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ABSTRACT: Federated learning has emerged as an essential technique of protecting privacy since it allows clients to
train models locally without explicitly exchanging sensitive data. Extensive research has been conducted on the issue
of data heterogeneity in federated learning, but effective model training with severely imbalanced label distributions
remains an unexplored area. This paper presents a novel Cluster Federated Learning Algorithm with Intra-cluster
Correction (CFIC). First, CFIC selects samples from each cluster during each round of sampling, ensuring that no single
category of data dominates the model training. Second, in addition to updating local models, CFIC adjusts its own
parameters based on information shared by other clusters, allowing the final cluster models to better reflect the true
nature of the entire dataset. Third, CFIC refines the cluster models into a global model, ensuring that even when label
distributions are extremely imbalanced, the negative effects are significantly mitigated, thereby improving the global
model’s performance. We conducted extensive experiments on seven datasets and six benchmark algorithms. The results
show that the CFIC algorithm has a higher generalization ability than the benchmark algorithms. CFIC maintains
high accuracy and rapid convergence rates even in a variety of non-independent identically distributed label skew
distribution settings. The findings indicate that the proposed algorithm has the potential to become a trustworthy and
practical solution for privacy preservation, which might be applied to fields such as medical image analysis, autonomous
driving technologies, and intelligent educational platforms.
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1 Introduction
As information technology rapidly advances, the generation and widespread application of big data

have become significant characteristics of modern society [1]. From business analytics to healthcare and
public services, data is being used to drive innovation, improve efficiency, and enhance the quality of life.
However, recent frequent incidents of personal data breaches have heightened societal concern for data
privacy protection [2]. The traditional method of direct data collection and centralized training on servers
is limited by data security risks. To address compliance challenges in data use, federated learning has
emerged as a novel machine learning paradigm gaining high recognition in both academia and industry.
Federated learning allows clients to train models locally and send model parameters to a central server for
aggregation [3]. By aggregating model parameters from different clients, federated learning can leverage
cross-client data information to train an optimized global model [4].

Data distribution significantly impacts the performance of federated learning algorithms, making client
data heterogeneity a critical challenge in implementing federated learning. In many general scenarios, client
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datasets often exhibit non-independent identically distributed (non-IID) characteristics, which not only
significantly degrade the overall performance of the global model but also slow down its convergence [5].
Studies have identified label distribution shift as one of the primary factors leading to non-IID states, where
there are substantial differences in label distributions across clients. This inconsistency in label distribution
makes it particularly challenging to construct a globally effective generalization capability, directly affecting
the fairness and accuracy of the final model [6]. To mitigate the impact of data heterogeneity, researchers
have proposed various strategies to alleviate the negative effects caused by data heterogeneity. These methods
include employing robust optimization techniques, designing specialized model structures tailored for non-
IID data, and developing new communication protocols [7,8]. For example, some researchers recommend
dynamic client clustering methods combined with gradient regularization and global label alignment to
effectively reduce the impact of distribution differences among clients on global model performance [8]. Oth-
ers adopt adaptive label alignment techniques that adjust the global model’s alignment strategy based on local
data distribution [9,10]. Additionally, researchers use variational Bayesian inference techniques to enhance
federated learning performance by building complex probabilistic distribution models [11–13]. However,
these methods require abundant local data to approximate posterior distributions, leading to significantly
weaker inference effects in clients with scarce data or missing label categories, resulting in suboptimal
global model performance. In addition, these approaches attempt to compensate for data heterogeneity by
increasing model complexity, but this contradicts the basic goal of adapting to resource constraints on edge
devices. On clients with missing labels, local training may overfit to a few labels, and global regularization
cannot effectively correct this bias, instead suppressing the model’s generalization capability.

Although there has been extensive research on the issue of data heterogeneity in federated learning,
effective model training with severely unbalanced label distribution is still an underexplored area [14].
Extreme imbalances in label distribution have been observed in a variety of real-world applications, including
but not limited to medical image analysis, autonomous driving technology, and intelligent educational
platforms [15,16]. Taking modern education systems as an example, unequal distribution of educational
resources can result in a significant shift in the learning materials available for different subjects on online
learning platforms [17]. Popular courses may attract a large number of students, resulting in massive high-
quality datasets; however, materials related to niche areas appear to be scarce, posing challenges for the
development of effective intelligent tutoring systems [18,19]. Therefore, conducting extensive research into
these label imbalance phenomena and developing corresponding solutions is critical for furthering the
development of federated learning technologies.

For this purpose, we innovatively propose a Cluster Federated Learning Algorithm with Intra-cluster
Correction (CFIC). This method is particularly suited for scenarios where clients predominantly possess
only a few or even a single type of label. By extracting label distribution characteristics, clients with similar
data distributions are clustered together into the same group. Each cluster then independently aggregates its
model to mitigate the impact of non-IID data on federated learning. Specifically, CFIC selects samples from
each cluster in every round of sampling, ensuring a more reasonable overall data distribution and preventing
certain specific categories from disproportionately dominating the model training process. However, the
cluster models obtained by aggregating each cluster might deviate to some extent from the direction of the
global optimum, leading to a decline in overall performance. To address this issue, CFIC not only leverages
local information but also focuses on maintaining consistency with the global model. During each iteration,
CFIC adjusts its parameters based on the information shared by other clusters besides updating the local
model based on local data. This ensures that the final cluster model better reflects the true situation of the
entire dataset. This process can be viewed as a correction in the direction of the global model. It ensures
that even when label distributions are extremely imbalanced, the resulting negative impacts are significantly
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mitigated, thereby improving the global model’s performance. Based on the above analysis, we summarize
the following main contributions.

