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ABSTRACT: Infrared imaging technology has been widely adopted in various fields, such as military reconnaissance,
medical diagnosis, and security monitoring, due to its excellent ability to penetrate smoke and fog. However, the
prevalent low resolution of infrared images severely limits the accurate interpretation of their contents. In addition,
deploying super-resolution models on resource-constrained devices faces significant challenges. To address these
issues, this study proposes a lightweight super-resolution network for infrared images based on an adaptive attention
mechanism. The network’s dynamic weighting module automatically adjusts the weights of the attention and non-
attention branch outputs based on the network’s characteristics at different levels. Among them, the attention branch
is further subdivided into pixel attention and brightness-texture attention, which are specialized for extracting the
most informative features in infrared images. Meanwhile, the non-attention branch supplements the extraction of those
neglected features to enhance the comprehensiveness of the features. Through ablation experiments, we verify the
effectiveness of the proposed module. Finally, through experiments on two datasets, FLIR and Thermal101, qualitative
and quantitative results demonstrate that the model can effectively recover high-frequency details of infrared images
and significantly improve image resolution. In detail, compared with the suboptimal method, we have reduced the
number of parameters by 30% and improved the model performance. When the scale factor is 2, the peak signal-to-
noise ratio of the test datasets FLIR and Thermal101 is improved by 0.09 and 0.15 dB, respectively. When the scale factor
is 4, it is improved by 0.05 and 0.09 dB, respectively. In addition, due to the lightweight design of the network structure,
it has a low computational cost. It is suitable for deployment on edge devices, thus effectively enhancing the sensing
performance of infrared imaging devices.

KEYWORDS: Infrared image; super-resolution; convolutional neural network; attention mechanism; dynamic
network

1 Introduction
Infrared images can offer significant thermal data in circumstances where visual images are unsuitable,

such as in darkness, fog, or smoke, and have important applications in various fields, such as medical,
biochemical engineering, and vision tasks. However, a critical challenge in infrared imaging is the lack
of detail resolution, which severely limits image visualization and target recognition performance. The
lower spatial resolution of infrared sensors compared to Red, Green, and Blue (RGB) cameras is a major
hardware limitation that contributes to this issue. Therefore, algorithmic solutions are essential to bridge
this gap. To better understand the challenges and potential solutions, it is important to first examine the
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limitations of infrared imaging systems at the hardware level. In a classical infrared imaging system, the
following basic components are included: lens, sensor, processor, etc. [1,2]. Although boosting the imaging
system’s performance can improve infrared image quality, such enhancements face significant cost barriers
and insurmountable physical constraints. Algorithmic techniques are essential to improve the resolution of
infrared images due to hardware restrictions. In recent years, a technique referred to as Single Image Super
Resolution (SISR) has been extensively advanced to improve the resolution of low-resolution images [3].
The objective of SISR is to reconstruct the associated high-resolution image from the observed degraded
low-resolution image. Without changing the hardware imaging system, SISR techniques have significantly
demonstrated the potential to improve image quality, especially in resource-limited environments [4,5].

Image super-resolution methods can be classified into two primary categories: conventional approaches
and those based on deep learning. The traditional approaches can be further classified into three categories:
frequency domain techniques, dictionary-based procedures, and assorted other ways. These approaches
utilize prior knowledge to limit the solution space and derive the solution with minimal distance to
the actual HR [6–8]. Nevertheless, weak mathematical analysis limits the proposed algorithm, and these
conventional methods exhibit a lack of robustness and fail to adapt to the intricate and dynamic nature
of infrared images. With the development of deep learning, it has become popular to use a Convolutional
Neural Network (CNN) to build an end-to-end model for image super-resolution. Neural networks can
learn nonlinear mappings without instructions with their powerful fitting ability [9–11] and have shown
excellent performance in SISR, freeing people from the task of finding priors. CNN-based SISR methods
convert low-resolution images to high-resolution ones through an end-to-end approach utilizing the training
dataset. Leveraging the robust nonlinear fitting and automatic feature extraction abilities of convolutional
neural networks, along with the advent of specialized hardware like neural processing units (NPUs), the
efficacy of image super-resolution networks that have been trained on extensive datasets far surpasses that
of conventional techniques. Super-Resolution Convolutional Neural Network (SRCNN) [9] is the inaugu-
ral CNN-based SISR model, demonstrating markedly enhanced performance compared to interpolation
and sparse coding approaches. Leveraging the robust nonlinear fitting capabilities of CNNs, numerous
CNN-based RGB sensor single-image super-resolution models have been consistently introduced [12].
Nonetheless, the majority of current deep learning approaches for enhancing infrared images through super-
resolution are adapted from techniques developed for CNN-based visible light image enhancement. This
adaptation often overlooks the unique characteristics of infrared images and RGB images, such as their
lower signal-to-noise ratios, diminished contrast, and blurred visual qualities, all of which can significantly
impact the model’s effectiveness. Secondly, current CNN-based infrared image super-resolution models
mainly suffer from low efficiency in the sequential stacking of attention modules, complex and bulky network
structures, and non-compact attention module designs.

Given these challenges, this study aims to address the following research questions:

(1) How can we develop a CNN-based super-resolution model specifically tailored for infrared images,
considering their unique characteristics such as lower signal-to-noise ratios, diminished contrast, and
blurred visual qualities?

