
echT PressScience

Doi:10.32604/cmc.2025.064544

ARTICLE

Neural Architecture Search via Hierarchical Evaluation of Surrogate Models

Xiaofeng Liu*, Yubin Bao and Fangling Leng

School of Computer Science and Engineering, Northeastern University, Wenhua Road, Heping District, Shenyang, 110819, China
*Corresponding Author: Xiaofeng Liu. Email: liuxf@mail.neu.edu.cn
Received: 18 February 2025; Accepted: 22 May 2025; Published: 03 July 2025

ABSTRACT: The rapid development of evolutionary deep learning has led to the emergence of various Neural
Architecture Search (NAS) algorithms designed to optimize neural network structures. However, these algorithms often
face significant computational costs due to the time-consuming process of training neural networks and evaluating
their performance. Traditional NAS approaches, which rely on exhaustive evaluations and large training datasets,
are inefficient for solving complex image classification tasks within limited time frames. To address these challenges,
this paper proposes a novel NAS algorithm that integrates a hierarchical evaluation strategy based on Surrogate
models, specifically using supernet to pre-train weights and random forests as performance predictors. This hierarchical
framework combines rapid Surrogate model evaluations with traditional, precise evaluations to balance the trade-off
between performance accuracy and computational efficiency. The algorithm significantly reduces the time required
for model evaluation by predicting the fitness of candidate architectures using a random forest Surrogate model, thus
alleviating the need for full training cycles for each architecture. The proposed method also incorporates evolutionary
operations such as mutation and crossover to refine the search process and improve the accuracy of the resulting
architectures. Experimental evaluations on the CIFAR-10 and CIFAR-100 datasets demonstrate that the proposed
hierarchical evaluation strategy reduces the search time and costs compared to traditional methods, while achieving
comparable or even superior model performance. The results suggest that this approach can efficiently handle resource-
constrained tasks, providing a promising solution for accelerating the NAS process without compromising the quality
of the generated architectures.

KEYWORDS: Neural architecture search; hierarchical evaluation; image classification; Surrogate model

1 Introduction
With the continuous development of evolutionary deep learning [1], various neural architecture search

algorithms [2–5] based on evolutionary algorithms have emerged [6]. GraTO [7] a neural architecture search-
based framework [8,9] that addresses the over-smoothing problem in Graph Neural Networks by balancing
model performance and representation smoothness, achieving competitive accuracy and robustness with
increasing layers. BSO [10] is an orthogonal learning framework for brain storm optimization that improves
exploration and exploitation by using two orthogonal design engines, achieving superior performance in
complex function optimization and association rule mining. Evolutionary deep learning is often widely
used to solve multiple complex optimization problems [11–13]. In the traditional method, individuals in the
population are converted into CNNs with corresponding structures through gene structure mapping [14],
etc. Then, the weights [15,16] of the network structure are initialized, the network parameters are trained
based on the stochastic gradient descent method, and the process needs to go through dozens or even
hundreds of periods. The dataset must be traversed iteratively based on the preset batch sizes and other

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.064544
https://www.techscience.com/doi/10.32604/cmc.2025.064544
mailto:liuxf@mail.neu.edu.cn

3504 Comput Mater Contin. 2025;84(2)

iterations to perform training in each period. This above training before fitness evaluation often takes hours
or even days [17,18]. Improvements Achieved Through Multi-Objective Lightweight Deep Neural Network
Architecture Search [19,20]. Such a time-consuming and enormous evaluation cost, coupled with the demand
for models with complex tasks and many parameters, makes it impossible for ordinary researchers to design
task-specific network structures through evolutionary deep learning under limited time and conditions.

One of the common approaches in existing work to accelerate the evaluation of search adaptation of
neural architectures is the use of Surrogate model performance predictors. For example, Ref. [21] proposes an
efficient fuzzy neural architecture search (NAS) framework for defect recognition, which effectively handles
uncertain data and achieves high accuracy with fewer parameters. SDGP [3] introduces a Single-Domain
Generalized Predictor that leverages meta-learning and multi-head attention to improve architecture search
efficiency, achieving superior generalization and performance with minimal GPU usage. P-NAS [22] uses
a multilayer perceptron (MLP) as a performance predictor to evaluate the performance of candidate
neural network architectures, avoiding the expensive model training and evaluation process to achieve the
acceleration effect. Still, much data is required to ensure the predictor’s performance stability. Sun et al. [23]
proposed a performance predictor based on random forests, which can predict the performance of neural
networks more quickly. The random forest model has good generalization ability and flexibility without the
need for many training datasets and can adaptively learn different types of neural network architectures
in the face of various neural network architecture search scenarios. Inspired by this work [24], to reduce
the time cost associated with training neural networks, the performance predictor of random forests that
does not require a large training dataset has certain advantages, but its drawback is that offline performance
predictors are unable to capture the complexity of the neural network structure, which leads to inaccurate
performance prediction. These papers [25,26] introduce self-adaptive weight algorithms with dual-attention
for differentiable neural architecture search, which effectively mitigates performance collapse and improves
network architecture performance, achieving competitive results on CIFAR-10, CIFAR-100, and ImageNet.
Therefore, in this work, to improve the efficiency of neural architecture search, supernet is utilized to
accelerate the training process of network architecture due to its weight-sharing mechanism,random forests
are used as network structure-assisted performance predictors, and to ensure the predictor performance
and search performance, a Neural Architecture Search via Hierarchical Evaluation of Surrogate Models
(HESM-NAS) to improve the neural architecture search for image classification.

