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ABSTRACT: The rapid development of evolutionary deep learning has led to the emergence of various Neural
Architecture Search (NAS) algorithms designed to optimize neural network structures. However, these algorithms often
face significant computational costs due to the time-consuming process of training neural networks and evaluating
their performance. Traditional NAS approaches, which rely on exhaustive evaluations and large training datasets,
are inefficient for solving complex image classification tasks within limited time frames. To address these challenges,
this paper proposes a novel NAS algorithm that integrates a hierarchical evaluation strategy based on Surrogate
models, specifically using supernet to pre-train weights and random forests as performance predictors. This hierarchical
framework combines rapid Surrogate model evaluations with traditional, precise evaluations to balance the trade-off
between performance accuracy and computational efficiency. The algorithm significantly reduces the time required
for model evaluation by predicting the fitness of candidate architectures using a random forest Surrogate model, thus
alleviating the need for full training cycles for each architecture. The proposed method also incorporates evolutionary
operations such as mutation and crossover to refine the search process and improve the accuracy of the resulting
architectures. Experimental evaluations on the CIFAR-10 and CIFAR-100 datasets demonstrate that the proposed
hierarchical evaluation strategy reduces the search time and costs compared to traditional methods, while achieving
comparable or even superior model performance. The results suggest that this approach can efficiently handle resource-
constrained tasks, providing a promising solution for accelerating the NAS process without compromising the quality
of the generated architectures.
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1 Introduction

With the continuous development of evolutionary deep learning [1], various neural architecture search
algorithms [2-5] based on evolutionary algorithms have emerged [6]. GraTO [7] a neural architecture search-
based framework [8,9] that addresses the over-smoothing problem in Graph Neural Networks by balancing
model performance and representation smoothness, achieving competitive accuracy and robustness with
increasing layers. BSO [10] is an orthogonal learning framework for brain storm optimization that improves
exploration and exploitation by using two orthogonal design engines, achieving superior performance in
complex function optimization and association rule mining. Evolutionary deep learning is often widely
used to solve multiple complex optimization problems [11-13]. In the traditional method, individuals in the
population are converted into CNNs with corresponding structures through gene structure mapping [14],
etc. Then, the weights [15,16] of the network structure are initialized, the network parameters are trained
based on the stochastic gradient descent method, and the process needs to go through dozens or even
hundreds of periods. The dataset must be traversed iteratively based on the preset batch sizes and other
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iterations to perform training in each period. This above training before fitness evaluation often takes hours
or even days [17,18]. Improvements Achieved Through Multi-Objective Lightweight Deep Neural Network
Architecture Search [19,20]. Such a time-consuming and enormous evaluation cost, coupled with the demand
for models with complex tasks and many parameters, makes it impossible for ordinary researchers to design
task-specific network structures through evolutionary deep learning under limited time and conditions.

One of the common approaches in existing work to accelerate the evaluation of search adaptation of
neural architectures is the use of Surrogate model performance predictors. For example, Ref. [21] proposes an
efficient fuzzy neural architecture search (NAS) framework for defect recognition, which effectively handles
uncertain data and achieves high accuracy with fewer parameters. SDGP [3] introduces a Single-Domain
Generalized Predictor that leverages meta-learning and multi-head attention to improve architecture search
efficiency, achieving superior generalization and performance with minimal GPU usage. P-NAS [22] uses
a multilayer perceptron (MLP) as a performance predictor to evaluate the performance of candidate
neural network architectures, avoiding the expensive model training and evaluation process to achieve the
acceleration effect. Still, much data is required to ensure the predictor’s performance stability. Sun et al. [23]
proposed a performance predictor based on random forests, which can predict the performance of neural
networks more quickly. The random forest model has good generalization ability and flexibility without the
need for many training datasets and can adaptively learn different types of neural network architectures
in the face of various neural network architecture search scenarios. Inspired by this work [24], to reduce
the time cost associated with training neural networks, the performance predictor of random forests that
does not require a large training dataset has certain advantages, but its drawback is that offline performance
predictors are unable to capture the complexity of the neural network structure, which leads to inaccurate
performance prediction. These papers [25,26] introduce self-adaptive weight algorithms with dual-attention
for differentiable neural architecture search, which effectively mitigates performance collapse and improves
network architecture performance, achieving competitive results on CIFAR-10, CIFAR-100, and ImageNet.
Therefore, in this work, to improve the efficiency of neural architecture search, supernet is utilized to
accelerate the training process of network architecture due to its weight-sharing mechanism,random forests
are used as network structure-assisted performance predictors, and to ensure the predictor performance
and search performance, a Neural Architecture Search via Hierarchical Evaluation of Surrogate Models
(HESM-NAS) to improve the neural architecture search for image classification.