(2) How can we design a lightweight super-resolution network that balances efficiency and performance
while effectively enhancing the resolution and contrast of infrared images?

(3) How can we incorporate adaptive attention mechanisms into the network to better capture detailed
edges and brightness-texture features of infrared images, thereby improving the overall quality of
super-resolution results?

To address these problems, we present the Lightweight Dynamic Super-Resolution Network (LDynSR),
a lightweight network for infrared image super-resolution that leverages an adaptive attention mechanism



Comput Mater Contin. 2025;84(2) 2701

to effectively enhance resolution. Firstly, considering the challenges of low contrast and blurred textures in
infrared images, we propose a brightness-texture attention mechanism to prevent detail loss caused by low
contrast while restoring high-frequency details. Additionally, pixel attention performs pixel-level refinement
to reduce noise and mitigate local detail degradation in infrared images. Finally, a dynamic weighting module
is introduced to adaptively adjust the weights of attention and non-attention branches, improving informa-
tion utilization. While maintaining a lightweight architecture, the model effectively enhances the contrast of
infrared images, refines image details, and reconstructs high-resolution, high-quality infrared images.

This paper’s primary contributions are as follows:

• A CNN-based adaptive attention mechanism network is proposed to perform the task of super-
resolution of infrared images. The proposed model balances efficiency and performance by better
learning the mapping relationship between LR images and HR images for infrared images, enhanc-
ing feature expression, and better reconstructing high-resolution infrared images while maintaining
light weight.

• A lightweight dynamic weighting module, Dynamic Weighting Module (DAM), is designed to be applied
to different depths of the attention mechanism. Different stages of the DAM dynamically adjust the
weights of attention and non-attention paths. The proposed attention branches include a pixel attention
block and a brightness-texture attention block, which are used to focus on the detailed edges and
brightness texture features of the infrared image, respectively.

• The quantitative and qualitative studies conducted on various datasets demonstrate that the proposed
model achieves superior performance metrics in optimizing the balance between the number of model
parameters and the restoration of high-frequency details in infrared images.

2 Related Work

2.1 Visible Light Image Super-Resolution Based on CNN
Given CNN’s exceptional precision in image identification [13], CNN-based SISR techniques have

garnered considerable interest. Dong et al. [9] proposed SRCNN, the inaugural model to effectively utilize
CNN for picture super-resolution. It proposed a method to directly establish the correspondence between
low-resolution and high-resolution images, avoiding the manual feature design and complex optimization
process in traditional methods. SRCNN contains only three convolutional layers and is capable of learning
the nonlinear mapping between low-resolution and high-resolution images in an end-to-end manner,
surpassing conventional single-image super-resolution techniques. Subsequently, Fast Super-Resolution
Convolutional Neural Network (FSRCNN) [10] further enhanced SRCNN by designing a more efficient
network structure. FSRCNN significantly improved the processing speed of super-resolution tasks while
also improving performance. However, although FSRCNN is fast, it may still not be able to recover enough
image details when processing some extremely low-resolution images, especially at high magnifications,
where detail loss is more obvious. To enhance the efficacy of deep learning models, the Very Deep Super-
Resolution network (VDSR) [11] employs 20 convolutional layers to more effectively capture visual details
and high-order characteristics. In addition, VDSR also introduces residual learning to address issues like
gradient explosion and convergence difficulties in deep networks, hence enhancing the efficacy of SISR.
Enhanced Deep Super-Resolution Network (EDSR) [14] comprises 65 convolutional layers. EDSR enhances
model performance by eliminating the batch normalization layer, which boosts the model’s detail recovery
capability, diminishes noise in parameter updates during training, and increases training stability. Residual
Channel-Attention Network (RCAN) [15] is a model featuring over 400 convolutional layers and was the
first to propose and widely apply the channel attention mechanism in image super-resolution. Dynamically
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weighting the importance of each channel effectively enhances the model’s capacity to restore high-resolution
image information.

