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ABSTRACT: In the current era of intelligent technologies, comprehensive and precise regional coverage path planning
is critical for tasks such as environmental monitoring, emergency rescue, and agricultural plant protection. Owing
to their exceptional flexibility and rapid deployment capabilities, unmanned aerial vehicles (UAVs) have emerged
as the ideal platforms for accomplishing these tasks. This study proposes a swarm A*-guided Deep Q-Network
(SADQN) algorithm to address the coverage path planning (CPP) problem for UAV swarms in complex environments.
Firstly, to overcome the dependency of traditional modeling methods on regular terrain environments, this study
proposes an improved cellular decomposition method for map discretization. Simultaneously, a distributed UAV
swarm system architecture is adopted, which, through the integration of multi-scale maps, addresses the issues of
redundant operations and flight conflicts in multi-UAV cooperative coverage. Secondly, the heuristic mechanism of the
A* algorithm is combined with full-coverage path planning, and this approach is incorporated at the initial stage of Deep
Q-Network (DQN) algorithm training to provide effective guidance in action selection, thereby accelerating con-
vergence. Additionally, a prioritized experience replay mechanism is introduced to further enhance the coverage
performance of the algorithm. To evaluate the efficacy of the proposed algorithm, simulation experiments were
conducted in several irregular environments and compared with several popular algorithms. Simulation results show
that the SADQN algorithm outperforms other methods, achieving performance comparable to that of the baseline prior
algorithm, with an average coverage efficiency exceeding 2.6 and fewer turning maneuvers. In addition, the algorithm
demonstrates excellent generalization ability, enabling it to adapt to different environments.

KEYWORDS: Coverage path planning; unmanned aerial vehicles; swarm intelligence; Deep Q-Network; A* algorithm;
prioritized experience replay

1 Introduction
In recent years, due to their efficiency, flexibility, safety, and other advantages, unmanned aerial vehicles

(UAVs) have been widely applied in various fields such as surveillance, agriculture, disaster management, and
power line inspections [1–5]. These applications require UAV to quickly cover the target area while acquiring
environmental information and avoiding obstacles [6]. Therefore, efficient coverage path planning (CPP) is
critical to determining the operational efficiency and quality of the UAV. However, in practical applications, a
single UAV is limited by its endurance and is suitable only for small-scale tasks [7]. For large-scale missions,
UAV swarm are typically used. This paper focuses on the coverage task of the UAV swarm in order to further
improve efficiency and reduce time and energy consumption.
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Researchers have proposed various methods to address the UAV swarm coverage path planning
problem, which can be broadly classified into centralized and distributed approaches. In centralized methods,
a central planner allocates tasks based on prior environmental knowledge and mathematical optimization
to find the optimal path [8]. However, these methods assume that environmental information is available,
which underestimates the complexity of the CPP problem. Distributed methods, on the other hand, enable
collaborative decision-making through communication between UAVs and a ground station, avoiding
collisions [9], but still face challenges in complex and irregular environments. With the development of
artificial intelligence, more and more researchers are applying machine learning to path planning problems,
with reinforcement learning (RL) being the most representative approach [10]. However, its research in
coverage path planning is still in the early stages [11].

This paper proposes a UAV swarm-based Coverage Path Planning methodology, aiming to ensure
complete coverage of the target area while minimizing time and energy consumption, taking into account
factors such as no-fly zones, boundary constraints, and flight conflicts. The main contributions of this paper
include:

(1) We proffer an enhanced cell decomposition method, discretizing the irregular target area into grids
whilst concurrently minimizing the grid-based target area to curtail the task execution time to the
greatest extent possible.

(2) We put forward a multi-scale map fusion method, which amalgamates and updates local environ-
ment maps perceived by individual UAVs through communication among UAVs, augmenting the
observation range of UAVs and further augmenting coverage efficiency.

(3) We present a distributed SADQN algorithm, leveraging the A* algorithm to assist in initial action
selection for UAV swarm DQN training, expediting the training process, and employing prioritized
experience replay to train neural networks, hastening the convergence of the algorithm.

The remainder of this work is structured as follows. Section 2 furnishes an overview of germane work in
the field of multi-UAV coverage path planning. Section 3 introduces the model of UAV swarm coverage tasks
and delineates objectives and constraints. Section 4 presents the SADQN algorithm for UAV swarm coverage
along with its minutiae. Section 5 showcases the simulation results of the algorithm. Finally, Section 6
concludes the paper and deliberates on future research directions.

