
echT PressScience

Doi:10.32604/cmc.2025.064161

ARTICLE

HEaaN-ID3: Fully Homomorphic Privacy-Preserving ID3-Decision Trees Using
CKKS

Dain Lee1,#, Hojune Shin1,#, Jihyeon Choi1 and Younho Lee1,2,*

1Department of Data Science, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
2Department of Industrial Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
*Corresponding Author: Younho Lee. Email: younholee@seoultech.ac.kr
#These authors contributed equally to this work
Received: 07 February 2025; Accepted: 23 May 2025; Published: 03 July 2025

ABSTRACT: In this study, we investigated privacy-preserving ID3 Decision Tree (PPID3) training and inference
based on fully homomorphic encryption (FHE), which has not been actively explored due to the high computational
cost associated with managing numerous child nodes in an ID3 tree. We propose HEaaN-ID3, a novel approach to
realize PPID3 using the Cheon-Kim-Kim-Song (CKKS) scheme. HEaaN-ID3 is the first FHE-based ID3 framework
that completes both training and inference without any intermediate decryption, which is especially valuable when
decryption keys are inaccessible or a single-cloud security domain is assumed. To enhance computational efficiency,
we adopt a modified Gini impurity (MGI) score instead of entropy to evaluate information gain, thereby avoiding
costly inverse operations. In addition, we fully leverage the Single Instruction Multiple Data (SIMD) property of
CKKS to parallelize computations at multiple tree nodes. Unlike previous approaches that require decryption at each
node or rely on two-party secure computation, our method enables a fully non-interactive training and inference
pipeline in the encrypted domain. We validated the proposed scheme using UCI datasets with both numerical
and nominal features, demonstrating inference accuracy comparable to plaintext implementations in Scikit-Learn.
Moreover, experiments show that HEaaN-ID3 significantly reduces training and inference time per node relative to
earlier FHE-based approaches.

KEYWORDS: Homomorphic encryption; privacy preserving machine learning; applied cryptography; information
security

1 Introduction
Decision trees (DT) are widely used despite their simpler structure compared to advanced machine

learning algorithms, such as deep neural networks. This is because of the ease of use of these simpler
structures in various domains and their ability to yield explainable models.

Currently, research in privacy-preserving machine learning and information encryption is rapidly
advancing. In particular, studies on encryption based on chaotic systems and neural network applications
have yielded notable results [1]. Additionally, homomorphic encryption (HE)-based machine learning
algorithms have garnered significant attention owing to the growing importance of privacy-preserving
machine learning [2–6]. These algorithms allow us to perform any computation on encrypted data that can
also be performed on plaintext, thereby enabling us to train an encrypted model using encrypted training
data. Thus, these algorithms ensure a secure and privacy-preserving solution for machine learning, because

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.064161
https://www.techscience.com/doi/10.32604/cmc.2025.064161
mailto:younholee@seoultech.ac.kr

3674 Comput Mater Contin. 2025;84(2)

classification can be performed using an encrypted model on an encrypted input without any decay in
the process.

In this paper, we propose a fully homomorphic version of Iterative Dichotomiser 3 (ID3) [7] using the
Cheon-Kim-Kim-Song (CKKS) method [8], named HEaaN-ID3. HEaaN-ID3 is based on a variant of the
original ID3 algorithm [7] and can handle both nominal and ordinal categorical variables. This creates as
many child nodes as the number of categories in a categorical variable. Despite the advantages of enabling
secure computation in untrusted cloud environments and allowing clients to utilize server computing
resources without revealing sensitive information, a privacy-preserving homomorphic ID31 has not been
realized to date. The reason is that the large number of child nodes results in high computational overhead in
both training and inference. However, existing privacy-preserving binary DTs that use FHE cannot handle
the data of nominal categorical variables.

HEaaN-ID3 has the unique characteristic of not utilizing a decryption function during training. Despite
the potential of homomorphic encryption in machine learning, recent studies have required decryption
during the training process for various reasons. This is owing to the slow and impractical performance of
algorithms that use only homomorphic operations, or the lack of methods for performing specific operations
without decryption. As a result, decryption has been necessary in the training process [9,10].

While decryption during the training step can reduce the computational cost of privacy-preserving
machine learning, it may not be feasible in certain situations. For instance, if the training data consists of
data from multiple parties, some participants may not consent to using decryption key for fear of exposure
of their data. Furthermore, if there is a large amount of data to be decrypted, the entity with the decryption
key may not have sufficient computational power, causing a bottleneck that is not desirable for users of the
learned data.

Additionally, HEaaN-ID3 enables a single-cloud service model. We do not have to assume that there
are multiple cloud services in separate security domains. Thus, we can realize the execution environment of
HEaaN-ID3 at a lower cost than those that require multiple cloud service models [9].

The key challenge in developing HEaaN-ID3, which enables training without decryption, is to achieve
an affordable level of speed for training and inference, even with operations supported by FHE, which are
known as heavy operations. For this purpose, we employ the CKKS FHE to leverage its beneficial features as
much as possible. In addition, we employed the following:

First, in the proposed method, we adopt the modified Gini impurity (MGI) score [11] instead of entropy
or the original Gini score for the split rule. The use of the MGI eliminates the need for complex inverse
operations, allowing for efficient calculations when performed homomorphically with encrypted inputs.
Because the MGI must be calculated at every non-leaf node in the DT, it can significantly reduce the
amount of computation required for training. It is quite significant—while MGI performs computations
using only addition and multiplication, calculating the traditional Gini impurity requires an additional
ApproxInv() operation. The exact computational demands and multiplication depth for ApproxInv() are
not disclosed. However, according to previous studies [8,12], it is presumed that these methods involve
high-degree polynomials. Therefore, the multiplication depth is roughly proportional to the logarithm of
the polynomial’s degree, and the total number of multiplication operations is expected to be on the order
of several tens. Our experiments demonstrate that there is no significant difference in terms of inference
accuracy when using the MGI score compared with using the entropy as the original ID3 implemented in
the scikit learn library.

The second optimization involves making full use of the single instruction multiple data (SIMD) feature
of CKKS FHE. Here, the SIMD refers to one of the features of the CKKS homomorphic encryption scheme,

1This refers to a privacy-preserving ID3 DT, where training and inference are performed only with homomorphic operations without using decryption,
except for decrypting the inference result.

Comput Mater Contin. 2025;84(2) 3675

in which the structure of a ciphertext is in the form of a vector, enabling vectorized operations between
ciphertexts. This is different from traditional SIMD, which requires additional hardware-level costs. During
the training and classification of homomorphic decision trees, every node in the tree must be processed,
resulting in high computational costs. In the training process, determining the variables for branching
based on the MGI score in an encrypted state involves the following steps: (1) calculate the distribution of
target categories for all combinations of variables, (2) compute the MGI score for each variable, (3) find
the minimum score among them, and (4) identify the minimum score variable. This process can consume
a significant amount of computation if there are many combinations of variables and categories to be
calculated, because each case must be calculated individually in an encrypted state for each node during
training. This amount of computation is unacceptable when the number of nodes in a DT is large.

However, as HEaaN-ID3 can deal with the step (1) efficiently by using SIMD and MGI, training can be
performed without decryption. This is in contrast to a recent work [10], where the calculation of step (2) is
delegated to a client who has the decryption key, and the output of step (2) is sent to the client, who then
decrypts it. Subsequently, the client performs steps (3) and (4) using the decrypted plaintext. The result is
then encrypted again and sent back to the server for continued training.

In the inference task, the split conditions in all non-leaf nodes must be evaluated in HEaaN-ID3, unlike
plaintext inference, which only evaluates the split functions in a sequence of non-leaf nodes in a path from
the root node to a leaf node. This raises the inference complexity from logarithmic to polynomial, in terms
of the number of nodes in the tree.

However, in HEaaN-ID3, certain computations required by nodes at the same level can be performed
simultaneously by utilizing the SIMD function. The number of slots required for each node is determined
by the number of variables involved in training and the number of categories for each variable. When the
number of required slots is significantly smaller than the total number of available slots in a ciphertext,
multiple nodes’ training can be performed at once. This approach was computationally more efficient than
that described in [10].

In addition, we discovered and solved various problems that can occur when realizing homomorphic
DT, especially during training. First, there are some cases that are difficult to handle with encrypted data,
such as the case where in no training data is mapped to a certain node in the tree. The next problem is that
there are multiple cases where in their MGI scores are almost identical. We address these situations while
maintaining the efficiency of training and inference as much as possible.

We verified the performance of HEaaN-ID3 with widely used dataset in the UCI repository [13], such
as Iris, Wine, and Cancer, which consist of multiple numerical variables, after binning them as well as the
data of nominal categorical variables such as soybean and breast cancer. We verified that the same level of
accuracy was obtained using HEaaN-ID3 compared to the training and inference algorithms with plaintext
version of the data implemented in the Scikit-learn library [14].

The following are primary contributions of this paper.
• Homomorphic ID3 Decision Training on encrypted state without decryption: This study is the first

to perform the entire ID3 decision tree algorithm training in an encrypted state. We propose an
optimization method to address high computational costs of Fully Homomorphic Encryption (FHE)
during training. Our approach leverages CKKS encryption’s SIMD characteristics and uses a modified
Gini impurity score. In the same environment, our proposed method required approximately 7.41% more
time to process a single node than the method proposed in [10] for the Iris dataset. However, their study
executed most computations in plaintext after decryption. Our research demonstrates the feasibility of
conducting the entire training process securely and efficiently in an encrypted state.

• Efficient inference: We propose a method that enables efficient inference with encrypted inputs and
models. The proposed method maximizes efficiency by leveraging the SIMD feature of CKKS to process

3676 Comput Mater Contin. 2025;84(2)

nodes at the same level simultaneously. In our experiments using the UCI dataset, the most similar
method proposed in [10] took 2.3 s to evaluate 31 nodes. In contrast, our approach evaluated 16,105 nodes,
the largest number of nodes, in just 657.32 ms.
The remainder of this paper is structured as follows. Section 2 compares existing studies according to

the proposed requirements and Section 3 explains the fundamental concepts necessary to understand this
research. Section 4 details the system and security models of the proposed method. In Section 5, the training
and inference methods of the proposed HEaaN-ID3 are described. Section 6 provides the performance
evaluation results of the schemes used and the proposed method in this study. Section 7 offers a security
analysis of the proposed method. In Section 8, we discusses whether the established objectives have been
successfully achieved and how accuracy is maintained in exceptional situations. Finally, Section 9 presents
the conclusion.

2 Related Work
Related works are summarized in Table 1. It checks whether the existing work satisfies the goals specified

in Section 4.3. The last column of Table 1 indicates whether the corresponding works deal with an ID3 or
other types of DTs.

The research on privacy-preserving decision trees (PPDTs) can be categorized into two primary
approaches: those that mainly deal with the inference process [15–19] and those that emphasize the training
phase [20–24]. Despite significant advances, these studies face common challenges, such as an increase in
communication overhead as the complexity of the tree grows and a rise in the amount of interaction required
during both training and inference stages. For a detailed comparison of the existing methodologies, refer
to [10].

Recent developments in the field of PPDT have introduced a variety of approaches. In Liu et al.’s
PPDT framework [9], the Cloud Service Provider (CSP) and the Evaluation Service Provider (ESP) operated
within distinct security domains while utilizing Pailler’s Partial Homomorphic Encryption (PHE). This setup
allowed for secure and efficient computations on encrypted data by employing two-party secure computation
protocols, enabling resource-intensive PPDT training and evaluation processes. However, one challenge
arises in a multi-user multi-key environment where both the CSP and ESP share a master decryption key.
This creates a potential vulnerability, as collusion between the two entities could compromise all user data.
Without a reliable method to detect malicious collusion, the practical implementation of such a system
is hindered.

Reference [25] presented a method that leverages multiple cloud servers, where one server performs
decryption. Due to this setup, it is not directly comparable to HEaaN-ID3. Liang et al. proposed an approach
to evaluate PPDTs by using efficient cryptographic techniques [26]. While this method achieves excellent
classification performance, it lacks a solution for training and overlooks situations where multiple splits are
needed during tree evaluation. Zheng et al. put forward a PPDT evaluation scheme using additive secret
sharing [27], but their approach required two distinct cloud service providers and does not address training
using encrypted data.

