in Table 1.

Table 1: Ablation study results for SFC_DeepLabv3+ components

Model MobileNetV2 Strip pooling CGA Fusion CBAM mIoU (%) mPA (%) Prec.
(%)

0 (Baseline) × × × × 88.76 92.55 94.95
1 ✓ × × × 90.25 93.55 95.73
2 ✓ ✓ × × 90.88 94.18 95.42
3 ✓ × ✓ × 90.70 93.93 95.88
4 ✓ × × ✓ 90.41 93.39 96.15
5 ✓ ✓ ✓ × 90.74 94.03 95.83
6 ✓ × ✓ ✓ 90.85 94.10 96.05
7 ✓ ✓ × ✓ 90.79 94.00 95.90
8 ✓ ✓ ✓ ✓ 90.98 94.33 95.68

Table 1 shows that the performance improves progressively with the step-by-step introduction of
enhancement modules. Model 0 (i.e., DeepLabv3+) uses Xception as the backbone. It serves as a benchmark
for subsequent improvements.

Model 1 substitutes Xception with MobileNetV2. It improves the accuracy of mIoU, mPA by 1.49%,
1.00%, and 0.42%. This substitution maintains the lightness of the model without significantly impacting
segmentation accuracy. Building on this,

Model 2 incorporates Strip Pooling to replace the global average pooling branch in the ASPP module,
resulting in additional improvements of 0.63% in both mIoU and mPA, while maintaining a stable Precision.
It illustrats the global semantic capturing capability of Strip Pooling significantly enhances the model’s
adaptability to complex scenarios.

Model 3 uses CGA Fusion for feature integration. While mIoU and mPA experience slight decreases
compared to Model 2, Precision improves to 95.88%. This demonstrates the potential of CGA Fusion in
enhancing segmentation accuracy, particularly for fine-grained details, though its standalone impact is
limited when not combined with complementary modules.

With the inclusion of CBAM in Model 4, Precision achieves its highest value at 96.15%. However, mIoU
and mPA show minor decreases compared to Models 2 and 3, indicating that CBAM is particularly effective
in optimizing attention to key regions but contributes less to global semantic modeling.

Model 5 combines MobileNetV2, Strip Pooling, and CGA Fusion. This configuration achieves balanced
performance, demonstrating the effectiveness of module integration in addressing the challenges of complex
segmentation tasks.
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Model 6 combines MobileNetV2, CGA Fusion, and CBAM, achieving 90.85% mIoU, 94.10% mPA, and
96.05% Precision. Compared to Model 3 (CGA Fusion alone), CBAM brings improvements of 0.15% mIoU,
0.17% mPA, and 0.17% Precision, enhancing attention refinement. Relative to Model 4 (CBAM alone), it gains
0.44% mIoU and 0.71% mPA, showing CGA Fusion’s complementary global feature integration.

Model 7 integrates MobileNetV2, Strip Pooling, and CBAM, yielding 90.79% mIoU, 94.00% mPA,
and 95.90% Precision. Compared to Model 2 (Strip Pooling alone), CBAM adds 0.66% Precision, boosting
local attention. Relative to Model 4 (CBAM alone), Strip Pooling contributes 0.38% mIoU and 0.61% mPA,
demonstrating their global-local synergy.

Model 8 integrating all enhancement modules yields the highest performance. Compared to the base-
line, it delivers improvements of 2.22% in mIoU, 1.78% in mPA, and 0.89% in Precision. These results validate
the complementary functionality of the modules, achieving comprehensive performance enhancements
across all metrics.

3.4 Heatmap Analysis of Model
The heatmap color variation reflects the response intensity of the model in specific areas. Colors closer

to red indicate a stronger response, and colors closer to blue indicate a weaker response. Hook functions
are placed on each module during the forward pass to capture output feature maps without altering the
overall architecture. After capturing the feature maps, channel-wise responses are averaged to generate a
single-channel heatmap, which is then normalized to highlight regional response differences. The processed
heatmap is overlaid onto the original image, allowing analysis of the role and contribution of models to the
segmentation task.

(a)Baseline Model (b)Baseline Model 

With Strip Pooling

(c)Baseline Model 

With CBAM

(d) Baseline Model 

With CGA Fusion
(e)SFC_DeepLabv3+

Figure 8: Performance of different enhancement models: (a) baseline model (i.e., DeepLabv3+), (b) baseline model
with Strip Pooling, (c) baseline model with CBAM, (d) baseline model with CGA Fusion, and (e) SFC_DeepLabv3+
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As shown in Fig. 8, the baseline model displays responses primarily concentrated in small regions,
with green and blue as the dominant colors. The global receptive field of the model significantly expands
after adding Strip Pooling (Fig. 8b). It results in increased red and yellow areas, reflecting broader detection
and coverage. With the addition of CBAM, the response of the model becomes more focused and intense
within lesion areas, especially along critical lesion boundaries, where high-intensity responses are observed.
The further incorporation of the CGA Fusion module yields a wider and more uniform distribution of red
and yellow regions, indicating that multi-scale feature fusion improves the stable detection of lesion areas.
Finally, with all enhancement modules integrated, the red and yellow regions in the lesion areas become
more prominent and well-defined, achieving optimal performance in feature extraction and fusion. This
comprehensive approach enables precise and consistent recognition of lesion areas on grape leaves while
effectively suppressing background noise.