2 Proposed HESM-NAS Model

2.1 Modeling Framework
This work proposes a neural architecture search model based on the hierarchical evaluation of Surrogate

models. The model’s main framework is shown in Fig. 1, which includes the search space design, evolutionary
process, and Surrogate model prediction or accurate evaluation process. It organically combines the decision
tree random forest prediction and the network architecture fully trained evaluation. It constructs the
Surrogate model hierarchical evaluation strategy to solve the time-consuming problem of traditional neural
network evaluation and effectively improve the inaccuracy of the Surrogate model predictor. The following
sections provide a detailed description of each part of the model.

Comput Mater Contin. 2025;84(2) 3505

Figure 1: Framework for neural architecture search based on evolutionary hierarchical evaluation

2.2 HESM-NAS Algorithm
This algorithm is based on the classical Evolutionary Neural Architecture Search (ENAS) [16,27] process

combined with the hierarchical evaluation of the Surrogate model for improvement; the specific process
is as follows: first of all, train a supernet, initialize the number of population individuals, encode the
neural network individuals to be searched, and then according to coding, sample the corresponding subnet
from the supernet and fine-tune. Then, all the network individuals are reviewed by traditional precise
evaluation [28,29], and then the fitness values of the population individuals are obtained. Then, the evaluated
population of individuals is used to construct and update the decision tree random forest. Then, the fitness
values are sorted, and the first M individuals with higher fitness values are selected and put into the elite
archive Arc-T. A parent individual is selected from the parent population and the elite archive by roulette.
The crossover or mutation operator generates an offspring individual through the evolution operation, and
then the operation is cycled until the size of the candidate populations reaches N. Random forest is used
to predict the performance of N individual architectures, and the architectures with the highest predicted
values are fully trained and used to update random forest and supernet. Then, enter the next round of the
population cycle until the preset conditions are reached. The process is expressed as follows (Algorithm 1):

Algorithm 1: Structure of the HESM-NAS algorithm
Inputs: population size N , number of candidates Nc , predicted number probability r, number of iterations
T, training set Dtrain , validation set Dv al id
Output: individual network structure with the highest fitness
//Initialization:
1. S ← Supernet-Initialization (Dtrain);
2. Init_P ← Population-Initialization with finetune (S, N , Dtrain);
3. S ← Update-Supernet (Init_P, S, Dtrain);
4. Init_F ← calculate the fitness of individuals within Init_P;
5. Arc← add evaluated Init_P;
6. RFprox y← random forest Surrogate-Initialization (Init_P, Init_F, Dv al id);

(Continued)

3506 Comput Mater Contin. 2025;84(2)

Algorithm 1 (continued)
7. t ← 0;
8. while t < T do:
9. P ← select good individuals from Arc;
10. Pson ← Evolutionary_Search (P, Nc);
11. Fson ← RFprox y(Pson , Dv al id);
12. Ptem p top N individuals from (Pson , Fson);
13. Ptem p ← finetune (S, Ptem p, Dtrain);
14. Ftem p ← Accurately evaluated by Dv al id
15. Update-Supernet (Ptem p, S);
16. Arc ← add evaluated Ptem p;
17. end
18. Ω← highest fitness individual of Arc;
19. Return Ω

2.3 Surrogate Modeling for Efficient Evaluation
2.3.1 Architecture Encoding for Surrogate Modeling

This section’s training data for the random forest is composed of data pairs, each of which includes the
network architecture CNNs and their fitness values. Since natural language descriptions cannot be directly
used as inputs to the random forest, this section devises an efficient encoding [27,28] method. This method
extracts the features of the CNN neural network as numerical values and further serves as input sample data
to the random forest.

The CNNs architecture search space of this algorithm consists of a Normal cell and a Reduction cell, and
each cell maps two inputs to one output; the cell contains 7 nodes, the first two nodes are the outputs of the
previous cell, the last node is the output node of the cell, the middle 4 nodes can be chosen to be connected
to any of the previous nodes, so there are 14 connection possibilities. Therefore, there are 14 connection
possibilities; the specific structure schematic can be seen in Fig. 2. The candidate operations in each cell
include none, max_pool_3 × 3, avg_pool_3 × 3, skip_connect, sep_conv_3 × 3, sep_conv_5 × 5, dil_conv_3
× 3, dil_conv_5 × 5. 5 × 5 for a total of eight. Represent this search space as a matrix with a matrix size of
2 × 14 × 8.

Figure 2: Search space unit internal structure

Comput Mater Contin. 2025;84(2) 3507

To encode the neural network architecture into a format that random forest can handle, it needs to be
transformed into a feature vector, where each operational edge in each basic unit is considered a feature, and
each feature takes the value of a One-Hot [2] vector. All of its feature vectors are concatenated for each basic
unit to form a feature vector for one basic unit. Then, the feature vectors of two basic units are concatenated
again to form a neural network architecture feature vector.

