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ABSTRACT: In the era of big data, the growing number of real-time data streams often contains a lot of sensitive
privacy information. Releasing or sharing this data directly without processing will lead to serious privacy information
leakage. This poses a great challenge to conventional privacy protection mechanisms (CPPM). The existing data
partitioning methods ignore the number of data replications and information exchanges, resulting in complex distance
calculations and inefficient indexing for high-dimensional data. Therefore, CPPM often fails to meet the stringent
requirements of efficiency and reliability, especially in dynamic spatiotemporal environments. Addressing this concern,
we proposed the Principal Component Enhanced Vantage-point tree (PEV-Tree), which is an enhanced data structure
based on the idea of dimension reduction, and constructed a Distributed Spatio-Temporal Privacy Preservation
Mechanism (DST-PPM) on it. In this work, principal component analysis and the vantage tree are used to establish
the PEV-Tree. In addition, we designed three distributed anonymization algorithms for data streams. These algorithms
are named CK-AA, CL-DA, and CT-CA, fulfill the anonymization rules of K-Anonymity, L-Diversity, and T-Closeness,
respectively, which have different computational complexities and reliabilities. The higher the complexity, the lower
the risk of privacy leakage. DST-PPM can reduce the dimension of high-dimensional information while preserving
data characteristics and dividing the data space into vantage points based on distance. It effectively enhances the data
processing workflow and increases algorithm efficiency. To verify the validity of the method in this paper, we conducted
empirical tests of CK-AA, CL-DA, and CT-CA on conventional datasets and the PEV-Tree, respectively. Based on the
big data background of the Internet of Vehicles, we conducted experiments using artificial simulated on-board network
data. The results demonstrated that the operational efficiency of the CK-AA, CL-DA, and CT-CA is enhanced by
15.12%, 24.55%, and 52.74%, respectively, when deployed on the PEV-Tree. Simultaneously, during homogeneity attacks,
the probabilities of information leakage were reduced by 2.31%, 1.76%, and 0.19%, respectively. Furthermore, these
algorithms showcased superior utility (scalability) when executed across PEV-Trees of varying scales in comparison to
their performance on conventional data structures. It indicates that DST-PPM offers marked advantages over CPPM in
terms of efficiency, reliability, and scalability.
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1 Introduction
In today’s era of unprecedented data explosion, where global data volume is projected to exceed 180

zettabytes by 2025, the significance of robust privacy protection mechanisms has become paramount across
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all technological domains. The Internet of Things (IoT), as a revolutionary technology, has drastically
enhanced the intelligence level of daily life and work while also exacerbating the risk of information
leakage, garnering widespread attention [1–3]. The unique architecture of IoT systems, characterized by their
distributed nature, resource constraints, and real-time data processing requirements, presents exceptional
challenges for privacy preservation. In recent years, scholars have devoted substantial efforts to exploring
and developing specialized privacy protection technologies tailored to the distinctive characteristics of IoT
environments. These efforts aim to achieve the delicate balance of ensuring ironclad security for personal
and sensitive information while not hindering the remarkable progress and widespread application of IoT
technology across various sectors, including healthcare, smart cities, and industrial automation. The stakes
are particularly high in safety-critical applications such as connected vehicles, where privacy breaches could
have threatening consequences. Moussaoui et al. proposed a novel approach to managing the Pseudonym
Certificate (PC) switching periods between vehicles, using a Common PC (CPC) for a short period before
switching to a new PC. It shows significant improvement in privacy protection [4]. Xu et al. propose a
security and privacy protection communication protocol for the Internet of Vehicles in smart cities. In
terms of security, Burrows-Abadi-Needham logic and the Scyther formal verification tool are utilized for
security verification, which reduces computation and communication costs [5]. Amin et al. proposed a robust
protocol based on Bidi et al.s’ protocol, guaranteeing high-level security protection against existing security
attacks [6]. Therefore, finding a balance between fostering technological innovation and safeguarding
personal privacy has emerged as a critical direction in current research [7].

In the realm of IoT data privacy protection, differential privacy, secure multi-party computation,
and data anonymization techniques are widely discussed [8–10]. Zhang et al. proposed a blockchain-
based asymmetric group key agreement protocol for IoV (B-AGKA), in which blockchain anonymous
authentication technology is adopted to achieve users’ privacy protection, which reduces the overhead and
achieves traceability [11]. Differential privacy achieves strong privacy protection by adding noise to query
results. While theoretically sound, the noise affects data accuracy, and the technical implementation requires
complex parameter adjustments [12]. Secure multi-party computation enables collaborative computations
without disclosing individual data, but it incurs high computational and communication costs, making it
challenging to adapt to the resource-constrained IoT environment [13]. Data anonymization techniques
(such as K-Anonymity, L-Diversity, and T-Closeness) ensure privacy through data generalization, but
they demonstrate low efficiency when dealing with large-scale and rapidly changing data streams [14].
Although these methods each offer advantages in privacy provision, they present limitations in real-time
data processing, accuracy assurance, and adaptability to IoT environments [15–17]. Addressing challenges
in processing efficiency, system reliability, and technical scalability is crucial for advancing IoT privacy
protection. New progress has been made in the research of privacy preservation for dynamic data streams.
Kumar [18] proposed a sliding window-based incremental anonymization method, which adapts to data
distribution changes by dynamically adjusting the generalization level. Aiming at the challenges of high-
dimensional data, Zhang et al. [19] developed a hybrid index structure that combines KD-Tree and R*-Tree
to achieve fast nearest neighbor search. For distributed processing, Wei and Kerschbaum [20] designed a
Spark-based parallel K-Anonymity framework with locally sensitive hashing to optimize data partitioning.
These methods improve the performance in specific dimensions, but fail to effectively address the coupling
of dimensional catastrophe and communication overhead in dynamic spatio-temporal scenarios, and lack a
systematic scheme in terms of balancing privacy protection strength and data utility.