3.5 Model Performance
To validate the effectiveness of the proposed enhancements, comparative experiments were conducted

using the dataset in this study with models such as DeepLabv3 [32], DeepLabv3+, Unet, HRNet [33], FCN,
PSPNet, and LR-ASPP [34]. All models were trained on the same dataset, with experimental settings and
parameters detailed in paper’s without any modification except epoch. To minimize potential experimental
errors, multiple trials were conducted, and the median value was taken as the final experimental result. The
segmentation results under different networks are presented in Table 2.

Table 2: Performance of models on grape leaf black rot disease segmentation

Model Backbone Network mIoU (%) mPA (%) Prec. (%)
DeepLabv3 ResNet50 86.30 90.23 90.23

DeepLabv3+ Xception 88.76 92.55 94.95
U-Net ResNet50 88.93 92.18 95.43
HRNet HRNetV2_w18 88.00 90.91 95.98
FCN ResNet50 87.90 92.39 93.93

PSPNet MobileNetV2 80.14 84.56 91.56
LR-ASPP MobileNetV3 81.40 85.73 92.49

SFC_DeepLabv3+ MobileNetV2 90.98 94.33 95.84

Table 2 demonstrates the performance of different models on the grape leaf black rot segmentation task.
SFC_DeepLabv3+ outperforms the original DeepLabv3+ in IoU, mPA, and precision with improvements of
2.22%, 1.78%, and 0.89%, respectively. It indicates significant optimization in model architecture and feature
extraction mechanisms. By integrating MobileNetV2 as a lightweight backbone, combining strip pooling and
CBAM, and employing CGAFusion for feature merging, SFC_DeepLabv3+ exhibits enhanced performance
in fine-grained segmentation and local feature extraction. While HRNet shows a slight advantage in
precision, its mIoU and mPA do not reach the levels achieved by SFC_DeepLabv3+.

4 Discussion

4.1 Computational Cost
Table 3 presents the parameters, GFLOPs, FPS, and model size for each model. Compared to

DeepLabv3+, SFC_DeepLabv3+ demonstrates a substantial lightweight advantage, reducing model param-
eters by 49.44M, decreasing GFLOPs by 54.1, and increasing FPS by 12.46. This makes it more suitable for
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real-time monitoring and detection requirements. Although other lightweight models such as PSPNet and
LR-ASPP perform well in terms of Params and GFLOPs, their segmentation accuracy is considerably lower
than that of SFC_DeepLabv3+.

Table 3: Parameters, GFLOPs, and FPS of models

Model Backbone Params/M GFLOPs/G Model Size/MB FPS
DeepLabv3 ResNet50 41.99 179.30 320.79 49.65

DeepLabv3+ Xception 54.71 83.10 209.71 61.84
PSPNet MobileNetV2 2.38 2.58 228.14 228.14
HRNet HRNetV2_w18 9.64 16.31 31.69 31.69
FCN ResNet50 35.31 148.27 47.53 47.53

LR-ASPP MobileNetV3 3.22 2.03 198.51 198.51
U-Net ResNet50 43.93 92.00 167.91 56.07

SFC_DeepLabv3+ MobileNetV2 6.27 29.00 24.23 74.30

In terms of parameter evaluation, SFC_DeepLabv3+ achieves a parameter count of 6.27M, second only
to PSPNet and LR-ASPP. While these two models perform well in parameter reduction, as shown in Table 2,
PSPNet achieves a parameter reduction of 3.89M compared to SFC_DeepLabv3+, but this comes at the
expense of decreases in mIoU, mPA, and precision by 10.64%, 9.77%, and 4.12%, respectively. Similarly, LR-
ASPP reduces parameters by 3.05M but sacrifices 9.58%, 8.6%, and 3.19% in these metrics. Additionally,
SFC_DeepLabv3+ demonstrates a significant advantage in model size compared to PSPNet and LR-ASPP,
making it an ideal lightweight model for applications in embedded devices or mobile platforms while
maintaining high performance.

