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ABSTRACT: In agricultural production, crop images are commonly used for the classification and identification of
various crops. However, several challenges arise, including low image clarity, elevated noise levels, low accuracy, and
poor robustness of existing classification models. To address these issues, this research proposes an innovative crop
image classification model named Lap-FEHRNet, which integrates a Laplacian Pyramid Super Resolution Network
(LapSRN) with a feature enhancement high-resolution network based on attention mechanisms (FEHRNet). To miti-
gate noise interference, this research incorporates the LapSRN network, which utilizes a Laplacian pyramid structure
to extract multi-level feature details from low-resolution images through a systematic layer-by-layer amplification
and pixel detail superposition process. This gradual reconstruction enhances the high-frequency information of the
image, enabling super-resolution reconstruction of low-quality images. To obtain a broader range of comprehensive and
diverse features, this research employs the FEHRNet model for both deep and shallow feature extraction. This approach
results in features that encapsulate multi-scale information and integrate both deep and shallow insights. To effectively
fuse these complementary features, this research introduces an attention mechanism during the feature enhancement
stage. This mechanism highlights important regions within the image, assigning greater weights to salient features
and resulting in a more comprehensive and effective image feature representation. Consequently, the accuracy of
image classification is significantly improved. Experimental results demonstrate that the Lap-FEHRNet model achieves
impressive classification accuracies of 98.8% on the crop classification dataset and 98.57% on the rice leaf disease dataset,
underscoring the model’s outstanding accuracy, robustness, and generalization capability.
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1 Introduction
Crops are the primary foundation of agricultural production activities [1]. By the end of 2024, China’s

total crop output had reached 1.413 trillion pounds, exceeding 1.4 trillion pounds for the first time. The
scale of cultivation of a variety of high-value-added cash crops has continued to expand, showing a
clear trend of transformation towards high efficiency, greenness, and sustainability. Crop monitoring is a
crucial area of research, facilitating effective crop management, including planting, irrigation, and yield
estimation [2]. Accurate identification of crop species serves as the foundation for agricultural supervision
and management [3], as determining crop species plays a vital role in subsequent crop breeding work [4].
For instance, during pesticide application and disease control, different crops require distinct chemicals
and dosages. Accurately identifying crop categories ensures greater precision and timeliness in cultivation,
underscoring the substantial agricultural value and practical benefits of precise crop classification.
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Recognition studies for crops are usually performed using images for classification. However, when
classifying and recognizing crop images, crop image characteristics need to be taken into account. Since
crop image acquisition often takes place in open fields under various light and climatic conditions, it
may be disrupted by other objects, pests, or limitations in acquisition equipment. Consequently, these
factors contribute to small target features, high image noise, and complex background interference. Hence,
crop images tend to be characterized by small target features, high image noise, and complex background
interference, whereas in general object recognition, such as plant recognition based on accurate flower and
leaf images, the image quality is relatively high and the target features are relatively clear [5]. Therefore, crop
image classification often needs to be combined with advanced machine learning models to ensure high
accuracy under complex conditions. In recent years, with the advent of deep learning technology, several
studies have proposed deep learning fine-grained classification methods suitable for complex scenarios.
Wang et al. [6] developed a deep learning framework for crop object classification and fine-grained cognition,
which effectively solves the problem of insufficient target recognition accuracy in complex environments.
This provides a valuable reference point for the present study.

In the past, traditional crop identification and classification methods came mainly from the biology
field. The identification of plants was previously reliant on the experience and knowledge of agricultural
experts, who would observe the local characteristics of the plant, including its roots, stems, and leaves, as well
as its global factors, such as the environment in which it grew and the structure in which it was planted [7].
However, this process is time-consuming and costly in terms of labour, and the experts have a high level of
knowledge and practical experience. Furthermore, the accuracy of manual crop identification can be affected
by the complex and different growth environments of crops.

The advent of computer technology has led to the widespread adoption of machine learning methods in
the field of crop classification. Early machine learning methods relied heavily on manually extracting image
features, such as color histograms [8], and then feeding the extracted features into a classifier (e.g., Support
Vector Machine SVM [9], Random Forest RF [10]) for crop classification. Fabiyi et al. [11] employed Linear
Discriminant Analysis (LDA) to reduce the dimensionality and extract features from hyperspectral images
of rice seeds. Then, a random forest classifier is utilized for classification. The results demonstrated that
the classification accuracy of this method can reach 85.94%. Xie et al. [12] extracted multiple features from
insect images by using techniques such as coloured histograms, histograms of oriented gradients (HOG), and
scale-invariant feature transform (SIFT). These features were then processed using sparse coding, resulting
in the generation of corresponding sparse coding histograms. Subsequently, the feature vectors were input
into a Support Vector Machine (SVM) for classification, resulting in a significantly higher classification
accuracy than other methods. In a separate study, Munisami et al. [13] collected leaves from 32 different
plants and extracted features from both shape and color. The k-Nearest Neighbors (kNN) algorithm was
used for classification, and it was able to maintain a high level of accuracy even when the number of species
was increased. These researchers employ image analysis to extract features such as colour, texture, and shape
from crop images. Subsequently, the image data is converted into quantifiable feature vectors, which are then
entered into a machine-learning classifier for classification. These methods primarily depend on the accurate
extraction and analysis of image features, enabling the classification of crops to a certain extent. However,
these traditional methods often require a considerable amount of human input and a complex parameter
optimization process. Additionally, the classification effects are susceptible to environmental influences.

In recent years, deep learning, as an advanced paradigm of machine learning, has demonstrated
significant advantages in the field of crop image classification. In contrast to traditional machine learning,
which relies on manually designed features, deep learning models such as convolutional neural networks
(CNNs) can learn features from images independently [14]. Tao et al. [15] employed the Visual Geometry
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Group (VGG) model to extract features from rapeseed and four types of weeds, resulting in an average
classification accuracy of 92.1%. Coulibaly et al. [16] fine-tuned the Google Inception Net (GoogleNet)
network to classify crop pests by extracting relevant weights from the pre-trained ImageNet dataset,
achieving an accuracy improvement of 6.22% compared to the latest method. Hema et al. [17] used RES34
to classify a dataset containing 14 plants and 38 diseases from approximately 150,000 leaf images, with an
experimental accuracy of 97.77%. Elfatimi et al. [18] were able to achieve the automatic distinction of bean
leaf diseases with Mobile Network (MobileNet), which can learn the corresponding features present within
bean leaf images autonomously.