Specifically, for each operation in a Normal cell, a One-Hot vector of length 8 represents the operation
used by that node. The detailed coding is shown in Table 1:

Table 1: Operation code

Operation name Hidden meaning Encodings
none No operation is used [1,0,0,0,0,0,0,0]

avg_pool_3 × 3 Average pooling [0,1,0,0,0,0,0,0]
dil_conv_3 × 3 3 × 3 dilated convolution [0,0,1,0,0,0,0,0]
dil_conv_5 × 5 5 × 5 dilated convolution [0,0,0,1,0,0,0,0]

max_pool_3 × 3 Maximum pooling [0,0,0,0,1,0,0,0]
sep_conv_3 × 3 3 × 3 separate convolution [0,0,0,0,0,1,0,0]
sep_conv_5 × 5 5 × 5 separate convolution [0,0,0,0,0,0,1,0]
skip_connect Skip this node [0,0,0,0,0,0,0,1]

The Reduction cell is represented by a vector of length 14 × 8. The coding of the nodes and edges of
the Normal and Reduction units is spliced into two long vectors, which are then spliced together to form a
longer vector. Ultimately, this long vector is used as the input to the random forest, and the corresponding
labels are the accuracies of the neural networks trained by this structure.

2.3.2 Supernet-Based Candidate Generation
Supernet is an efficient technology widely adopted in Neural Architecture Search (NAS), whose core

function is to reduce computational costs significantly through a weight-sharing mechanism. Traditional
NAS methods require the independent training and evaluation of each candidate architecture, resulting
in enormous computational overhead, whereas the supernet integrates all possible subnet into a unified
framework, allowing them to share the same set of weights [22]. Specifically, during the training process,
different subnetworks (such as different layers, channels, or connection methods) inherit weights from the
Supernet rather than training from scratch. This mechanism not only avoids redundant calculations but also
enables the approximate evaluation of the performance of a large number of candidate architectures through
a single training, thereby enhancing search efficiency by several orders of magnitude. The training process
of the supernet is shown in Fig. 3 below.

Firstly, design a discrete search space based on the task requirements, covering all possible architectural
options (such as convolution types, layer numbers, and channel numbers, etc.). Then, integrate these options
into a differentiable super network, encompassing all possible sub-architectures by superimposing all possi-
ble operations. During the training phase, the super network alternates between sampling sub-architectures
and optimizing architectural parameters and network weights.

3508 Comput Mater Contin. 2025;84(2)

Figure 3: Schematic diagram of supernet training

2.3.3 Construction of a Random Forest-Based Surrogate Model
Random forest is a very efficient algorithm that can directly take discrete data as input without extensive

labeling, making it the first choice of algorithm for this word. During the training process, each decision
maker randomly selects a part of the feature set and learns the mapping from features to target. In contrast,
during the testing process, each decision maker selects the same features as in the training phase and outputs
the corresponding prediction results [22]. The construction process is shown in Fig. 4 below:

Figure 4: Schematic diagram of random forest surrogate model construction

To start, the CNN architecture will be fully trained on the training set until it achieves convergence.
Its performance will then be thoroughly assessed using the validation set. Following this, the network
architecture will be encoded as discrete data along with the corresponding performance values to create
training samples for the random forest. In each generation of the neural architecture search, accurately
evaluated individuals will serve as the training data for the random forest. During the prediction and
evaluation process, the new population of individuals not participating in the training will be encoded as
inputs to the random forest, and their fitness values will be predicted.

The random forest of the algorithm in this work uses the CART [30] decision tree as the base learner,
and the specific process is as follows:

Individual samples from a CNN network coding set are selected using bootstrap sampling to form a
training set. One sample is selected at a time until nnn samples are extracted to construct the dataset. A

Comput Mater Contin. 2025;84(2) 3509

CART decision tree is then generated using these nnn samples as the root nodes. During the decision tree
construction, each sample has D attributes. When splitting each decision tree node, a subset of d features is
randomly selected. The feature space is divided by minimizing the squared error criterion. For each decision
node, the best feature is chosen based on criteria such as information gain, which helps determine the
dividing attribute of the node. The final decision tree partitions the feature space into different regions based
on these splits. Eq. (1) is the squared error formula: each division divides the feature space into two parts.

∥ f − g∥2
2 = ∑

xi∈Qm

(f − g (xi))
2 (1)

Firstly, in the feature space, the traversal selects the feature axis m to divide and selects a cut point n at
m to obtain the (m, n) combination that minimizes Eq. (2).

min
m ,n

⎡⎢⎢⎢⎢⎣

1
∣Q1∣

∑
yi∈Q1(m ,n)

(xi − c1)
2 +

1
∣Q2∣

∑
yi∈Q2(m ,n)

(xi − c2)
2
⎤⎥⎥⎥⎥⎦

(2)

After selecting (m, n), the data space is divided into two regions Q1, Q2, as in Eq. (3), at which point
the response is set to take the value ∂p as the average of all yi in the interval, as shown in Eq. (4).