Cong et al. recently proposed a highly efficient method for securely evaluating decision trees uti-
lizing GSW-based homomorphic encryption, particularly with TFHE [28]. Their approach introduced
PolyComp(), a homomorphic comparison function that efficiently extracts constant terms from RLWE-
based ciphertext, as outlined in [29,30]. Additionally, they harnessed the advantages of homomorphic XNOR
operations characteristic of GSW-based encryption, which made bit-wise encrypted value comparisons
more effective. Building on this, they developed a streamlined homomorphic tree traversal algorithm,
facilitating smooth computation between encrypted and plaintext values—highlighting the distinct benefits
of GSW-based homomorphic encryption.

Comput Mater Contin. 2025;84(2) 3677

Similarly, reference [31] introduced an efficient inference method for privacy-preserving binary decision
trees encrypted with TFHE. Their technique integrated algorithms for blind node selection and blind array
access. Unfortunately, this approach also does not address the challenge of privacy-preserving training for
encrypted data.

The work most relevant to ours is that of [10], which addresses a privacy-preserving binary decision
tree. They proposed a method capable of training and evaluating encrypted data using CKKS. Independent
of Cheon et al.’s method [12], it proposes an efficient sign function for encrypted input, which returns
(an encryption of) 1 for positive numbers and −1 for negative numbers, and suggested an effective
training/inference method based on this.

Among alternative FHE models, the hybrid approach was proposed in [10], its training speed is more
efficient than that of the proposed method. However, a limitation of this method is that it delegates the
calculation of the information gain for each case of data and determines the case with the greatest information
gain to an external entity. The external entity receives the ciphertexts containing the information gain for each
case from the cloud server performing the training, decrypts them, encrypts the information for the case
with the greatest information gain, and delivers it to the cloud server. The external entity should not collude
with the cloud server because it has decryption capability. Because this exposes important information
related to the model, according to an external entity, the entity should be a trusted party, such as the owner
of the data. This can be unsuitable for certain situations in which privacy-preserving decision tree (PPDT)
to perform machine learning with data from multiple security tasks. In this case, some data owners may not
want to decrypt ciphertexts derived from their data.

There is research proposing privacy decision tree evaluation (PDTE) based on the replicated secret
sharing (RSS) scheme from a different perspective [32–35]. These studies proposed methods to enhance
security by using multiple cloud servers. They followed an approach where the information of the model
and the input values used for evaluation are distributed among three computing servers in an outsourced
environment. This approach assumed that there is no possibility of malicious collaboration between the
servers. The study in [36] not only conducted the inference process but also carried out the training process.
This study also utilized RSS, which necessitates additional assumptions. Since these papers do not meet
the conditions outlined in 4.3, it is not appropriate to compare them directly with the method proposed in
this paper.

Table 1: Summary of related work

Goal (1) (2) (3) (4) (5) ID3
[20–24] O X N/A1 X N/A2 X
[37,38] O X N/A1 X N/A2 X
[39–42] O X N/A1 X N/A2 O
[9,25] O O O X X O
[10] O O O X O X

[15–19] No training algorithm
[43–47] No training algorithm

[26–28,31,48] No training algorithm

Note: 1Inference privacy is out of scope; 2No cloud server
exists in their settings.

3678 Comput Mater Contin. 2025;84(2)

3 Backgrounds

3.1 Notation
The notations used in this study are listed in Table 2. If a vector is entirely composed of either 0⃗s or 1⃗s

and a ciphertext are operands in an expression, we suppose the vector’s size is M. If the description of the
vector does not specify all M slots, we assume the undescribed slots are set to zero.

Table 2: Notations and conventions

Symbol Meaning
Xi Independent variable (features) (i ∈ [1, d])
ni Number of categories in Xi (i ∈ N)
Y Target variable whose number of categories is t
sz The number of rows in training data.
�→z , �z� �→z = (z0, z1 , ⋅ ⋅ ⋅ , zM−1) ∈ RM and �z� is its encryption.

d Total number of independent variables Xi
nmax Number of categories for the variable with the most categories among all

independent variables in the system.
dep, lv, ndlv dep: The depth of a DT, lv: current level processed, ndlv = nd e pth−lv

M M: total number of slots in a ciphertext
[a, b]B {n ∶ a ≤ n ≤ b, n ∈ B} (B ∈ {Z,R}). Z can be omitted.

�a�[i], c[j] �a�[i]: i-th slot of �a�, c[j]: jth slot of c(i, j∈[0, M − 1])
evk, sk, pk Evaluation key, secret key and public key

kski→ j Key switching key from user i to user j
1⃗(0⃗) A vector where every slot is 1 (0).

1⃗a(0⃗a) A vector of consecutive 1s(0s) whose length is a (a ≥ 0)
(⃗1a ∣∣0⃗b) f A vector consisting of f consecutive repetitions of (⃗1a ∣∣0⃗b). The total length of this

vector is always less than or equal to M. It also can be used to represent the
ciphertext of the vector.

mai ,rai # of multiplication and rotation required for ApproxInverse()

Ni , j The position of the node in the proposed DT, where i represents the level of the node
and j represents the position of the node in level i. N0,0 is the root node. (i , j ∈ Z≥0)

Traini , j The training data used for training Ni , j. Train0,0 is training data of the root node.
TN The total number of nodes in the generated tree. (TN = nmax

d e p+1 − 1)/(nmax − 1).

3.2 Decision Tree
DTs are widely used to construct classifiers for real-world applications. They are categorized as non-

parametric methods, which implies that they do not require assumptions regarding the distribution of the
underlying data. In addition, a DT has the advantages of high interpretability, because decision rules are
extracted during its growth [49]. Depending on the rule induction method, DT algorithms can be classified
as greedy or randomDTs. However, in a single DT model, the greedy approach has been more popular than
the random approach. Various greedy DT algorithms have been developed for several years and the typical
algorithms are Iterative Dichotomiser 3 (ID3) [7], C4.5 [50], C5.0 [51] Classification and Regression Tree
(CART) [52], χ2 Automatic Interaction Detection (CHAID) and a Scalable Parallel Classifier for Data Mining
(SPRINT) [53].

Comput Mater Contin. 2025;84(2) 3679

The ID3 algorithm is primarily used to handle nominal datasets. It generates a decision tree based on
maximizing Information Gain, which is a measure of the reduction in entropy that results from splitting a
dataset based on a specific attribute. Entropy, in this context, is a measure of uncertainty or disorder within
the data, quantifying how mixed the data is. ID3 works by selecting, at each iteration, the attribute that
minimizes entropy the most, effectively splitting the data in a way that makes it more homogeneous. This
process is repeated to construct an optimal decision tree.

While ID3 is efficient and provides a high level of interpretability, it can struggle with noisy data and
is prone to overfitting, where the model becomes too tailored to the training data and performs poorly on
unseen data. To address these limitations, successor algorithms like C4.5 were developed, which include
mechanisms to handle noise and prevent overfitting.

Regardless of the greedy DT algorithm, DTs are built by the process of top-down rule induction in the
“greedy” way. At each iteration, DT algorithms determine a rule that splits the node into child nodes, by
maximizing the splitting criterion function. Different DT algorithms employ various splitting criteria.

In this study, we propose a privacy-preserving ID3 using FHE for datasets consisting of nominal
categorical attributes. We borrowed several elements from ID3. ID3 determines an attribute that splits
the current node into child nodes individually corresponding to each category in the attribute among the
unused attributes using the information gain based on entropy as a splitting criterion function, which
requires the calculation of log2. According to [54], to efficiently perform entropy operations, an approxi-
mated entropy function (ApEn) is proposed. The proposed method involved maximum and comparison
operations throughout the process, followed by a natural logarithm operation. As a result, it requires more
computationally complex and intensive calculations compared to MGI, which primarily consists of additions
and multiplications. Owing to the high computational cost of calculating log2 on an encrypted input, this
study utilizes MGI to reduce the computation cost. MGI is a variation of the Gini impurity G(S) for sample
set S, defined as follows:

G(S) = ∑
i∈C

p(i) ∑
j∈C/{i}

p(j) = 1 − ∑
c∈C

p(c)2 (1)

Herein, C represents the set of target classes in S and p(⋅) indicates the probability of the specific sample
set in S (e.g., p(i) denotes the probability of target class i, which can be defined as the proportion of the class
i in S). Additionally, A represents the attribute used for the split. The attribute to maximize the difference
between the Gini impurity of the current node and the weighted Gini impurity of the child nodes is selected
for the split rule. Because the Gini impurity of the current node is identical for all possible split rules at the
current node, the gain based on the Gini impurity depends on the weighted average of the Gini impurities
of the child nodes obtained using attributes A, G(S∣A), which can be formulated as follows:

G(S∣A) = ∑
t∈T

p(t)G(t) = ∑
t∈T

∣St ∣
∣S∣ (1 − ∑

c∈C

∣St ,c ∣2
∣St ∣2

)

= 1 − 1
∣S∣ ∑t∈T

∑
c∈C

∣St ,c ∣2
∣St ∣2

(2)

where G(t) represents the Gini impurity for the set of samples in child node t, ∣ ⋅ ∣ denotes the size
(cardinality) of a set, T is the set of all child nodes, and St and St ,c indicate the samples assigned to node t
and those samples within t that belong to class c, respectively. Because ∣S∣ is the common factor for all split
rules, the best split rule is a rule to maximize∑t∈T ∑c∈C

∣St ,c ∣
2

∣St ∣2
, which requires the division operation.

3680 Comput Mater Contin. 2025;84(2)

Unlike the gain of the Gini impurity, the gain of the MGI uses the squares of p(t) as weights for G(t)
as follows [11]:

MG(S∣A) = ∑
t∈T

p(t)2G(t) = ∑
t∈T

∣St ∣2
∣S∣2 (1 − ∑

c∈C

∣St ,c ∣2
∣St ∣2

)

= 1
∣S∣2 ∑t∈T

(∣St ∣2 − ∑
c∈C
∣St ,c ∣2) (3)

Under the MGI framework, the best split is determined by minimizing ∣St ∣2 −∑c∈C ∣St ,c ∣2, a form that
eliminates the need for division. According to the literature [11], one of the Gini impurities and the MGI are
not always superior to the other; thus, considering the computational cost, we decided to use the MGI. By
binning a numerical feature into several bins, a continuous feature can be treated as a categorical feature;
thus, it is possible to apply the same algorithm to a dataset consisting of categorical features.

In addition, while MGI is effective in reducing bias and improving classification performance, it tends
to be more sensitive to data variability in terms of variance. From the bias perspective, MGI leads to more
accurate classification results compared to the traditional Gini impurity. According to the study in [11], a
decision tree trained based on the MGI criterion achieved an average classification error rate of 29.05%,
which is lower than the 30.31% obtained using Gini impurity, demonstrating improved overall classification
performance. On the other hand, in terms of variance, MGI tends to generate a larger number of decision
rules and exhibits greater standard deviation across datasets. On average, MGI produces 482.29 decision
rules, which is significantly more than the 143.43 rules generated by Gini impurity. Additionally, the standard
deviation of the classification error rate is the highest at 27.43%, indicating that the model is more responsive
to changes in data characteristics. Due to these characteristics, MGI is advantageous for high-precision
splitting but should be applied with caution when consistency across datasets is important. In homomorphic
encryption environments, applying entropy-based metrics can be computationally expensive and inefficient.
MGI, on the other hand, eliminates the need for division operations, making it a more practical choice while
still maintaining strong classification performance under such constraints.

3.3 CKKS
CKKS is an FHE method in which multiplication can be performed efficiently on two encrypted

complex numbers [8]. Although it only supports approximate arithmetic over encrypted data, numerous
privacy-preserving applications have adopted it because of its extremely fast computation speed [55]. In
addition, ciphertexts can contain numerous complex numbers. Thus, the CKKS operations function as
vector operations. For example, a vector of complex numbers can be encrypted into a ciphertext in CKKS,
and the result of the multiplication between two ciphertexts is a ciphertext that contains the vector that
has the result of a component-wise multiplication of the underlying two vectors in the input ciphertexts.
This can significantly enhance the performance of privacy-preserving machine-learning algorithms that
are implemented in addition CKKS operations. Moreover, the CKKS scheme is designed based on the
Ring Learning With Errors (RLWE) problem and incorporates randomness during encryption, resulting in
different ciphertexts even when encrypting the same plaintext multiple times. Therefore, an attacker cannot
infer the original plaintext even if they attempt to encrypt arbitrary plaintexts, which ensures that the scheme
satisfies IND-CPA security.