• We cluster clients based on their label distribution characteristics and then use a specific sampling
strategy within these clusters to ensure dynamic label balance in each round of sampling. This method
reduces the decline in model performance caused by the non-IID nature of client data.

• We incorporate a model correction strategy into cluster federated learning. This strategy enables the
cluster models to update towards the direction of the global model’s optimal solution, thereby enhancing
the convergence speed and accuracy of the model.

• We conducted extensive experiments on real-world datasets, demonstrating that our method outper-
forms baseline algorithms in terms of convergence speed and testing accuracy. Particularly, in scenarios
with extreme label imbalance, our approach achieves superior results compared to benchmark methods.

2 Related Works

2.1 Federated Learning
Federated learning has emerged as a pivotal approach to safeguard data privacy while effectively inte-

grating disparate data silos. FedAvg, as a classic federated learning framework, can enhance the performance
of edge device models through an algorithm that ensures user privacy [4]. In this algorithm, the central server
first selects a subset of clients to participate in the training and distributes the global model to these selected
clients. Each client independently trains the model using their local data and the central server aggregates
the model updates from the participating clients to form a new global model. However, due to differences
in user demographics or usage habits, the local data on clients may exhibit non-IID characteristics. Li et al.
further confirmed that traditional FedAvg faces challenges such as slow convergence of the global model and
deviation from optimal solutions under non-IID conditions [6].

Many researchers have proposed to mitigate the biases that arise during local training on non-IID
data, aiming to alleviate the adverse effects in the federated averaging process and enhance the performance
of the global model. For instance, FedProx introduces a regularization term during local training that
constrains updates based on the distance between the local model and the global model, thereby reducing
overfitting of the local models [20]. MOON normalizes local training by leveraging the similarity between
the representations of local and global models, incorporating a contrastive learning approach that maximizes
the similarity to improve model generalization [21]. FedLC further calibrates at the logit level to reduce
updates for minority classes, thereby enhancing model performance when dealing with imbalanced data [22].
FedNova refines the global aggregation phase by adjusting the contribution weights of each client, making the
global model more aligned with the global optimum [23]. These existing methods have addressed label shift
issues to some extent, but further research and improvements are necessary to enhance their effectiveness in
real-world scenarios.

A comprehensive survey categorizes heterogeneous federated learning into data space, statistical,
system, and model heterogeneity, suggesting further research to improve model generalization and per-
formance across diverse clients [24]. Researchers have proposed several strategies to mitigate these issues.
For example, HeteroFL addresses computational heterogeneity by enabling the training of heterogeneous
local models with varying complexities [25]. Exploiting Model and Data Heterogeneity in FL (MDH-FL)
employs knowledge distillation and symmetric loss to tackle both data and model heterogeneity [26]. Recent
approaches also explore adaptive data distribution, regularization terms, contrastive learning, and multi-
task learning to address heterogeneity issues [27]. These methods aim to optimize algorithms and model
structures to cope with heterogeneity, but they do not address the diversity of client data distributions.
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Consequently, some researchers propose clustered federated learning (CFL) to group clients with similar
data distributions, thereby improving model performance and enhancing privacy protection level.

2.2 Clustered Federated Learning
CFL is a model-agnostic distributed multi-task optimization framework that enhances both model

performance and privacy protection. In recent years, various CFL frameworks have been proposed, including
confidential aggregation techniques for securing individual updates and customized systems tailored for
human activity recognition applications [28]. The latest advancements focus on efficiently identifying
the distributional similarity between client data subspaces using principal angles, which accelerates clus-
ter formation and provides convergence guarantees for non-convex objectives [29]. Furthermore, some
researchers have adopted non-convex pairwise fusion, enabling autonomous estimation of cluster structures
without prior knowledge [30]. As specific examples in the CFL domain, ClusterFL presents a multi-
task federated learning framework that automatically captures inherent clustering relationships among
nodes, thereby improving accuracy and reducing communication overhead, particularly in human activity
recognition applications [28]. ACFL introduces a mean-shift clustering algorithm and an auction-based
client selection strategy aimed at mitigating data heterogeneity and balancing energy consumption in
mobile edge computing systems [31]. By leveraging the geometric properties of the federated learning
loss surface, clients are grouped into clusters with jointly trainable data distributions, suitable for general
non-convex objectives, while performing multi-task optimization under privacy preservation [32]. IFCA
addresses non-IID data through iterative clustering and model updates, partitioning clients with similar
data distributions into several clusters where each cluster independently conducts model training and
updates followed by global model aggregation [33]. FedAC effectively integrates global knowledge into cluster
learning by decoupling neural networks and employing different aggregation methods for each submodule,
thus significantly enhancing performance [22]. FeSEM introduces an expectation-maximization algorithm
for client clustering, ensuring that clients within each cluster share similar data distributions [34].

The CFL methods described above address the issue of model parameter inconsistency by incorporating
clustering steps during local training, reducing the global model performance decline caused by label shift.
They excel at increasing model accuracy, convergence rate, and efficiency. However, there are two major
issues that most studies have not addressed. The first issue is model consistency; model consistency across
different clusters can have an impact on overall performance, especially when data distribution is complex.
The second issue is the ability to adapt dynamically. Most existing methods’ adaptive adjustment capacity may
be restricted for extremely uneven data distributions. To address data heterogeneity in federated learning
distributed training, this study introduces an intra-cluster correction method based on the CFL framework.
We use a specific sampling strategy to ensure that labels are dynamically balanced with each round of
sampling, allowing the cluster model to update towards the optimal global solution.