Q1 (m, n) = {y ∣ I (y(m) ≤ n) = 1} , Q2 (m, n) = {y ∣ I (y(m) > n) = 1} (3)

∂p =
1

Np
∑

xi∈R p(m ,n)
yi , x ∈ Qp , p = 1, 2 (4)

Cycling through the above steps, each node is split during the decision tree construction process
according to the previous steps, if the next node selects the same attribute as the one selected by its parent
node for classification, then the node is considered as a leaf node and stops to continue the splitting process,
which is carried out until it can not be split any more. A decision tree is generated as shown in Eq. (5), and the
decision tree divides the input sample space into M regions, each corresponding to a node on the decision
tree. The non-leaf nodes of the decision tree hold the best cut feature and cut point of the current node, while
the leaf nodes hold the average of the labels of all the samples within that node. After that, the above steps
are repeated k times to generate k decision trees to obtain the random forest Surrogate model.

g (x) =
M
∑ ∂pI (x ∈ Qp) (5)

In order to reduce the risk of overfitting in the random forest model, two issues in particular should
be paid attention to in the construction process: random sampling and complete splitting. Firstly, for row
sampling, N samples are selected from N samples for training the decision tree using a method with put-back,
which makes the training data of each tree not all samples with a certain degree of randomness due to the
repeatable sampling nature of the samples, which can reduce the overfitting of the model; followed by column
sampling, which randomly selects d attributes (d <<D) for splitting the nodes. Secondly, when constructing
the decision tree, the strategy of complete splitting is used, i.e., each leaf node is either undividable or contains
samples that all belong to the same classification. By sampling at the initial stage of the decision tree, this
algorithm ensures randomness and thus avoids the risk of overfitting; therefore, no additional pruning is
required to reduce the effect of overfitting.

A random forest of trained K-CART decision trees is used to predict the test samples, and the final
prediction results are evaluated using the voting method approach.

3510 Comput Mater Contin. 2025;84(2)

2.4 Hierarchical Evaluation Strategy Combining Surrogate and Precise Models
The hierarchical evaluation strategy in this work integrates both fast Surrogate model evaluation and

traditional precise evaluation to enhance search efficiency while maintaining evaluation accuracy. The
random forest model, constructed in Section 2.3.3, plays a critical role in the Surrogate model evaluation,
which significantly reduces the time and computational costs associated with full evaluations.

In this strategy, candidate architectures are first evaluated using the random forest model. The RF, which
was trained on previously evaluated networks, predicts the performance of new candidate architectures based
on their encoded features. This Surrogate evaluation allows us to quickly estimate the fitness of candidate
networks without requiring full training.

However, as the Surrogate model is not always perfectly accurate, we combine it with a traditional
precise evaluation. In this evaluation, the candidate networks undergo full training on the dataset, and their
performance is evaluated on a validation set to obtain the exact fitness values. This process ensures that while
the Surrogate model accelerates the search, the final selection of architectures is based on precise evaluation,
guaranteeing the accuracy of the model selection.

In the hierarchical evaluation strategy of the algorithm in this work, the application of the random forest
Surrogate model reduces the overhead of complete evaluation and improves the search efficiency for the
whole algorithm, and the use of precise evaluation ensures the accuracy of the model evaluation, as shown
in Fig. 5, where the two parts interact with each other to form a complete evaluation system.

Figure 5: Schematic diagram of hierarchical assessment

The time overhead saved for the whole search process by the evaluation system used in this work
compared to the full evaluation method can be expressed as Eq. (6).

T (N (tt + tv) (1 − r) + tp) (6)

where T is the maximum number of iterations, tt denotes the length of time required for individual training,
tv denotes the length of time required for individual validation, r refers to the probability of the number of
predictions, and tp denotes the Surrogate model training time.

3 Empirical Validation and Performance Benchmarking

3.1 Benchmark Datasets and Experimental Protocol
The experiment uses two well-known image classification datasets: CIFAR-10 [28] and CIFAR-100 [31].

These datasets were initially released in 2009 by researchers Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton from the University of Toronto to advance the field of computer vision, particularly image clas-
sification techniques. CIFAR-10 contains 60,000 32 × 32 pixel color images, with pixel values ranging
from 0 to 255. The categories in CIFAR-10 include relatively simple objects, making it suitable for testing
basic image classification algorithms. In contrast, CIFAR-100 is an extended version of CIFAR-10, featuring
more categories and images. Like CIFAR-10, CIFAR-100 consists of 60,000 32 × 32 pixel color images,
but the images are divided into 100 distinct categories, each containing 600 images—500 for training and

Comput Mater Contin. 2025;84(2) 3511

100 for testing. More complex than CIFAR-10, the 100 categories in CIFAR-100 are further grouped into
20 superclasses.

CIFAR-10 offers a relatively simple task, making it suitable for validating basic image classification
models. CIFAR-100 requires models to capture more complex image features and finer classification criteria.
It is often used to test more sophisticated deep learning models, particularly convolutional neural networks
(CNNs). The more significant number of categories and more granular labels in CIFAR-100 make it a classic
dataset in image classification, and it serves as a benchmark for evaluating algorithm performance.