2 Proposed HESM-NAS Model
2.1 Modeling Framework

This work proposes a neural architecture search model based on the hierarchical evaluation of Surrogate
models. The model’s main framework is shown in Fig. 1, which includes the search space design, evolutionary
process, and Surrogate model prediction or accurate evaluation process. It organically combines the decision
tree random forest prediction and the network architecture fully trained evaluation. It constructs the
Surrogate model hierarchical evaluation strategy to solve the time-consuming problem of traditional neural
network evaluation and effectively improve the inaccuracy of the Surrogate model predictor. The following
sections provide a detailed description of each part of the model.
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Figure 1: Framework for neural architecture search based on evolutionary hierarchical evaluation

2.2 HESM-NAS Algorithm

This algorithm is based on the classical Evolutionary Neural Architecture Search (ENAS) [16,27] process
combined with the hierarchical evaluation of the Surrogate model for improvement; the specific process
is as follows: first of all, train a supernet, initialize the number of population individuals, encode the
neural network individuals to be searched, and then according to coding, sample the corresponding subnet
from the supernet and fine-tune. Then, all the network individuals are reviewed by traditional precise
evaluation [28,29], and then the fitness values of the population individuals are obtained. Then, the evaluated
population of individuals is used to construct and update the decision tree random forest. Then, the fitness
values are sorted, and the first M individuals with higher fitness values are selected and put into the elite
archive Arc-T. A parent individual is selected from the parent population and the elite archive by roulette.
The crossover or mutation operator generates an offspring individual through the evolution operation, and
then the operation is cycled until the size of the candidate populations reaches N. Random forest is used
to predict the performance of N individual architectures, and the architectures with the highest predicted
values are fully trained and used to update random forest and supernet. Then, enter the next round of the
population cycle until the preset conditions are reached. The process is expressed as follows (Algorithm 1):

Algorithm 1: Structure of the HESM-NAS algorithm

Inputs: population size N, number of candidates N, predicted number probability r, number of iterations
T, training set D;,,in, validation set D, ;4

Output: individual network structure with the highest fitness

//nitialization:

1. § < Supernet-Initialization (Dy,,;,);

2. Init_P <« Population-Initialization with finetune (S, N, Dy4i1);

3. S < Update-Supernet (Init_P, S, Dy;4in);

4. Init_F <« calculate the fitness of individuals within Init P;

5. Arc< add evaluated Init_P;

6. RF oy« random forest Surrogate-Initialization (Init_P, Init_F, D,qi4);

(Continued)
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Algorithm 1 (continued)

7. t<0;

8. while t < T do:

9. P « select good individuals from Arc;
10. P;,, < Evolutionary_Search (P, N.);
11. Fson < RFpraxy(Psan’ Dyatia)s

12. Piemp top N individuals from (Ps,, Fson);
13. Ptemp <« finetune (S, Ptemp) Dirain)s

14. Fiemp < Accurately evaluated by D, 4;i4
15. Update-Supernet (Prepmp, S);

16. Arc < add evaluated Py p;

17. end

18. ) « highest fitness individual of Arc;

19. Return ()

2.3 Surrogate Modeling for Efficient Evaluation
2.3.1 Architecture Encoding for Surrogate Modeling

This section’s training data for the random forest is composed of data pairs, each of which includes the
network architecture CNNs and their fitness values. Since natural language descriptions cannot be directly
used as inputs to the random forest, this section devises an efficient encoding [27,28] method. This method
extracts the features of the CNN neural network as numerical values and further serves as input sample data
to the random forest.