CKKS supports the following algorithms:
● KeyGen(1λ) uses security parameter λ as the input and returns pk, sk, and evk.
● Encpk(�→x) outputs �x� that maintains the vector structure as�→x .

Comput Mater Contin. 2025;84(2) 3681

● Decsk(�x�) outputs�→x if �x� is a valid encryption from�→x , which is a result of Enc or is created through
a set of operations with valid ciphertexts with correct pk and evk, and sk is also correct. Else it returns �.
● Add(�x�, �y�)(Sub(�x�, �y�)) produces a new ciphertext c, which is an encryption of�→x +�→y (�→x −�→y).
We may denote it as �x� ⊞ �y� (�x� ⊟ �y�) to simplify the description.
● Add(�x�, k)(Sub(�x�, k)) outputs a new ciphertext that is an encryption of (x0 + k, ⋅ ⋅ ⋅ , xM−1 + k)
((x0 − k, ⋅ ⋅ ⋅ , xM−1 − k)) for given k ∈ C. We may describe it as �x� ⊞ k (�x� ⊟ k) to simplify the description.
● Level(�x�) returns �x�’s level l , the number of further possible multiplications with ciphertext x.
● Multev k(�x�, �y�) returns an (approximate) encryption of (x0 ∗ y0, ⋅ ⋅ ⋅ , xM−1 ∗ yM−1) whose level is
Min(Level(�x�), Level(�y�)) − 1. We denote this as �x� ⊡ �y� to simplify the description.
● Multev k(�x�, k) outputs a c′ that is an encryption of (kv0, ⋅ ⋅ ⋅ , kvM−1) where k ∈ C. The level of c′ is
decremented from the level of [[x]] by 1. We describe it as �x� ⊡ k to simplify the notation.
● Rotev k(�x�, i) returns an encryption of (xk , xk+1 , ⋅ ⋅ ⋅ , xM−1 , x0, ⋅ ⋅ ⋅ , xi , ⋅ ⋅ ⋅), where i ∈ [0, M − 1]. If i∈
[−(M − 1),−1], we set i = i +M to make i ∈ [0, M − 1].
● Bootev k(�x�) returns a new ciphertext c′ that has an approximation of �x� if Level(�x�) ≥ lminboot , the
number of multiplication levels required to performBoot(). lminboot depends on the bootstrapping algorithm
used and security parameter.
● Powevk(�x�, i) considers �x� and i ∈ N and returns c that is an encryption of {2i ∗ x0, ⋅ ⋅ ⋅ , ..., 2i ∗ xM−1}.
It consumes one level as a single Mult() with two ciphertexts.

We assume that the rescaling algorithm in [8] is executed inside the Mult() algorithm, as in [3]. In
addition, if bootstrapping is required to perform multiplication, it is assumed to be performed automatically.
The corresponding part is omitted for clarity in the description of the algorithm. In addition, we use the
RNS-CKKS implementation, which is aided by the GPU, to enhance the performance [55–58].

The following parameters were used for CKKS: the number of slots is 32,768, 9 multiplications are
allowed between the bootstrapping operations, the initial number of multiplication depth possible before the
first bootstrapping is 21, and lminboot is 3. Upon bootstrapping, we can consume 9 multiplicative depth until
the next bootstrapping.

We used a method reported in the literature [12], expressed asApproxSign(�x�): it considers a ciphertext
�x� and returns an encryption of a vector (a0, ⋅ ⋅ ⋅ , aM−1) where ai = 1 if �x�[i] > 0; ai = 0 if �x�[i] = 0, or
ai = −1 otherwise (i ∈ [0, M − 1]). We also used the method reported in [3] to create an inverse of an input
ciphertext, which is written as ApproxInverse(�x�): it assumes a ciphertext �x� and returns an encryption of
the multiplicative inverse of the values in �x� [3].

4 Models

4.1 System Setting and Protocol Overview
We followed the system setting introduced in the literature [3]. The aim of this setting is to combine data

from multiple security domains to produce a better model for inference. In addition, according to [3], owing
to the legal regulation in South Korea, the inference result should be investigated by a trusted third party
(here in, the Key Manager (KM)) to check whether the inference result has certain information regarding the
privacy breach of the original data for training. Therefore, in this setting, KM is involved in the inferences.

The system has three types of participants: users (ui , i ∈ [1, m]), KM, and cloud server (CS). A user is a
participant who owns data for training or transfers input data to request inferences after encryption. The CS
receives the system evaluation key from KM and receives the encrypted training data from users to perform

3682 Comput Mater Contin. 2025;84(2)

training. Consequently, the encrypted training model is stored and managed in its own storage. After training
is completed, the CS performs an inference using the encrypted input data from the users. The encrypted
inference result is delivered to the user through KM after the investigation is completed. A summary of all
the participants and the operating protocols is shown in Fig. 1.

Figure 1: System setting and protocol overview

The goal of this setting is, as described in Fig. 2, for a set of the companies with data of different
attributes to combine their data to create a model with high prediction accuracy for the target variable of
each company’s interest. Therefore, the owners of the training data and the entities that aim to obtain the
inference result with their input are the same set of entities (users in this setting). To separate the training
data owners from the entity who want to obtain the inference results, the public keys of the clients should be
registered in the KM. In this case, if a client is an individual person, many keys must be registered in KM,
and all the inference results for all clients should be processed via KM, which renders KM a bottleneck in
the inference process. Therefore, different settings are required such cases.

4.2 Security Model
Analogous to previous study [59], each participant in the protocol can play the role of an adversary, and

their behavior is defined as an honest-but-curious (HBC) model.

Comput Mater Contin. 2025;84(2) 3683

Figure 2: The goal of system setting (a: Training, b: Inference)
The proposed method considers two aspects of privacy: First, the CS should not be able to access the

encrypted information sent by the user. Second, the user should not be able to access information regarding
the model created by the CS. Assuming KM is a trusted third party, privacy can be defined as follows:

First, the CS is considered an attacker. The information to which the CS has access includes encrypted
data and metadata. During the training process, users encrypt and send their training data, and the CS

creates a model using this data. In the inference process, a user sends encrypted input information and the
CS performs the computation in an encrypted state and delivers the resulting ciphertext to the KM.

Thus, the CS only has access to the ciphertext input and cannot obtain the original information through
the ciphertext. Based on this situation and the ciphertext-only attack (CPA) model, the privacy of the CS in
the proposed method can be defined.

(CS Privacy in the proposed protocol) We consider that the proposed protocol supports CS-privacy if
CS wins the following game with a non-negligible advantage:

1. The CS generates two sets of messages for training and inference, denote as (m⃗0, m⃗1). These are then
sent to the user.

2. The user randomly selects a bit value b (∈ {0, 1})
3. The user and the CS run the proposed protocol with m⃗b . Essentially, m⃗b is provided to the CS in an

encrypted form.
4. CS can encrypt any desired message using the system public key.
5. Finally, the CS outputs a message to guess which message is used in the protocol, denote as b′.
6. CS wins if b = b′.

Second, we examined the privacy of the model during inference. The key concern is whether the user can
extract information about the model from the received output. In our proposed method, except for the KM
which is a trusted entity, users receive only the inference result, and no additional information is obtained.
This implies that if users can gain information about the model from the inference output of our proposed
method, the same outcome is possible in the plaintext version of the model and the inference input scenario.

3684 Comput Mater Contin. 2025;84(2)

The issue of model information exposure from inference results in conventional machine learning is beyond
the scope of this study. Thus, we did not address this aspect further, as explored in research [27].

4.3 Problem Definition
We designed HEaaN-ID3 to maintain the same requirements as proposed in [60].

1. Training data privacy: The information belonging to one data owner must remain confidential and not
be accessible by any other participants.

2. Model privacy: No participant should have access to any details about the model.
3. Inference privacy: The CS must not gain access to any details about the inputs submitted by users

for classification.
4. Non-interactive training: After the training data owner submits the data to the CS, the entire training

process is handled independently by the CS, without requiring any assistance from other entities.
5. Single security domain for CS: CSs cooperate with each other because they exist in a single security

domain, and it is impossible to use decryption keys.
Please note that requirements (2) and (3) can be demonstrated using the security model described

in Section 4.2. The other conditions should be considered individually.

5 HEaaN-ID3
We explain training and inference process of HEaaN-ID3. First, we discuss how the data is encrypted

and explain how each node of HEaaN-ID3 is represented in an encrypted state. Then, we describe the key
algorithm steps in the training process and how to select the optimal splitting variables using encrypted data.
Finally, we provide a detailed discussion of the inference process using the encrypted model resulting from
the training process and its optimized handling methods.

5.1 Data Representation
Let X1 , ⋅ ⋅ ⋅ , Xd be the independent variables, and Y be the target variable. Each category is represented

by a positive integer. Each independent variable X j has n j categories n j ∈ N+ and nmax = max(n j), where
j ∈ {1, 2, ⋅ ⋅ ⋅ , d}. Let the number of categories in Y be t. We define n ∶= 2⌈log2 nmax⌉ and N ∶= 2⌈log2 sz⌉.

We suppose that the training data are composed of a set of sz rows, where the i-th row is represented
as a tuple of vectors (x⃗(i)

1 , ⋅ ⋅ ⋅ , x⃗(i)
d , y⃗(i)), where x⃗(i)

j and y⃗(i) is the one-hot encoding vector of a category
value in X j, Y whose length are n and t, respectively. That is, x⃗(i)

j = (x
(i)
j ,1 , x(i)

j ,2 , ⋅ ⋅ ⋅ , x(i)
j ,n), where x(i)

j ,k ∈ {0, 1}.
Here, x(i)

j ,k = 1 and the other components are zeroes if the value in X j in the i-row is k. For every ni < k ≤ n,
x(i)

j ,k = 0.
For efficient calculation, we grouped the values in the same position in the one-hot encoded vectors of

each variable. Thus, we organized a set of vectors b⃗ j ,k = (x(0)j ,k , x(1)j ,k , ⋅ ⋅ ⋅ , x(sz−1)
j ,k) for all j ∈ [1, d], k ∈ [1, n] and

b⃗′q = (y(0)q , y(1)q , ⋅ ⋅ ⋅ , y(sz−1)
q) for all q ∈ [1, t]. We call this the Bin Mask Vector [3]. For efficient computation,

we attach 0⃗(N−sz) to every
�→
b j ,k and b⃗′q to make their lengths N . Therefore, every ∣b⃗ j ,k ∣, ∣b⃗′q ∣ = N . This is

depicted in Fig. 3.
We generated encrypted training data by placing all the data for a single variable into the same

ciphertext. Therefore, we assume M ≥ N ∗ n. We supposed dctxt is the number of the variables of which
the training data can be accommodated in the single ciphertext (dctxt = ⌊M/(N ∗ n)⌋). The number of
ciphertexts u used to create the training data was calculated as ⌈d/dctxt⌉. Let B⃗i =

�→
bi ,1∣∣ ⋅ ⋅ ⋅ ∣∣

�→
bi ,n . For the

encrypted data, we can create a set of ciphertexts Train0,0 = {ci ∣i = 1, 2 ⋅ ⋅ ⋅ , u} ∪ {cyq ∣q = 1, ⋅ ⋅ ⋅ , t}, where
ci = �B⃗i ∣∣B⃗u+i ∣∣ ⋅ ⋅ ⋅ ∣∣B⃗(dctxt−1)u+i ∣∣0(M−dctxt ∗N ∗ n)� and cyq = �b⃗′q ∣∣ ⋅ ⋅ ⋅ ∣∣b⃗′q ∣∣0(M−dctxt ∗ N ∗ n)�.