The neural architecture search algorithm code applied to image classification in this work runs on an
Intel(R) Xeon(R) W2250 CPU@3.70 GHz CPU, an NVIDIA A4000 GPU with 16 GB of video memory, an
operating system of Ubuntu 22.04, and an experimental framework of PyTorch. Due to the large memory
requirements of the supernet search space for the memory requirements, the algorithm in this work sets the
number of model cell stacks to 8 and the initial channel size to 16, and other parameters are set as shown
in Table 2:

Table 2: Hyperparameter settings

Parameter Setting
Size of the individual population 30

Crossover rate 2.5
Mutation rate 0.6

Maximum generations number 200
Batch size 48

Learning rate 0.028
Learning rate decay 0.95

Training epochs 500
Weight decay 2.8e−4
Momentum 0.95

3.2 Performance Evaluation Criteria
In this work we use three key metrics to evaluate the search performance: classification accuracy

(Accuracy), search time (Search Time), and model size (Model Size). Classification accuracy reflects the
neural network’s performance on a specific dataset, typically quantified using methods like cross-validation.
In this work, the exact calculation method for accuracy is shown in the Eq. (7).

Acc =
Tp + Tn

Tp + Tn + Fp + Fn
(7)

here, Tp (True Positive) denotes true cases and refers to the number of samples that are actually positive
and predicted to be positive, FP (False Positive) is false positive and refers to the number of samples that
are actually negative but predicted to be positive, Fn (False Negative) is false negative and refers to the
number of samples that are actually positive but predicted to be negative, and Tn (True Negative) is the
true counterexample, which refers to the number of samples that are actually negative and are predicted to
be negative. The size of the model refers to the size of the storage space occupied by the model, which is
calculated and expressed in this method using the number of model parameters as an indicator. Search time

3512 Comput Mater Contin. 2025;84(2)

refers to the time required to find the best neural network structure, which is expressed in this work in terms
of the number of days consumed by the GPUs required for the search.

3.3 Comparative Results and Discussion
The architecture search process follows the settings in Table 1, and after the search is complete, the

searched optimal architecture needs to be completely retrained on the dataset to evaluate its performance.
For this, the re-training process follows the DARTS network, where the units obtained from the search are
constructed into a larger network, with the number of unit stacks set to 20, the initial number of channels to
36, the total number of training generations to 600, and the rest of the settings are the same as in Table 1.

After several experiments on CIFAR-10 and CIFAR-100, Fig. 6 lists the training performance graphs
of the algorithm searching the architecture on CIFAR-10, and Table 3 lists the comparison between this
algorithm and the manual design as well as other NAS algorithms, which contains information on the
accuracy of the searched models, model size (number of parameters), and search duration.

Figure 6: Network architecture training accuracy-loss

Table 3: Comparison of different algorithms on CIFAR-10

Architecture Test error
(%)

#Params
(M)

Search cost (GPU
days)

Search method

ShuffleNet [32] 90.96 1.05 – Manual
Large-scale

evolution [29]
94.55 5.33 2744 Evolution

AE-CNN+E2EPP [14] 94.65 4.28 7.2 Evolution
ResNet [33] 95.38 1.66 – Manual

DenseNet-BC [24] 96.49 25.7 – Manual
PNAS [22] 96.51 3.21 222 SMBO

AmoebaNet-A [34] 96.61 3.22 3150 Evolution
CNN-GA [35] 96.77 2.88 32 Evolution

RSPS [36] 97.09 4.28 2.6 Random

(Continued)

Comput Mater Contin. 2025;84(2) 3513

Table 3 (continued)

Architecture Test error
(%)

#Params
(M)

Search cost (GPU
days)

Search method

ENAS [37] 97.08 4.69 0.5 RL
SNAS [38] 97.12 2.79 1.4 Gradient-based

DARTS [39] 97.21 3.31 3.5 Gradient-based
NASNet-A [40] 97.30 3.31 1770 RL
NSGA-NET [41] 97.21 3.31 3.5 Evolution

NSGANetV1-A3 [42] 97.66 2.22 28 Evolution
SurrogatelessNAS [36] 97.89 5.72 – Gradient-based

Ours 97.50 3.55 1.35 Evolution

The results show that HESM-NAS searches on CIFAR-10 to obtain better network architectures than
some of the more classical manually designed, gradient-based, RL-based or EA-based algorithms. When
compared in terms of GPU days, i.e., the cost of search time, it can be found that the present algorithm can
perform the architecture search process in a shorter time and obtain better search results compared to other
EA algorithms.

The cellular structures obtained from the architectural search of this algorithm on CIFAR-10 and CIFAR-
100 are presented in the following figures, where Fig. 7 shows the optimal architecture on CIFAR-10 and Fig. 8
shows the optimal architecture obtained on CIFAR-100.