The CNNs architecture search space of this algorithm consists of a Normal cell and a Reduction cell, and
each cell maps two inputs to one output; the cell contains 7 nodes, the first two nodes are the outputs of the
previous cell, the last node is the output node of the cell, the middle 4 nodes can be chosen to be connected
to any of the previous nodes, so there are 14 connection possibilities. Therefore, there are 14 connection
possibilities; the specific structure schematic can be seen in Fig. 2. The candidate operations in each cell
include none, max_pool_3 x 3, avg_pool_3 x 3, skip_connect, sep_conv_3 x 3, sep_conv_5 x 5, dil_conv_3
x 3, dil_conv_5 x 5.5 x 5 for a total of eight. Represent this search space as a matrix with a matrix size of
2x14 x 8.
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Figure 2: Search space unit internal structure
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To encode the neural network architecture into a format that random forest can handle, it needs to be
transformed into a feature vector, where each operational edge in each basic unit is considered a feature, and
each feature takes the value of a One-Hot [2] vector. All of its feature vectors are concatenated for each basic
unit to form a feature vector for one basic unit. Then, the feature vectors of two basic units are concatenated
again to form a neural network architecture feature vector.

Specifically, for each operation in a Normal cell, a One-Hot vector of length 8 represents the operation
used by that node. The detailed coding is shown in Table I:

Table 1: Operation code

Operation name Hidden meaning Encodings
none No operation is used [1,0,0,0,0,0,0,0]
avg_pool 3 x 3 Average pooling [0,1,0,0,0,0,0,0]
dil conv 3 x 3 3 x 3 dilated convolution  [0,0,1,0,0,0,0,0]
dil conv 5x5 5 x 5 dilated convolution  [0,0,0,1,0,0,0,0]
max_pool_3 x 3 Maximum pooling [0,0,0,0,1,0,0,0]
sep_conv_3 x 3 3 x 3 separate convolution [0,0,0,0,0,1,0,0]
sep_conv_5 x5 5 x 5 separate convolution [0,0,0,0,0,0,1,0]
skip_connect Skip this node (0,0,0,0,0,0,0,1]

The Reduction cell is represented by a vector of length 14 x 8. The coding of the nodes and edges of
the Normal and Reduction units is spliced into two long vectors, which are then spliced together to form a
longer vector. Ultimately, this long vector is used as the input to the random forest, and the corresponding
labels are the accuracies of the neural networks trained by this structure.

2.3.2 Supernet-Based Candidate Generation

Supernet is an efficient technology widely adopted in Neural Architecture Search (NAS), whose core
function is to reduce computational costs significantly through a weight-sharing mechanism. Traditional
NAS methods require the independent training and evaluation of each candidate architecture, resulting
in enormous computational overhead, whereas the supernet integrates all possible subnet into a unified
framework, allowing them to share the same set of weights [22]. Specifically, during the training process,
different subnetworks (such as different layers, channels, or connection methods) inherit weights from the
Supernet rather than training from scratch. This mechanism not only avoids redundant calculations but also
enables the approximate evaluation of the performance of a large number of candidate architectures through
a single training, thereby enhancing search efficiency by several orders of magnitude. The training process
of the supernet is shown in Fig. 3 below.