2 Related Works
At present, a copious amount of research efforts have been dedicated to the coverage path planning

problem concerning UAV swarms. This part undertakes a comprehensive survey of pertinent work from
both centralized and distributed perspectives.

In [12], a grid decomposition-based coverage method is proposed, which optimizes the allocation
of coverage areas for multiple UAVs by constructing a linear programming model. Lu et al. introduced
a turning-minimization multi-robot spanning tree coverage algorithm that transforms the problem into
one of finding the maximum independent set in a bipartite graph and then employs a greedy strategy to
minimize the number of turns in the spanning tree’s circumnavigation coverage path [13]. Maza and Ollero
presented a cooperative strategy in which the ground control station divides the target area into multiple non-
overlapping, obstacle-free subregions and assigns each subregion to a UAV based on its relative capabilities
and initial position [14]. However, since this method initiates task assignments from the center of each
subregion, it may result in considerable redundant coverage. Building upon this, Chen et al. proposed a
novel path planning method based on a success-history-adaptive differential evolution variant combined
with linear population reduction. This approach establishes the relationship between all possible starting
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points of subregion paths and the overall multi-region path to enhance the efficiency of multi-region coverage
tasks [15].

These methods rely on the availability of environmental information, underestimating the complexity
of the CPP problem and being applicable only to deterministic scenarios. To augment UAVs’ robustness in
complex environments, distributed algorithms can be enlisted. In [16], a coordinated search scheme based
on model predictive control and communication constraints was designed to effectively enable UAV swarms
to search for both static and dynamic targets in uncertain scenarios. Qiu et al. proposed a novel complete
coverage path planning method for mobile robot obstacle avoidance based on bio-inspired neural networks,
rolling path planning, and heuristic search approaches [17]. Bine et al. introduced an energy-aware ant
colony optimization algorithm that leverages multi-UAV Internet technologies to coordinate and organize
UAVs in order to avoid airspace collisions and congestion [18]. Li et al. proposed a DQN-based coverage
path planning method that approximates the optimal action values via DQN, while combining a sliding
window approach with probabilistic statistics to handle unknown environments. This method optimizes
coverage decisions and enhances the adaptability and performance of multi-UAV missions in unknown
scenarios [19]. Moreover, in [20], a comprehensive coverage path planning framework was constructed using
deep reinforcement learning techniques, which integrates convolutional neural networks with long short-
term memory networks. The framework simultaneously maximizes cumulative rewards and optimizes an
overall cost weight based on kinetic energy.

Although the above research results have obvious application effects in their respective research fields,
there is still significant room for improvement in solving the problem of collaborative coverage path
planning for UAV swarms in discrete environments, while simultaneously reducing path repetition rate and
energy consumption.

3 Framework of the Model

3.1 Enhanced Approximate Cell Decomposition
The coverage task in this study is conducted on a discretized map. However, real-world environments

are often irregular, which results in many redundant grids during the discretization process. In irregular
terrain environments, to improve task execution efficiency, we have adopted an innovative strategy: rotating
the target area to minimize the decomposed grid map, thereby minimizing task execution time.

Fig. 1 illustrates this enhanced approximate cell decomposition method, where black lines represent the
boundaries of the irregular target area, red grids represent the area that UAVs need to cover, black blocks
represent obstacles in the environment, and gray grids represent no-fly zones. Fig. 1a illustrates the initial
situation of cell decomposition in an irregular area. To optimize the terrain redundancy issue, we first identify
all vertices (xi , yi) of the target area and select the longest edge AB. Point A is chosen as the reference
point, and the entire target area is translated using Eq. (1) to obtain coordinates (x

′

i , y
′

i), as shown in Fig. 1b.
Then, using edge AB as the rotation axis, the entire target area is rotated using Eq. (2) to obtain coordinates
(x

′′

i , y
′′

i ), and where li is the length of edge AB, and θi is the rotation angle. Fig. 1c represents the final grid
target area.