Although deep learning-based models are capable of automatically extracting deep semantic features
from crop images by stacking convolutional layers with cascading downsampling and channel expansion
operations, related studies have shown that there are significant limitations in this feature extraction
paradigm: the successive spatial compression and channel expansion processes may introduce redundant
channel responses and irrelevant spatial features. Therefore, appropriate attention modules need to be intro-
duced to suppress irrelevant features and enhance relevant ones. For example, Stephen et al. [19] improved
the Residual Neural Network-18 layer (RESNet-18) and Residual Neural Network-34 layers (RESNet-34) with
a self-attention module, thereby enhancing the feature extraction process and elevating the accuracy of rice
leaf disease recognition and classification. Zhang et al. [20] devised a dual pooling channel attention module
(DPCA) that integrates two pooling operations (global max pooling and global average pooling) to establish
a correlation between global and local information, thereby filtering discriminative features effectively. Zuo
et al. [21] devised a multi-granularity feature aggregation module (MFA), comprising two sub-modules,
the Pixel-level Feature Self-Attention module (P-FSA) and the Block-level Feature Self-Attention module
(B-FSA). The aforementioned attention modules are divided into blocks according to the input feature
map. The distinction lies in the granularity of the processing. The P-FSA operates on smaller blocks with
finer granularity than the B-FSA, thereby capturing the relationships between pixels within the blocks and
identifying fine features in the image. In contrast, the B-FSA processes larger blocks with coarser granularity.
These blocks represent larger regions within the feature map and are employed to capture long-distance
dependencies between different blocks, thereby facilitating the identification of global information within
the image. The employment of two self-attention mechanisms enables the final features to encompass both
local pixel-level information and global block-level information, thereby rendering the model more suitable
for fine-grained crop disease classification tasks and more suitable for practical application in complex
agricultural scenarios. Bi et al. [22] introduced the Convolutional Block Attention Module (CBAM), which
enhances the key features of rice leaf disease images by weighting the two dimensions of channel and
spatial, resulting in a final classification accuracy of 98.73%. The aforementioned studies demonstrate that by
employing an attention module, the key features pertinent to classification can be enhanced, while irrelevant
features can be effectively suppressed so that the classification accuracy and generalization performance of
the model can be improved.

It should be noted, however, that the images utilized in the aforementioned research are all of high
resolution and quality. Due to external factors such as equipment limitations, the images used for recognition
are occasionally of a lower resolution than desired. Images of low resolution tend to blur details and introduce
noise, which makes the features of the crop less obvious and more difficult to extract and distinguish. While
the deployment of attention mechanisms can mitigate the influence of irrelevant pixels to a degree, an excess
of image noise can still affect the accuracy of judgments and predictions. Consequently, low-resolution
images must be upsampled to mitigate the adverse effects of noise on image quality. Sathya et al. [23]
enhanced the efficiency in image classification by incorporating a super-resolution layer to reconstruct low-
resolution rice plant disease images into super-resolution images. Zhou et al. [24] employed the Residual
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Dense Network (RDN) for super-resolution reconstruction and denoising of tomato leaf disease images,
achieving an average recognition accuracy of 95%. In a related study, Maqsood et al. [25] introduced the
SRGAN network for the classification of wheat stripe rust. This was achieved by using generative adversarial
networks to generate high-resolution images, resulting in an 8% improvement in classification accuracy
compared to low-resolution images. Although the above-mentioned crop image classification models have
achieved certain results, they all extract global features and fail to effectively integrate feature information
at different levels. Existing improvement schemes generally ignore the in-depth mining of the correlation
between shallow and deep features. This state of separation between hierarchical features severely restricts
the model’s ability to distinguish similar crops. At the same time, these studies have all used high-definition
reconstruction networks, but the single-stage reconstruction mechanism has obvious defects and is prone
to distortions such as blurry artifacts. Moreover, the increase in the number of network layers and the use
of larger convolutional kernels have led to a significant increase in network computing, which may lead to
problems such as longer training times. The specific research and analysis are shown in Table 1.

Table 1: The specific research and analysis

Research
direction

Related
literature

Characteristic Advantage Disadvantage

Traditional
machine learning

method

Fabiyi et al. [11],
Xie et al. [12],

Munisami
et al. [13]

Manually extract
image features
(color, texture,

shape, etc.) and use
SVM, RF, or kNN
for classification.

The characteristics
of manual design

make the
classification
process and

decision-making
more intuitive and
easier to explain.

Design features
manually and be

cautious of
sensitivity to

environmental
interference.

Deep learning
method

Tao et al. [15],
Coulibaly
et al. [16],

Hema et al. [17],
Elfatimi et al. [18]

Automatically learn
multi-level features,

get rid of manual
feature design, and

perform end-to-end
recognition.

Ensure strong
automation,
achieve high
accuracy, and

maintain robust
generalization

ability.

Prepare large
amounts of data
and address the

inability to
suppress some

irrelevant
features.

Attention
mechanism

enhancement
method

Stephen et al. [19],
Zhang et al. [20],

Zuo et al. [21],
Bi et al. [22]

Enhance key regions
and suppress
background

interference based
on a deep model

using an attention
mechanism.

Focus on key
features, ensure

strong robustness,
and achieve a

significant
improvement in

accuracy.

Ensure higher
image quality.

(Continued)
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Table 1 (continued)

Research
direction

Related
literature

Characteristic Advantage Disadvantage

Super-resolution
image

reconstruction
method

Sathya et al. [23],
Zhou et al. [24],

Maqsood
et al. [25]

Improve the quality
of low-quality

images by using
super-resolution

networks (such as
SRGAN and RDN)
to reduce blur and

noise.

Improve the
quality of

low-resolution
images.

Be aware of the
lack of shallow

features, complex
models, and large

computational
demands.

To address the classification issue with low-definition crop images in complex backgrounds, a novel
approach is proposed. This involves the fusion of the Laplacian Pyramid Super-Resolution Network (Lap-
SRN) and a feature enhancement high-resolution network based on attention mechanisms (FEHRNet) to
create a crop image classification model. The primary contributions of this paper are as follows:

1. A LapSRN network is constructed to clarify and denoising the crop images. The objective of the
network is to achieve high-quality image amplification by gradually restoring high-frequency details
in the image, thereby enhancing the model’s resilience to interference from complex backgrounds and
irrelevant pixels.

2. An FEHRNet model is constructed to perform feature extraction and image classification on the
aforementioned reconstructed images. FEHRNet model integrates deep and shallow features through
parallel multi-resolution branches and inter-branch feature exchange, enabling the model to extract a
diverse range of features and preserve the image’s complete information. This approach prevents minor
defective features from being obscured by the accumulation of network layers, thereby enhancing the
model’s generalization capacity.

3. The enhancement of features was achieved through the implementation of modules designed for this
purpose. A spatial attention module is incorporated into shallow features to accentuate significant
spatial locations while simultaneously diminishing the relevance of other locations. Following the
integration process, both the deep and shallow features undergo a fusion, which is then followed
by the implementation of a channel attention mechanism. This mechanism enables the network to
autonomously prioritize information features. The two attention mechanisms serve to enhance the
network’s capacity for feature extraction at disparate levels, thereby improving the model’s capacity for
discrimination and achieving more accurate image classification. Consequently, this model effectively
addresses the issues of complex backgrounds, low overall resolution, and noise in crop images, thereby
enhancing the robustness and accuracy of the model.