Comput Mater Contin. 2025;84(2) 3685

Figure 3: Data representation

5.2 (Encrypted) Tree Representation
We consider the Iterative Dichotomiser 3 (ID3) [7] algorithm. As depicted in Fig. 4-(1), non-leaf nodes

set the independent variable that splits the node, denoted as Xcv , where cv ∈ {1, 2, ⋅ ⋅ ⋅ , d}. The leaf nodes
represent the predicted value of the node as cy , where cy ∈ {1, 2, ⋅ ⋅ ⋅ , t}. In the proposed HEaaN-ID3, both
cv and cy are maintained in an encrypted state. Additionally, as shown in Fig. 4-(2), HEaaN-ID3 also stores
the predicted value in non-leaf nodes. Since the data is encrypted, it is impossible to know whether valid
data exists in the corresponding node. Predicted value made from nodes processed with invalid data cannot
produce correct results, so the predicted value must be updated with that of the parent node containing valid
data. The ciphertext used to perform this process is denoted as ca , where ca ∈ {0, 1}.

Figure 4: (A)-Tree representation ((1): original decision tree, (2): homomorphic DT)

5.3 Training
To visually present the training process of the tree—including data encryption, MGI computation,

and SIMD optimization—a flowchart is illustrated in Fig. 5. When the training process begins, as shown in
Fig. 5-(1), the input data is encrypted to initiate the process. At this stage, the SIMD technique is used to pack
multiple data into a single ciphertext, in order to improve computational efficiency. The steps from Fig. 5-(2)
to Fig. 5-(5) constitute the core of the algorithm, which is executed in the encrypted domain. These steps
proceed as follows: (2) measures the most frequent Y label at each node; (3) generates a ciphertext that
contains information used to determine whether the data at a node is valid; (4) sets the splitting criteria for
the node. Here, MGI is used to enhance computational efficiency; (5) updates the data for the child nodes
based on the determined splitting criteria. At the bottom of the tree, i.e., the leaf nodes, there is no need to
create further child nodes, so only steps (2) and (3) are performed.

3686 Comput Mater Contin. 2025;84(2)

Figure 5: CalculateMaxY

In addition, the training algorithm of HEaaN-ID3 is specified in Algorithm 1. It first performs training
N0,0 with the initial training data Train0,0 then repeats for all nodes in the tree up to the depth provided as
input. The following provides a detailed description of each algorithm.

Algorithm 1: Training algorithm
Input: Train0,0: Initial training data, depth: Tree depth
Output: model = {N0,0 , ⋅ ⋅ ⋅ , Nd e pth ,nmax d e pth}
1: lv ← 0
2: repeat
3: nlv ← nmax

lv{The number of nodes in current level}
4: for { j = 0 to Nlv − 1} do
5: �p�← CalculateMaxY(Trainlv , j)
6: Nlv , j .�ca�← CheckValid(Trainlv , j)
7: if {lv > 0} then
8: Nlv , j .�cy�← �p� ∗ Nlv , j .�ca� + (1 − Nlv , j .�ca�) ∗ Nlv−1,⌊ j/nmax⌋.�cy�

9: end if
10: if {i < depth} then
11: Nlv , j .�cv�← FindSplitVar(Trainlv , j) {Representing the splitting variable Xi}
12: {Trainlv+1,k , ∣k ∈ [nmax ∗ j, nmax ∗ j + (nmax − 1)]} ← UpdateData(Trainlv , j , Nlv , j .�cv)�
13: end if
14: end for
15: lv ← lv + 1
16: until {lv > depth}

The CalculateMaxY() in line #5 of Algorithm 1 finds the most frequent Y label of the target variable at
each node. Using the data from Fig. 3, the process of CalculateMaxY() is illustrated in Fig. 6. It calculates the
distribution of the target variable values from the data. This process involves log2(N) rotations and addition
operations, resulting in the frequency of each category being placed in the first slot of each ciphertext. The
total t ciphertexts generated in this manner are sequentially combined to create a ciphertext called ctotal

y ,
after which a multiplication operation is performed with a ciphertext that has only the first t slots set to
1. This operation removes unnecessary values from the ciphertext. Next, the ctotal

y is passed through the

Comput Mater Contin. 2025;84(2) 3687

FindMaxGroupPos() function in Appendix A.1 of [60] that sets the slot with the largest value to 1 and the
others to 0. Finally, t − 1 rotations are applied to generate �p�, multiplying by a constant corresponding to
the number of rotations at each step.

Figure 6: CalculateMaxY

Line #6 of Algorithm 1 is the step where the input data of the corresponding node is checked for validity.
Since the data is encrypted, it is not possible to verify whether the node information has been generated
from valid values. Consequently, all nodes are generated regardless of the data’s validity, necessitating
additional measures to handle nodes created from invalid data. In CalculateMaxY(), instead of combining
the ciphertexts representing the distribution of each Y label into a single ciphertext through rotation, a new
ciphertext is created by adding all the individual ciphertexts together. Let the ciphertext for this operation
be denoted as �w�. The reciprocal can be obtained through ApproxInv(�w�). According to the properties
of ApproxInv() mentioned in [3], if �w� ⋅ApproxInv(�w�) = 0, then Nlv , j .�ca� becomes 0, and if it is not
0, Nlv , j .�ca� becomes 1. Finally, this result is applied in line #8 of Algorithm 1 to obtain Nlv , j .�cy�, which
represents the predicted value for the corresponding node.

A critical part of the training process is finding the splitting variable Xcv that minimizes the MGI score.
This corresponds to line #11 of Algorithm 1. The function FindSplitVar() proceeds in two steps: first, it
calculates the frequency of each classified case, and then, it compares the information gain based on the MGI
scores for all possible cases. To explain the first step of FindSplitVar(), we begin by creating a ciphertext
cg ini , j that stores all MGI scores for each variable. Here, j represents the position of a node at the same level.
Since the number of independent variables used is d, only the first d slots from the left in the ciphertext
cg ini , j are used.

The key of the first step is calculating the frequency by determining the distribution of the target
variable for each value of the independent variables using the result of cyq ⊡ ci , where q ∈ [1, 2, ⋅ ⋅ ⋅ , t] and
i ∈ [1, 2, ⋅ ⋅ ⋅ , u]. The ciphertexts generated through multiplication are processed using log2(N) rotation and
addition operations to ensure that the frequency is stored in the first slot of the N slots, which are divided
according to the categories of each variable. Any slots that do not contain valid values are then set to zero.

3688 Comput Mater Contin. 2025;84(2)

The second step is to identify the variable with the highest Information Gain (IG) among the indepen-
dent variables based on the results obtained from the previous process. The IG is computed as the difference
between the MGI score of the parent node and the sum of the MGI scores of all children. To determine the
independent variable that maximizes IG, it is sufficient to search for the independent variable that minimizes
the sum of the MGI scores for the child nodes because the parent is fixed to the current node. Therefore, this
step calculates the sum of the MGI scores for each independent variable and stores them in separate slots in
the ciphertext.

In the plaintext version, the two steps can be described as follows: First, calculate �→xi ←
�→
bi ,1 + ⋅ ⋅ ⋅ +���→

bi ,nmax and then compute si ,q = �→xi ⋅ �→yq . Based on this result, calculate Ginii ,q = (∑t
q=1 si ,q)2 −∑t

q=1(si ,q)2 to
obtain the final MGI score for the corresponding variable.

Finally, the independent variable that has the smallest MGI score among the d values stored in the
ciphertext cg ini , j for each node is determined, where j corresponds to the node ID. This involves identifying
the position i of the slot that contains the minimum value (i.e., this means Xi maximizes IG) within each
cg ini , j obtained from the second step. Because locating the slot with the minimum value is computationally
expensive in the CKKS sheme, we implement the FindMinGroupPos() function in Appendix A.1 of [60] to
reduce the computational cost. This function efficiently reduces the number of operations by consolidating
the values of multiple cg ini , j ciphertexts into a single ciphertext. Subsequently, it identifies the position of the
slot with the minimum value within each group of d slots. Only the slot with the minimum value is assigned
a value of 1, whereas the remaining slots are set to 0. This approach is effective because the number of slots in
a ciphertext, denoted as M, is often much larger than the number of independent variables, d. Consequently,
the number of operations required to determine the minimum value is reduced by a factor of d/M.

The final step of the training process is to update the training data for the child nodes. This corresponds
to line #12 of Algorithm 1. To aid understanding, we will explain this in plaintext as depicted in Fig. 7. The
child nodes of the currently processing node only use the data corresponding to the classification result of
the current node. For example, assume that the variable selected for classification at the current node is X1.
To generate the training data for the first child node, we multiply the column where X1 = 1 by the entire
training dataset. Similarly, we multiply each of the nmax columns to generate the data for all child nodes of
the corresponding node. In the encrypted state, a single ciphertext is created by copying each column’s data
N ∗ n ∗ dc tx t times and then multiplying it by a total of u + t ciphertexts.

Figure 7: UpdateData-plaintext version

Comput Mater Contin. 2025;84(2) 3689

5.4 Inference
We describe a strategy for representing the original model shown in Fig.4-(1) in an encrypted state and

for performing inference using the encrypted model. Fig. 4-(2) shows the representation of the plaintext
model in Fig. 4-(1) with encrypted values. Fig. 8 illustrates the encrypted model in Fig. 4-(2) using cipher-
texts. Observably, ca (cv or cy) values of all nodes at the same level are stored in a single ciphertext, denoted
as ca .l eveli (cv .l eveli or cy .l eveli) on different slot positions.

Figure 8: (B)-Tree representation

In Fig. 8, the cv , cy and ca values were pre-processed: as they can be computed independently from the
input data for inference, they were pre-computed. The actual inference process was performed using ca from
the middle in Fig. 8, c′y in Fig. 8, and cv at the bottom in Fig. 8.

Fig. 9 illustrates an example of the inference process using a HEaaN-ID3 tree represented in Fig. 8 with
an input at the top of Fig. 9. The input comprises four independent variables, each with up to three categories.
In the example, the input is (X0, X1, X2, X3) = (2, 1, 1, 1). The owner of this input encrypts it after representing
it as a form of Bin Mask Vector [3] (0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0). We duplicated it as much as possible to ensure
that the size of the input vector was the same as the number of slots in the ciphertext before encryption.
The size of the input vector was nmax ∗ d, which was duplicated by ⌊M/(nmax ∗ d)⌋ times. The resultant
ciphertext is expressed as follows: cin p in Fig. 9 was sent to the CS.

Once the input ciphertext is received, CS begins the inference process. Unlike in the plaintext version,
the inference process proceeds in reverse order, starting from the leaf nodes and moving towards the root.
Among all possible outputs in the leaf nodes, one is chosen for each of their parent nodes based on the input
values of the variables used for splitting by the parents. After the choice is made, every parent node has a
target value which is from one of its children2. We update the tree such that the parent nodes become the
leaf nodes. Thus, the depth of the tree is decreased by one. We then repeat the process until only the root
node remains in the tree with a target value, which is returned as the final inference result.

In addition, the split conditions on the nodes in the same levels were performed in parallel using a cryp-
tographic SIMD operation. This contributes significantly to the efficient inference of the proposed method.

For convenience, we provide a detailed explanation of the inference process depicted in Fig. 9, under
the assumption that M ≥ nd e p

max for convenience. The process consisted of four main steps, as follows. Step 2©
involves extracting from cin p the values corresponding to the variables used for split at every non-leaf node
in a tree. To achieve this, we perform a multiplication operation between the values of cv .l eveli and cin p
for each level i in the tree. The resulting values are stored in cse l .l eveli . Step 3© aligns the extracted results
to specific fixed positions to ensure accessibility. This is achieved by applying rotation operations O(log2d)
times. In Step 3©, we reposition the values in cse l to proceed to further processing. In step 4©, we make

2The parent may use its own target value if no children is valid.

3690 Comput Mater Contin. 2025;84(2)

the spacing between neighboring components of the encrypted one-hot encoding vectors obtained in the
previous step equal to the number of nd e p−l ev e l

max slots, where is the current level. This rendered the inference
process more efficient.

Figure 9: An example of inference process

Using c′ys created in the training process and cse l s created in the previous steps, we obtain the inference
result through Steps 5© to 13©. This process of multiplying cy and cse l at the leaf level. It then processes one
level at a time from its parent level, moving upward until it reaches the root level. The calculation of c′y from
cy and ca is performed as follows: 7© to 8© and 11© to 12©. Finally, after Step 13©, we obtain the inference result
cyc while processing the root level. The final step involves moving the resultant y value into the first slot in
cyc . This should be done at Step 14©.

A detailed description of the tree inference protocol is presented in Fig. 10. In the description, Sum-

Group() and AdjustMargin() presented as Algorithm 2 and Algorithm 3 correspond to Steps 3©, 6©, 10©
and 4© in Fig. 9, respectively.