(x
′

i , y
′

i) = (xi − xa , yi − ya) (1)

(x
′′

i , y
′′

i ) = (li ∗ cos θi , li ∗ sin θi) (2)
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Figure 1: Illustration of enhanced approximate cell decomposition in irregular terrain

3.2 Multi-Scale Maps
UAV swarms often face issues such as trajectory overlap, coverage gaps, and collisions when performing

coverage path planning in complex environments with obstacles. To address these challenges, we propose a
method for integrating and updating multi-scale maps to achieve close cooperation among UAVs.

Specifically, a UAV swarm system consisting of N UAVs is established, where each UAV is denoted as
UAVi , (i ∈ N). These UAVs are tasked with coverage missions in a l × w grid area, with each grid’s geometric
center denoted as P = (x , y), where x ∈ {1, 2, . . . , l} , y ∈ {1, 2, . . . , w}. Thus, the position information of the
i-th UAV can be represented as Pi = (x , y). Let G represent the target grid area in the irregular environment
where CPP needs to be performed, requiring Pi ∈ G. When a UAV reaches the position above point P it
indicates that the current grid has been fully covered. Let Covrx , y represent the environmental information
status value of the current grid: Covrx , y = 0 indicates that the grid has not been covered by any UAV,
Covrx , y = 1 indicates that the grid has been covered, and Covrx , y = −1 indicates that the UAV has detected
an obstacle in the grid. Therefore, the coverage status matrix mapi of the i-th UAV can be represented as
follows:

mapi =
⎛
⎜
⎝

Covri
1,1 . . . Covri

1,w
⋮ ⋱ ⋮
Covri

l ,1 ⋅ ⋅ ⋅ Covri
l ,w

⎞
⎟
⎠

(3)

In this equation, Covri
x , y represents the coverage status of UAVi at grid (x , y). The process of multi-scale

map fusion and update for the UAV swarm can be represented using the coverage status matrix:

mapi
u pd ate
←���� map(max

i∈N
Covri

x , y) (4)

Fig. 2 shows the system framework for three UAVs working together on the CPP task. UAVs interact
with the environment, choose actions, and receive rewards. Specifically, we use local environmental maps
to record the areas covered by each UAV and no-fly zones. At each time step, UAVs exchange local
environmental map information with the ground station and update the multi-scale maps, enabling action
decisions based on global observations.
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Figure 2: Illustration of the CPP system framework

3.3 Performance Metrics
In summary, this paper adopts a distributed approach, allowing each UAV to take off simultaneously

from different initial positions. At each step, UAVs collaborate using multi-scale map integration while
independently making action decisions. During this process, each UAV only needs to cover a portion of the
target area, completing its sub-task. Therefore, the completion time of the last UAV’s sub-task determines
the total completion time of the CPP task. This paper assumes that the UAV maintains a constant speed
during flight and uses the number of task completion steps Step as an important metric to evaluate the CPP
problem, which can be expressed as follows:

Step = max
i∈N

stepi (5)

where stepi represents the number of steps required for UAVi to complete its subtask. We need to set multiple
metrics for precise measurement to better assess the coverage task performance. First, we define Pl a pped as
the set of all duplicate grids within the target area, and Pcov er

i as the set of all grids covered by the path of
UAVi . Thus, the difference between the two represents the effective coverage grid set. Based on this, we define
the coverage efficiency of the UAV swarm CPP task as follows:

η =
∑N

i=1 f (Pcov er
i − Pl a pped)
Step

(6)

where the function f (●) is used to obtain the number of elements in a set. The CPP problem for the
UAV swarm requires maximizing coverage efficiency within the target area, meaning minimizing the task
completion steps. Additionally, the number of turns in the path needs to be counted fturn .
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4 Distributed SADQN Algorithm

4.1 DQN Algorithm
The Deep Q-Network (DQN) algorithm aims to learn the state-action value (Q-value) function through

a deep neural network to find the optimal policy, enabling the agent to take appropriate actions in each state
to maximize future cumulative rewards. The update process of its Q-value function is as follows:

Q (s, a; θ) = r + γmax
a′

Q (s′, a′; θ−) (7)

The parameters θ in Eq. (7) are the weights of each layer in the neural network, γ is the discount factor,
and r is the reward value for the current action. The core idea of the DQN algorithm is to minimize the loss
function and continuously adjust the weights θ of the neural network using gradient descent, so that the Q-
values output by the network are as close as possible to the actual Q-values. The loss function can be defined
as follows:

L (θ) = Es ,a ,r ,s′ [(r + γmax
a′

Q (s′, a′; θ−) − Q (s, a; θ))
2
] (8)

Specifically, DQN uses two neural networks with the same structure but different parameters: the online
network and the target network. In Eq. (8), Q (s, a; θ) represents the output of the online network, which is
used to evaluate the Q-value of the current state-action pair; Q (s′, a′; θ−) represents the output of the target
network, and the target Q-value calculation process is reflected in Eq. (7). The parameters are then updated
based on the loss function, with the online network updating its parameters at each iteration, while the target
network updates its parameters only periodically.