The remainder of this paper is organized as follows. Section 2 introduces the theoretical framework of
the model and explains each module. Section 3 describes the overall architecture of the Lap-FEHRNet model
proposed in this paper. Section 4 verifies the effectiveness and generalization ability of the model through
model ablation experiments, comparison experiments, and generalization experiments. Section 5 provides
discussions and conclusions of the research.
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2 Theoretical Framework

2.1 LapSRN
The Laplace pyramid super-resolution network (LapSRN) is a deep learning method that can recon-

struct low-resolution images into high-resolution images [26]. The specific framework structure is illustrated
in Fig. 1.

Figure 1: LapSRN architecture diagram

As shown in Fig. 1, the input to LapSRN is the luminance component (Y channel) of the original
colour image. First, the image is converted into YCbCr colour space, and only the Y channel is used for
reconstruction. After LapSRN enhances the Y channel, the result is combined with the original chrominance
channels (Cb and Cr) to yield the final colour image. The LapSRN is primarily constituted of two principal
branches, the Feature Extraction Branch and the Image Reconstruction Branch. The Feature Extraction
Branch is primarily responsible for the extraction of multi-scale feature information from low-resolution
images, thereby providing sufficient contextual semantics and details for subsequent image reconstruction.
This branch is composed of multiple convolutional layers, each of which gradually captures the spatial
structural features of the image through a specific convolutional kernel. The Image Reconstruction Branch
progressively restores the high-resolution image in accordance with the feature information extracted by the
feature extraction branch. The specific parameter map is shown in Fig. 2.

As shown in Figs. 1 and 2, the LapSRN model uses a three-stage progressive upsampling structure
to reconstruct low-resolution images (32 × 32) into high-quality output (256 × 256). Each scaling stage
(2×, 4×, and 8×) employs a two-branch structure for feature extraction and spatial reconstruction. These
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two-branch outputs are fused by element-wise summation to preserve high-frequency details and spatial
accuracy. The progressive reconstruction strategy effectively avoids artifacts caused by large-scale single-
step upsampling, while the Laplace pyramid structure suppresses noise propagation. As a result, the model
improves computational efficiency, reconstruction accuracy, and visual fidelity.

Figure 2: The LapSRN parameter map

The formula utilized by LapSRN for the loss function is as follows:

L (y, ŷ; θ) = 1
N

N
∑
i=1

L
∑
s=1

ρ (y(i)
s − ŷ(i)

s )

= 1
N

N
∑
i=1

L
∑
s=1

ρ ((y(i)
s − x(i)

s ) − r̂(i)
l )

, (1)

where N represents the number of samples in each batch, and L = log2 S denotes the number of levels in
the pyramid. y denotes the true input image, while y(i)

s represents the i-th true image y(i) within each
batch, downsampled to the s-th layer. ŷ(i)

s denotes the reconstructed image corresponding to y(i)
s , and x(i)

s

is the low-resolution image associated with y(i). r̂(i)
l represents the feature map obtained from x(i)

s through
convolution, and their sum yields ŷ(i)

s . Finally, ρ(x) represents the Charbonnier penalty function.

2.2 HRNet V2
The conventional approach to deep convolutional network structures is to gradually convolve from

high resolution to low resolution, employing either max or average pooling to generate features. However,
this approach may result in the loss of high-resolution spatial information. The high-resolution network
(HRNet) [27,28] is capable of generating and parallelizing feature maps of varying scales, which can
effectively retain the high-resolution information at each scale and prevent the loss of certain features.
Additionally, HRNet facilitates the exchange of information between multi-resolution feature maps within
the network, allowing for the effective fusion of low-resolution contextual information and high-resolution
detailed information.

The backbone network used in this paper is HRNet V2, and the structure diagram is illustrated in Fig. 3.
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Figure 3: HRNet V2 architecture diagram

Although classical image classification models such as GoogLeNet and RESNet have achieved wide
success, they still have certain shortcomings. GoogLeNet only does multi-scale feature fusion within the
Inception module, and there is insufficient communication of deeper information across modules. RESNet
deepens the network with a residual structure, but it is downsampled layer by layer along a single path, and
the high-resolution spatial details are continuously weakened. In contrast, HRNet V2 proposes an optimized
design to solve the above problems.

As shown in Fig. 3, firstly, the original three-scales are expanded to four-scales in parallel, and multi-
resolution feature representations are always retained. Secondly, bi-directional exchanges are carried out
between scales and all scales are directly outputted, so that spatial details and high-level semantics can be fully
integrated. Therefore, it is significantly better than the traditional model in terms of classification accuracy,
generalization ability, and capture of fine-grained features.

The HRNet V2 [29] employs a cross-entropy loss function that integrates the softmax and negative log-
likelihood. This function initially applies a softmax operation to the model output, transforming the logits
into a probability distribution. Subsequently, it computes the cross-entropy loss. The formula is as follows:

L (x , y) = − log
⎛
⎝

ex[y]

∑C
j=1 ex[ j]

⎞
⎠

= − log (so f tmax (y))
, (2)

where L represents the cross-entropy loss, x[ j] denotes the predicted values for class j, C indicates the
total number of classes in the classification task, and the term ex[y] corresponds to the exponential of
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the predicted values for the correct class y, ∑C
j=1 ex[ j] represents the summation of exponentials overall

class predicted values, so f tmax(y) defines the model’s predicted probability for the class y, providing a
normalized probability distribution across all classes.

2.3 Channel Attention Mechanism
The channel attention mechanism is a technique that enables the neural network model to learn

information from different channels and generate different weights, thereby enhancing its ability to attend to
specific channel features. The Squeeze Excitation Network (SENet) is a representative network structure of
the channel attention mechanism [30]. The channel attention mechanism is realized using two operations,
squeeze and excitation, respectively. The specific structure is illustrated in Fig. 4.

Figure 4: SENet structure diagram

The squeeze operation uses Global Average Pooling (GAP) to map all the features in each channel to a
single feature, thereby obtaining global information. The formula is as follows:

Uc = Fsq (Fc) =
1

H ×W ∑
H
i=1∑

W
j=1 Fc (i , j) , (3)

where Uc denotes the C-th element among the U channels, Fsq represents the squeeze operation, Fc refers
to the C-th feature map out of the F channels, and Fc (i , j) specifies the feature value located at the i-th
row and j-th column of the feature map Fc . H and W correspond to the height and width of the feature
map, respectively.