However, as network depth increases, the requirement for processing resources and memory also
increases accordingly. Particularly when handling high-resolution images, where the requirements for
memory and computation become especially pronounced, complicating application on resource-constrained
devices. Recognizing these problems, many researchers are now focusing on developing lightweight models
for SISR. Deeply-Recursive Convolutional Network (DRCN) [16] expands the depth of the convolutional
layer by deep recursion instead of simply adding new convolutional layers. This method can expand the
receptive field without adding additional parameters, thereby using greater contextual information to restore
high-frequency details of the image, solving the problem of increasing the network depth in traditional
methods, leading to a sharp increase in the number of parameters. However, since the recursive depth of
DRCN can reach 16 layers, gradient vanishing and gradient exploding problems are prone to occur during
training. These problems make it difficult for the network to converge, and the training process becomes
very unstable, requiring a lot of parameter adjustment and optimization techniques to solve. Cascading
Residual Network (CARN) [17] reduces the parameters and computation of the model by using efficient
residual blocks (residual-E) and recursive network architecture. The residual E block significantly reduces the
computational effort and the number of parameters of the convolution operation by using group convolution
instead of the standard convolution operation. Furthermore, in Cascading Residual Network with Shared
Parameters (CARN-M), the parameters of the cascade blocks are shared, avoiding the need to assign separate
parameters to each cascade block, further significantly reducing the total number of parameters in the model.
Although the cascade structure of CARN can improve the performance of the model, this structure also
makes the convergence speed during training slower. Due to the complexity of the cascade modules, the
model requires more training time to achieve better performance, which increases the training cost and time.
Information Multi-Distillation Network (IMDN) [18] uses Information Multi-Distillation Blocks (IMDB) to
achieve a lightweight design. IMDB extracts features step by step through Progressive Refinement Modules
(PRMs), where features are divided into retained portions and portions to be further processed in each
step. The retained portions are considered refinement features, thus reducing unnecessary computations.
However, this gradual refinement may not be enough to capture the deep features of the image in some cases.
Especially when dealing with complex scenes and high-resolution images, deeper feature extraction may be
required to achieve better super-resolution effects. The Residual Feature Distillation Network (RFDN) [19]
enhances the channel division of IMDN, resulting in increased efficiency and reduced weight. However, this
enhancement may come at the cost of reduced feature extraction depth. Pixel Attention Network (PAN) [20]
uses lightweight self-calibrated convolution [21] as a basic building block to directly learn the important
weights of features at the pixel level, strengthen attention to key pixels, and improve the ability to restore
image texture and details. However, this approach may struggle with complex backgrounds or low-contrast
images, as it tends to focus on prominent regions and neglects less noticeable background details, which can
result in suboptimal restoration performance in certain cases.

2.2 Infrared Image Super-Resolution Based on CNN
The remarkable advancement of CNN-based RGB image super-resolution has likewise facilitated the

progression of infrared image super-resolution. Motivated by SRCNN, a thermal image enhancement
network architecture called TEN [22] was proposed. It is a relatively shallow neural network containing only
four convolutional layers. Nevertheless, because of the exorbitant expense of HR thermal detectors at the
time and the difficulty in collecting sufficient LR-HR infrared images for training, TEN utilized RGB images
as the training dataset. However, Rivadeneira et al. [23] demonstrated that TEN trained on RGB images as
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its dataset, which limited the infrared image SR performance. The computationally efficient Thermal Image
Super-Resolution Network (TherISuRNet) [24] employs a progressive upsampling technique to achieve
thermal image super-resolution efficiently, incrementally enhancing the image resolution to meet the desired
resolution. Despite its efficiency, this approach may accumulate errors at each upsampling stage, potentially
degrading the final image quality. Channel split convolutional neural network (ChaSNet) [25] uses channel
segmentation technology to reduce redundant features in the network. This method reduces the information
load and optimizes the performance of deep models by distinguishing features within the channel dimension.
However, this technique may also inadvertently discard some useful information, potentially leading to
a slight drop in image quality or detail recovery, especially in complex scenes where diverse features are
critical for accurate reconstruction. Zou et al. [26] suggested a CNN architecture consisting of convolutional
and deconvolutional layers, where the two halves of the network are connected through skip connections
to transfer image information and mitigate the gradient vanishing problem. While this improved super-
resolution performance, the architecture may suffer from overfitting when model complexity is too high for
the available dataset, as skip connections could lead to excessive feature propagation, amplifying noise, and
reducing the model’s ability to generalize. Du et al. [27] introduced a hybrid convolution consisting of stan-
dard convolution and dilated convolution. This novel technology expands the receptive field without altering
the dimensions of the feature map and eradicates blind spots. Additionally, a recursive fusion method is
employed to process feature outputs of varying scales more smoothly to achieve better reconstruction effects.
However, the combination of standard and dilated convolutions, along with recursive fusion, might increase
the model’s complexity and computational cost. This could result in slower training and inference times,
which may be a drawback for real-time applications or when processing large volumes of data. The stacked
Multiscale Feature Distillation Residual Blocks (MFDRB) [28] are constructed from three residual distillation
blocks, designed for mobile infrared imaging systems to perform channel feature distillation operations
and extract multiscale features. Despite their effectiveness, the reliance on multiple distillation blocks may
increase the computational burden, leading to longer processing times and higher memory consumption,
challenges for real-time applications on mobile devices with limited resources. Given the limitations of
existing models, such as high computational cost, overfitting, and image quality degradation, there is a clear
need for a more efficient solution. Many current approaches either struggle with preserving details or are too
complex for resource-constrained environments. Our proposed model addresses these issues by providing
a lightweight architecture with fewer parameters, balancing performance and efficiency. Unlike previous
CNN-based infrared super-resolution models, our proposed LDynSR integrates a lightweight architecture,
a dynamic attention module (DynA), and specialized attention mechanisms to enhance performance. The
lightweight design reduces computational costs, making it suitable for resource-constrained devices. Unlike
models that rely on fixed attention mechanisms, the dynamic attention module we propose adaptively adjusts
the contributions of the attention and non-attention branches, thereby increasing the model’s flexibility
and focus on critical details. Additionally, the pixel attention (PA) and brightness-texture attention (BTA)
mechanisms specifically address challenges in infrared images, such as low contrast and texture loss,
achieving superior resolution and detail recovery. Collectively, these innovations achieve strong performance
while maintaining efficiency.

2.3 Attention Mechanism
Attention is a core part of the human cognitive system, which allows us to filter and focus on specific

information among various sensory inputs. When processing substantial information, we can concentrate
on significant things without being overwhelmed by minor things. Mimicking this ability of humans, the
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attention mechanism in neural networks implements attention to specific information, enabling the model
to selectively highlight important features while suppressing less relevant ones.