3 The Proposed CFIC Algorithm
Traditional federated learning’s global averaging aggregation assumes that client data follows the

same underlying distribution. However, in actual non-independent and identically distributed (non-IID)
scenarios, client data may belong to multiple significantly different sub-distributions. Directly averaging
the parameters of all clients blurs these distribution boundaries. If client data can be divided into multiple
clusters, we can identify these clusters and then sample and aggregate the cluster models, which can
significantly reduce task conflicts. Additionally, even if clients within the same cluster have similar label
distributions, their data may still suffer from feature shifts or noise interference. A mechanism is needed
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to correct the intra-cluster models, forcing the alignment of different client models in latent space, thereby
reducing the impact of feature shifts on the global model.

The overall framework of the algorithm proposed in this paper is shown in Fig. 1. This algorithm is
a variation on traditional independent and identically distributed federated learning. Unlike the standard
federated learning approach, which simply averages all uploaded data to update the global model, our study
uses clustering analysis performed by the central server based on the label features received from each client.
The goal of this manipulation is to identify a group of clients who share similar characteristics, thereby better
capturing potential pattern differences between populations. Rather than creating a global aggregated model
for all nodes, the server examines the label features collected from clients and divides them into multiple
clusters. For each identified cluster, the server computes the information contributed by its members and
creates a local model that represents the cluster’s characteristics. Finally, the global model update direction
is determined by the multiple cluster models obtained during the preceding process.

Figure 1: Overall framework

3.1 Problem Formulation
In traditional federated learning algorithms, each iteration typically involves either selecting all clients

to participate in the aggregation of the global model or choosing a subset of clients based on a specific
sampling strategy. However, when the private datasets on client devices exhibit non-IID characteristics, the
performance of the aggregated global model can significantly deteriorate. The purpose of CFIC is to mitigate
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the issue of client model drift caused by label distribution shifts, thereby obtaining a globally aggregated
model with guaranteed performance. The symbols used in this study are shown in Table 1.

Table 1: Notations

Notation Explanation
K The total number of clients
Ci Client i
w Model parameters for minimizing loss
Di The local data of client i
pi The probability of user i being selected to participate in the training of the global model.

Fi (w) The loss error prediction for the model parameter w by the user i on Di .
D(k) Local distribution of client k
Q(k) A simulated IID distribution consistent with the number of client-k samples.
Gi Cluster i obtained from client-side clustering
gi The cluster model aggregated from Cluster i
α The parameter of historically adjusted gradient direction
β The weights of the global model aggregation direction refined by cluster models.

In the context of federated learning across devices, consider a system composed of K clients, denoted
as {C1 , C2, ⋅ ⋅ ⋅ , CK}. All clients are dedicated to integrating their respective data {D1 , D2, ⋅ ⋅ ⋅ , DK} in order
to obtain a better-performing machine learning model. The central server interacts with these clients to
collaboratively find model parameters w that minimize loss through Eq. (1).

min
w

f (w) =
K
∑
i=1

pi Fi(w) = Ei[Fi(w)] (1)

In this setup, pi represents the probability that participant user i is chosen to contribute to the global
model training process, and this probability pi satisfies pi ≥ 0 and∑K

i=1 pi = 1. Fi (w) indicates the loss error
prediction for model parameters w by the client j on its local dataset (xi , yi), typically calculated using
function Fi (w) = � (xi , yi , w), where � (⋅) is a predefined loss function relevant to the specific task. Typically,
the FedAvg method is used to minimize model parameters w through unbiased sampling. The probability
pi follows a uniform distribution, implying that all users have an equal random chance of being selected to
participate in the training.

3.2 Label Distribution Clustering of Clients
Existing research primarily focuses on clustering client-trained local models based on their similarities,

which poses a significant challenge for large-scale distributed applications in federated learning. In iterative
clustering methods, calculating model similarity is a resource-intensive process that requires substantial
computational resources. This is especially true in highly heterogeneous environments where the dataset
may contain only a few labels. To address this issue, we can introduce a simulated IID data distribution as a
reference. By comparing the local client’s data distribution with this reference distribution, we can obtain the
differences between them. We map these distributional differences to a value that represents the deviation
of different clients’ data from the ideal distribution. By performing calculations based on these values, we
can significantly reduce the required computational scale. Following the work [35], we assume a uniform
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global class distribution when computing local discrepancies to prevent global label information leakage.
Simultaneously, only the maximum categorical label is retained during constructed a feature extraction
function Ψ (⋅), thereby mitigating unnecessary local label information exposure, as shown in Eq. (2).