For GFLOPs, SFC_DeepLabv3+ achieves 29 G, which is relatively low compared to PSPNet, LR-ASPP,
and HRNet. However, SFC_DeepLabv3+ outperforms these models in segmentation accuracy and pixel
classification accuracy. Although HRNet demonstrates a lower GFLOPs than SFC_DeepLabv3+, it lags in
mIoU and mPA. Furthermore, SFC_DeepLabv3+ enhances inference speed with an increase of 42.61 frames
per second over HRNet, striking a balance between computational efficiency and segmentation precision.

4.2 Segmentation Prediction
We applied the models in Table 3 to the disease spot segmentation task and compared the predicted

results with ground truth to provide a more visual comparison of model performance in disease spot
segmentation. Based on prior discussions, models with lower scores on mIoU, mPA, and precision, such as
PSPNet and LR-ASPP, are excluded from the visual predictions.

Fig. 9 reveals that SFC_DeepLabv3+ demonstrates advantages in lesion separation, edge misdetection,
and omission. In the first row of Fig. 9, for tasks involving multiple lesion regions, other baseline models
tend to incorrectly merge unconnected lesion areas. However, SFC_DeepLabv3+, equipped with CGA
Fusion, effectively captures both global and local information during feature fusion, accurately distinguishing
multiple lesion regions and reducing the issue of erroneous lesion connectivity.

The second row of Fig. 9 addresses complex edge regions. Models like DeepLabv3 and Unet often
exhibit blurred or misdetected edges, particularly around leaf shadows, mistakenly identifying these shadows
as lesions. SFC_DeepLabv3+ achieves more precise edge segmentation by incorporating CBAM, enhanc-
ing edge detection accuracy, allowing for smoother transitions along lesion boundaries, and effectively
differentiating shadows from actual lesion edges.
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Figure 9: Results of segmentation prediction

The third row of Fig. 9 shows that SFC_DeepLabv3+ effectively detects smaller or more ambiguous
lesion areas. Leveraging the lightweight feature extraction network MobileNetV2, it maintains model
efficiency while boosting segmentation accuracy, successfully detecting lesions that other models fail
to capture.

4.3 Limitation
While SFC_DeepLabv3+ demonstrates significant strengths, it has several limitations worth noting.

First, its 6.27M parameter count, though relatively low, may still require additional memory optimization for
deployment on ultra-low-capacity devices such as basic agricultural microcontrollers, where simpler models
like LR-ASPP maintain a slight advantage. The computational requirement of 29G GFLOPs, while efficient,
could lead to marginal performance variations on older hardware with limited floating-point capabilities,
potentially necessitating configuration adjustments.

In terms of segmentation performance, the model shows minor limitations when processing extremely
dense leaf patterns. The feature fusion process may occasionally prioritize prominent lesions at the expense
of very faint ones, which could affect detection accuracy in complex foliage scenarios. In addition, current
implementations have not been experimented under different environmental conditions (such as changes in
lighting, occlusion, or weather effects) or the morphological diversity of grape leaves (such as changes in leaf
shape or growth stages of specific varieties). These limitations suggest opportunities for refinement in both
architectural efficiency and segmentation sensitivity for challenging agricultural environments, particularly
for applications requiring robustness across diverse cultivation conditions and plant phenotypes.

5 Conclusion
In this paper, we introduce a lightweight segmentation model, SFC_DeepLabv3+, leveraging

MobileNetV2 as the backbone and integrating Strip Pooling, CBAM, and CGA Fusion modules. The
model addresses challenges in leaf disease segmentation, particularly for detecting blurred edges and small
lesions, while significantly reducing computational complexity. Through comprehensive ablation studies, we
demonstrate the individual and combined contributions of these modules to segmentation performance.
By incorporating all enhancements, the model achieves relative improvements of 2.22%, 1.78%, and 0.89%
in mIoU, mPA, and precision, respectively, highlighting the effectiveness of multi-scale feature fusion and
dynamic attention mechanisms. Comparisons with segmentation models, including DeepLabv3+, Unet, and
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HRNet, on our datasets reveal that SFC_DeepLabv3+ surpasses these models with mIoU, mPA, and precision
of 90.98%, 94.33%, and 95.84%, respectively. The model excels in fine-grained segmentation and local feature
extraction. Furthermore, SFC_DeepLabv3+ demonstrates significant advantages in parameter efficiency,
model size, and inference speed, establishing it as a balanced solution for performance and efficiency in leaf
disease segmentation.

Future work includes pre-training on additional plant leaf lesion datasets to enhance segmentation
and detection in real-world applications. Additionally, optimizing the model for deployment on embedded
devices through techniques such as quantization and pruning could further improve its suitability for real-
time agricultural monitoring. Exploring multi-modal data fusion, integrating image data with spectral or
environmental information, may also enhance segmentation accuracy and robustness, opening new avenues
for early disease detection.
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