The squeeze-excitation (SE) [29] network is constructed with the SE block as its central component.
The SE block mainly includes two key steps: squeeze and excitation. The squeeze operation aims to compress
global spatial information into channel descriptors. This step is implemented by global average pooling
(GAP), which aggregates the information of each feature map in the spatial dimension (i.e., height and
width) to obtain a channel-level statistic. The purpose of the excitation operation is to dynamically adjust the
feature response of each channel using the channel descriptor generated by the squeeze operation. This step
involves a self-gating mechanism that assesses the significance of each channel according to the inter-channel
dependencies. Subsequently, Guha Roy et al. [30] initially proposed the squeeze and excitation (sSE) module
in the spatial dimension and the squeeze and excitation (scSE) module in the spatial and channel dimensions.
These modules allow the model to focus more on significant regions and channels in the image, thereby
enhancing its accuracy. The Convolutional Block Attention Module (CBAM) [31] attention mechanism
module contains two sequential submodules, namely, the channel attention module and the spatial attention
module. This dual attention mechanism enables CBAM to improve the expressiveness of feature maps, raise
the model’s capacity to recognize and find targets, and ultimately improve the performance of CNN in diverse
visual tasks. The Dual Attention Network (DANet) [32] incorporates the position attention module (PAM)
and channel attention module (CAM). The PAM selectively collects features from each position by assigning
weights to the features of all positions, while the CAM highlights interdependent channel maps by integrating
relevant information across all channel maps. Efficient Channel Attention (ECA) [33] generates channel
attention via rapid one-dimensional convolution, and the kernel size of the one-dimensional convolution
can be adaptively determined according to the channel dimension. The Channel-Wise and Spatial Feature
Modulation (CSFM) [34] network uses channel attention (CA) and spatial attention (PA) mechanisms to
calibrate feature maps, respectively, and then combines the results of the two types of attention.

3 Proposed Method

3.1 Network Architecture
As shown in Fig. 1, our proposed network architecture LDynSR has three modules, which are composed

of a 3 × 3 convolutional layer, a deep feature extraction module (DFEB), and a feature reconstruction module
(FRM). Each module plays a critical role in enhancing the network’s performance, and their synergistic
interaction significantly improves the quality of super-resolution results for infrared images. We now provide
a detailed description of these three modules.

DynA DynA DynA FRB

ILR ISR

X0 X1 Xn-1 Xn

Conv Conv Conv

Bicubic

Figure 1: Structure of LDynSR
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Given an LR Infrared image ILR ∈ RC×H×W , the input image is first passed through a 3 × 3 convolutional
layer for shallow feature extraction. The module can be represented as:

x0 = fconv(ILR) (1)

where fconv(⋅) denotes the 3 × 3 convolution function and x0 is the output feature extracted by this function.
For lightweight design, only one convolutional layer is utilized in the shallow feature extraction part.
This approach effectively captures low-frequency information, providing a solid foundation for subsequent
feature refinement while balancing network accuracy and computational efficiency.

While the shallow feature extraction efficiently captures low-frequency information, higher-level feature
representations are essential for reconstructing fine details in the final output. To achieve this, the extracted
shallow feature x0 is input to a DFEB module, which consists of n Dynamic Weighting Module (DynA)
modules and a 3 × 3 convolutional layer to extract a more powerful feature representation. We denote the
proposed DynA as fDA(⋅) and the deep feature extraction module can be represented as:

xn = fconv( f n
DA( f n−1

DA (. . . f 0
DA (x0) . . .))) (2)

where xn is the output feature map of the nth DynA and fconv(⋅) denotes the 3 × 3 convolution function. This
module is the core of our network, consisting of multiple stacked DynA modules followed by a convolutional
layer. Each DynA module dynamically adjusts the contributions of different attention branches based on
the input features, thereby enhancing the model’s ability to capture critical details and improve feature
representation. The concluding convolutional layer integrates the refined features from the DynA modules,
generating a robust and detailed feature representation.

After refining features through the DynA module, the extracted representations serve as input to the
FRM module, which contains a feature reconstruction block (FRB) and a 3 × 3 convolutional layer. The
FRM module comprises a transposed convolutional layer for up-sampling features to the target resolution
and a final convolutional layer for refining the reconstructed image. The detailed structure of this module is
described in Section 3.3. In addition, we add a global connectivity path to double-triple interpolate the input
image ILR and finally obtain:

ISR = FFRM (xn) + fu p(ILR) (3)

where FFRM (⋅) denotes the feature reconstruction module, fu p(⋅) denotes the bicubic interpolation opera-
tion, and ISR denotes the final output target SR image.

3.2 Dynamic Attention Module (DynA)
As shown in Fig. 1, the output x0 of the input image after a 3 × 3 convolutional layer is passed through

a DFEB module consisting of n DynA to extract more advanced deep features. Each DynA comprises a
dynamic weight module (DAM), two attention branches, and one non-attention branch, as seen in Fig. 2.