In a given state, the agent in a reinforcement learning task can only choose one action, either exploitation
or exploration. Therefore, a balance between the two needs to be achieved in order to obtain the optimal
task outcome. To further improve learning efficiency, this paper improves the ε-greedy strategy. This paper
proposes a swarm A*-guided Deep Q-Network (SADQN) algorithm, in which a heuristic action guidance
mechanism based on the A* algorithm is introduced during the DQN training process to replace the
traditional random action selection strategy. This improved action selection strategy not only preserves
the adaptive exploration ability of reinforcement learning but also accelerates the accumulation of effective
experiences through heuristic guidance. The ε-greedy strategy designed in this paper is as follows:

at =
⎧⎪⎪⎨⎪⎪⎩

A* , ρ < ε
arg max

a
Q (s, a; θ) , ρ ≥ ε (9)

where ρ is a randomly generated number between 0 and 1, and in this paper, ε is set to 0.9. When
ρ < ε, the UAVs select the action with the maximum Q-value based on the Q-network; otherwise, it makes
action decisions with the A* algorithm. Subsequently, we introduce how the A* algorithm selects actions for
coverage path planning. Each UAV needs to plan its path based on the globally observed map fused from
multi-scale maps. Starting from the current position Pi , the objective is to minimize the following:

f (x) = g (x) + h (x) (10)

where g (x) represents the cost incurred from the starting point Pi to the current position xi , which is the
sum of the cost of each action gi taken from the starting point to the current position, where gi ∈ G and
G = {0, 0.1, 0.4, 0.2, 0.2}. h (x) represents the estimated cost at point x, which is set as the heuristic cost of
the given position, i.e., the Manhattan distance between this position and the starting point.
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4.2 State Space, Action Space, Reward
The state space, action space, and instantaneous reward for the UAVi at each time step t can be

respectively represented as st
i , at

i , rt
i .

a. State space and action space

In a discrete grid map, the position of the UAVi at time step t can be denoted as Pt
i = (x , y). In the

distributed approach, to enhance cooperation, the state space of each UAV is relatively complex, including
the current position, action decisions, and local environmental map information. Therefore, the state vector
of UAVi can be represented as st

i = {Pt
i , at

i , mapt
i}.

The algorithm discretizes the UAV’s action space, where the UAV can move diagonally through
horizontal and vertical actions. Thus, the action set of the UAVs is represented as A = {a0, a1 , a2, a3, a4}.
Where a0 represents the stationary action, and a1 , a2, a3, a4 represent actions moving upwards, downwards,
leftwards, and rightwards, respectively. Therefore, the action of UAVi at time t can be represented as at

i ∈ A.

b. Reward

The core objective of the CPP for the UAV swarm is to maximize coverage efficiency while ensuring safe
flight operations. To achieve this goal, we have designed multiple task-oriented reward functions to guide the
UAV swarm in achieving optimal collision-free coverage. Specifically, to avoid path repetition and collisions,
we have designed a reward based on effective coverage, denoted as rarea :

rarea =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, map (x , y) = 0
−1, map (x , y) = 1
−10, map (x , y) = −1

(11)

In Eq. (11), map (x , y) represents the environmental state information value of the current grid. The
UAVi will be assigned different coverage reward values based on the different environmental state of the
current grid. In addition, frequent turns by the UAVi can lead to additional energy consumption, significantly
increasing energy usage. To reduce mission energy consumption, we have designed a turn-based reward
rturn :

rturn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.5, a = a1
−0.5, a = a3, a4
−1, a = a0, a2

(12)

In Eq. (12), the UAVi is assigned different turning reward values according to its selected flight action.
To incentivize the UAVs to use the A* planned path in the early stages of training and accelerate the training
process, a positive reward rA∗ = 0.1 is provided when each UAV employs the A* algorithm for action decision-
making. And when the UAV swarm completes the CPP task, each UAV receives a reward rend = 1 for reaching
its final position state.