Algorithm 2: SumGroup()
Input: �input�, iter, Num1, Numtotal, nmax, lv
Output: �csum�: Group-summed ciphertext
1: �csum�← �0�

2: for {i = 0 to iter − 1} do
3: �ctm p�←Mult(�input�, (0⃗(Numtotal /i ter)∗i ∣∣⃗1Num1 ∣∣0⃗Numtotal−Num1−(Numtotal /i ter)∗i)nlv

max)
4: �ctm p�← Rot(�ctm p�, (Numtotal /iter) ∗ i)
5: �csum�← �csum� ⊞ �ctm p�

6: end for
7: return �csum�

Comput Mater Contin. 2025;84(2) 3691

Figure 10: The proposed HEaaN-ID3 inference algorithm

Algorithm 3: AdjustMargin()
Input: �input�, d, nmax, lv
Output: �cout�: Adjusted output ciphertext
1: �csum�← �0�, �cout�← �0�

2: for {i = 0 to nmax − 1} do
3: �ctm p�←Mult(�input�, (0⃗i ∣∣⃗11∣∣0⃗nmax∗d−(i+1))nlv

max)
4: �ctm p�← Rot(�ctm p�, (1 − nd e p−lv−1

max) ∗ i)
5: �csum�← �csum� ⊞ �ctm p�

6: end for
7: for {i = 0 to nlv

max − 1} do
8: �ctm p�←Mult(�csum�, (0⃗nmax∗d∗i ∣∣⃗1nmax∗d)
9: �ctm p�← Rot(�ctm p�, (nmax ∗ d − nd e p−lv

max) ∗ i)
10: �cout�← �cout� ⊞ �cout�

11: end for
12: return �cout�

6 Experimental Results
The experimental results of the proposed FHDT on various datasets are presented in this section. The

experimental environment was an AMD RYZEN 5950X CPU, NVIDIA Quadro RTX A6000 48 GB GPU,
128 GB RAM. Section 6.1 provides the performance of the basic operations in CKKS. In Section 6.2, we

3692 Comput Mater Contin. 2025;84(2)

compare the performance of the proposed method with that of [10]. Although the execution environment
and the parameters used for CKKS HE were different, we observed that the soft-step function in [10] and the
ApproxSign() function in our environment had similar execution times. To the best of our knowledge, the
multiplication depth and polynomial degree used are the same in both functions; therefore, we can infer that
the performance difference between the two methods can be derived to some extent from the differences in
their execution times measured in each environment.

6.1 CKKS
Table 3 lists the performance of the CKKS unit operations and subroutines. Boot() operations required

130.3 ms as we employed a GPU [55]. Approximately 600 ms was required for ApproxSign() used for the
proposed training algorithm. The relative error of ApproxInv() was measured as 5.592E − 07 ± 6.03E −
07%. The relative errors of the other unit operations are less than 1E − 05%. We used the GPU version of the
HEaaN library for CKKS (https://heaan.it).

Table 3: Average time (ms) of CKKS operations and basic subroutines

Add Mult (lv. 11) Mult (lv. 4) Rot

0.037 ± 0.0024 0.18 ± 0.0064 0.14 ± 0.0031 0.15 ± 0.0077
Boot ApproxSign ApproxInv

130.3 ± 0.20 600.4 ± 0.91 307.5 ± 0.53

6.2 HEaaN-ID3
We evaluated the performance of the proposed HEaaN-ID3 using the data listed in Table 4. They belong

to the UCI repository [13], and for binning the numeric variables, the Scott and Sturges binning method
was used.

Table 4: Dataset parameter

Data set t d nmax sz

Iris Scott 3 4 9 100
Iris Sturges 9
Wine Scott 3 13 11 118

Wine Sturges 9
Cancer Scott 2 30 18 379

Cancer Sturges 11
Breast cancer 2 9 11 184

Soybean 15 35 7 374

6.2.1 Inference
Fig. 11 shows the results for the inference time. Compared to the performance of the method in [10],

which requires 2.3 s to process a total of 31 nodes, HEaaN-ID3 requires 657.32 ms even for depth 4 DT
trained with the Breast Cancer data, which has 16105 nodes. This indicates that HEaaN-ID3 is superior when

https://heaan.it

Comput Mater Contin. 2025;84(2) 3693

considering the number of nodes in the tree. Unfortunately, the inference time increased sharply as the tree
depth increased, indicating that the tree depth of the proposed method should be limited. However, in an ID3
DT, owing to the large number of child nodes in the tree, it is possible to achieve a high inference accuracy
with a shallow tree depth compared to a binary DT.

Figure 11: Inference time (The color of the bar indicates the execution time per level of the tree. Because the inference
procedure iterates per level, as the depth of the tree increases, the number of iterations also increases. The execution
time for each level is described in the table below each bar in the graph)

The inference is performed from the leaf level to the root level. Therefore, if the tree is deep, a
bootstrapping operation occurs when processing at the lower level. Thus, the execution time of Level 1
becomes very long if the depth of the tree is three or more. In addition, the number of nodes at the low (close
to the leaf) level was extremely large, owing to the characteristics of ID3. Therefore, when the depth of the
tree increases, the execution time at a low level increases. As shown in Fig. 11, for the DT of depth 4 trained
with the Breast Cancer data, the processing time for the level 4 of 14641 nodes is 319.47 ms, and in the case
of the depth 4 DT with Soybean data, 164.79 ms is required to process the level 4 of 2401 nodes.

Regarding inference accuracy, Table 5 shows that the performance of HEaaN-ID3 is comparable to that
of the well-known Scikit-Learn [14] library, which is evaluated using plaintext data.

Table 5: Accuracy comparison: HEaaN-ID3 (H) vs. Scikit-learn (S) (%) (depth: the depth of DT) [14]

Data set

Depth

Average difference1 2 3 4

H S H S H S H S
Iris Scott 92.67 92.67 96.00 94.00 96.00 94.67 – – −1.11

Iris Sturges 96.00 96.00 93.11 92.00 93.11 92.67 – – −0.52
Wine Scott 76.26 74.76 86.72 84.84 86.72 85.41 – – −1.57

Wine Sturges 80.37 80.37 90.17 86.01 88.62 86.01 – – −2.26
Cancer Scott 89.28 89.28 90.63 91.39 90.69 90.51 – – 0.19

Cancer Sturges 91.03 91.03 91.10 91.56 91.16 91.74 – – 0.35
Breast cancer 68.95 69.67 66.55 66.79 65.95 67.51 65.57 65.70 0.66

Soybean 30.96 30.96 37.66 36.83 51.12 53.20 58.35 57.82 0.18

3694 Comput Mater Contin. 2025;84(2)

6.2.2 Training
Table 6 compares the training times of the proposed method with those of [10]. For a fair comparison,

the estimated time after adjusting the experimental environment from [10] to that of this study is 0.851 min for
the Iris dataset with a depth of 4. When comparing the training time per node, HEaaN-ID3 takes 0.029 min,
while [10] takes 0.027 min. Although [10] is slightly faster in terms of performance, the proposed method in
this study provides safer training as it does not involve decryption during the training process.

Table 6: Training time comparison (minutes): HEaaN-ID3 vs. [10] (The total number of nodes in the trees is given in
parentheses)

Data set Depth 1 Depth 2 Depth 3 Depth 4 [10] (Depth 4)
Iris Scott 0.38796 (10) 2.2340 (91) 24.136 (820) – 47 (31)

Iris Sturges 0.38821 (10) 2.2415 (91) 24.148 (820) –
Wine Scott 0.54727 (12) 3.4450 (133) 44.802 (1464) – 148 (31)

Wine Sturges 0.50409 (10) 2.5195 (91) 25.441 (820) –
Cancer Scott 0.97279 (19) 10.688 (343) 206.75 (6175) – 278 (31)

Cancer Sturges 0.74613 (12) 4.3056 (133) 45.989 (1464) –
Breast cancer 0.47718 (12) 3.2868 (133) 38.011 (1464) 499.41 (16105) –

Soybean 0.99063 (8) 3.2193 (57) 27.470 (400) 296.43 (2801) –

7 Security Analysis of the Proposed Method
In this section, we present the security analysis. Under the assumption of the HBC (Honest-But-

Curious) model, we assessed whether any participant (either CS or ui) could obtain information from the
ciphertexts they received from other participants. We first assume KM to be a trusted third party and it is
well-known that the CKKS scheme supports CPA (Chosen Plaintext Attack) security [61].

We begin by considering the case where the CS is an adversary. If the CS can obtain any information
from the ciphertexts it receives from the users, it will compromise the CPA security of the underlying CKKS
scheme. However, in the proposed protocol, the CS receives only ciphertexts, excluding certain metadata;
therefore, it cannot obtain any information from them.

Subsequently, we considered a scenario in which users acted as adversaries and attempted to obtain
information from other users’ ciphertexts or from the results of homomorphic computation usingCS. Unlike
in theCS case, users receive the inference result, which is a decryption result. Therefore, the situation must be
assessed differently. Because users receive only the inference result and there are no other users’ ciphertexts,
we must verify that the inference result does not reveal any information about the models or data used for
inference. Nevertheless, with our method, the amount of information that a user can obtain from inference is
the same as if the same protocol is used without encryption. Hence, we can conclude that users cannot obtain
any meaningful information from ciphertexts that does not belong to them or cannot be derived from their
ciphertexts because even the corresponding plaintext-version of the ID3 DT protocol may reveal the same
amount of information as the proposed method. In conclusion, based on the aforementioned argument, we
can affirm that our method is secure in the HBC setting and that KM is a trusted third party.

To set up a key distribution, HEaaN-ID3 follows the same settings as [3]. Therefore, please refer to [3]
for the security of the key distribution.

Comput Mater Contin. 2025;84(2) 3695

8 Discussion

8.1 Checking the Objectives Met by HEaaN-ID3
In Section 5, we determine whether HEaaN-ID3 satisfies the five objectives presented in the Problem

Definition. For 1) Data privacy, 2) Model privacy, and 3) Inference privacy: We can confirm these based on
the analysis of security in Section 7. Regarding 4), because of the features of HEaaN-ID3, if a user encrypts
and delivers the training data to the CS, it can generate a model without the help of other participants;
thus, it is satisfied. Finally, for compound 5), HEaaN-ID3 used a single CS that does not have access to the
decryption key. Therefore, the condition is satisfied.

8.2 Correctness in Exceptional Situation
HEaaN-ID3 aims to address situations not considered in [10] during the training process. These

situations include the following.

• Scenarios in which the number of training data branches to a specific node is zero.
• Dealing with multiple variables or pairs of variables and condition that maximize information gain at a

specific node.

Although these cases were not discussed in detail in [10], they may still occur. However, reference [10]
can handle these situations because all information gain values can be viewed in plaintext form during
training. In the proposed method, wherein everything is processed in an encrypted state, these cases must
be addressed to prevent any potential impact on the accuracy of the inference results.

When there is no data branching to a specific node: For example, consider a scenario in which training is
performed at a node in a DT and there is no training data branching to that node. In this case, all BMV values
in TD became zero, leading to a MGI score to become 0. Consequently, all FindMaxGroupPos() values
become 1, and the cy value of the corresponding node is set to 0. This sets the ca value of the corresponding
node to zero and the training process continues with the child nodes.

If the ca value of a node is zero, all values returned by that node and its descendants are ignored during
the inference process. Therefore, the result of the inference process is returned from a node whose ca value
is one of the ancestor nodes. The closest ancestor was selected if more than two ancestors were present. In
addition, if there is at least one row of training data, the ca value of the root node is always equal to one. This
ensures that HEaaN-ID3 returns the correct result, even when there is no data branching in a specific node.

When there are multiple variables that maximize information gain: In this scenario, the result of the
function FindMaxGroupPos() has a ciphertext with multiple slots of value 1, representing the number
of variables (and branching conditions) that maximize information gain. To address this, the function
FindRandomPos() is called to select only one slot with a value of 1 and set the others to zero. The chosen
variable (and branching condition) are then used to split the current node, and the training process proceeds
normally to the next step.