The activation operation uses two continuous, fully connected layers to perform non-linear feature
changes on the feature vector, thereby constructing channel feature weights that output higher weights for
important features and lower weights for unimportant features. The formula is as follows:

M = Fex (U , W) = σ (W2δ (W1U)) , (4)

where M represents the channel feature weights, Fex refers to the excitation operation, U denotes the feature
vector obtained from the squeeze operation, and W represents the weights of the fully connected layer. W1
and W2 correspond to the weights of the first and second fully connected layers, respectively. δ denotes the
ReLU activation function, while σ represents the Sigmoid activation function.

In weighted operation, the input feature map is multiplied by the channel feature weight, resulting in a
new feature map that exhibits enhanced sensitivity to salient features. The formula is as follows:

FNC = Fscal e (FC , MC) = MC × FC , (5)
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where FNC represents the C-th feature map after applying the weighting operation. Fscal e denotes the
weighting process, FC is the input C-th feature map, and MC refers to the feature weight for the C-th channel.

2.4 Spatial Attention Mechanism
The spatial attention mechanism is a technique that enhances the attention paid to specific spatial

features in a neural network model. This is achieved by analyzing the spatial information in the feature
map and providing different weight ratios for different spatial locations. Woo et al. [31] proposed the
Convolutional Block Attention Module (CBAM), the structure of which is shown in Fig. 5.

Figure 5: Spatial attention structure diagram

The channel dimension aggregation operation employs Global Average Pooling (GAP) and Global
Maximum Pooling (GMP) to aggregate the feature maps in the channel dimension, thereby obtaining two
single-channel feature maps. The formula is as follows:

Fs
avg = Favg (Fs) = AvgPool(Fs), (6)

Fs
max = Fmax (Fs) = MaxPool(Fs), (7)

where Fs represents the input feature map, while AvgPool and MaxPool correspond to the GAP and GMP
operations, respectively. Fs

avg and Fs
max denote the average pooling and max pooling features obtained from

Fs after the GAP and GMP operations, respectively.
The convolution operation takes two channel-wise aggregated feature maps as input and processes them

through a convolutional layer followed by a nonlinear layer to generate a spatial feature weight map. Each
location in this spatial feature weight map corresponds to a specific position in the original input feature
map. The formula is as follows:

Z = Fcon (Fs
avg, Fs

max) = σ( f 7×7 ([Fs
avg; Fs

max])), (8)

where Z represents the spatial feature weight map, Fcon denotes the convolution operation, σ is the Sigmoid
activation function, and f 7×7 refers to the convolution operation using a 7 × 7 kernel.

A weighted operation entails multiplying a spatial feature weight map by the original input feature map,
thereby generating a new feature map. This new feature map is designed to enhance the focus on specific
spatial positions. The formula is as follows:

FN S = Fscal e (FS , ZS) = ZS × FS , (9)
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where FN S represents the S-th pixel of the feature map after applying the weighting operation. Fscal e denotes
the weighting process, FS refers to the S-th pixel of the input feature map, and ZS represents the spatial feature
weight for the S-th pixel.

3 Lap-FEHRNet Model for Crop Image Classification

3.1 Model Structure
This paper proposes a deep learning model that fuses a Laplacian Pyramid Super-Resolution Network

(LapSRN) and a Feature Enhancement High-Resolution Network based on attention mechanisms (FEHR-
Net), as a solution to the problem of low-resolution crop image processing and classification. The structure
of the model is illustrated in Fig. 6. The FEHRNet Parameters Map is illustrated in Fig. 7.

Figure 6: Lap-FEHRNet model architecture diagram

The overall architecture of the Lap-FEHRNet model proposed in this paper is demonstrated in Fig. 6.
The architecture consists of two main modules: the image reconstruction module and the feature extraction
module. The image reconstruction module uses LapSRN to denoise and super-resolution reconstruct the
original low-resolution crop images, while the feature extraction module is based on the improved HRNet,
which improves the classification performance by fusing shallow and deep features. The feature enhancement
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module is also introduced for feature selection and fusion to improve the ability of the model to focus on
key information.

Figure 7: The FEHRNet parameters map

Fig. 7 shows the parameter structure of the FEHRNet module, which details the residual con-
nection, attention mechanism, and branched network structure at different scales within the feature
extraction module.

The following is the specific process of this research model:
In the initial stage, LapSRN is employed to denoise and reconstruct high-definition images of the

collected low-resolution crop images. Given that low-resolution images result in the loss of image details,
the LapSRN network is introduced to reconstruct high-definition images and denoise low-resolution images
through multi-level detail recovery, effectively addressing the issues of detail loss and feature extraction
difficulties caused by low-resolution crop images, and further enhancing the accuracy and robustness of the
image classification model.

In the second step, feature extraction is performed on the reconstructed image. Given the diversity and
complexity of the deep and shallow features of crop images, as well as the fact that they contain important
details and global information, HRNet V2 is improved. When a downsampling branch appears, a shallow
branch is also introduced. Finally, deep and shallow feature maps are output at each resolution scale.

In the third stage, the deep and shallow feature maps obtained from the previous stage are simultane-
ously fed into the attention mechanism-based feature enhancement module. The structure of this module is
shown in Fig. 8. To cope with the differences in the relevance of different channels and spatial regions to the
classification task, a feature fusion module and a feature selection module are designed. On the one hand,
the feature fusion module based on spatial attention can highlight more discriminative regions in the image
and fuse them with deep features to form a more discriminative spatial feature representation, effectively
suppressing the interference of redundant information and noise in the background. On the other hand, the
feature selection module based on channel attention weights the fused feature map in the channel dimension,
so that the network can more adaptively emphasize the channel features that contribute most to classification.
The specific parameter maps of the two modules are shown in Figs. 9 and 10, respectively.
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Figure 8: The attention-based feature enhancement module structural diagram

Figure 9: The deep and shallow feature fusion module
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Figure 10: The feature selection module

The spatial attention mechanism is applied to a shallow feature map as shown in Fig. 9. The mechanism
uses average pooling and max pooling operations along the channel direction to generate two spatial
feature maps. These two spatial feature maps are connected and passed to a 7 × 7 convolutional layer and
a sigmoid activation function to generate a spatial attention map. This map assigns a weight between 0
and 1 to each spatial location, thereby adaptively highlighting key areas and suppressing irrelevant or noisy
areas. Subsequently, the spatially enhanced shallow features are fused with the deeper features to effectively
combine the local spatial information with the global semantic context, thus realizing the complementarity
and enhancement of multi-level information.

As shown in Fig. 10, this module employs channel attention by applying global average pooling (GAP)
and global max pooling (GMP) to reduce the spatial dimension to 1 × 1 ×C. The GAP and GMP outputs each
pass through a 1 × 1 convolution (with ReLU), and are then combined by element-wise addition. A Sigmoid
activation generates channel-wise weights, which multiply the original feature map to emphasize important
channels and suppress less relevant ones. This selective emphasis enhances network efficiency and accuracy
by focusing on critical information.