Figure 7: Optimal architecture on CIFAR-10

Figure 8: Optimal architecture on CIFAR-100

Based on different search strategies, three experimental scenarios were designed using the control
variable method to verify the proposed method’s effectiveness, including assessment using traditional
Accuracy-Oriented evaluation, evaluation based solely on a random forest Surrogate model and evaluation

3514 Comput Mater Contin. 2025;84(2)

using the proposed Hierarchical Surrogate-Based Evaluation strategy. The effect of search accuracy is shown
in Fig. 9, and the result data obtained from the search is shown in Table 4. From the graphical data, it can be
seen that the accuracy obtained from the traditional. Accuracy-Oriented evaluation is higher, but its search
time is the maximum value, the search time can be greatly shortened by using only the Surrogate-Based
evaluation, but its accuracy is reduced a lot compared with that of the precise evaluation, and the efficiency
of the search using the Hierarchical Surrogate-Based Evaluation is much improved compared with that of
the traditional precise evaluation, and the search accuracy is not as good as the precise evaluation, but it
is much better than that using only the Surrogate model evaluation. The search accuracy is not as high as
that of accurate evaluation, but it is much higher than that of Surrogate-only model evaluation. From this
analysis, it can be seen that the proposed method may strike a balance between accuracy and search time,
and greatly improve the search efficiency and reduce the search cost under the premise of guaranteeing a
certain performance effect.

Figure 9: Variation of accuracy for different evaluation strategies

Table 4: Comparison of different assessment strategies

Search strategy Test error (%) Search cost (GPU days)
Accuracy-oriented evaluation 94.86 0.61

Hierarchical surrogate-based evaluation 92.96 0.32
Surrogate-based evaluation 84.92 0.19

4 Conclusion
To dive into the challenges of neural architecture search (NAS) in resource-limited image classification

scenarios, this work introduces a novel strategy that leverages a hierarchical evaluation mechanism guided
by Surrogate models. Central to the approach is a combination of a supernet and a random forest-based
Surrogate model, which jointly helps minimize the amount of expensive neural network training. By
integrating fast Surrogate evaluations with selective full evaluations, the method strikes a balance between
efficiency and performance. The proposed NAS framework is detailed from both architectural and algorith-
mic perspectives, followed by the design and role of the hierarchical evaluation system. Experimental studies
utilize clearly defined benchmarks and metrics, with findings indicating that the proposed method markedly
improves search efficiency while maintaining evaluation accuracy. In contrast to conventional strategies

Comput Mater Contin. 2025;84(2) 3515

that lack a hierarchical framework, this approach yields more consistent performance in constrained
environments. Future research will aim to enhance the generalization performance of the Surrogate model,
refine the evaluation strategy, and investigate the applicability of this approach to additional vision tasks.

Acknowledgement: Not applicable.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Xiaofeng Liu and
Yubin Bao; methodology, Xiaofeng Liu; software, Xiaofeng Liu; validation, Yubin Bao; formal analysis, Xiaofeng Liu
and Yubin Bao; investigation, Xiaofeng Liu; resources, Xiaofeng Liu; data curation, Fangling Leng; writing—original
draft preparation, Xiaofeng Liu; writing—review and editing, Yubin Bao; visualization, Fangling Leng; supervision,
Xiaofeng Liu; project administration, Xiaofeng Liu. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Hu YF, Belkhir N, Angulo J, Yao AEL, Franchi G. Learning deep morphological networks with neural architecture

search. Pattern Recogn. 2022;131(4):108893. doi:10.1016/j.patcog.2022.108893.
2. Ding ZX, Chen YR, Li NN, Zhao DB, Chen CL. Stacked BNAS: rethinking broad convolutional neural network

for neural architecture search. IEEE Trans Syst Man Cybern. 2023;53(9):5679–90. doi:10.1109/tsmc.2023.3275128.
3. Ma LB, Kang HD, Yu G, Li Q, He Q. Single-domain generalized predictor for neural architecture search system.

IEEE Trans Comput. 2024;73(5):1400–13. doi:10.1109/tc.2024.3365949.
4. Chen ZH, Qiu GH, Li P, Zhu L, Yang XK, Sheng B. MNGNAS: distilling adaptive combination of multiple searched

networks for one-shot neural architecture search. IEEE Trans Pattern Anal Mach Intell. 2023;45(11):13489–508.
doi:10.1109/tpami.2023.3293885.

5. Li N, Xue B, Ma L, Zhang M. Automatic fuzzy architecture design for defect detection via classifier-assisted
multiobjective optimization approach. IEEE Trans Evol Comput. 2025;28(1):1. doi:10.1109/tevc.2025.3530416.

6. Salmani Pour Avval S, Eskue ND, Groves RM, Yaghoubi V. Systematic review on neural architecture search. Artif
Intell Rev. 2025;58(3):73. doi:10.1007/s10462-024-11058-w.

7. Feng XS, Wan HR, Feng SB, Wang HR, Zheng QH, Zhou J, et al. GraTO: graph neural network framework tackling
over-smoothing with neural architecture search. In: Proceedings of the 31st ACM International Conference on
Information and Knowledge Management; 2022 Oct 17–21; Atlanta, GA, USA.

8. Shi CK, Hao YX, Li GY, Xu SY. EBNAS: efficient binary network design for image classification via neural
architecture search. Eng Appl Artif Intel. 2023;120(8):105845. doi:10.1016/j.engappai.2023.105845.