8.3 Computation Complexity Analysis and Comparision with [10]
The most relevant study to HEaaN-ID3 was by Adiakavia et al. in 2022 [10]. In this subsection, HEaaN-

ID3 is compared [10]. The first point to discuss is the differences in the perspective of the system model.
In [10], the client has all the data required to learn and classify. During the training process, the client encrypts
the training data and sends them to a server. The server learns using the received encrypted data. For critical
operations that require heavy computation, the encrypted ciphertext is sent to the client, who then deciphers
it, performs critical operations, and encrypts the result before sending it back to the server. In this case, the

3696 Comput Mater Contin. 2025;84(2)

server and the client must perform h rounds of communication to train a tree with a depth of h. However,
the communication volume for each round increases geometrically in proportion to the level of the tree
being processed.

HEaaN-ID3, on the other hand, allows multiple users to encrypt their data and send them to the
cloud server, where training can take place without further communication. This eliminates the cost and
difficulty of communication between the decryption key holder and the cloud server during the training
process. Consequently, the proposed method is more advantageous in environments wherein communica-
tion with the decryption key holder is expensive or difficult or when the decryption key holder has limited
computational resources.

Table 7 presents the execution time for a single node, but since FindMaxGroupPos() and FindMin-

GroupPos() are executed simultaneously for all nodes at the same level, the execution time per single
node can be estimated by dividing by the number of nodes at that level nmax

lv . In addition, since inference
is performed by level, only the ”Reconstructing model for efficient inference” step in the training process
represents the execution time for a single level. We suppose dctxt is the number of the variables of which the
training data can be accommodated in the ciphertext (dctxt = ⌊M/(N ∗ n)⌋). The number of ciphertexts u
used to create the training data was calculated as ⌈d/dctxt⌉. Additionally, for a fair comparison, Line 11 of
Algorithm 1 should be excluded from the comparison and its execution time is not included in Table 8, since
the method in [10] performed the Gini impurity calculation by decrypting the data.

Table 7: Computation cost analysis of the proposed training algorithm

Lines 5~8 in Algorithm 1
Mult 2t +mai + 3
Rot (log(N/2) + 2) ∗ t + rai + 1

Add/Sub (log(N/2) + 3) ∗ t − 1
Etc. FindMaxGroupPos(),ApproxInv()

mul.depth 5 + dep(ApproxInv()) +
dep(FindMaxGroupPos())

Line 11 in Algorithm 1

Mult (2u + 1) ∗ t + 4
Rot (log(N/2) + 1) ∗ u ∗ t + log(n/2) +

log(dc tx t/2) + 2
Add/Sub {(log(N/2) + 1) ∗ u + 2} ∗ t + log(n/2) +

log(dc tx t/2)
Etc. FindMinGroupPos()

mul.depth 6 + dep(FindMaxGroupPos())
Line 12 in Algorithm 1

Mult 2d + u
Rot (log((n ∗ N)/2) + 2) ∗ d + log(dc tx t/2)

Add/Sub (log((n ∗ N)/2) + 1) ∗ d + log(dc tx t/2)
mul.depth 2

Reconstructing model for efficient inference

Mult d + 1

(Continued)

Comput Mater Contin. 2025;84(2) 3697

Table 7 (continued)

Lines 5~8 in Algorithm 1

Rot {log(2⌈log nmax
d e p−l v+1⌉) + 1} ∗ nmax

lv +
{log(2⌈log nmax⌉) + 1} ∗ d

Add/Sub {log(2⌈log nmax
d e p−l v+1⌉) + 1} ∗ nmax

lv +
{log(2⌈log nmax⌉) − 1} ∗ d + 1

mul.depth 2

Table 8: Computation cost analysis of the training algorithm in [10]

Non-leaf node
Mult Add ApproxSign() Depth

2sz ∗ nmax ∗ d2 ∗ t 2sz ∗ nmax ∗ d2 ∗ t 2sz(dnmax + 1) dep(ApproxSign()) + 1

Leaf node

Mult Add ApproxSign() Depth
sz sz 0 1

The analysis of the computation complexity in [10] shows that for each non-leaf node, the training
algorithm performs a total of 2sz ⋅ nmax ⋅ d2 ⋅ t homomorphic multiplications and the same number of
additions. In addition, the algorithm invokes the ApproxSign() function 2sz(dnmax + 1) times. Since each
homomorphic operation is performed separately per sample, feature, and threshold, the total computational
load scales quadratically with the number of features d and linearly with the number of samples sz and class
count t. Furthermore, the multiplicative depth per node corresponds to the depth of ApproxSign() plus one,
which is approximately 5 in practice.

In contrast, the HEaaN-ID3 training algorithm significantly reduces the number of operations by lever-
aging SIMD operation. As summarized in Table 7, the number of multiplications per node is bounded by 2t +
mai + 3 + 2d + u, which results in a total complexity of O(t + d + u). Moreover, the number ofApproxSign()
invocations is limited to O(⌈log4(d)⌉) through the use of the FindMaxGroupPos() subroutine. This may
result in a slightly greater multiplicative depth compared to [10] as the number of features increases, the
total number of high-cost nonlinear operations is substantially lower. Consequently, the proposed HEaaN-
ID3 method provides a more efficient and scalable approach to privacy-preserving decision tree training,
particularly in high-dimensional or large-sample scenarios.

The analysis of the usage frequency of each homomorphic operation and depth of multiplication in the
inference method in [10] is straightforward. For all non-leaf nodes, this method executes the ApproxSign()
algorithm twice, multiplication twice and addition once. As a result, the total computation consists of 2d e p − 2
runs of ApproxSign() and multiplication, and 2d e p−1 − 1 runs of additions. In addition, the multiplication
depth consumed by each node is the multiplication depth incurred during the execution of ApproxSign()
increased by one, and the width becomes 2lv ∗ (width of ApproxSign() ∗ 2) if the node is located at level lv
of the tree.

The analysis of the HEaaN-ID3 inference algorithm is presented in Table 9. Since the inference process
is performed level by level, the computation cost specified in Table 9 corresponds to a single level. To

3698 Comput Mater Contin. 2025;84(2)

enable efficient inference, the information of the leaf nodes is precomputed during the training phase, so
the inference process is carried out only up to the level preceding the depth. As shown in Table 9, the
computational cost of the inference process is determined by the value of nmax . The dataset with the largest
nmax requires the longest inference time under the same tree depth. In contrast to [10], the number of
required invocation for ApproxSign() is 0. This is replaced by an additional multiplication, which is linearly
proportional to the depth. Also in terms of depth, ApproxSign() requires a multiplication operation depth
of at least 4, so we can see that the proposed method is more favorable.

Table 9: Computation cost analysis of HEaaN-ID3 inference algorithm

Parameters: Numin f = ⌈(nlv
max ∗ nmax ∗ d)/M⌉

Mult (nlv
max + nmax + d + 1) ∗ Numin f + nmax + 1

Rot (nlv
max + nmax + d + 1) ∗ Numin f + nmax

Add/Sub (nlv
max + nmax + d + 1) ∗ Numin f + nmax + 1

mul.depth 7

8.4 Scalability of the Proposed Method
As shown in Tables 7 and 9, when the number of features, the variety of categories, and the size of

the dataset become very large, the proposed method requires a significant amount of computation. To
overcome this, each data owner is encouraged to perform feature selection in advance, which would allow the
proposed method to be executed more efficiently. However, pruning is difficult to apply to encrypted trees.
Because the data remain encrypted and cannot be checked directly, optimization techniques such as pruning
cannot be applied. As a result, the structure of the decision tree generated during training becomes fixed
and can grow inefficiently. In particular, due to the characteristics of the HEaaN-ID3 training algorithm,
each internal node generates up to nmax child nodes, corresponding to the maximum number of categories
of the explanatory variable. Therefore, when the tree depth is dep, the total number of nodes is given by
(nmax

d e p+1 − 1)/(nmax − 1). As the depth increases, the total number of nodes grows exponentially, which
leads to the number of slots required for encrypted computation exceeding what a single ciphertext can
handle. Consequently, multiple ciphertexts must be used, resulting in increased computational overhead.
This structure negatively impacts the scalability of the system.

However, on the other hand, if the depth of the ID3 decision tree is not large, the proposed method can
still enable efficient training and inference. According to [7], the ID3 algorithm typically stops splitting and
creates a leaf node when any of the following three conditions are met:

• There are no remaining attributes available for splitting.
• All data at the current node belong to the same class.
• The information gain is zero or below a certain threshold.

Since all of these conditions are determined based on the actual data values, they cannot be directly
applied in an encrypted setting. Therefore, estimating the typical depth of an ID3 tree, or the number of
nodes generally generated, in advance is valuable for analyzing the scalability of the proposed method.

To this end, we compared the datasets and resulting tree structures (i.e., total number of nodes) used
in existing studies on privacy-preserving ID3 decision trees. For example, reference [37] used the UCI Car
dataset (car100, car50, car25), which contains 6 attributes and a total of 1728 instances, and generated 407,
248, and 178 nodes, respectively. Although [7] is a study on traditional ID3, it also provides information

Comput Mater Contin. 2025;84(2) 3699

on the number of nodes generated in the ID3 decision tree. In [7], a chess dataset with 49 attributes and
715 instances resulted in a tree with 150 nodes, and a similar number of nodes was observed for another
dataset with 39 attributes and 551 instances. Our proposed method generates a significantly larger number of
nodes even at lower depths, as shown in Table 6. This demonstrates that the proposed approach can produce
a sufficiently shallower ID3 decision tree without pruning, thereby maintaining practical classification
performance without requiring excessive tree depth.

Moreover, HEaaN-ID3 does not need to consider scalability with respect to high-dimensional datasets.
As previously discussed, the proposed method is capable of generating a sufficient number of nodes even at
shallow tree depths, enabling effective learning without excessive branching or complex tree structures. One
of the most common methods for representing categorical data numerically is one-hot encoding, which was
also adopted in this study. However, as noted in [62], this approach assigns a separate dimension to each
category value, causing the dimensionality of the input vector to grow rapidly as the number of categories
increases. This results in increased model complexity, a larger number of training parameters, and a higher
risk of overfitting. In particular, high-dimensional input often leads to sparse data representations, which are
known to negatively affect both training efficiency and generalization performance. Therefore, the proposed
method achieves both practical scalability and efficiency by avoiding unnecessary expansion of tree depth
and input dimensionality while still maintaining strong classification performance.

The inference algorithm proposed in this paper has a computational complexity that depends on the
depth of the tree, which is closely related to scalability. However, as previously discussed, compared to existing
studies, the proposed HEaaN-ID3 was able to achieve sufficient classification performance by generating a
large number of nodes even at relatively low depths, without requiring an excessively deep tree. Thanks to
this structural characteristic, the number of leaf nodes required during the inference process is also limited.
Therefore, the level of complexity presented in this paper is sufficient to ensure practical efficiency in real-
world applications.

HEaaN-ID3 does not consider structural scalability in terms of the decision tree itself (i.e., excessive
increases in tree depth) for the reasons previously discussed. However, scalability with respect to large-scale
datasets must be addressed. In particular, when the number of rows in the training data exceeds the number
of slots M that a single ciphertext can hold, it becomes necessary to use multiple ciphertexts to process
the data, which leads to increased computational complexity. To handle such cases, this paper presents a
generalized training algorithm that accommodates scenarios where the dataset size sz > M, and analyzes
the corresponding computational complexity in Table 10. This demonstrates that while HEaaN-ID3 limits
structural expansion, it can effectively ensure scalability with respect to data size. Each process represents
the complexity computed when training the entire tree, and the training complexity per single node can be
obtained by dividing by the total number of nodes, given as TN = (nmax

d e p+1 − 1)/(nmax − 1). Additionally,
Nummax Pos and NumminPos represent the number of ciphertexts required when using FindMaxGroup-

Pos() and FindMinGroupPos() in Appendix A.1 of [60]. To use these two algorithms, each node requires
⌈d/4⌉ ∗ 4 ∗ 1.5 slots. Since this process is performed per level, the number of ciphertext slots required to
process one level is proportional to the number of nodes at that level. Therefore, the values of Nummax Pos
and NumminPos are given by ⌈(⌈d/4⌉ ∗ 4 ∗ 1.5 ∗ nmax

lv)/M⌉.