3.2.1 Dynamic Weighting Module (DAM)
In traditional models, static attention mechanisms are commonly used, where attention is uniformly

applied across all layers or blocks. This uniform application can lead to redundant computations and
suboptimal performance, particularly when some attention modules do not contribute positively to the final
output. Inspired by dynamic attention [35], we observe that not all attention modules enhance ultimate
performance, and treating all attention blocks equally is not always the most advantageous approach.
Therefore, we apply this learnable dynamic weighting module to our network architecture, designating it
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as the Dynamic Weighting Module (DAM). In contrast to traditional networks, DAM dynamically adjusts
attention weights based on input features, enabling the network to focus on beneficial features while
suppressing less useful ones, thereby enhancing the network’s greater potential. Specifically, the dynamic
weighting module regulates the contributions from attention and non-attention branches by weighted
summation. The module can be represented as:

xn+1 = f1×1 (ωPA
n × xPA

n + ωBTA
n × xBTA

n + ωNA
n × xNA

n ) + xn (4)

where xPA
n is the output of the pixel attention branch, xBTA

n is the output of the brightness-texture attention
branch, and xNA

n is the output of the non-attention branch. ωPA
n , ωBTA

n , and ωNA
n are the corresponding

weights of the three branches, which are computed by the network based on the input features, rather than
artificially set as fixed values. f1×1(⋅) denotes a 1 × 1 convolution function.

Figure 2: The overall structure of DynA and its attention mechanisms: (a) Structure of DynA. (b) Structure of pixel
attention mechanism. (c) Structure of brightness-texture attention

To compute the dynamic weights, several key steps are involved, which are detailed as follows:
The input feature map x is first compressed using Global Average Pooling (GAP) to obtain global

statistical information. This step aims to reduce the spatial dimensions of the feature map while preserving
the channel-wise information. The process can be mathematically expressed as:

xpool = GlobalAveragePooling(x) (5)

where xpool ∈ RC×1×1, and C is the number of channels.
After global average pooling, the features are passed through two fully connected layers equipped

with ReLU activation functions to generate dynamic weights. Specifically, the first fully connected layer
reduces the dimensionality of the global descriptor, projecting it into a lower-dimensional intermediate
space. This reduction helps to lower computational complexity while retaining essential feature information.
Subsequently, the second fully connected layer maps the intermediate representation back to the original
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dimension, yielding the final weights that signify the importance of each branch. This process can be
expressed as:

x f c1 = ReLU (W1 ⋅ xpool + b1) (6)
x f c2 =W2 ⋅ x f c1 + b2 (7)

where W1 and W2 are the weight matrices of the fully connected layers, and b1 and b2 are the bias terms.
After passing through the fully connected layers, the output is normalized by the Softmax function,

generating three weights ωPA
n , ωBTA

n , and ωNA
n , which correspond to the weights of the PA attention branch,

BTA attention branch, and non-attention branch, respectively. The formula is expressed as:

ωPA
n , ωBTA

n , ωNA
n = Softmax(x f c2) (8)

where ωPA
n + ωBTA

n + ωNA
n = 1, ensuring that the sum of the weights of the three branches is 1.

This module adaptively adjusts the branch weights according to the input features, supports resource
allocation of multi-branch networks, and helps the model handle different inputs more flexibly. Once
the input features change, the weight of each branch will also change, thereby improving the feature
expression ability.

3.2.2 Attention Branches
Fig. 2 illustrates that the attention branch comprises pixel attention (PA) and brightness-texture

attention (BTA). Their structures are depicted in (b) and (c) of Fig. 2, respectively.
To enhance the feature representation capability of the pixel attention mechanism, we propose a PA

mechanism with dynamic feature enhancement. The proposed PA incorporates residual connections based
on dynamically enhanced features, thereby achieving the enhancement of salient features and the effective
preservation of original information. The module first generates pixel-level dynamic weights through a
lightweight 1 × 1 convolution and adjusts the saliency of features extracted by a 3 × 3 convolution through
point-by-point multiplication. In addition, the residual connection stabilizes the training process while
preserving the global characteristics, avoiding the problem of gradient vanishing or information loss. It
not only improves the model’s capacity to capture multi-scale features but also substantially improves the
robustness and performance of the model.

To enhance the super-resolution performance of infrared images while reducing computational com-
plexity, we propose a Brightness-Texture Attention (BTA) mechanism. This module dynamically adjusts the
significance of different regions in the image by introducing adaptive attention mechanisms for brightness
and texture. Specifically, we design two branches to extract brightness information and texture information,
respectively. For brightness information, we employ global average pooling to extract brightness features,
while the other branch extracts texture features through depth-separable convolution, which significantly
reduces the computational overhead. Meanwhile, the attention map combined with sigmoid activation
enhances the recovery of image details, especially in infrared images with low contrast and texture loss,
significantly enhancing the resolution efficacy of the image. Moreover, the lightweight design of the module
enables it to operate in environments with limited computational resources and adapt to large-scale real-
world applications, and it can achieve significant performance enhancement in the super-resolution task of
infrared images while maintaining low computational complexity.
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3.3 Feature Reconstruction Block (FRB)
In the feature reconstruction module, the core goal is to progressively enlarge the feature map to the

target resolution to provide high-quality feature support for image reconstruction. To this end, we present
a feature reconstruction module utilizing multi-stage upsampling and an attention mechanism, which
applies varying processing strategies based on the scale factors to enhance the quality of super-resolution
reconstruction, as shown in Fig. 3.
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Figure 3: Structure of FRM