9. Ding ZX, Chen YR, Li NN, Zhao DB, Sun ZQ, Chen CLP. BNAS: efficient neural architecture search using broad
scalable architecture. IEEE Trans Neural Netw Learn Syst. 2022;33(9):5004–18. doi:10.1109/tnnls.2021.3067028.

10. Ma LB, Cheng S, Shi YH. Enhancing learning efficiency of brain storm optimization via orthogonal learning design.
IEEE Trans Syst Man Cybern. 2021;51(11):6723–42. doi:10.1109/tsmc.2020.2963943.

11. Cereda E, Crupi L, Risso M, Burrello A, Benini L, Giusti A, et al. Deep neural network architecture search
for accurate visual pose estimation aboard nano-UAVs. IEEE Int Conf Robot. 2023;2019:6065–71. doi:10.1109/
icra48891.2023.10160369.

12. Dabbu M, Karuppusamy L, Pulugu D, Vootla SR, Reddyvari VR. Water atom search algorithm-based deep
recurrent neural network for the big data classification based on spark architecture. Int J Mach Learn Cyb.
2022;13(8):2297–312. doi:10.1007/s13042-022-01524-8.

https://doi.org/10.1016/j.patcog.2022.108893
https://doi.org/10.1109/tsmc.2023.3275128
https://doi.org/10.1109/tc.2024.3365949
https://doi.org/10.1109/tpami.2023.3293885
https://doi.org/10.1109/tevc.2025.3530416
https://doi.org/10.1007/s10462-024-11058-w
https://doi.org/10.1016/j.engappai.2023.105845
https://doi.org/10.1109/tnnls.2021.3067028
https://doi.org/10.1109/tsmc.2020.2963943
https://doi.org/10.1109/icra48891.2023.10160369
https://doi.org/10.1109/icra48891.2023.10160369
https://doi.org/10.1007/s13042-022-01524-8

3516 Comput Mater Contin. 2025;84(2)

13. Hou WX, Liu LJ, Zhang HA, Sun HB, Zheng NN. DFSNet: dividing-fuse deep neural networks with searching
strategy for distributed DNN architecture. Neurocomputing. 2022;483(3):488–500. doi:10.1016/j.neucom.2021.08.
144.

14. Sun YN, Xue B, Zhang MJ, Yen GG. Completely automated CNN architecture design based on blocks. IEEE Trans
Neural Netw Learn Syst. 2020;31(4):1242–54. doi:10.1109/tnnls.2019.2919608.

15. Risso M, Burrello A, Conti F, Lamberti L, Chen Y, Benini L, et al. Lightweight neural architecture search for
temporal convolutional networks at the edge. IEEE Trans Comput. 2023;72(3):744–58. doi:10.1109/tc.2022.3177955.

16. Zhang HY, Jin YC, Hao KR. Evolutionary search for complete neural network architectures with partial weight
sharing. IEEE Trans Evol Comput. 2022;26(5):1072–86. doi:10.1109/tevc.2022.3140855.

17. Li LT, Jiang HK, Wang RX, Yang Q. A reinforcement neural architecture search convolutional neural network for
rolling bearing fault diagnosis. Meas Sci Technol. 2023;34(11):115122. doi:10.1088/1361-6501/acec06.

18. Li JL, Cao X, Chen RX, Zhang X, Huang XZ, Qu YZ. Graph neural network architecture search for rotating
machinery fault diagnosis based on reinforcement learning. Mech Syst Signal Process. 2023;202(2):110701. doi:10.
1016/j.ymssp.2023.110701.

19. Jiang P, Xue Y, Neri F. Score predictor-assisted evolutionary neural architecture search. EEE Trans Emerg Top
Comput Intell. 2025;2025:1–15. doi:10.1109/tetci.2025.3526179.

20. Xue Y, Zha J, Pelusi D, Chen P, Luo T, Zhen L, et al. Neural architecture search with progressive evaluation and
sub-population preservation. IEEE Trans Evol Comput. 2024. doi:10.1109/tevc.2024.3393304.

21. Ma LB, Li N, Zhu PC, Tang KK, Khan A, Wang F, et al. A novel fuzzy neural network architecture search
framework for defect recognition with uncertainties. IEEE Trans Fuzzy Syst. 2024;32(5):3274–85. doi:10.1109/tfuzz.
2024.3373792.

22. Liu CX, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, et al. Progressive neural architecture search. Comput Vis.
2018;11205(1):19–35. doi:10.1007/978-3-030-01246-5_2.

23. Sun N, Zhang S, Peng T, Zhang N, Zhou J, Zhang H. Multi-variables-driven model based on random forest and
Gaussian process regression for monthly streamflow forecasting. Water. 2022;14(11):1828. doi:10.3390/w14111828.

24. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA.

25. Xue Y, Han X, Wang Z. Self-adaptive weight based on dual-attention for differentiable neural architecture search.
IEEE Trans Ind Inform. 2024;20(4):6394–403. doi:10.1109/tii.2023.3348843.