Firstly, design a discrete search space based on the task requirements, covering all possible architectural
options (such as convolution types, layer numbers, and channel numbers, etc.). Then, integrate these options
into a differentiable super network, encompassing all possible sub-architectures by superimposing all possi-
ble operations. During the training phase, the super network alternates between sampling sub-architectures
and optimizing architectural parameters and network weights.
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Figure 3: Schematic diagram of supernet training

2.3.3 Construction of a Random Forest-Based Surrogate Model

Random forest is a very efficient algorithm that can directly take discrete data as input without extensive
labeling, making it the first choice of algorithm for this word. During the training process, each decision
maker randomly selects a part of the feature set and learns the mapping from features to target. In contrast,
during the testing process, each decision maker selects the same features as in the training phase and outputs
the corresponding prediction results [22]. The construction process is shown in Fig. 4 below:

Predictor

B | Training

2 Architectures,,
Sampling

L Supernet Architectures Random Forest y

Figure 4: Schematic diagram of random forest surrogate model construction

To start, the CNN architecture will be fully trained on the training set until it achieves convergence.
Its performance will then be thoroughly assessed using the validation set. Following this, the network
architecture will be encoded as discrete data along with the corresponding performance values to create
training samples for the random forest. In each generation of the neural architecture search, accurately
evaluated individuals will serve as the training data for the random forest. During the prediction and
evaluation process, the new population of individuals not participating in the training will be encoded as
inputs to the random forest, and their fitness values will be predicted.

The random forest of the algorithm in this work uses the CART [30] decision tree as the base learner,
and the specific process is as follows:

Individual samples from a CNN network coding set are selected using bootstrap sampling to form a
training set. One sample is selected at a time until nnn samples are extracted to construct the dataset. A
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CART decision tree is then generated using these nnn samples as the root nodes. During the decision tree
construction, each sample has D attributes. When splitting each decision tree node, a subset of d features is
randomly selected. The feature space is divided by minimizing the squared error criterion. For each decision
node, the best feature is chosen based on criteria such as information gain, which helps determine the
dividing attribute of the node. The final decision tree partitions the feature space into different regions based
on these splits. Eq. (1) is the squared error formula: each division divides the feature space into two parts.

If-gli= > (f-g(x)) (1)

Xi€Qm

Firstly, in the feature space, the traversal selects the feature axis m to divide and selects a cut point # at
m to obtain the (m, n) combination that minimizes Eq. (2).

migl 1 Yoo (xi- a)’ + 1 oo (xi- % (2)

s |Q1| yi€Qi(m,n) |Q2| yi€Qa(m,n)

After selecting (m, n), the data space is divided into two regions Q;, Q,, as in Eq. (3), at which point
the response is set to take the value d, as the average of all y; in the interval, as shown in Eq. (4).

Qulmn) = (110 <) =1}, Qs (mm) = (3 115 > n) =1) o
5p=_ Yy x€Qp p=12 (4)

Cycling through the above steps, each node is split during the decision tree construction process
according to the previous steps, if the next node selects the same attribute as the one selected by its parent
node for classification, then the node is considered as a leaf node and stops to continue the splitting process,
which is carried out until it can not be split any more. A decision tree is generated as shown in Eq. (5), and the
decision tree divides the input sample space into M regions, each corresponding to a node on the decision
tree. The non-leaf nodes of the decision tree hold the best cut feature and cut point of the current node, while
the leaf nodes hold the average of the labels of all the samples within that node. After that, the above steps

are repeated k times to generate k decision trees to obtain the random forest Surrogate model.

g(x) =3 0,1 (x€Qp) )

In order to reduce the risk of overfitting in the random forest model, two issues in particular should
be paid attention to in the construction process: random sampling and complete splitting. Firstly, for row
sampling, N samples are selected from N samples for training the decision tree using a method with put-back,
which makes the training data of each tree not all samples with a certain degree of randomness due to the
repeatable sampling nature of the samples, which can reduce the overfitting of the model; followed by column
sampling, which randomly selects d attributes (d << D) for splitting the nodes. Secondly, when constructing
the decision tree, the strategy of complete splitting is used, i.e., each leaf node is either undividable or contains
samples that all belong to the same classification. By sampling at the initial stage of the decision tree, this
algorithm ensures randomness and thus avoids the risk of overfitting; therefore, no additional pruning is
required to reduce the effect of overfitting.