When the scale factor is 2, a single transposed convolutional layer (TransConv) is employed for
upsampling instead of the conventional nearest-neighbor interpolation. Compared to traditional upsampling
methods, transposed convolution transforms the upsampling process from a fixed interpolation pattern
into a learnable procedure, enabling the model to adaptively refine texture and detail representations based
on input image features. This learnable upsampling process facilitates more accurate feature recovery,
particularly for complex and diverse structures. Subsequently, the up-sampled feature maps are refined by a
PA layer to enhance the representation of important regions, followed by the application of a convolutional
layer to restore the high-resolution details of the image. When the scale factor is 4, the super-resolution task
is more burdensome. To mitigate the distortion problem associated with direct quadruple magnification,
we adopt a two-stage up-sampling strategy. This approach progressively refines the features and generates
a high-resolution output image, which continuously enhances the feature representation ability during the
gradual magnification process and enables more effective recovery of image details.

4 Experiments

4.1 Datasets
We utilize the grayscale infrared dataset introduced by Rivadeneira et al. [36], which contains 951

training images and 50 test images. In the training process, we use 951 FLIR (HR) images as the original HR
training dataset, use ×2 and ×4 bicubic downsampling to create the corresponding LR datasets, and degrade
them by additive white Gaussian noise (AWGN) with a mean of 0 and a standard deviation of 10. To evaluate
the generalization of our proposed network on the test dataset, we utilize not only the 50 test sets in FLIR
(HR) in the challenge dataset but also use 101ThermalTau2 [23] (containing 101 grayscale infrared datasets
of different scenes) for testing.
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4.2 Evaluation Metrics
To quantitatively evaluate the performance of the proposed lightweight dynamic super-resolution

method (LDynSR) for infrared images, we adopt widely used image quality assessment metrics: Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). All performance reports are evaluated on the
Y-channel (luminance) of the Luma, Chroma-blue, Chroma-red (YCbCr) color space, the reason being that
the Y-channel mainly contains the brightness information of the image, which directly affects visual clarity
and detail perception. PSNR is a classic metric for assessing image restoration quality, and its calculation
is based on pixel-level error, with higher values signifying superior image restoration. Nevertheless, PSNR
is not sensitive enough to the structural information of an image, so it is usually used in conjunction
with SSIM, which can better reflect the visual quality of an image by evaluating its brightness, contrast,
and structural information. Since infrared images usually lack rich color information, the preservation of
structural information is particularly important, so we emphasize the performance of SSIM on the Y-channel.

4.3 Implementation Details
We use the PyTorch framework to train the proposed LDynSR. The Adam optimizer (where β1 = 0.9,

β2 = 0.99, and ε = 10−8) and the L1 loss function are employed to train the model, while a cosine annealing
learning approach is utilized to enhance training speed. The initial learning rate is 7 × 10−4 with 120 k
iterations, and the cycle length in the cosine annealing learning rate schedule is 30 k iterations. The initial
learning rate of 7 × 10−4 was empirically determined to balance convergence speed and stability. A higher
rate risks overshooting the optimal solution, leading to suboptimal performance or divergence, while a
lower rate slows training, increasing computational cost and time. The total number of iterations is 120 k,
ensuring sufficient learning capacity without overfitting. The cycle length of 30 k iterations in the cosine
annealing schedule was chosen to allow periodic restarts, which help escape local minima and improve
generalization. We performed a sensitivity analysis by varying the cycle length and learning rate and observed
that this configuration achieved the best trade-off between convergence speed and final performance. Data
augmentation is applied to the training dataset by random rotations of 90○, 180○, and 270○, as well as
horizontal flips. The proposed algorithm is implemented on a server equipped with an NVIDIA RTX
4090 GPU.

4.4 Ablation Experiments
Structural Configuration of Attention Branches: To assess the efficacy of the attention mechanism

and the path configuration that we proposed in the DynA module on the super-resolution of infrared images,
we set up seven sets of comparison experiments, which can be categorized into the single-path structure,
two-path structure, and three-path structure. The single-path structure is NOA, PA, and BTA; the two-path
structure contains PA-NOA, BTA-NOA, and PA-BTA, and the three-path structure is PA-BTA-NOA, where
NOA denotes the non-attentive branch and consists of a 3 × 3 convolutional layer. The experimental results
are shown in Table 1.

As can be seen in Table 1, in the single-path structure, using only the PA attention mechanism gives
the best results, followed by using only our proposed BTA, which also has a low number of parameters of
71,883, proving that it is an attention structure with a lightweight structure, whereas the non-attention branch
using only one 3 × 3 convolutional layer gives the worst results. In the dual-path structure, using the PA-
BTA structure outperforms the PA-NOA structure, indicating that PA and BTA combine pixel-level features
with brightness texture features, respectively. The amalgamation of these two can be used to achieve a more
desirable effect and better performance, with the parameter count increasing by merely 1792 as compared
to that of the PA-NOA. Meanwhile, the dual-path structure generally has a higher performance than the
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single-path structure, which also indicates that in the dual-path structure, the feature information between
each branch can complement each other. From Table 1, it can be seen that the three-path structure is the
best, with a PSNR of 41.60, and the number of parameters does not increase dramatically, which achieves a
balance between lightweight and high performance.