Ψ (D(k)) = arg min
i

⎛
⎜⎜⎜
⎝

log ∣D(k)
i − Q(k)

i ∣
∑

j
log ∣D(k)

j − Q(k)
j ∣

⎞
⎟⎟⎟
⎠

(2)

In this equation, D(k)
i represents the actual proportion of samples with label i in the data

set
C
∑
i=1

D(k)
i = 1 of client k, C denotes the total number of labels, and ∣D(k)

i − Q(k)
i ∣ indicates the distributional

variance of label i within client k. Clients then upload their extracted label distribution features to the
server. The server uses these uploaded features to perform client clustering without needing to predefine
the number of clusters. The number of clusters is determined by the distribution characteristics of the
clients. Client clustering is initiated only during the first round of communication and when new clients
join, thereby conserving significant computational resources. This approach involves clients locally mapping
feature extraction functions to numerical values. Clients then only upload these mapped values, ensuring
that their own label distributions are not exposed. This method provides a level of privacy protection, as the
raw data remains on the clients’ local machines and only aggregated, mapped values are shared.

3.3 Global Model with Intra-Cluster Correction
In this step, we mitigate the issue of client model drift caused by extreme label distribution imbalance.

In such scenarios, most clients contain only a few or even just one type of label. For clustering groups,
the data within each group is more likely to follow an independent and identically distributed distribution.
Traditionally, scholars often adopt aggregation functions such as FedAvg, Krum, and Trimmed Mean, which
can effectively protect user data privacy [36]. These aggregation functions are used to summarize local model
updates from clients into a global model. The choice of aggregation function directly affects the robustness
of the model. However, the results of ablation experiments show that using the FedAvg aggregation function
decreases model performance. While the Krum and Trimmed Mean aggregation functions have advantages
in terms of robustness and simplicity, they require the use of local model gradients from the previous round,
making it vulnerable to adversarial samples and limiting their applications in certain dynamically changing
scenarios [37]. In this paper, instead of using traditional aggregation functions, we aggregate each cluster
into a cluster model, which exhibits higher accuracy for the labels within its respective cluster. However,
these cluster models might deviate from the direction of model aggregation in terms of loss-minimizing
model parameters w. Therefore, this paper introduces an intra-cluster model correction strategy to update
the cluster models towards the direction of the global model’s optimal solution.

To ensure model stability, we have improved the sampling strategy to make the number of samples
from each cluster relatively uniform across iterations. Specifically, K clients are clustered into m clusters
represented as {G1 ,G2,G3, ⋅ ⋅ ⋅ ,Gm}, with a sampling ratio of γ. Within each cluster, each client’s opportunity
to participate in training is determined by uniform random sampling, denoted as ∑

i∈G
pi = 1. The sampling

number for each cluster is min (⌊Kγ
m ⌋ , 1), and then additional Kγ − ∑

i∈G
mini (⌊Kγ

m ⌋ , 1) clients are sampled

from the remaining clients to form a final set of clients S(t) as the sampling result for the t-th communication
round. If it is the first round of communication, Kγ clients are randomly and uniformly sampled to form
client set S(t).
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At the beginning of the t-th communication, the server obtains the current global model parameters wt
and distributes them to each local client to get local model parameters wt+1

k . This paper aggregates m cluster
models {g1 , g2, g3, ⋅ ⋅ ⋅ , gm} from m clusters. The cluster model update formula is given in Eq. (3).

gt+1
i = ∑

k∈Gi

nk

n
wt+1

k (3)

For the standard gradient descent formula w = w − ηΔw, where η represents the learning rate and Δw
is the step size for gradient adjustment at each time step. As it approaches the optimal value, the gradient
becomes smaller. Since the learning rate is fixed, the standard gradient descent method converges slowly and
may even fall into local optima. This paper introduces momentum h to correct the direction of the global
model. Specifically, this is done by comparing the deviation between the cluster model and the direction of
the previous round’s global model to correct the direction of the global model aggregation in the current
round. We also consider that the cluster model might deviate from the direction of the optimal solution of
the global model in some rounds. Therefore, we add the historical correction gradient direction to improve
the stability of the model, shown in Eq. (4).

ht+1 = (α ⋅ ht − β ⋅
m
∑
i=1

ni

n
gi

t+1 −wt

∥gi t+1 −wt∥2
) (4)

In this formula, α is the momentum term, representing the influence of historical gradients. The
larger α is, the greater the impact of the historical correction gradient direction on the current round. The
incorporation of the momentum term offers significant advantages in the high non-IID scenario, which is
the focus of this study. On one hand, it accelerates the escape from local minima by leveraging historical
accumulation. On the other hand, it mitigates the update oscillations caused by client sampling fluctuations.
This design is inspired by the classical convergence theory of distributed optimization, where the core
idea is to reduce client gradient variance through exponential smoothing, thereby enhancing convergence
efficiency. Therefore, the server can smooth the direction of historical updates to alleviate the impact of
heterogeneity among client updates. Finally, we update the global model w by averaging the local models
wt+1

k trained by clients in this round and adding the correction from the cluster model, shown in Eq. (5).

wt+1 = ∑
k∈S(t)

nk

n
wt+1

k − ht+1 (5)

Based on the above theoretical analysis, we provide the following pseudocode for the CFIC algorithm
as follows (Algorithm 1):

Algorithm 1: CFIC Algorithm
Input: k, t, γ, A, h0, w0, η
Server side:
1 Initialize w0

2 for t = 1, 2, . . . , n do
3 Construct a collection of samples according to the sampling strategy S(t)

4 for k ∈ S(t) do
5 (wt+1

k , Lk) ←CLIENT_UPDATE (k, wt)
6 If k ∈ S(t) not in Ado
7 A← k

(Continued)
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Algorithm 1 (continued)
8 G← CLIENT_CLUSTER (A)
9 gt+1

i ← ∑
k∈Gi

nk
n wt+1

k

10 ht+1 ← (α ⋅ ht − β ⋅ ∑m
i=1

ni
n

gi
t+1−wt

∥gi t+1−wt∥2
)