In the fourth step, the obtained features are utilized for classification tasks to achieve accurate image
classification and recognition.

The training process of the Lap-FEHRNet deep learning model and image classification encompasses
image pre-processing, network model construction, image training, and image classification. The following
steps delineate the precise process:

1. Image pre-processing. The dataset is augmented through the application of image enhancement
techniques, such as image mirroring, translation, and rotation, which increase the number of samples,
effectively learn more diverse features, and reduce the risk of overfitting.

2. Construct LapSRN Model. LapSRN is employed for the reconstruction of low-resolution images,
the enhancement of the expressiveness of crop image features, and the reduction of noise-induced
interference, to ultimately output high-quality images. Regarding the specific structure of LapSRN,
this study employs a three-layer progressive magnification reconstruction approach, wherein the image
size of each layer is twice that of the previous layer. The magnified image is added to the residual
image obtained from each layer based on the feature information output by the feature extraction
branch. Following three layers of image reconstruction, the final output is an 8× reconstruction of the
original image.

3. Construct the FEHRNet Model. Utilize HRNet V2 as the backbone network, incorporate a shallow
branch with spatial attention, and integrate the features of the deep and shallow layers to enhance the
diversity of feature information. Additionally, introduces channel attention to further select features,
thereby optimizing the training effect and generalization ability of the model.
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4. Joint training. Initially, low-resolution images are input into LapSRN for reconstruction, thus enhancing
image resolution and reducing noise. The image reconstructed by LapSRN is then input into FEHRNet,
where the network parameters are optimized through feature extraction and classification training.

5. Image classification: The image to be classified is input into the trained Lap-FEHRNet model, which
then outputs a prediction of the crop category. This process enables the classification of crop images.

3.2 Model Parameters
Based on the available evidence, including the sample size and multiple experimental results, the

learning rate, the number of iterations, and the batch size have been set at 0.00005, 150, and 32, respectively.
The model is trained using the Adam optimizer. The input image is set to 256 × 256.

4 Experiment
This section presents the evaluation and verification of the Lap-FEHRNet model using two independent

datasets. The effectiveness, diagnostic performance, robustness, and generalization ability of the model
are verified through ablation experiments, comparison experiments, and generalization experiments. All
experiments are conducted in Python 3.8 and PyTorch 2.2.1, with a NVIDIA GeForce RTX 4060 GPU, a
Graphics card with 8 GB of memory, i7 processor.

4.1 Crop Classification Dataset
To ascertain the efficacy of Lap-FEHRNet in the classification of crop images, the publicly available crop

image data released on the Kaggle official website is employed for model verification. This data is divided
into five categories: jute, corn, rice, sugar cane, and wheat. The original data set is illustrated in Fig. 11.

Figure 11: Original crop dataset

Due to the limited size of the original dataset, data enhancement was conducted to prevent overfitting
and other issues. Operations such as mirroring, horizontal or vertical shifting, and rotation with random
angles were performed to increase the number of images from 40 per category in the original dataset to 160.

4.2 Image Reconstruction
In the image reconstruction section, the network performs reconstruction on the original crop images

over a total of 150 iterations. Each iteration generates a corresponding loss of the validation set, with the
validation set used solely for testing and not involved in training. The iteration with the lowest validation
loss is selected, and the corresponding network parameters are saved. These weights are then utilized to
reconstruct the experimental image dataset, achieving high-definition enhancement and denoising of low-
resolution images. The evaluation of image quality is based on three indicators: Noise Variance, Signal to
Noise Ratio (SNR), and Peak Signal to Noise Ratio (PSNR).
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The formula for Noise Variance is:

σ 2 = 1
N

N
∑
i=1
(xi − μ)2

= 1
N

N
∑
i=1
(xi −

1
N

N
∑
i=1

xi)
2, (10)

where σ 2 denotes the noise variance, representing the extent of fluctuation in grayscale values. N is the total
number of pixels within the image or image block, while xi indicates the grayscale value of each pixel. The
term μ corresponds to the mean grayscale value across all pixels.

SNR is used to quantify the ratio of signal to noise, indicating the relationship between the intensity of
the image signal and the intensity of the noise. A higher SNR value corresponds to better image quality and
reduced noise. The formula for SNR is:

SNR = 10 ⋅ log10 (
θ2

σ 2) , (11)

where θ represents the mean pixel value of the image, while σ 2 denotes the variance of the image noise (pixel
grayscale values).

PSNR measures the ratio of peak signal to noise in an image, commonly used to assess the quality of
compressed or reconstructed images. The formula for PSNR is:

PSNR = 10 ⋅ log10 (
MAX2

MSE
) , (12)

where MAX represents the maximum pixel value in the image, while MSE (Mean Squared Error) quantifies
the difference between the original image and the noisy image.

The formula for MSE is:

MSE = 1
N

N
∑
i=1
(Ioriginal (i) − Inew (i))

2 , (13)

where Ioriginal and Inew represent the pixel values of the original image and the reconstructed
image, respectively.

Using the rice image as an example, Fig. 12 illustrates the comparison between the original data image
and the reconstructed data image. Table 2 presents a comparative summary of the original and reconstructed
image data.

As illustrated in Fig. 12 and Table 2, the overall image clarity will be enhanced, and the presence of
noise will be diminished. From a local standpoint, the noise variance decreases after the original image is
reconstructed, suggesting that the original image contains more noise. In contrast, the reconstructed image
displays a reduction in noise and a relatively smoother appearance. Concerning the SNR indicator, the
reconstructed image exhibits a slight increase in SNR compared to the original image. This suggests that
the reconstructed image displays enhanced denoising and smoothness properties compared to the original
image. The PSNR value greater than 30 dB signifies that the reconstructed image is of superior quality.
Consequently, LapSRN is capable of effectively upscaling and denoising images, rendering image edges more
natural and detail transitions smoother.
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Figure 12: Comparison of the original crop image and the reconstructed image

Table 2: Comparison of original and reconstructed image data

Noise variance SNR PSNR (dB)
Original image 1316.78 9.92 31.51Reconstruct image 1271.74 10.03

To evaluate the computational efficiency and reconstruction quality of the LapSRN model, a compara-
tive experiment was conducted. The classical super-resolution reconstruction network SRCNN [32] and the
Enhanced Deep Super-Resolution Network (EDSR) [33] were selected as reference models. Among them,
SRCNN, as the earliest proposed deep learning super-resolution method, has a simple network structure, a
small number of parameters, and a low computational complexity, which enables fast inference. EDSR, as
a typical deep residual network model, learns richer and more detailed crop image texture information by
removing the batch normalization (BN) layer, thus improving its reconstruction quality. The comparative
experimental data of the reconstructed network are shown in Table 3.