Table 10: Computation cost analysis of the generalized training algorithm

Lines 5~8 in Algorithm 1
Mult (2t + 4) ∗ TN + nmax

lv ∗ Nummax Pos ∗ (dep + 1) +mai
Rot {(log(M/2) ∗ ⌈N/M⌉ + 2) ∗ t − 1} ∗ TN + 2nmax

lv ∗ (dep + 1) + rai

(Continued)

3700 Comput Mater Contin. 2025;84(2)

Table 10 (continued)

Lines 5~8 in Algorithm 1
Add/Sub {(⌈N/M⌉ + 2) ∗ t − 1} ∗ TN + nmax

lv ∗ (dep + 1)
Etc. FindMaxGroupPos(),ApproxInv()

mul.depth 5(dep + 1) + dep(ApproxInverse()) + dep(FindMaxGroupPos())
Line 11 in Algorithm 1

Mult {(⌈N/M⌉ + nmax ∗ d + 1) ∗ t + 3} ∗ (TN − nmax
d e p) + nmax

lv ∗ dep
Rot [{(log(M/2) + 1) ∗ ⌈N/M⌉ + nmax ∗ d − 2} ∗ t ∗ log(nmax/2) + d − 1] ∗ (TN −

nmax
d e p) + 2nmax

lv ∗ dep
Add/Sub {(log(M/2) ∗ ⌈N/M⌉ + nmax ∗ d + 1) ∗ t + log(nmax/2) + d} ∗ (TN − nmax

d e p) +
nmax

lv ∗ NumminPos ∗ dep
Etc. FindMinGroupPos()

mul.depth 6depdep(FindMinGroupPos())
Line 12 in Algorithm 1

Mult {(⌈N/M⌉ ∗ nmax + 1) ∗ d} ∗ (TN − nmax
d e p)

Rot (log(M/2) + 1) ∗ d ∗ (TN − nmax
d e p)

Add/Sub log(M/2) ∗ (TN − nmax
d e p)

mul.depth 2dep

All operations in Lines 5~8 of Algorithm 1 increase linearly with the number of target classes t
per node. However, the main factor that significantly increases the computational cost in this part is
FindMaxGroupPos(). This algorithm is affected by the number of nodes at the corresponding level,
nmax

lv , which causes the computational cost to grow exponentially. Similarly, the process in Line 11 of
Algorithm 1 also uses the FindMinGroupPos() algorithm, and its cost increases exponentially due to its
dependence on nmax

lv . Additionally, since the processes in Line 11 and Line 12 of Algorithm 1 are not executed
at the leaf nodes, they are only applied to the portion of the tree that excludes the leaf nodes. The complexity
of the ”Reconstructing model for efficient inference” process is the same as that in Table 7, and thus it has
been omitted.

8.5 Security Threat Analysis
In this study, we propose a homomorphic encryption—based framework, HEaaN-ID3, and since all

computations are performed on encrypted data, we believe that strong security satisfying the requirements
of Section 4.3 can be achieved. However, because the focus of this work is on the implementation of HEaaN-
ID3 itself, various existing defense strategies against threats such as malicious actors, model inversion attacks,
data poisoning attacks, and side-channel attacks—though they can also be realized under homomorphic
encryption—are excluded from the scope of this research. The studies proposing defense strategies for each
of these attacks are described below.

First, malicious actors refer to entities that attempt to exploit system vulnerabilities to modify data,
leak information, or maliciously manipulate model updates. In a typical environment, these threats can be
countered by applying encryption and secure communication protocols (e.g., TLS) during data collection and
transmission, as well as by employing input data validation and anomaly detection techniques. Moreover, in
federated learning environments, the impact of malicious actors can be minimized using secure aggregation

Comput Mater Contin. 2025;84(2) 3701

techniques [63] and Byzantine-tolerant gradient descent algorithms [64]. Additionally, if malicious actors
perform side-channel attacks, there is a risk that auxiliary information—such as memory access patterns,
power consumption, or execution time—generated during encryption computations could be exploited to
leak encryption keys or internal states. To defend against this, techniques such as constant-time implemen-
tations, randomization of memory access patterns, cache partitioning, and the addition of random noise are
employed. In particular, reference [65] demonstrated that these defensive measures can be effectively applied
by using cache attacks on AES implementations as an example.

Second, model inversion attacks are techniques in which an attacker leverages the model’s output infor-
mation (e.g., prediction probabilities, confidence scores, etc.) to reverse-engineer sensitive information from
the training data. Previous research has proposed methods to limit the exposure of sensitive information,
such as injecting noise into the output [66] and applying softmax post-processing [67].

Finally, data poisoning attacks refer to attacks where maliciously manipulated data is inserted into the
training dataset to distort the model’s learning outcomes or induce specific behaviors. There are studies based
on Differential Privacy (DP) that mitigate these attacks by adding noise during gradient computation [68]
or performing gradient clipping [69] to limit the contribution of each data sample during training.

9 Conclusion
In this study, we proposed HEaaN-ID3, a privacy-preserving ID3 DT using CKKS homomorphic

encryption. The ID3 DT enables the training and classification of data consisting of nominal categorical vari-
ables, which is differentiated from the existing binary tree-based classification. This requires a comparison
operation over input data. However, because the number of child nodes is equal to the number of categories
of the variable selected for splitting, to the best of our knowledge, there has been no implementation using
only homomorphic encryption owing to the high computational cost. HEaaN-ID3 can generate a model
using only encrypted training data without the help of other decryption key-owning entities, and when
encrypted input data are received based on this model, classification results can also be obtained without the
help of other entities. To demonstrate the practicality of the proposed method, we conducted a performance
evaluation after implementing the HEaaN-ID3. The results showed that the training time per node was a
few tens of times faster than that in [10], and the required wall-clock time for classification was within a
few hundred milliseconds. We also confirmed that the classification performance was similar to that of the
plaintext DT implemented in the Scikit-Learn library. The proposed method can be utilized when decryption
keys are difficult to use or when the security of the training data is very important; thus, no decryption of
the training data or its derivation is mandatory.

Acknowledgement: The authors sincerely appreciate the editors and anonymous reviewers for their valuable comments
and suggestions.

Funding Statement: This work was supported by Institute of Information communications Technology Planning
Evaluation (IITP) grant funded by the Korea government (MSIT) [No. 2022-0-01047, Development of statistical analysis
algorithm and module using homomorphic encryption based on real number operation, 100%].

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization: Younho Lee;
methodology: Dain Lee, Hojune Shin, Jihyeon Choi and Younho Lee; software: Dain Lee, Hojune Shin, Jihyeon Choi
and Younho Lee; validation: Dain Lee, Hojune Shin, Jihyeon Choi and Younho Lee; writing—original draft preparation:
Dain Lee, Hojune Shin, Jihyeon Choi and Younho Lee; writing—review and editing: Dain Lee, Hojune Shin, Jihyeon
Choi and Younho Lee; project administration: Younho Lee; funding acquisition: Younho Lee. All authors reviewed the
results and approved the final version of the manuscript.

3702 Comput Mater Contin. 2025;84(2)

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Gao S, Iu HHC, Erkan U, Simsek C, Toktas A, Cao Y, et al. A 3D memristive cubic map with dual discrete

memristors: design, implementation, and application in image encryption. IEEE Trans Circuits Syst Video Technol.
2025. doi:10.1109/tcsvt.2025.3545868.

2. Lee S, Lee G, Kim JW, Shin J, Lee M-K. HETAL: efficient privacy-preserving transfer learning with homomorphic
encryption. In: Proceedings of the International Conference on Machine Learning (ICML); 2023 Jul 23–29;
Honolulu, HI, USA. p. 19010–35.

3. Lee Y, Seo J, Nam Y, Chae J, Cheon JH. HEaaN-STAT: a privacy-preserving statistical analysis toolkit for large-scale
numerical, ordinal, and categorical data. IEEE Trans Dependable Secure Comput. 2023;21(3):1224–1241. doi:10.
1109/tdsc.2023.3275649.

4. Gul M. Fully homomorphic encryption with applications to privacy-preserving machine learning; [bachelor’s
thesis], Cambridge, MA, USA: Harvard College; 2023.

5. Kim D, Guyot C. Optimized privacy-preserving CNN inference with fully homomorphic encryption. IEEE Trans
Inf Forensics Secur. 2023;18(11):2175–87. doi:10.1109/tifs.2023.3263631.

6. Yazdinejad A, Dehghantanha A, Karimipour H, Srivastava G, Parizi RM. A robust privacy-preserving federated
learning model against model poisoning attacks. IEEE Trans Inf Forensics Secur. 2024;19:6693–6708. doi:10.1109/
tifs.2024.3420126.

7. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81–106.
8. Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for arithmetic of approximate numbers. In:

International Conference on the Theory and Application of Cryptology and Information Security; 2017 Dec 3–7;
Hong Kong, China. p. 409–37.

9. Liu L, Chen R, Liu X, Su J, Qiao L. Towards practical privacy-preserving decision tree training and evaluation in
the cloud. IEEE Trans Inf Forensics Secur. 2020;15:2914–29. doi:10.1109/tifs.2020.2980192.

10. Akavia A, Leibovich M, Resheff YS, Ron R, Shahar M, Vald M. Privacy-preserving decision trees training and
prediction. ACM Trans Priv Secur. 2022;25(3):1–30. doi:10.1145/3517197.

11. Bădulescu LA. Experiments for a better Gini index splitting criterion for data mining decision trees algorithms. In:
2020 24th International Conference on System Theory, Control and Computing (ICSTCC); 2020 Oct 8–10; Sinaia,
Romania. p. 208–12.

12. Cheon JH, Kim D, Kim D. Efficient homomorphic comparison methods with optimal complexity. In: International
Conference on the Theory and Application of Cryptology and Information Security; 2020 Dec 7–11; Daejeon,
Republic of Korea.

13. Markelle Kelly KN Rachel Longjohn. The UCI machine learning repository [Internet]; 2023 [cited 2025 Apr 28].
Available from: https://archive.ics.uci.edu.

14. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in
Python. J Mach Learn Res. 2011;12:2825–30.

15. Barni M, Failla P, Kolesnikov V, Lazzeretti R, Sadeghi AR, Schneider T. Secure evaluation of private linear branch-
ing programs with medical applications. In: Computer Security—ESORICS 2009: 14th European Symposium on
Research in Computer Security; 2009 Sep 21–23; Saint-Malo, France. p. 424–39.

16. Bost R, Popa RA, Tu S, Goldwasser S. Machine learning classification over encrypted data. In: NDSS Symposium
2015; 2015 Feb 8–11; San Diego, CA, USA.

17. Brickell J, Porter DE, Shmatikov V, Witchel E. Privacy-preserving remote diagnostics. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security; 2007 Nov 2–Oct 31; Alexandria VA, USA. p.
498–507.

https://doi.org/10.1109/tcsvt.2025.3545868
https://doi.org/10.1109/tdsc.2023.3275649
https://doi.org/10.1109/tdsc.2023.3275649
https://doi.org/10.1109/tifs.2023.3263631
https://doi.org/10.1109/tifs.2024.3420126
https://doi.org/10.1109/tifs.2024.3420126
https://doi.org/10.1109/tifs.2020.2980192
https://doi.org/10.1145/3517197
https://archive.ics.uci.edu

Comput Mater Contin. 2025;84(2) 3703

18. De Cock M, Dowsley R, Horst C, Katti R, Nascimento AC, Poon WS, et al. Efficient and private scoring of decision
trees, support vector machines and logistic regression models based on pre-computation. IEEE Trans Dependable
Secure Comput. 2017;16(2):217–30. doi:10.1109/tdsc.2017.2679189.

19. Joye M, Salehi F. Private yet efficient decision tree evaluation. In: Data and Applications Security and Privacy
XXXII: 32nd Annual IFIP WG 11.3 Conference, DBSec 2018; 2018 Jul 16–18; Bergamo, Italy. p. 243–59.

20. De Hoogh S, Schoenmakers B, Chen P, op den Akker H. Practical secure decision tree learning in a teletreatment
application. In: Financial Cryptography and Data Security: 18th International Conference, FC 2014; Christ Church,
Barbados; 2014 Mar 3–7. p. 179–94.

21. Du W, Zhan Z. Building decision tree classifier on private data. In: CRPIT ’14: Proceedings of the IEEE International
Conference on Privacy, Security and Data Mining; 2002 Dec 1; Maebashi City, Japan. p. 1–8.