A random forest of trained K-CART decision trees is used to predict the test samples, and the final
prediction results are evaluated using the voting method approach.
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2.4 Hierarchical Evaluation Strategy Combining Surrogate and Precise Models

The hierarchical evaluation strategy in this work integrates both fast Surrogate model evaluation and
traditional precise evaluation to enhance search efficiency while maintaining evaluation accuracy. The
random forest model, constructed in Section 2.3.3, plays a critical role in the Surrogate model evaluation,
which significantly reduces the time and computational costs associated with full evaluations.

In this strategy, candidate architectures are first evaluated using the random forest model. The RE, which
was trained on previously evaluated networks, predicts the performance of new candidate architectures based
on their encoded features. This Surrogate evaluation allows us to quickly estimate the fitness of candidate
networks without requiring full training.

However, as the Surrogate model is not always perfectly accurate, we combine it with a traditional
precise evaluation. In this evaluation, the candidate networks undergo full training on the dataset, and their
performance is evaluated on a validation set to obtain the exact fitness values. This process ensures that while
the Surrogate model accelerates the search, the final selection of architectures is based on precise evaluation,
guaranteeing the accuracy of the model selection.

In the hierarchical evaluation strategy of the algorithm in this work, the application of the random forest
Surrogate model reduces the overhead of complete evaluation and improves the search eficiency for the
whole algorithm, and the use of precise evaluation ensures the accuracy of the model evaluation, as shown
in Fig. 5, where the two parts interact with each other to form a complete evaluation system.

( Precise
Evaluation

N Proxy Model ] Nxr

Evaluation

Figure 5: Schematic diagram of hierarchical assessment

The time overhead saved for the whole search process by the evaluation system used in this work
compared to the full evaluation method can be expressed as Eq. (6).

T(N(t;+t,)(1-1)+tp) (6)

where T is the maximum number of iterations, t; denotes the length of time required for individual training,
t, denotes the length of time required for individual validation, r refers to the probability of the number of
predictions, and ¢, denotes the Surrogate model training time.

3 Empirical Validation and Performance Benchmarking

3.1 Benchmark Datasets and Experimental Protocol

The experiment uses two well-known image classification datasets: CIFAR-10 [28] and CIFAR-100 [31].
These datasets were initially released in 2009 by researchers Alex Krizhevsky, Vinod Nair, and Geoftrey
Hinton from the University of Toronto to advance the field of computer vision, particularly image clas-
sification techniques. CIFAR-10 contains 60,000 32 x 32 pixel color images, with pixel values ranging
from 0 to 255. The categories in CIFAR-10 include relatively simple objects, making it suitable for testing
basic image classification algorithms. In contrast, CIFAR-100 is an extended version of CIFAR-10, featuring
more categories and images. Like CIFAR-10, CIFAR-100 consists of 60,000 32 x 32 pixel color images,
but the images are divided into 100 distinct categories, each containing 600 images—500 for training and
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100 for testing. More complex than CIFAR-10, the 100 categories in CIFAR-100 are further grouped into
20 superclasses.

CIFAR-10 offers a relatively simple task, making it suitable for validating basic image classification
models. CIFAR-100 requires models to capture more complex image features and finer classification criteria.
It is often used to test more sophisticated deep learning models, particularly convolutional neural networks
(CNNs). The more significant number of categories and more granular labels in CIFAR-100 make it a classic
dataset in image classification, and it serves as a benchmark for evaluating algorithm performance.