The total reward rt
i obtained by the UAVs at each time step is composed of the four components

mentioned above, namely:

rt
i = rarea + rturn + rA∗ + rend (13)

4.3 Prioritized Experience Replay
The SADQN algorithm of this paper deployed on UAVi has its Q-network taking the current state si

as input and outputting the estimated Q-value Q (si , ai , θi); the target Q-network takes the next state s
′

i as
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input and outputs the maximum Q-value max
a′i

Q (s
′

i , a
′

i ; θ−i ). Therefore, the target Q-value can be represented

as Eq. (14).

yi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ri , is end
ri + γ max

a′i
Q (s

′

i , a
′

i ; θ−i ) , otherwise (14)

To effectively utilize learning experiences, we adopt a prioritized experience replay strategy to improve
learning efficiency and stability during training, accelerating the algorithm’s convergence. In the SADQN
algorithm proposed in this paper, the UAVi takes action ai in the current state si , transitions to the next
state s

′

i , and receives the corresponding reward ri . The experience sample (si , ai , ri , s
′

i) is then stored in the
experience replay buffer Di of UAVi . UAVi selects experience samples from its replay buffer based on the TD-
error of the j-th sample to determine the sampling probability. The TD-error δ( j)

i represents the difference
between the current Q-value and the target Q-value, and it is defined as follows in Eq. (15):

δ( j)
i = (yi − Q (si , ai ; θi))( j) (15)

Pi ( j) =
(p( j)

i )
α

∑k (p(k)
i )

α (16)

p( j)
i = ∣δ( j)

i ∣ + ε (17)

ω( j)
i = α ⋅ (n ⋅ p( j)

i )
−β

(18)

Eq. (16) defines the sampling probability for each sample, where p( j)
i represents the priority of the i-

th sample in the experience pool, as defined in Eq. (17). Additionally, k represents the number of samples
in the experience pool, and the parameter α controls the strength of prioritized replay. Eq. (18) defines the
importance weight ω( j)

i , which is used to eliminate the bias introduced by prioritized experience replay. The
parameter β determines the intensity of bias correction. Therefore, the loss function considering the priority
of experience samples can be defined as:

Li(θi) = E [ω( j)
i ⋅ (δ( j)

i )
2
] (19)

θi ← θi + αδ( j)
i ⋅ ∇θ i (Q (si , ai ; θi))( j) (20)

Eq. (20) is used to update the parameters θi of the Q-network. Every C steps, the parameters of the
Q-network are copied to the target network (i.e., θ−i = θi), and the target Q-values yi are generated using
the target Q-network for the subsequent C steps. The detailed process of the SADQN algorithm is as follows
(Algorithm 1):

Algorithm 1: Distributed SADQN algorithm
Input: number of UAVs N , number of episodes E, number of steps T , minibatch k, frequency of
target-update C, experience pool capacity M
Initialize: initialize the target area observe and the initial position of UAVs, the replay
memory Di ← ∅, initialize action-value function Q with random weights θi , initialize target action-value
function Q with weights θ−i = θi

(Continued)
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Algorithm 1 (continued)
For episode = 1, E do

Initialize sequence s0
i

For step = 1, T do
For UAVi = 1, N do

With probability ε select at
i = argmax [Q (st

i , at ; θi)] otherwise, select the action calculated by A*
Execute action at

i in emulator and observe reward rt
i and next state st+1

i
If collide or complete the coverage task then

break
Store transition (st

i , at
i , rt

i , st+1
i ) in Di(∣Di ∣ > M, remove old samples)

Sample k transitions from Di , calculate the transition priority by Eq. (17) and the weight by Eq. (18)
Perform a gradient descent step to the network parameters θi by Eq. (20)

Compute TD-error by Eq. (15) and update transition priority
Every C steps reset θ−i = θi

End For
update the state si

t+1 ← si
t , i = 1, 2, . . . , N

End For
End For

5 Simulation Result
This section validates the correctness and effectiveness of the proposed SADQN method by comparing

its results with those of six other solutions, including GBNN, A*, TMSTC*, SADQN-nA, SADQN-nP, and
DDPG. All algorithms were run on Python 3.9 on a Windows 11 system. The specific parameter settings
of the algorithm are as follows: the learning rate lr = 0.0001, the discount factor γ = 0.85, the batch size
for stochastic gradient B = 64, the experience replay buffer capacity M = 1000000, the neural network
parameters θi for each UAV are randomly initialized, the target network update frequency C = 4, the
parameter α for prioritized experience replay is set to 0.6, and the parameter β is set to 0.7.