Table 1: Comparison of different attention branching structure configurations. Experiments were tested on the 101
ThermalTau2 dataset on a ×2 scale factor

Case Params PSNR (dB)
Single-path structure

NOA 125,931 41.303974
PA 190,251 41.334499

BTA 71,883 41.304022

Two-path structure

PA-NOA 273,531 41.429606
BTA-NOA 155,163 41.396350

PA-BTA 275,323 41.487632

Three-path structure

PA-BTA-NOA 277,163 41.604376

Effectiveness of PA in FRM module: We set up four sets of experiments in the feature reconstruction
module using BTA, Channel Attention (CA), a 3 × 3 convolutional layer, and our proposed PA attention
mechanism, respectively, for comparison tests to validate the effectiveness of our proposed method. Where
CA is the channel attention module, the structure is shown in Fig. 4.

MaxPool

AvgPool

Shared MLP

Channel A�en�on Module Element-wise addi�on

Sigmod

Figure 4: Structure of CA

The experimental results are presented in Table 2. The incorporation of the PA attention mechanism
into the feature reconstruction module yields optimal results, and an improvement of 0.12 dB can be
achieved compared to a 3 × 3 convolutional layer, which verifies that our proposed PA attention mechanism
applied to the feature reconstruction module can bring beneficial effects for achieving super-resolution of
infrared images.

Effectiveness of DAM: To assess the effectiveness of the DAM module, we conducted two sets of
experiments: one group without DAM and another with DAM. The corresponding results are summarized
in Table 3. The table indicates that the implementation of DAM can enhance model performance, compared
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with not using the DAM module, bringing 0.08 dB improvement. It is also verified that the attention layer
does not bring beneficial effects at different depths.

Table 2: Comparison of different attentional mechanism configurations in the FRM module. Experiments were tested
on the 101 ThermalTau2 dataset on a ×2 scale factor

Case Params PSNR (dB)
BTA 266,461 41.464360
CA 266,339 41.505732

3 × 3 271,403 41.583916
PA 277,163 41.604376

Table 3: Comparison of whether to use DAM or not. Experiments were tested on the 101 ThermalTau2 dataset on a ×2
scale factor

Case Params PSNR (dB)
Without DAM 275,323 41.524879

With DAM 277,163 41.604376

4.5 Quantitative Experiments
The proposed method is evaluated against other existing state-of-the-art methods in terms of PSNR and

SSIM at upscaling factors of ×2 and ×4. To ensure an even comparison, we incorporate many approaches,
including Bicubic, SRCNN (2015) [9], Linearly-Assembled Pixel-Adaptive Regression Network (LAPAR_B)
(2020) [37], FSRCNN (2016) [10], VDSR (2016) [11], PAN (2020) [20], IMDN (2019) [18], Channel-Shuffle
Feature Mixing Network (ShuffleMixer) (2022) [38], and Lightweight Infrared Image Super-Resolution
Network (LIRSRN) (2024) [39] with the test results presented in Table 4. Table 4 compares the performance
and parameter count of various image super-resolution algorithms on the FLIR and Thermal101 datasets.
The results indicate that our proposed LDynSR achieves the highest PSNR and SSIM at both ×2 and ×4 scale
factors, and obtains SR images with the highest quantitative fidelity, demonstrating excellent performance
and the superiority of the lightweight design. This outstanding performance can be attributed to several key
design aspects of LDynSR, particularly the brightness-texture attention mechanism. Since infrared images
primarily rely on brightness information and lack rich color information, effectively utilizing brightness
features is crucial for infrared image super-resolution. The proposed brightness-texture attention mechanism
adaptively adjusts the brightness weights, maintaining an appropriate contrast between high-brightness and
low-brightness regions, thus enhancing the clarity of the target. Considering that the texture information
in infrared images is often weak, leading to blurry or missing textures in traditional SR methods, the
proposed mechanism enhances the texture details in key regions, resulting in clearer super-resolved images.
In addition, due to our lightweight architecture—such as the use of a single 3 × 3 convolutional layer for
shallow feature extraction, the lightweight attention mechanism, and the simplicity of the structure—our
model uses fewer parameters compared to other methods. For example, compared with IMDN (0.68 M
parameters for a scale factor of ×2 and 0.70 M for a scale factor of ×4) and VDSR (0.67 M), our proposed
LDynSR (0.26 M parameters for a scale factor of ×2 and 0.28 M for a scale factor of ×4) achieves better
performance using less than half of their parameters.
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Table 4: Quantitative comparison results of the proposed method with other methods on PSNR (dB)/SSIM metrics

Scale Network Prams Testing datasets

FLIR Thermal101
×2 Bicubic – 35.83/0.9168 37.88/0.9057

SRCNN 0.057 M 39.22/0.9570 40.67/0.9407
LAPAR_B 0.24 M 39.37/0.9575 39.73/0.9252
FSRCNN 0.012 M 40.15/0.9601 41.02/0.9438

VDSR 0.67 M 40.26/0.9345 40.82/0.9422
PAN 0.25 M 39.36/0.9649 40.54/0.9342

IMDN 0.68 M 40.32/0.9651 41.47/0.9447
ShuffleMixer 0.39 M 40.35/0.9596 41.45/0.9438