11 wt+1 ← ∑
k∈S(t)

nk
n wt+1

k − ht+1

Client side:
12 Function CLIENT_UPDATE (k, wt)
13 wt

k ← wt

14 for device k ∈ St in parallel do
15 wt+1

k ← wt
k − η∇Fk (wt

k)
16 If not Lk do

17 Lk ← Ψ (D(k)) ← arg mini (
log ∣D(k)

i −Q(k)
i ∣

∑ j log ∣D(k)
j −Q(k)

j ∣
)

18 Return (wt+1
k , Lk) to the server

19 Function CLIENT_ CLUSTER ()
20 for k ∈ A do
21 for i ∈ m do
22 If Lk ∈ Gi do
23 Gi ← k
24 Else m + 1
25 return G

In the provided pseudocode, the algorithm takes the number of clients k, the number of communication
rounds t, the sampling ratio γ, the server-side client listA, gradient information h0, initial model parameters
w0, and the learning rate η as input. On the server side, the algorithm initializes w0 with all client values Lk set
to empty (Line 1). For the t-th communication round, the algorithm randomly and uniformly samples clients
within clusters based on the sampling ratio γ, forming the client set for this round (Line 3). The algorithm
then iterates over the client set for this round and updates the client model parameters (Lines 4–5). If a client
is not in the central server’s-maintained client table, the algorithm updates the client in the central server’s
client table and re-clusters the client to form a new cluster (Lines 6–8). After completing these steps, the
algorithm updates the cluster model at Line 9, corrects the gradient at Line 10, and updates the global model
parameters at Line 11.

The client-side update process is as follows: The client first obtains the model parameters at Line 13 and
then processes the client set in parallel, updating the model parameters (Lines 14–15). If the client is not within
the label distribution characteristics, the algorithm uses a label distribution feature extraction function
for client clustering (Lines 16–17). Finally, the client returns the model parameters and label distribution
characteristics to the server side (Line 18).

3.4 Cold Start Problem of CFIC Algorithm
The cold start problem typically arises when new clients join a federated learning system for the first

time. Due to the lack of sufficient historical data to train their local models, these new clients are unable to
make meaningful contributions to the global model during the initial phase. This issue not only affects the
performance of the new clients’ own models but also potentially slows down the overall performance and
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stability of the entire system. To address this challenge, we propose the CFIC algorithm, which can meet
the needs of new clients joining the federated learning system by mitigating the cold start issue. Specifically,
we maintain a client table on the server-side that records all participating clients in the federated learning
system. When a new client attempts to join the system, the server detects its absence from the maintained
client table A and subsequently triggers a re-clustering process. During this re-clustering phase, the new
client is incorporated into an appropriate cluster based on certain criteria, thereby facilitating its integration
and enabling it to contribute more effectively to the global model.

4 Experiment

4.1 Datasets
We conducted experiments on seven real-world datasets to validate the accuracy and fairness of our

algorithm. The purpose of using these real-world datasets is to test the performance of the proposed
algorithm in a realistic setting when compared with other algorithms, as well as to evaluate the accuracy of
various algorithms on these datasets under heterogenous conditions.

• MNIST dataset [38]. This dataset consists of images of handwritten digits from 0 to 9. The input for the
dataset is 784-dimensional (28 × 28) flattened images, and the output is class labels ranging from 0 to 9.

• CIFAR10 dataset [39]. This dataset contains 32 × 32-pixel RGB images. There are 60,000 samples in total,
with 50,000 samples for training and 10,000 for testing. CIFAR10 includes 10 classes of objects, labeled
from 0 to 9.

• CIFAR100 dataset [40]. This dataset has 100 classes. Each class containing 600 images with 500 for
training and 100 for testing. Each image comes with a “fine” label indicating the specific class it belongs
to and a “coarse” label indicating the broader category it falls under.

• EMNIST dataset [41]. This dataset includes both the “by class” and “by merge” datasets, each containing
a complete set of 814,255 characters. These datasets differ in the number of categories assigned.
Consequently, the distribution of sample letters varies between the two datasets, while the number of
samples in the digit class remains consistent across them.

• SVHN dataset [42]. This dataset is a benchmark for digit classification, consisting of 600,000 32× 32 RGB
cropped images of handwritten digits (from 0 to 9) extracted from house number plates. The cropped
images center around the digit of interest but include nearby digits and other distracting elements within
the image.

• FMNIST (Fashion-MNIST) dataset. This dataset is an MNIST replacement featuring 10 fashion cate-
gories, each with 6000 28 × 28 grayscale training images and 1000 test images. Its fine-grained details
(e.g., shirt vs. coat differences) and built-in non-IID data structure make it a key benchmark for testing
federated learning under uneven data splits, especially for simulating real-world data imbalances.

• FEMNIST is a benchmark dataset in federated learning, extended from EMNIST, containing 62 classes
of handwritten characters with both digits and letters. Partitioned by real users via the LEAF framework,
it inherently exhibits client-level non-IID characteristics. Each client corresponds to a writer, comprising
approximately 800,000 28× 28 grayscale images across 3400 clients, directly reflecting data heterogeneity
in federated scenarios. It enables algorithm validation without artificial synthesis and is widely applied
to image classification, aggregation strategy evaluation, and privacy-preserving assessments.