5.1 Analysis Performance of SADQN
We map the UAV flight trajectories onto a two-dimensional plane. Fig. 3a shows the irregular envi-

ronment, where the initial discretized map is shown in Fig. 3b, and the final optimized map is presented
in Fig. 3c. And in the irregular environment depicted in Fig. 3c, three UAVs are deployed to perform the
coverage path planning task. The green dashed lines represent the starting positions of the UAVs.

As shown in Fig. 4, the final coverage results of different algorithms are presented. We can observe that
all the algorithms have completed the coverage task. Moreover, the paths generated by the proposed SADQN
method and the A* algorithm show no overlapping segments, while significant repeated coverage is observed
in the path maps of the other algorithms.

As shown in Table 1, the average results of the CPP task under different algorithms are presented. From
this, we can observe that in the irregular environment, the average coverage efficiency of the proposed
SADQN method can reach 2.798, which indicates that it effectively balances the workload distribution
among the UAVs while minimizing repeated coverage. Notably, the task completion efficiency of our method
is superior to that of the GBNN, A*, and TMSTC* algorithms. Where the GBNN algorithm exhibits a signif-
icant amount of redundant path planning. While the A* and TMSTC algorithms demonstrate high coverage
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efficiency, they fall short of the SADQN algorithm in terms of the number of task completion steps, primarily
due to their lack of a collaborative mechanism. Our SADQN algorithm achieves cooperative coverage among
UAVs by sharing environmental information through multi-scale maps, making it better suited for complex
environments and resulting in superior path planning. Additionally, the SADQN algorithm performs better
in terms of step count and number of turns, benefiting from our turn reward mechanism, which effectively
reduces energy consumption caused by frequent turns. DDPG adopts a deterministic policy, making it prone
to getting stuck in local optima during exploration. Although it enhances exploration by adding noise, this
mechanism is insufficient in large state spaces and irregular environments, resulting in slow learning and
suboptimal performance.

(b)

y y

x x0 0

y

x
0

(a) (c)

Figure 3: Schematic diagram of the discretized target area

(a) (b) (c) (d)

(e) (f) (g)

Figure 4: Comparison of coverage results for different algorithms. (a) GBNN; (b) A*, (c) TMSTC*; (d) SADQN;
(e) SADQN_nP; (f) SADQN_nA; (g) DDPG
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Table 1: Results of completion steps, coverage efficiency, and turning counts

Algorithm Completion steps Coverage efficiency η Turning counts
GBNN 29 1.517 21

A* 21 2.667 17
TMSTC* 22 2.409 17
SADQN 19.5 2.798 15.25

SADQN_nP 20.75 2.490 20.25
SADQN_nA 21.25 2.408 17.50

DDPG 23.5 2.062 26

Fig. 5 illustrates the reward variation curves of four different algorithms during training, with the shaded
areas representing the standard deviation of the reward values, reflecting the range of reward fluctuations.
From Fig. 5, we can observe that the SADQN algorithm converges the fastest, stabilizing after 200 episodes.
The reward values of the SADQN_nA algorithm are relatively low, indicating that the A*-guided algorithm
provides effective prior knowledge, accelerating the training process. The reward increase of the SADQN_nP
algorithm is slower, suggesting that prioritized experience replay effectively utilizes important experiences,
enhancing training efficiency. The combination of the A* algorithm and prioritized experience replay makes
the SADQN algorithm perform the best. The DDPG algorithm converges slowly with lower reward values,
primarily because its exploration mechanism and action selection methods are unsuitable for complex
environments, resulting in significantly inferior performance.