Table 3: The comparative experimental data of the reconstructed network

PSNR (dB) Parameters (MB) Prediction time (ms)
SRCNN 16.69 0.28 1.16
LapSRN 31.51 4.99 2.21

EDSR 32.7 164.34 6.01

From the evaluation metrics in Table 3, LapSRN shows obvious performance advantages over other
models. Although SRCNN has a low parameter of 0.28 MB, its PSNR of 16.69 dB severely limits its practical
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application in high-quality super-resolution tasks. On the contrary, EDSR has the highest PSNR of 32.7 dB,
but with high computational cost, a large number of model parameters, and increased inference time.
LapSRN achieves a good balance between performance and computational efficiency. While significantly
reducing the model complexity, the PSNR of LapSRN reaches 31.51 dB, which fully demonstrates its
competitiveness in the task of super-resolution reconstruction of crop images. In addition, LapSRN achieves
a prediction time of only 2.21 ms, reducing computational requirements by approximately 63.2% compared
to EDSR. Consequently, in practical application scenarios, LapSRN offers a more favorable balance between
image quality and processing speed. Furthermore, it requires fewer parameters, making it more suitable for
deployment in real-world environments. Therefore, LapSRN is selected as the benchmark model for crop
image reconstruction in this study.

4.3 Ablation Experiment
To validate the rationality of the Lap-FEHRNet model, the contribution of its components to overall

performance is explored. This section involves a reduction of the model’s components, resulting in a total of
four different models.

Model 1: The Lap-FEHRNet model proposed in this paper.
Model 2: The LapSRN module is removed from Model 1, denoted as nHRNET_SA_CA in

the experiment.
Model 3: The channel attention feature selection module is removed from Model 2, represented as

nHRNET_SA in the experiment.
Model 4: The spatial attention-based shallow feature fusion module is removed from Model 3, referred

to as HRNET in the experiment.
The ablation experiments were performed five times for each of the four classes of models, and the

average experimental data was taken. The loss plots and accuracy curves for the four classes of models are
shown in Fig. 13a,b. Fig. 14 and Table 4 show the average data from the five ablation experiments, which
include the average accuracy, average overall accuracy, and standard deviation of each classification for the
five experiments.

Figure 13: The loss and accuracy curves for the four models. (a) Loss; (b) Accuracy
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Figure 14: The average data from five ablation experiments

Table 4: The average data from five ablation experiments

HRNet V2 The deep and
shallow feature
fusion module

The feature
selection
module

LapSRN Overall
accuracy

(%)

Standard
deviation

(%)
Model 1 ✓ ✓ ✓ ✓ 98.8 0.45
Model 2 ✓ ✓ ✓ 97.8 1.10
Model 3 ✓ ✓ 94.4 2.07
Model 4 ✓ 92.6 1.34

As shown in Figs. 13 and 14, and Table 4, Model 1 (Lap-FEHRNet) has smaller loss values and higher
accuracy compared to other models, and the standard deviation is low, indicating that the model perfor-
mance is relatively stable. The average accuracy of a single category in the five experiments can be maintained
above 98%. These results show that the Lap-FEHRNet model proposed is reasonable and effective.

Comparing Model 1 (Lap-FEHRNet) and Model 2 (nHRNET_SA_CA), it can be seen that Model 1 has
a higher classification accuracy on average than Model 2. After removing the image reconstruction module,
the classification accuracy of Model 2 is about 1 percentage point lower than that of Model 1. In contrast,
except for sugarcane and maize, Model 2’s classification accuracy is lower than Model 1. Specifically, its
accuracy for rice is 2.4 percentage points lower. There was also a difference of 0.65% in the standard deviation,
indicating that the stability of Model 2 was also worse than Model 1. Therefore, LapSRN has a positive effect
on improving the model’s classification of low-resolution images.

Comparing Model 2 (nHRNET_SA_CA) with Model 3 (nHRNET_SA), it can be observed that Model 2
exhibits a more stable accuracy curve and superior performance compared to Model 3. The overall accuracy
of Model 2 reaches 97.8%, while the standard deviation is reduced from 2.07% to 1.1%, demonstrating an
improvement in stability over Model 3. In terms of single-category classification, Model 2 improves the
classification accuracy of wheat and sugarcane to 96.4% and 98.2%, respectively, which is elevated by 7.4
percentage points and 3.8 percentage points, while the classification accuracies of Model 2 for other crops
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have remained high. It can be concluded that the channel attention module enhances the ability to extract
image features, improves the model’s performance, and significantly impacts the overall classification task.

The comparison of Model 3 (nHRNET_SA) and Model 4 (HRNET) reveals that while Model 3
demonstrates diminished stability, there is a discernible enhancement in the overall accuracy. As illustrated
in the loss curve, the decline in performance of Model 3 occurs faster than that of Model 4. About the
accuracy curve, the overall accuracy is enhanced, although fluctuations are still evident, with slight increases
and decreases in the curve in the vicinity of saturation. In terms of individual category classification, Model
3 has significantly improved the classification accuracy of jute from 93.4% to 97%, while the others are not
much different from Model 4. It can be observed that the spatial attention module is effective for specific
images, resulting in an overall improvement in accuracy.

Comparing and contrasting Model 1 (Lap-FEHRNet) and Model 4 (HRNET), it is evident that the
performance of Model 4 is inferior to that of Model 1. Training accuracies and losses of Model 4 are
more unstable, with a standard deviation of 1.34%, which is significantly higher than that of Model 1, and
shows greater fluctuations in the curves than Model 1. Moreover, Model 4’s accuracy varies greatly by
crop, especially for wheat and sugarcane, where it falls well below Model 1’s performance. This indicates
inconsistent category-level results and certain limitations. Consequently, the integration of LapSRN, the
channel attention module, and the spatial attention module together provides comprehensive improvements,
significantly enhancing both the model’s stability and generalization.

4.4 Comparative Experiment
To fully demonstrate the superiority and effectiveness of the proposed Lap-FEHRNet model a series of

classic classification network models, namely Visual Geometry Group 16 (VGG16) [34], Google Inception
Net (GoogleNet) [35], Residual Neural Network-18 layers (RESNet-18) [36], Residual Network-34 layers
(RESNet-34) [36], Mobile Network (MobileNet) [37], etc., are selected for comparative experiments.

The specific descriptions of each model are given below:
The VGG16 model is a convolutional neural network model for image recognition tasks. The number

“16” indicates that the model has 16 weighting layers. VGG16 achieves high classification accuracy by
stacking small convolutional filters and max-pooling layers to extract image features layer by layer. Its small
convolutional kernel stacking design makes it sensitive to detail changes and suitable for fine-grained feature
extraction, such as crop disease spots and leaf texture.