4.2 Baseline Algorithms
We compared our proposed algorithm with the following six federated learning algorithms to test its

performance.
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1. FedAvg algorithm. This algorithm is a widely used aggregation method in federated learning. In each
round, the server sends the global model parameters to a randomly selected group of clients. Each client
trains the model on its local dataset and then sends the local updates back to the server for aggregation.
The updated global model is subsequently disseminated to the clients for the next round of training.

2. FedProx algorithm [20]. This algorithm was designed to address issues related to non-IID data
distributions and asymmetric participation among clients. In each round, the server distributes the
global model parameters to the clients. Clients train the model on their local datasets and incorporate
a regularization term to constrain the extent of local parameter changes, thereby mitigating divergence
between clients’ models. The local updates are then aggregated at the server, and the refined global
model is redistributed to the clients for subsequent rounds.

3. FedDyn algorithm [42]. This algorithm introduces an adaptive risk objective for each client. During
each communication round, the current global model is sent to selected active devices. Each device
optimizes its local empirical loss along with a dynamically updated penalty function based on the
difference between the local device model and the received server model. This ensures that the optimal
direction of the devices aligns consistently with the static point of the global empirical loss.

4. FedFa algorithm [43]. This algorithm incorporates a dual momentum gradient optimization scheme to
accelerate model convergence. It also proposes a weighting algorithm that combines training accuracy
and frequency information to measure the appropriateness of weights. This approach helps mitigate
fairness issues in federated learning that may arise due to certain clients’ preferences.

5. FedMGDA+ algorithm [44]. This algorithm is a multi-objective optimization algorithm aimed at
resolving conflicting gradient issues in federated learning. By calculating multiple clients’ gradients in
each round and performing multi-objective optimization at the server side, the algorithm balances these
gradients, thus reducing inter-client conflicts.

6. Clustered sampling algorithm [45]. This algorithm enhances the efficiency and effectiveness of federated
learning by clustering clients. This ensures that each round of training involves representative clients,
thereby improving the generalization capability of the global model. Additionally, by reducing the num-
ber of participating clients in each training round, the algorithm can lower communication overhead.

4.3 Setups
The model structure used in this study is as follows: MNIST adopts dual 5 × 5 convolutional layers (32

→ 64 channels) and dual fully connected layers (3136→ 512→ 10); CIFAR-10/100 and SVHN are both dual
5 × 5 convolutions (64 channels) combined with three fully connected layers (1600→ 384→ 192→ output),
with CIFAR-100 adjusted to 192 → 100 through the final linear layer; EMNIST uses a three convolutional
layer (32→ 32→ 64 channels) and a double fully connected layer (576→ 256→ 62), with a unique pooling
connection sequence and custom dimension transformation layers. All models use ReLU activation and
2 × 2 max pooling, and non-linear mapping between fully connected layers is achieved through ReLU. The
training and testing ratio is 0.9: 0.1.

The experimental setup utilized an Intel(R) Xeon(R) Gold 5218 CPU operating at 2.30 GHz and CentOS
Linux release 7.9.2009 (Core) as the operating system. The platform was built using the Python library
PyTorch and equipped with three NVIDIA Tesla V100S PCIe 32 GB graphics cards. We assumed a scenario
involving 100 devices participating in federated learning with a sampling rate of 0.3. The batch size was set to
64, and the learning rate was uniformly set to 0.01 across all experiments. Additionally, the number of local
iterations was fixed at five for each round of communication.

To simulate the class distribution of client data, we employed the Dirichlet distribution to partition
the datasets. Sampling was conducted based on corresponding probability values. For the five real-world
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datasets, different alpha values (0.05, 0.1, 0.3, 0.5) were selected to conduct experiments aimed at evaluating
the testing accuracy under various Dir partitions. Due to variations in dataset sizes and partitioning methods,
different algorithms required varying numbers of communications to achieve convergence in terms of testing
accuracy and training loss across the datasets. Consequently, the number of communications used in the
experiments varied accordingly among the five real-world datasets. Fig. 2 illustrates the distribution of classes
owned by clients for the CIFAR10 dataset under different alpha values. The distributions of the other datasets
are omitted due to space constraints.

Figure 2: Distribution of client samples under different values. The alpha value of left part is 0.05 and the alpha value
of right part is 0.5

4.4 Experimental Results
(1) Testing accuracy

Table 2 illustrates the testing accuracy of various algorithms under different data distribution scenarios.
FedAvg exhibits a significant disadvantage in handling highly heterogeneous data, particularly on the
CIFAR-100 dataset where its accuracy is only 13.50%, compared to 44.94% on the CIFAR-10 dataset.
This demonstrates that FedAvg’s global model generalization ability is insufficient when addressing label
imbalance across clients. Conversely, algorithms that incorporate regularization and optimization strategies,
such as FedProx and FedDyn, achieve performance improvements. FedProx reduces inter-client model
update discrepancies through regularization, while FedDyn mitigates the impact of label shift with dynamic
regularization, performing particularly well on large-scale datasets like CIFAR-10 and CIFAR-100.