Figure 5: Reward curve comparison graph

The UAV swarm may encounter unexpected situations such as malfunctions, energy depletion, or
communication interruptions while performing complex tasks, causing some UAVs to stop working. In such
cases, ensuring full coverage becomes crucial. As shown in Fig. 6, in a coverage task coordinated by three
UAVs, one UAV stops working due to an unexpected issue. The remaining two UAVs can quickly adjust
their strategies and take over the coverage task for the entire area to ensure the successful completion of
full coverage.
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Figure 6: Response of the UAV swarm to the failure situation

5.2 Generalization Ability
To validate the algorithm’s generalization ability, this section compares the results of the CPP problem

in two irregular environments, Env1 and Env2, as shown in Fig. 7a,b. It can be observed that the number
of coverage grids in the target area was reduced by 10.1% and 9.1%, respectively, after processing with the
improved cell decomposition method. In this section, three UAVs were deployed to perform coverage path
planning tasks in two experimental scenarios shown in Fig. 7a,b. The green lines outline the starting positions
of each UAV, and they will collaborate to achieve full coverage of the target area.
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Figure 7: Discretization of irregular environments

Table 2 presents the completion steps, coverage efficiency, and turning counts. From Table 2, it can
be observed that all algorithms achieved complete coverage. Our proposed SADQN method performed
well in both environments, with minimal occurrence of duplicate coverage. Compared to other algorithms,
SADQN demonstrated lower average steps to completion steps, further enhancing its coverage efficiency,
with an average coverage efficiency exceeding 2.6. Moreover, while our method ensures a high coverage
efficiency through reasonable path planning, it also involves fewer turns, enabling more efficient coverage
path planning.

Table 2: Experimental results of coverage path planning in different environments

Irregular environments Algorithm Completion steps Coverage efficiency η Turning counts
GBNN 26 2.077 27

A* 27 2.074 18

(Continued)



Comput Mater Contin. 2025;84(2) 3025

Table 2 (continued)

Irregular environments Algorithm Completion steps Coverage efficiency η Turning counts
Env1 TMSTC* 22 2.409 19

SADQN 21 2.661 18.5
SADQN_nP 23.5 2.261 24.75
SADQN_nA 24.25 1.717 27.75

DDPG 24.75 1.887 27.75

Env2

GBNN 22 1.636 23
A* 18 2.389 17

TMSTC* 19 2.053 24
SADQN 16.75 2.685 17

SADQN_nP 18.25 2.340 18.5
SADQN_nA 18.25 2.388 19

DDPG 19 2.168 22.85

6 Conclusion
This research initiates with the discretization of irregular environments through an enhanced cell

decomposition technique, thereby effectively partitioning the complex terrains into manageable grids.
Simultaneously, the observation scope of UAVs is expanded by leveraging multi-scale maps, endowing
them with a broader field of view to better perceive and adapt to the surroundings. An inventive SADQN
algorithm is put forth, which ingeniously incorporates the A* algorithm to bolster the DQN process,
specifically devised to tackle the intricate coverage path planning challenges that UAV swarms encounter
in complex and irregular settings. The proposed algorithm has been rigorously validated within obstacle-
ridden irregular environments. The experimental outcomes unequivocally demonstrate its superiority over
existing benchmark algorithms. In terms of convergence speed, it exhibits a remarkable acceleration, swiftly
arriving at optimal solutions and reducing the computational burden. Regarding completion steps, it
streamlines the overall process, minimizing unnecessary maneuvers and enhancing operational efficiency.
The coverage efficiency soars to an impressive 2.6, signifying a significant leap in the thoroughness of area
coverage. Moreover, the algorithm also considers the turning counts, optimizing flight paths to curtail
energy consumption associated with frequent directional changes. Notably, in the face of sudden failures,
the resilience of the system shines through. The remaining UAVs are still capable of tenaciously adhering to
the original CPP task objectives, ensuring the continuity and integrity of the mission. This robustness adds
an extra layer of reliability to UAV swarm operations, especially in critical or unpredictable scenarios.
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Nomenclature
l , w Length and width of the target area
x , y Target area coordinate
G Target grid area
N Total number of Unmanned Aerial
UAVi The i-th Unmanned Aerial Vehicle
Pi The i-th UAV’s grid center coordinates
Covrx , y Environmental information state value
mapi The i-th UAV’s coverage state matrix
stepi The i-th UAV’s number of steps
η Coverage efficiency
A Set of the UAV actions
s, a, r State, action, and reward of the DQN algorithm
st

i , at
i , rt

i State, action, and reward of the UAVi at step t
θ DQN neural network parameters
Q (s, a; θ) Value function of the DQN algorithm
yi Target Q-value
L (θ) Loss function
ε Greedy algorithm parameters
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