The neural architecture search algorithm code applied to image classification in this work runs on an
Intel(R) Xeon(R) W2250 CPU@3.70 GHz CPU, an NVIDIA A4000 GPU with 16 GB of video memory, an
operating system of Ubuntu 22.04, and an experimental framework of PyTorch. Due to the large memory
requirements of the supernet search space for the memory requirements, the algorithm in this work sets the
number of model cell stacks to 8 and the initial channel size to 16, and other parameters are set as shown
in Table 2:

Table 2: Hyperparameter settings

Parameter Setting

Size of the individual population 30

Crossover rate 2.5
Mutation rate 0.6
Maximum generations number 200
Batch size 48

Learning rate 0.028
Learning rate decay 0.95
Training epochs 500

Weight decay 2.8¢e-4
Momentum 0.95

3.2 Performance Evaluation Criteria

In this work we use three key metrics to evaluate the search performance: classification accuracy
(Accuracy), search time (Search Time), and model size (Model Size). Classification accuracy reflects the
neural network’s performance on a specific dataset, typically quantified using methods like cross-validation.
In this work, the exact calculation method for accuracy is shown in the Eq. (7).

T, + Ty,
Tp+Ty+F,+F,

Acc =

(7)

here, T, (True Positive) denotes true cases and refers to the number of samples that are actually positive
and predicted to be positive, Fp (False Positive) is false positive and refers to the number of samples that
are actually negative but predicted to be positive, F,, (False Negative) is false negative and refers to the
number of samples that are actually positive but predicted to be negative, and T, (True Negative) is the
true counterexample, which refers to the number of samples that are actually negative and are predicted to
be negative. The size of the model refers to the size of the storage space occupied by the model, which is
calculated and expressed in this method using the number of model parameters as an indicator. Search time
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refers to the time required to find the best neural network structure, which is expressed in this work in terms
of the number of days consumed by the GPUs required for the search.

3.3 Comparative Results and Discussion

The architecture search process follows the settings in Table 1, and after the search is complete, the
searched optimal architecture needs to be completely retrained on the dataset to evaluate its performance.
For this, the re-training process follows the DARTS network, where the units obtained from the search are
constructed into a larger network, with the number of unit stacks set to 20, the initial number of channels to
36, the total number of training generations to 600, and the rest of the settings are the same as in Table 1.

After several experiments on CIFAR-10 and CIFAR-100, Fig. 6 lists the training performance graphs
of the algorithm searching the architecture on CIFAR-10, and Table 3 lists the comparison between this
algorithm and the manual design as well as other NAS algorithms, which contains information on the
accuracy of the searched models, model size (number of parameters), and search duration.

Cifar-10
100~ =
80 =
£ 60~ i
- —— Rise Rate
= ~ Train Loss
F 40-
& | L
20~
ﬂ - -
0 100 200 300 400 500 600
Epochs

Figure 6: Network architecture training accuracy-loss

Table 3: Comparison of different algorithms on CIFAR-10

Architecture Test error #Params Search cost (GPU  Search method
(%) (M) days)
ShuffleNet [32] 90.96 1.05 - Manual
Large-scale 94.55 5.33 2744 Evolution
evolution [29]
AE-CNN-+E2EPP [14] 94.65 4.28 72 Evolution
ResNet [33] 95.38 1.66 - Manual
DenseNet-BC [24] 96.49 25.7 - Manual
PNAS [22] 96.51 3.21 222 SMBO
AmoebaNet-A [34] 96.61 3.22 3150 Evolution
CNN-GA [35] 96.77 2.88 32 Evolution
RSPS [36] 97.09 4.28 2.6 Random

(Continued)
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Table 3 (continued)

Architecture Test error #Params Search cost (GPU  Search method
(%) (M) days)
ENAS [37] 97.08 4.69 0.5 RL
SNAS [38] 97.12 2.79 1.4 Gradient-based
DARTS [39] 97.21 3.31 3.5 Gradient-based
NASNet-A [40] 97.30 3.31 1770 RL
NSGA-NET [41] 97.21 3.31 35 Evolution
NSGANetV1-A3 [42] 97.66 2.22 28 Evolution
SurrogatelessNAS [36] 97.89 5.72 - Gradient-based
Ours 97.50 3.55 1.35 Evolution

The results show that HESM-NAS searches on CIFAR-10 to obtain better network architectures than
some of the more classical manually designed, gradient-based, RL-based or EA-based algorithms. When
compared in terms of GPU days, i.e., the cost of search time, it can be found that the present algorithm can
perform the architecture search process in a shorter time and obtain better search results compared to other
EA algorithms.