Table 2: Comparison of accuracy of algorithms under different data distributions. The values in bold indicate the best
performance

Dataset Dir(α) FedAvg FedProx FedFa Clustered
Sampling

FedDyn FedMGDA+ Ours

MINIST

0.05 93.47 ± 0.13 93.16 ± 0.31 95.28 ± 0.19 93.37 ± 0.09 98.15 ± 0.09 96.76 ± 0.31 99.02 ± 0.04
0.1 94.76 ± 0.37 94.56 ± 0.37 96.23 ± 0.23 94.71 ± 0.35 98.38 ± 0.07 97.58 ± 0.22 98.97 ± 0.03
0.3 96.17 ± 0.24 96.17 ± 0.12 97.36 ± 0.14 96.13 ± 0.16 98.58 ± 0.07 98.40 ± 0.18 99.07 ± 0.07
0.5 96.76 ± 0.03 96.73 ± 0.09 97.62 ± 0.01 96.78 ± 0.05 98.52 ± 0.10 98.51 ± 0.20 99.15 ± 0.12

EMINIST

0.05 72.07 ± 0.61 69.33 ± 0.51 60.6 ± 31.1 71.61 ± 0.49 66.76 ± 0.25 70.6 ± 0.54 79.92 ± 0.55
0.1 73.18 ± 0.39 70.79 ± 0.74 75.71 ± 0.26 73.39 ± 0.39 70.04 ± 1.08 71.8 ± 0.32 80.42 ± 0.29
0.3 75.43 ± 0.42 73.71 ± 0.37 77.22 ± 0.21 75.09 ± 0.21 73.64 ± 0.66 74.22 ± 0.77 80.66 ± 0.34
0.5 76.79 ± 0.08 75.67 ± 0.38 78.47 ± 0.18 76.67 ± 0.37 76.12 ± 0.61 76.06 ± 0.36 81.04 ± 0.65

(Continued)
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Table 2 (continued)

Dataset Dir(α) FedAvg FedProx FedFa Clustered
Sampling

FedDyn FedMGDA+ Ours

SVHN

0.05 50.86 ± 1.73 48.01 ± 3.20 75.47 ± 1.58 50.78 ± 2.89 81.45 ± 0.42 67.67 ± 1.44 88.38 ± 0.52
0.1 62.97 ± 1.67 60.25 ± 3.15 78.33 ± 0.66 61.85 ± 0.86 82.94 ± 0.46 73.12 ± 1.96 88.12 ± 0.44
0.3 78.41 ± 0.97 77.96 ± 1.16 83.58 ± 0.52 78.78 ± 1.06 85.25 ± 0.12 82.32 ± 1.32 88.90 ± 0.19
0.5 82.79 ± 0.24 82.33 ± 0.44 85.33 ± 0.26 82.54 ± 0.16 85.73 ± 0.35 84.50 ± 0.40 89.28 ± 0.13

CIFAR-10

0.05 44.44 ± 4.39 43.93 ± 5.05 45.9 ± 0.69 44.65 ± 5.01 60.16 ± 4.83 47.21 ± 1.12 71.87 ± 1.45
0.1 44.94 ± 0.52 44.26 ± 0.46 50.03 ± 0.77 45.58 ± 0.27 61.09 ± 0.75 53.08 ± 1.43 73.65 ± 0.41
0.3 51.77 ± 0.59 51.35 ± 0.54 59.42 ± 0.1 52.17 ± 0.34 67.53 ± 0.62 60.35 ± 1.07 75.43 ± 0.43
0.5 52.97 ± 0.62 53.13 ± 0.79 62.68 ± 0.82 53.41 ± 0.32 68.44 ± 0.48 62.71 ± 0.64 75.76 ± 0.32

CIFAR-100

0.05 8.16 ± 0.32 7.51 ± 0.44 1.11 ± 0.14 8.08 ± 0.82 17.53 ± 1.96 11.14 ± 0.84 28.08 ± 1.27
0.1 13.50 ± 0.48 12.97 ± 0.45 7.42 ± 8.74 13.42 ± 0.51 25.70 ± 0.70 16.8 ± 0.36 33.05 ± 1.30
0.3 16.72 ± 0.25 16.20 ± 0.41 14.13 ± 12.09 16.71 ± 0.40 28.02 ± 1.32 20.27 ± 0.78 34.27 ± 1.69
0.5 19.04 ± 0.18 18.67 ± 0.34 19.95 ± 10.99 19.16 ± 0.26 29.82 ± 2.14 22.82 ± 1.37 35.09 ± 1.92

FMNIST

0.05 81.29 ± 0.10 80.88 ± 0.38 81.51 ± 0.18 81.19 ± 0.21 83.27 ± 0.10 81.15 ± 0.80 82.73 ± 0.16
0.1 81.43 ± 0.21 81.07 ± 0.11 81.70 ± 0.15 81.38 ± 0.25 83.40 ± 0.06 81.85 ± 0.83 82.07 ± 0.37
0.3 82.16 ± 0.17 82.04 ± 0.19 82.53 ± 0.13 82.26 ± 0.13 83.62 ± 0.06 83.08 ± 0.24 82.96 ± 0.20
0.5 82.35 ± 0.18 82.31 ± 0.12 82.64 ± 0.16 82.41 ± 0.12 83.34 ± 0.07 82.79 ± 0.33 82.62 ± 0.36

FEMNIST

0.05 74.18 ± 3.33 70.18 ± 2.27 67.65 ± 27.25 69.82 ± 10.07 72.08 ± 7.30 76.02 ± 1.07 82.60 ± 0.96
0.1 78.91 ± 1.29 73.94 ± 0.69 81.26 ± 0.29 78.28 ± 1.18 66.71 ± 10.12 78.08 ± 0.81 83.45 ± 0.60
0.3 79.83 ± 1.47 73.50 ± 6.94 66.85 ± 33.68 79.38 ± 2.50 74.51 ± 4.14 78.99 ± 0.56 84.05 ± 0.33
0.5 80.17 ± 0.89 66.72 ± 16.80 79.61 ± 6.40 79.07 ± 3.70 72.77 ± 7.99 80.09 ± 0.36 84.04 ± 0.46