22. Emekçi F, Sahin OD, Agrawal D, El Abbadi A. Privacy preserving decision tree learning over multiple parties. Data
Knowl Eng. 2007;63(2):348–61.

23. Agrawal R, Srikant R. Privacy-preserving data mining. In: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data; 2000 May 15–18; Dallas, TX, USA. p. 439–50.

24. Lory P. Enhancing the efficiency in privacy preserving learning of decision trees in partitioned databases. In:
Privacy in Statistical Databases: UNESCO Chair in Data Privacy, International Conference, PSD 2012; 2012 Sep
26–28; Palermo, Italy. p. 322–35.

25. Li Y, Jiang ZL, Wang X, Yiu SM. Privacy-preserving ID3 data mining over encrypted data in outsourced envi-
ronments with multiple keys. In: 2017 IEEE International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC); 2017 Jul 21–24;
Guangzhou, China. p. 548–55.

26. Liang J, Qin Z, Xue L, Lin X, Shen X. Efficient and privacy-preserving decision tree classification for health
monitoring systems. IEEE Internet Things J. 2021;8(16):12528–39. doi:10.1109/jiot.2021.3066307.

27. Zheng Y, Duan H, Wang C, Wang R, Nepal S. Securely and efficiently outsourcing decision tree inference. IEEE
Trans Dependable Secure Comput. 2022;19(3):1841–55. doi:10.1109/tdsc.2020.3040012.

28. Cong K, Das D, Park J, Pereira HV. SortingHat: efficient private decision tree evaluation via homomorphic
encryption and transciphering. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security; 2022 Nov 7–11; Los Angeles, CA, USA. p. 563–77.

29. Kim M, Song Y, Cheon JH. Secure searching of biomarkers through hybrid homomorphic encryption scheme.
BMC Med Genomics. 2017;10(2):69–76. doi:10.1186/s12920-017-0280-3.

30. Kim P, Jo E, Lee Y. An efficient search algorithm for large encrypted data by homomorphic encryption. Electron.
2021;10(4):484. doi:10.3390/electronics10040484.

31. Azogagh S, Delfour V, Gambs S, Killijian MO. PROBONITE: private one-branch-only non-interactive decision
tree evaluation. In: Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. WAHC’22; 2022 Nov 7; Los Angeles, CA, USA. p. 23–33. doi:10.1145/3560827.3563377.

32. Cheng N, Gupta N, Mitrokotsa A, Morita H, Tozawa K. Constant-round private decision tree evaluation for secret
shared data. Proc Priv Enhanc Technol. 2024;2024(1):397–412.

33. Bai J, Song X, Zhang X, Wang Q, Cui S, Chang EC, et al. Mostree: malicious secure private decision tree evaluation
with sublinear communication. In: Proceedings of the 39th Annual Computer Security Applications Conference;
2023 Dec 4–8; Austin, TX, USA. p. 799–813.

34. Ji K, Zhang B, Lu T, Li L, Ren K. UC secure private branching program and decision tree evaluation. IEEE Trans
Dependable Secure Comput. 2022;20(4):2836–48. doi:10.1109/tdsc.2022.3202916.

35. Zhang Z, Zhang H, Song X, Lin J, Kong F. Secure outsourcing evaluation for sparse decision trees. IEEE Trans
Dependable Secure Comput. 2024;21(6):5228–5241. doi:10.1109/tdsc.2024.3372505.

36. Wang Q, Cui S, Zhou L, Dong Y, Bai J, Koh YS, et al. GTree: GPU-friendly privacy-preserving decision tree training
and inference. arXiv:230500645. 2023.

37. Vaidya J, Kantarcıoğlu M, Clifton C. Privacy-preserving naive bayes classification. VLDB J. 2008;17(4):879–98.
doi:10.1007/s00778-006-0041-y.

https://doi.org/10.1109/tdsc.2017.2679189
https://doi.org/10.1109/jiot.2021.3066307
https://doi.org/10.1109/tdsc.2020.3040012
https://doi.org/10.1186/s12920-017-0280-3
https://doi.org/10.3390/electronics10040484
https://doi.org/10.1145/3560827.3563377
https://doi.org/10.1109/tdsc.2022.3202916
https://doi.org/10.1109/tdsc.2024.3372505
https://doi.org/10.1007/s00778-006-0041-y

3704 Comput Mater Contin. 2025;84(2)

38. Wang K, Xu Y, She R, Yu PS. Classification spanning private databases. In: AAAI’06: Proceedings of the 21st
National Conference on Artificial Intelligence; 2006 Jul 16–20; Boston, MA, USA. p. 293–8.

39. Li Y, Jiang ZL, Wang X, Fang J, Zhang E, Wang X. Securely outsourcing ID3 decision tree in cloud computing.
Wirel Commun Mob Comput. 2018;2018:2385150.

40. Li Y, Jiang ZL, Wang X, Yiu SM, Zhang P. Outsourcing privacy preserving ID3 decision tree algorithm over
encrypted data-sets for two-parties. In: 2017 IEEE Trustcom/BigDataSE/ICESS; 2017 Aug 1–4; Sydney, NSW,
Australia. p. 1070–5. doi:10.1109/trustcom/bigdatase/icess.2017.354.

41. Samet S, Miri A. Privacy preserving ID3 using Gini index over horizontally partitioned data. In: 2008 IEEE/ACS
International Conference on Computer Systems and Applications; 2008 Mar 31–Apr 4; Doha, Qatar. p. 645–51.

42. Xiao MJ, Huang LS, Luo YL, Shen H. Privacy preserving ID3 algorithm over horizontally partitioned data. In: Sixth
International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT’05);
2005 Dec 5–8; Dalian, China. p. 239–43.

43. Kiss Á, Naderpour M, Liu J, Asokan N, Schneider T. SoK: modular and efficient private decision tree evaluation.
Proc Priv Enh Technol. 2019;2019(2):187–208. doi:10.2478/popets-2019-0026.

44. Tai RK, Ma JP, Zhao Y, Chow SS. Privacy-preserving decision trees evaluation via linear functions. In: Computer
Security–ESORICS 2017: 22nd European Symposium on Research in Computer Security; 2017 Sep 11–15; Oslo,
Norway. p. 494–512.

45. Wu DJ, Feng T, Naehrig M, Lauter K. Privately evaluating decision trees and random forests. Proc Priv Enh Technol.
2016;4(4):335–55. doi:10.1515/popets-2016-0043.

46. Tueno A, Kerschbaum F, Katzenbeisser S. Private evaluation of decision trees using sublinear cost. Proc Priv Enh
Technol. 2019;2019(1):266–86. doi:10.2478/popets-2019-0015.

47. Wj Lu, Zhou JJ, Sakuma J. Non-interactive and output expressive private comparison from homomorphic
encryption. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security; 2018 Jun
4; Incheon, Republic of Korea.

48. Tueno A, Boev Y, Kerschbaum F. Non-interactive private decision tree evaluation. In: Data and Applications
Security and Privacy XXXIV: 34th Annual IFIP WG 11.3 Conference, DBSec 2020; Jun 25–26; Regensburg,
Germany. p. 174–94.

49. Huysmans J, Dejaeger K, Mues C, Vanthienen J, Baesens B. An empirical evaluation of the comprehensibility of
decision table, tree and rule based predictive models. Decis Support Syst. 2011;51(1):141–54. doi:10.1016/j.dss.2010.
12.003.

50. Quinlan JR. C4.5: programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc;
1993.

51. Quinlan JR. Improved use of continuous attributes in C4.5. J Artif Intell. 1996;4:77–90. doi:10.1613/jair.279.
52. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. London, UK: Routledge; 2017.
53. Shafer J, Agrawal R, Mehta M. SPRINT: a scalable parallel classifier for data mining. In: VLDB ’96: Proceedings of

the 22th International Conference on Very Large Data Bases; 1996 Sep 3–6; Mumbai, India. p. 544–55.
54. Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy.

2019;21(6):541. doi:10.3390/e21060541.
55. Jung W, Kim S, Ahn JH, Cheon JH, Lee Y. Over 100x faster bootstrapping in fully homomorphic encryption

through memory-centric optimization with GPUs. IACR Trans Cryptogr Hardw Embed Syst. 2021;2021(4):114–48.
doi:10.46586/tches.v2021.i4.114-148.

56. Han K, Ki D. Better bootstrapping for approximate homomorphic encryption. In: Cryptographers’ Track at the
RSA Conference; 2020 Feb 24–28; San Francisco, CA, USA. p. 364–90.

57. Cheon JH, Han K, Kim A, Kim M, Song Y. A full RNS variant of approximate homomorphic encryption. In:
International Conference on Selected Areas in Cryptography; 2018 Aug 15–17; Calgary, AB, Canada. p. 347–68.

58. Lee JW, Lee E, Lee Y, Kim YS, No JS. High-precision bootstrapping of RNS-CKKS homomorphic encryption using
optimal minimax polynomial approximation and inverse sine function. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques; 2021 Oct 17–21; Zagreb, Croatia. p. 618–47.

https://doi.org/10.1109/trustcom/bigdatase/icess.2017.354
https://doi.org/10.2478/popets-2019-0026
https://doi.org/10.1515/popets-2016-0043
https://doi.org/10.2478/popets-2019-0015
https://doi.org/10.1016/j.dss.2010.12.003
https://doi.org/10.1016/j.dss.2010.12.003
https://doi.org/10.1613/jair.279
https://doi.org/10.3390/e21060541
https://doi.org/10.46586/tches.v2021.i4.114-148

Comput Mater Contin. 2025;84(2) 3705

59. Han B, Shin H, Kim Y, Choi J, Lee Y. HEaaN-NB: non-interactive privacy-preserving Naive Bayes using CKKS for
secure outsourced cloud computing. IEEE Access. 2024;12(196):110762–80. doi:10.1109/access.2024.3438161.

60. Shin H, Choi J, Lee D, Kim K, Lee Y. Fully homomorphic training and inference on binary decision tree and
random forest. In: Computer Security—ESORICS 2024: 29th European Symposium on Research in Computer
Security; 2024 Sep 16–20; Bydgoszcz, Poland.

61. Cheon JH, Hong S, Kim D. Remark on the security of ckks scheme in practice. Cryptology EPrint Archive. [cited
2025 May 22]. Available from: https://eprint.iacr.org/2020/1581.

62. Micci-Barreca D. A preprocessing scheme for high-cardinality categorical attributes in classification and prediction
problems. ACM SIGKDD Explor Newsletter. 2001;3(1):27–32. doi:10.1145/507533.507538.

63. Blanchard P, El Mhamdi EM, Guerraoui R, Stainer J. Machine learning with adversaries: byzantine tolerant
gradient descent. Adv Neural Inf Process Syst. 2017;30:119–29.

64. Yin D, Chen Y, Kannan R, Bartlett P. Byzantine-robust distributed learning: towards optimal statistical rates. In:
International Conference on Machine Learning; 2018 Jul 10–15; Stockholm, Sweden. p. 5650–9.

65. Osvik DA, Shamir A, Tromer E. Cache attacks and countermeasures: the case of AES. In: Topics in Cryptology–
CT-RSA 2006: The Cryptographers’ Track at the RSA Conference 2006; 2005 Feb 13–17; San Jose, CA, USA. p.
1–20.

66. Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic
countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security; 2015 Oct 12–16; Denver, CO, USA. p. 1322–33.

67. Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning: passive and active white-box
inference attacks against centralized and federated learning. In: 2019 IEEE Symposium on Security and Privacy
(SP); 2019 May 19–23; San Francisco, CA, USA. p. 739–53.

68. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, et al. Deep learning with differential privacy.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security; 2016 Oct
24–28; Vienna, Austria. p. 308–18.

69. Steinhardt J, Koh PWW, Liang PS. Certified defenses for data poisoning attacks. Adv Neural Inf Process Syst.
2017;30:3517–29.

https://doi.org/10.1109/access.2024.3438161
https://eprint.iacr.org/2020/1581
https://doi.org/10.1145/507533.507538

	HEaaN-ID3: Fully Homomorphic Privacy-Preserving ID3-Decision Trees Using CKKS
	1 Introduction
	2 Related Work
	3 Backgrounds
	4 Models
	5 HEaaN-ID3
	6 Experimental Results
	7 Security Analysis of the Proposed Method
	8 Discussion
	9 Conclusion
	References