LIRSRN 0.04 M 39.25/0.9436 39.47/0.9310
LDynSR (ours) 0.26 M 40.44/0.9664 41.60/0.9618

×4 Bicubic – 32.89/0.7788 35.21/0.8241
SRCNN 0.057 M 35.06/0.9104 36.15/0.8957

LAPAR_B 0.31 M 34.80/0.8953 36.77/0.8910
FSRCNN 0.012 M 35.13/0.9025 36.52/0.9063

VDSR 0.67 M 35.34/0.8997 36.30/0.8994
PAN 0.25 M 35.18/0.8913 35.26/0.8832

IMDN 0.70 M 35.42/0.9002 36.69/0.9018
ShuffleMixer 0.40 M 35.45/0.9028 36.77/0.9015

LIRSRN 0.04 M 34.64/0.8945 35.35/0.8803
LDynSR (ours) 0.28 M 35.50/0.9033 36.86/0.9024

4.6 Qualitative Experiments
The qualitative results are presented in Figs. 5 and 6, where experiments were performed on the FLIR

and Thermal101 test datasets with scale factors of ×2 and ×4, respectively. Figs. 5a and 6a present the selected
test images, while Figs. 5b and 6b highlight the corresponding local details. The results of various super-
resolution methods, including the proposed LDynSR, are shown in Figs. 5c–l and 6c–l. As observed, LDynSR
exhibits superior performance in terms of PSNR and SSIM, and better preserves high-frequency details
compared to other competing approaches. This improvement is particularly evident in fine-texture regions,
where the LDynSR effectively recovers intricate details such as edges and small structures that are often
lost in other super-resolution methods. For example, as shown in Fig. 6, at a scaling factor of ×4, our
method LDynSR (Fig. 6l) correctly restores the direction of the stripes in the image, while the FSRCNN
(Fig. 6f) method causes distortion in the stripes during the restoration process. Compared with the PAN
(Fig. 6h) method, our approach produces better contrast and is closer to the original HR image. This can
be attributed to the synergistic effect of the pixel attention mechanism, which focuses on critical areas of
the image, and the brightness-texture attention mechanism, which refines the extraction of both global and
local image features. In addition, the non-attention mechanism supplements features that might otherwise
be overlooked, contributing to the overall enhancement of image quality. These qualitative results validate
the effectiveness of our network in achieving high-quality infrared image super-resolution.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: Qualitative results for the FLIR test dataset with a scale factor of ×2: (a) 0046.jpg from FLIR; (b) HR PSNR
(dB)/SSIM; (c) Bicubic 30.26/0.9430; (d) SRCNN 35.88/0.9804; (e) LAPAR_B 35.76/0.9798; (f) FSRCNN 35.53/0.9841;
(g) VDSR 35.98/0.9809; (h) PAN 34.82/0.9669; (i) IMDN 36.54/0.9763; (j) ShuffleMixer 36.87/0.9874; (k) LIRSRN
34.49/0.9775; (l) LDynSR (ours) 37.41/0.9884

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6: Qualitative results for the Thermal101 test dataset with a scale factor of ×4: (a) thermal_055-S.png from
Thermal101; (b) HR PSNR (dB)/SSIM; (c) Bicubic 28.52/0.9358; (d) SRCNN 33.44/0.9689; (e) LAPAR_B 33.80/0.9646;
(f) FSRCNN 31.53/0.9541; (g) VDSR 34.96/0.9759; (h) PAN 33.99/0.9653; (i) IMDN 35.00/0.9758; (j) ShuffleMixer
35.22/0.9763; (k) LIRSRN 33.34/0.9426; (l) LDynSR (ours) 35.46/0.9771

5 Conclusions
In this paper, we propose LDynSR, a lightweight super-resolution network for infrared images that

leverages an adaptive attention mechanism. To optimize the extraction of pixel-level information from
infrared images, we developed a novel pixel attention mechanism (PA) incorporating dynamic feature
augmentation. Additionally, we introduce residual connectivity on top of dynamic feature enhancement,
which effectively enhances salient features while preserving original information. Furthermore, we propose
a brightness-texture attention (BTA) mechanism to better capture the brightness-texture information of
infrared images, thereby improving the recovery of image details, especially in infrared images with low
contrast and texture loss, and significantly enhancing their super-resolution performance. Finally, we employ
a dynamic weighting module to adjust the contributions of the attention layers, fully utilizing these attention
branches and sub-attention branches to enhance high-frequency detail extraction, thus achieving superior
performance. In the feature reconstruction module, we employ transposed convolution for upsampling
to more accurately recover image details and reduce artifacts caused by interpolation. Qualitative and
quantitative experiments conducted on two test datasets encompassing diverse scenarios demonstrate
LDynSR’s superior ability to reconstruct high-frequency details while preserving fine features. Furthermore,
this lightweight architecture has the potential to be deployed on edge devices. Future research will focus
on exploring further optimization of the adaptive weighting mechanism to improve the balance between
attention and non-attention branches, potentially enhancing feature extraction efficiency. Additionally,
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integrating knowledge distillation or pruning techniques could further reduce computational complexity,
making the model more suitable for real-time applications on resource-constrained devices. Finally, the
application of LDynSR to other types of images, such as medical imaging, could be explored to enhance its
robustness and generalizability.
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