The GoogleNet model is an image classification model that uses Inception modules to achieve multi-
scale feature learning. Although GoogleNet has a depth of 22 layers, the 1 × 1 convolution operation in
the Inception module greatly reduces the dimension of the feature map, thereby reducing the amount
of computation and the number of parameters. At the same time, because different sizes of convolution
kernels are used in parallel, multi-scale information can be captured in the same layer, and the recognition
ability of the network is improved effectively. Therefore, it has an excellent performance in the field of
image classification. As a result, the model is highly adaptable to the situation of complex backgrounds and
morphological similarities among crops in field images.

The RESNet-18 model is a special neural network model that introduces residual blocks and skip
connections. The number “18” indicates that the residual network has a total of 18 depth layers. The residual
network uses residual blocks to pass the input directly to the output through shortcut connections, allowing
the network to learn the residual between the input and output, effectively avoiding the problem of gradient
disappearance and degradation in deep networks [38]. The RESNet-34 model only increases the depth to
34 layers, while the others remain the same as RESNet-18. In the crop image classification task, RESNet
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can effectively transfer feature information by introducing residual connections, helping the network learn
deeper features as a way to classify crop images with complex backgrounds [39].

The MobileNet model is a lightweight convolutional neural network that can efficiently classify images.
The V3 version was used in this comparative experiment, which further improves the efficiency and
performance of the model by introducing neural architecture search, inverted residual blocks, SE modules,
and h-swish activation functions. Therefore, the model is suitable for real-time crop identification tasks in
resource-constrained environments.

In summary, VGG16, GoogleNet, RESNet-18, RESNet-34, and MobileNet-V3 represent the classical
feature extraction model, structural innovation model, deep residual learning model, and lightweight
deployment model in deep network architecture, respectively. They each have their advantages in terms of
structural complexity, feature learning ability, and adaptation to deployment scenarios, and can evaluate the
performance of the Lap-FEHRNet model in the crop image classification task from multiple dimensions.
Therefore, in this study, these four representative convolutional neural network models are selected for
comparative experiments, so that the advantages and disadvantages of different network structures in the
scenario of agricultural image recognition can be comprehensively analyzed, and a basis can be provided for
subsequent model optimization and practical deployment.

Through repeated experiments and parameter adjustments, the performance of each model was
optimized. The crop dataset was used for model training, validation, and testing. The loss curves, accuracy
curves, and comparative experimental data for each model are shown in Figs. 15 and 16, respectively. The
specific comparison model parameters are shown in Tables 5 and 6.

Figure 15: The loss and accuracy curves for comparison experiments. (a) Loss; (b) Accuracy

Figs. 15 and 16 demonstrate that the proposed Lap-FEHRNet model achieves fast convergence, high
accuracy, and robust stability at each stage of training. Although the loss curves of RESNet18 and RESNet34
dropped very rapidly at the beginning, they fluctuated slightly in the later stages of training and were not
as stable as the Lap-FEHRNet model. As shown in Fig. 16, the Lap-FEHRNet model achieves an accuracy
of over 98% for each category, with evaluation indexes consistently at 0.98. These results indicate that the
proposed Lap-FEHRNet model outperforms other models in terms of stability and accuracy.



3096 Comput Mater Contin. 2025;84(2)

Figure 16: Comparison of experimental data

Table 5: Comparison of model parameters (Original Image)

Input image
size

Learning
rate

Optimizer Batch
size

Parameters
(MB)

Prediction
time (ms)

Accuracy
(%)

VGG16 160 × 160 0.0001 adam 32 522.4 0.51 89.44
GoogleNet 224 × 224 0.0001 adam 32 27.6 0.22 92.55
RESNet18 256 × 256 0.0001 adam 32 44.72 0.27 94.41
RESNet34 256 × 256 0.0001 adam 32 85.2 0.42 93.17
MobileNet 224 × 224 0.0001 adam 32 15.52 0.20 82
FEHRNET 256 × 256 0.00005 adam 32 38.47 0.41 97.80

Table 6: Comparison of model parameters (Reconstructed Image)

Input image
size

Learning
rate

Optimizer Batch
size

Parameters
(MB)

Prediction
time (ms)

Accuracy
(%)

Lap-VGG16 160 × 160 0.00005 adam 32 527.4 2.72 91.16
Lap-GoogleNet 224 × 224 0.0001 adam 32 32.6 2.43 94.56
Lap-RESNet18 256 × 256 0.0001 adam 32 49.72 2.48 95.03
Lap-RESNet34 256 × 256 0.0001 adam 32 90.2 2.63 96.27
Lap-MobileNet 224 × 224 0.0001 adam 32 20.52 2.4 88.82
Lap-FEHRNET 256 × 256 0.00005 adam 32 43.47 2.62 98.80

As shown in Table 5, FEHRNet achieves superior performance compared to the classical convolutional
neural network model in the crop image classification task when using original input images. In terms of
accuracy, FEHRNET has the highest classification accuracy of 97.8%, which is significantly better than other
models. Although the parameter size of FEHRNet is slightly larger than that of MobileNet and GoogleNet,
it remains significantly smaller than that of large-scale models such as VGG16 and RESNet-34. This result
indicates a well-achieved balance between model complexity and accuracy. In terms of prediction speed, the
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prediction time of FEHRNet is better than that of RESNet34 and VGG16, it can meet the requirements of
some real-time applications.

As shown in Table 6, Lap-FEHRNet also outperforms the classical convolutional neural network model
when reconstructed input images are used in the crop image classification task. Lap-FEHRNet demonstrated
high accuracy (98.80%), moderate model size (43.47 MB), and reasonable prediction time (2.62 ms). Thus,
Lap-FEHRNet provides a favorable integrated solution for crop classification scenarios requiring high
accuracy and moderate computational power.

4.5 Generalization Experiment
4.5.1 Rice Leaf Disease Dataset

To thoroughly investigate the model’s performance under different data sizes and complexities, gen-
eralization experiments were designed spanning two stages: from the initial five-category crop images to
the more challenging ten-category rice disease images. Detailed information on the dataset comparisons is
provided in Table 7.

Table 7: The specific dataset comparison information

Crop classification dataset Rice leaf disease dataset
Jute 160 Bacterial-leaf-blight 1386

Maize 160 Brown-spot 1480
Rice 160 Healthy 1491

Sugarcane 160 Leaf-blast 1801
Wheat 164 Leaf-scald 1670

Narrow-brown-spot 1416
Neck-blast 1000
Rice-hispa 1461

Sheath-blight 1578
Tungro 1740

As shown in Table 7, the crop classification dataset was augmented to 160 samples per class using a series
of augmentation strategies such as mirroring, panning, and rotating. In the generalization experiment, a
highly complex dataset containing images of rice leaf diseases with 10 categories was introduced. Compared
with the crop classification dataset, the number of categories in this new dataset has doubled, and the amount
of data has expanded tenfold. In addition, it poses greater challenges in terms of image quality, inter-category
similarity, and related factors. The specific categories and their corresponding symbols are shown in Fig. 17.