The cellular structures obtained from the architectural search of this algorithm on CIFAR-10 and CIFAR-
100 are presented in the following figures, where Fig. 7 shows the optimal architecture on CIFAR-10 and Fig. 8
shows the optimal architecture obtained on CIFAR-100.

Figure 7: Optimal architecture on CIFAR-10
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e % —
I_cany_3x3. — —_—
_canm_ — |_cony_3x

Figure 8: Optimal architecture on CIFAR-100

Based on different search strategies, three experimental scenarios were designed using the control
variable method to verify the proposed method’s effectiveness, including assessment using traditional
Accuracy-Oriented evaluation, evaluation based solely on a random forest Surrogate model and evaluation
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using the proposed Hierarchical Surrogate-Based Evaluation strategy. The effect of search accuracy is shown
in Fig. 9, and the result data obtained from the search is shown in Table 4. From the graphical data, it can be
seen that the accuracy obtained from the traditional. Accuracy-Oriented evaluation is higher, but its search
time is the maximum value, the search time can be greatly shortened by using only the Surrogate-Based
evaluation, but its accuracy is reduced a lot compared with that of the precise evaluation, and the efficiency
of the search using the Hierarchical Surrogate-Based Evaluation is much improved compared with that of
the traditional precise evaluation, and the search accuracy is not as good as the precise evaluation, but it
is much better than that using only the Surrogate model evaluation. The search accuracy is not as high as
that of accurate evaluation, but it is much higher than that of Surrogate-only model evaluation. From this
analysis, it can be seen that the proposed method may strike a balance between accuracy and search time,
and greatly improve the search efficiency and reduce the search cost under the premise of guaranteeing a
certain performance effect.

100 CIFAR-10 100 CIFAR-100
a0

80

Top-1 Accuracy(%)
Top-1 Accuracy(%)
]

/ —e— Accuracy-Oriented Evaluation I —e— Accuracy-Ornented Evaluation
10 | — gate-based 10 | P gate-based Eval

r —8— Surrogate-Based Evaluation —8— Surrogate-Based Evaluation

o 10 20 30 40 50 0 10 20 0 40 50
Generations Generations

Figure 9: Variation of accuracy for different evaluation strategies

Table 4: Comparison of different assessment strategies

Search strategy Test error (%) Search cost (GPU days)
Accuracy-oriented evaluation 94.86 0.61
Hierarchical surrogate-based evaluation 92.96 0.32
Surrogate-based evaluation 84.92 0.19

4 Conclusion

To dive into the challenges of neural architecture search (NAS) in resource-limited image classification
scenarios, this work introduces a novel strategy that leverages a hierarchical evaluation mechanism guided
by Surrogate models. Central to the approach is a combination of a supernet and a random forest-based
Surrogate model, which jointly helps minimize the amount of expensive neural network training. By
integrating fast Surrogate evaluations with selective full evaluations, the method strikes a balance between
efficiency and performance. The proposed NAS framework is detailed from both architectural and algorith-
mic perspectives, followed by the design and role of the hierarchical evaluation system. Experimental studies
utilize clearly defined benchmarks and metrics, with findings indicating that the proposed method markedly
improves search efficiency while maintaining evaluation accuracy. In contrast to conventional strategies
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that lack a hierarchical framework, this approach yields more consistent performance in constrained
environments. Future research will aim to enhance the generalization performance of the Surrogate model,
refine the evaluation strategy, and investigate the applicability of this approach to additional vision tasks.
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