Comparative experiments demonstrate that the proposed CFIC algorithm significantly improves testing
accuracy under non-IID conditions through its intra-cluster calibration strategy. While demonstrating
suboptimal performance on FMNIST, the proposed algorithm consistently outperformed state-of-the-
art methods across all six remaining benchmark datasets. Specifically, CFIC achieved accuracy rates of
73.65%, 33.05%, and 83.45% on CIFAR-10, CIFAR-100, and FEMNIST benchmarks, surpassing all baseline
algorithms. Notably, CFIC maintains efficient convergence and superior accuracy even under extreme label
imbalance conditions. Although FedFa and FedMGDA+ demonstrate strong generalization capabilities
in certain scenarios, their effectiveness diminishes significantly when handling severe data skewness,
particularly under small alpha values where substantial performance degradation is observed.

(2) Communication efficiency
To evaluate the communication efficiency of the CFIC algorithm, we measured the number of commu-

nication rounds required for each algorithm to reach the target accuracy on various datasets. The accuracy
achieved by FedAvg in the last round was used as the benchmark, where “0” indicates that the algorithm
failed to reach the target accuracy within a limited number of communication rounds. Fig. 3 illustrates
the number of communication rounds needed for different algorithms to achieve this benchmark accuracy
across various datasets. By incorporating a unique intra-cluster correction mechanism, the CFIC algorithm
optimizes the direction of global model updates, significantly reducing the number of communication
rounds. This advantage has been validated across seven different datasets and has significantly lowered
the data transmission frequency during federated learning, effectively reducing communication costs and
latency. These results demonstrate that CFIC improves both model performance and overall system efficiency
in federated learning.

(3) Client experiment
To further validate the effectiveness of the CFIC algorithm in handling data heterogeneity, we conducted

a series of experiments on the CIFAR-10 dataset, examining the impact of varying client numbers (20, 500)
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in a Dir(0.05) heterogeneous environment. The results, shown in Fig. 4, indicate that as the number of clients
increases, the CFIC algorithm not only adapts to large-scale federated learning environments but also main-
tains high accuracy and stability across all scales. Specifically, in an experiment with 20 clients, CFIC achieved
an accuracy of approximately 37.19%; with 500 clients, the accuracy reached 52.85%, surpassing other
algorithms. These outcomes robustly demonstrate CFIC’s superior performance in non-IID data settings,
highlighting its reliability and scalability under different scales and extreme data heterogeneity conditions.

Figure 3: Comparison of communication efficiency

Figure 4: Comparison of accuracy under different clients

(4) Ablation experiment
The CFIC algorithm is divided into two main parts, i.e., inter-cluster sampling and intra-cluster

correction. During the inter-cluster sampling phase, it involves sampling members from each clustered
group. This effectively reduces the impact caused by non-IID data among clients, thereby optimizing
communication efficiency and the consistency of model training. In the model aggregation phase, the global
model is adjusted through an intra-cluster correction strategy, enhancing the generalization performance of
the global model. This phase critically affects the model’s ability to handle heterogeneous data. To validate
the effectiveness of the CFIC, we remove either of the two core components to evaluate their specific impact
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on model performance. The experimental results, as shown in Fig. 5, indicate that the removal of either
component leads to a significant performance drop on both the CIFAR-100 and SVHN datasets.

Figure 5: Comparison of accuracy of ablation experiment. IC is the abbreviation for intra-cluster correction, and IS
the abbreviation for inter-cluster sampling

5 Conclusion
This paper presents a cluster-based correction federated learning algorithm that enhances the gen-

eralization ability of models in non-IID data scenarios through clustering based on label distribution
characteristics and global model weight adjustment. To validate the effectiveness of the CFIC algorithm,
extensive experiments were conducted. The results demonstrate that the CFIC algorithm has significant
advantages in heterogeneous data scenarios and maintains high accuracy even with extreme label shifts,
exhibiting minimal impact from data heterogeneity. However, there are certain limitations that must be
acknowledged. First, although incorporating momentum helps improve stability during model training,
research on optimizing momentum calculation to further enhance algorithm performance is still insufficient.
Future work could explore more dynamic and adaptive momentum adjustment strategies. For example,
automatic tuning of momentum parameters based on changes in client data distribution or model update
gradients could achieve better convergence speed and generalization ability. Second, while this study
uses a label distribution characteristic extraction function for client clustering, existing analyses have not
thoroughly examined the effectiveness of these feature extraction functions under various types of label
distribution skew and their relationship with model performance. Future work should also develop feature
representation methods that adapt to multiple label skew patterns and clarify the impact of the feature
extraction mechanism on the overall performance of the federated learning system through theoretical
analysis and experimental evidence. Last, the scale and complexity of clients in the experimental scenarios do
not match real-world applications. For instance, practical implementations often involve tens of thousands
or more edge devices, and client computing conditions and communication conditions may be affected by
many uncertain tasks. Therefore, future work should be conducted in realistic complex application scenarios
to further verify the robustness and scalability of the CFIC algorithm.
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