As can be seen in Fig. 17, the image quality of this dataset varies, with both high and low-resolution
images. A closer look at the data graph shows that some categories have very similar features, such as
“Brown_spot” Fig. 17b and “Narrow_brown_spot” Fig. 17f.



3098 Comput Mater Contin. 2025;84(2)

Figure 17: Rice leaf disease dataset

4.5.2 Generalization Experiment
The comparative experiments compare the advantages and disadvantages of the proposed Lap-

FEHRNet model with other models. The loss curves, accuracy curves, and generalization experiment data
of each model are shown in Figs. 18 and 19, respectively.

Figure 18: The loss and accuracy curves for generalization experiments. (a) Loss; (b) Accuracy

As shown in Fig. 18a, the loss value of the proposed Lap-FEHRNet model remains at a low level
throughout the training process. The loss curve decreases rapidly, converges quickly, and stays stable.
Although the RESNet18 and RESNet34 models demonstrate comparable performance to the Lap-FEHRNet
model in terms of loss rate and overall accuracy, there are more fluctuations during the training process.

As illustrated in Fig. 18b, the classification accuracy of the Lap-FEHRNet model reaches close to 1.0 in
the early stages of training and maintains relatively high accuracy throughout. This indicates more stable and
efficient performance compared to the other models.
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Figure 19: Generalized experimental data

Fig. 19 reveals that, although the proposed Lap-FEHRNet model slightly reduces the classification
accuracy of individual categories, such as “Bacterial_leaf_blight” (a), “Neck_blast” (g) and “Rice_hispa”
(h), the overall classification accuracy can still be maintained at a high level, especially, the classification
accuracies of “Brown_spot” (b), “Leaf_blast” (d) and “Narrow_brown_spot” (f), which are difficult to be
classified by other models, reach 100%, 100% and 99.1%, respectively.

The experimental results show that the Lap-FEHRNet model can maintain excellent stability and high
accuracy even when the dataset has problems such as inconsistent image resolution, high image noise, and
high image similarity. The above experiments demonstrate the versatility and stability of the model under
different conditions. In summary, the Lap-FEHRNet model has achieved excellent performance in both
image classification under different crop conditions and leaf disease classification under the same crop.

5 Discussions and Conclusions
The Lap-FEHRNet classification model aims to solve the problems of low image clarity, image noise, low

model classification accuracy, and poor robustness in crop image classification. Based on the experimental
results and analysis, the following main conclusions are obtained:

1. The Lap-FEHRNet model introduces LapSRN, which can perform high-resolution reconstruction of
low-resolution images through step-by-step feature extraction and pixel superposition to obtain high-
resolution images, thereby reducing the interference of noise, creating better conditions for the model
to perform subsequent feature extraction, and giving the model stronger robustness.

2. The Lap-FEHRNet model enhances HRNet v2 by incorporating shallow feature extraction. This
enrichment of output features improves the model’s generalization capability.

3. The Lap-FEHRNet model also adds an attention-based feature enhancement module. By introducing
a spatial attention module and a channel attention module, the importance of each space and channel
is independently adjusted, and the model’s attention to features related to the current task is improved,
thereby improving the model’s classification ability.
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4. Compared to other deep learning models, the Lap-FEHRNet model demonstrates clear advantages in
image classification accuracy and stability. It achieves over 98% accuracy on two distinct datasets and
rapidly attains high accuracy and low loss early in training. Meanwhile, it maintains strong stability,
reflecting good convergence and robust feature learning capabilities.

5. By comparing the experimental results of two different datasets, the performance trend of the Lap-
FEHRNet model is revealed when subjected to expanding data scales and increasing task complexity.
In the crop image classification experiments, Lap-FEHRNet still has good characterization ability and
stability under the limited sample conditions, which reflects its adaptability to the increase of data
size. When it comes to the rice leaf disease dataset, which is more complicated in terms of both
category size and data size, Lap-FEHRNet still maintains better classification accuracy and stability
than the comparison model in this high-complexity task, which indicates that it still has robust feature
extraction capability and discrimination ability in the face of the challenges of multi-classes, fine-
grained variance, and high intra-class heterogeneity. In summary, the model is not only suitable for
small-sample scenarios but also has the potential to maintain stable performance under larger-scale and
more complex tasks.

In conclusion, the Lap-FEHRNet model has a high application potential and research value in the field
of crop image classification, providing strong support for actual crop production activities. In future research,
the Lap-FEHRNet model will be further simplified by using a lighter network, and LapSRN will be optimized
to improve the image resolution and noise removal ability while reducing reconstruction time.

Although the proposed Lap-FEHRNet model has shown decent performance on both the crop clas-
sification and rice leaf disease datasets, with classification accuracies of 98.8% and 98.57%, respectively,
there are still some challenges to applying it more widely to real-world agricultural scenarios. In the current
experiments, the model is mainly tested on datasets that vary in category and resolution, but the main
recognition targets are relatively clear. However, field agricultural images typically suffer from motion blur,
background clutter, and sensor-generated noise, all of which can severely impact the model’s performance.
In addition, there is the issue of the practical deployment of the models.

To cope with the above, future work will be divided into three parts:

1. Evaluating the performance of Lap-FEHRNet under noisy and low-resolution conditions and exploring
strategies to enhance robustness, such as incorporating noise enhancement into the training process
and integrating denoising submodules into existing architectures.

2. To enhance the reliability of the model for real agricultural applications, the dataset will be extended
to more diverse and realistic scenarios. The data will be collected under various natural conditions,
using different types of equipment, and across diverse agricultural environments to validate the model’s
generalization capability and enhance its practical applicability.

3. The computational efficiency and model size of Lap-FEHRNet will be further optimized to better adapt
to the practical applications of mobile devices or edge computing devices. The number of parameters
and computational complexity of the model will be effectively reduced by model compression tech-
niques such as pruning. Meanwhile, the effects of different lightweighting strategies on model accuracy
and computational resource consumption are deeply analyzed based on comparative experiments, to
construct the best trade-off model between performance and resource consumption. In addition to
addressing the characteristics of computational power and memory constraints of edge devices, this
study will optimize the inference pipeline of Lap-FEHRNet and explore the feasibility of the model for
real-time image processing on edge devices. Based on this, comprehensive tests will also be conducted
on several different types of edge computing platforms to verify the versatility and adaptability of Lap-
FEHRNet in different hardware environments. Ultimately, the reliability and practical value of the



Comput Mater Contin. 2025;84(2) 3101

proposed technology will be further verified through the deployment of real applications in agricultural
production scenarios.
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