26. Xue Y, Han X, Neri F, Qin J, Pelusi D. A gradient-guided evolutionary neural architecture search. IEEE Trans Neural
Netw Learn Syst. 2024;36(3):4345–57. doi:10.1109/tnnls.2024.3371432.

27. Chen HJ, Huang H, Zuo XQ, Zhao XC. Robustness enhancement of neural networks via architecture search with
multi-objective evolutionary optimization. Mathematics. 2022;10(15):2724. doi:10.3390/math10152724.

28. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images [dissertation]. Toronto, ON,
Canada: University of Toronto; 2009.

29. Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, et al. Large-scale evolution of image classifiers. In:
Proceedings of the International Conference on Machine Learning; 2017 Aug 6–11; Sydney, Australia.

30. Loh WY. Classification and regression trees. Wiley Data Min Knowl Discov. 2011;1(1):14–23.
31. Zheng Y, Huang H, Chen J. Comparative analysis of various models for image classification on Cifar-100 dataset.

In: Proceedings of the 2023 International Conference on Machine Learning and Automation; 2023 Oct 18; Adana,
Turkey.

32. Zhang X, Zhou XY, Lin MX, Sun R. ShuffleNet: an extremely efficient convolutional neural network for mobile
devices. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);
2018 Jun 18–23; Salt Lake City, UT, USA.

33. Bungert L, Roith T, Tenbrinck D, Burger M. A Bregman learning framework for sparse neural networks. J Mach
Learn Res. 2022;23.

34. Srinivasan S, Rajakumar K. Ant colony optimized AmoebaNet-A algorithm for hyperspectral image classifica-
tion. In: Proceedings of the 2022 6th International Conference on Electronics, Communication and Aerospace
Technology; 2022 Jan 1–3; Coimbatore, India.

https://doi.org/10.1016/j.neucom.2021.08.144
https://doi.org/10.1016/j.neucom.2021.08.144
https://doi.org/10.1109/tnnls.2019.2919608
https://doi.org/10.1109/tc.2022.3177955
https://doi.org/10.1109/tevc.2022.3140855
https://doi.org/10.1088/1361-6501/acec06
https://doi.org/10.1016/j.ymssp.2023.110701
https://doi.org/10.1016/j.ymssp.2023.110701
https://doi.org/10.1109/tetci.2025.3526179
https://doi.org/10.1109/tevc.2024.3393304
https://doi.org/10.1109/tfuzz.2024.3373792
https://doi.org/10.1109/tfuzz.2024.3373792
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.3390/w14111828
https://doi.org/10.1109/tii.2023.3348843
https://doi.org/10.1109/tnnls.2024.3371432
https://doi.org/10.3390/math10152724

Comput Mater Contin. 2025;84(2) 3517

35. Godara S, Kumar R, Singh D, Parsad R, Marwaha S. CNN-GA: deep learning-based response surface modelling
integrated with genetic algorithm for extracting optimal solutions in highly nonlinear response surfaces. Curr Sci.
2024;127(10):1194–201.

36. Cai H, Wang TZ, Wu ZH, Wang K, Lin J, Han S. On-device image classification with proxyless neural architec-
ture search and quantization-aware fine-tuning. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops; 2019 Oct 27–Nov 2; Seoul, Republic of Korea.

37. Pham H, Guan MY, Zoph B, Le Q, Dean J. Efficient neural architecture search via parameter sharing. In:
Proceedings of the International Conference on Machine Learning; 2018 Jul 10–15; Stockholm, Sweden.

38. Zhang R, Gao MR, Zhang PY, Zhang YM, Fu LH, Chai YF. Research on an ultrasonic detection method for weld
defects based on neural network architecture search. Measurement. 2023;221(2):113483. doi:10.1016/j.measurement.
2023.113483.

39. Cai L, Fu YL, Huo WL, Xiang YJ, Zhu T, Zhang Y, et al. Multiscale attentive image de-raining networks via neural
architecture search. IEEE Trans Circuits Syst Video Technol. 2023;33(2):618–33. doi:10.1109/tcsvt.2022.3207516.

40. Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In:
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2018 Jun
18–23; Salt Lake City, UT, USA.

41. Lu ZC, Whalen I, Dhebar Y, Deb K, Goodman E, Banzhaf W, et al. NSGA-Net: neural architecture search using
multi-objective genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference; 2019
Jul 13–17; Prague, Czech Republic.

42. Lu ZC, Whalen I, Dhebar Y, Deb K, Goodman ED, Banzhaf W, et al. Multiobjective evolutionary design of deep
convolutional neural networks for image classification. IEEE Trans Evol Comput. 2021;25(2):277–91. doi:10.1109/
tevc.2020.3024708.

https://doi.org/10.1016/j.measurement.2023.113483
https://doi.org/10.1016/j.measurement.2023.113483
https://doi.org/10.1109/tcsvt.2022.3207516
https://doi.org/10.1109/tevc.2020.3024708
https://doi.org/10.1109/tevc.2020.3024708

	Neural Architecture Search via Hierarchical Evaluation of Surrogate Models
	1 Introduction
	2 Proposed HESM-NAS Model
	3 Empirical Validation and Performance Benchmarking
	4 Conclusion
	References