The core motivation of this research stems from three unsolved challenges in Telematics scenarios:
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• Efficiency bottleneck in high-dimensional data processing: Traditional approaches (e.g., KD-Tree)
exhibit O(n2) time complexity at Quasi-identifier (QI, Components of personally identifying informa-
tion) = 9 (reaching 91 s CPPM runtime in our experiments), while our method, PEV-Tree would achieve
O(nlog n) complexity through dimensionality reduction.

• Privacy-utility trade-off imbalance in dynamic environments: Existing schemes (e.g., the pseudonym
switching mechanism in [4]) demonstrate 5.2% information leakage probability under homogeneity
attacks, whereas our new mechanism DST-PPM would reduce this to 0.19% via T-Closeness constraints.

• Deficiency in heterogeneous data collaboration: The benchmark method CASTLE [21] in mixed data
scenarios (6 numerical values + 3 categorical attributes) yields a suboptimal GLM value of 0.62, while
our solution improves this to 0.31.
To meet the requirements of efficiency, reliability, and scalability in IoT data privacy protection, this

paper proposes an enhanced data structure, the Principal Component Enhanced Vantage-point Tree (PEV-
Tree), and constructs a novel Distributed Spatio-Temporal Privacy Preservation Mechanism (DST-PPM)
around it. Additionally, three distributed privacy preservation algorithms (CK-AA, CL-DA, and CT-CA)
based on CASTLE, a classic real-time anonymization algorithm for data streams, are designed to satisfy
K-Anonymity, L-Diversity, and T-Closeness, respectively. Using publicly available vehicular network data, we
performed artificial simulations of streaming big data (both conventional data and PEV-Tree data streams)
and implemented CK-AA, CL-DA, and CT-CA on the distributed stream processing framework Flink. We
compared the efficiency, reliability, and scalability of CPPM and DST-PPM. The main contributions are as
follows:
1. We propose an enhanced data structure for distributed data privacy protection, termed the PEV-

Tree. We project high-dimensional data into a low-dimensional space through linear transformations,
emphasizing the main features and reducing the dimensionality of the data. Then we introduce the
vantage tree to isolate data in a metric space by selecting locations in space (“vantage points”) and
dividing the data points into two parts. And create a tree data structure by recursively applying this
process to divide the data into smaller and smaller sets.

2. We analyze data privacy protection within the context of vehicular networks. Based on CASTLE [21],
which is a clustering-based scheme, which is a clustering-based scheme, it designs data stream process-
ing algorithms that satisfy the requirements of K-Anonymity, L-Diversity, and T-Closeness, specifically
CK-AA, CL-DA, and CT-CA, and introduces a novel distributed DST-PPM leveraging the PEV-Tree.

3. Experimental analysis was conducted using the Flink computing framework to compare the per-
formance of DST-PPM based on PEV-Tree data streams with that of traditional CPPM in terms of
efficiency, reliability, and scalability. Comparing their run-time and efficiency under varying data scales,
quasi-identifier count, and latency threshold. The selection of different algorithms in different data
scenarios is analyzed, and suggestions are given.

4. The advantages of the novel distributed DST-PPM are explored, along with the characteristics and
application scenarios of the three algorithms CK-AA, CL-DA, and CT-CA.

2 Related Works

2.1 Anonymization Technology
With the advent of the big data era, personal information has been extensively collected and analyzed,

leading to a continuous increase in the risk of privacy breaches. In response to the growing demand for
privacy protection, anonymization technology has emerged to ensure that data does not leak personal
privacy during its use and sharing. The development of anonymization technology has undergone several
important stages. Initially, simple desensitization methods, such as deleting direct identifying information,
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were gradually considered inadequate in terms of security. Subsequently, scholars introduced more complex
methods, such as data masking, K-Anonymity, L-Diversity, and T-Closeness, significantly enhancing the
ability to protect data [22]. Fig. 1 shows the evolution of anonymization methods from simple to complex, as
well as the application of emerging fields and the role of emerging fields in promoting the development of
complex anonymization techniques. These methods not only safeguard privacy but also maintain the utility
of the data.

Application
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Figure 1: Anonymization technology and application

The concept of K-Anonymity was first explicitly proposed by Samarati and Sweeney in 1998 and
formally published in 2002 [23]. It provides a foundational framework for anonymizing data releases to
protect privacy information [24]. The core idea is to reduce individual characteristics in the data to a
level that is indistinguishable from at least k−1 other individuals. Techniques such as data generalization,
suppression, and perturbation are used to ensure that no individual record in the dataset can be distinguished
from at least k−1 other records based on certain key attributes, thereby protecting individual privacy [25].
However, K-Anonymity has drawbacks, such as high processing complexity and vulnerability to attacks based
on background knowledge. To address these issues, Machanavajjhala et al. [26] proposed the L-Diversity
model, which enhances diversity in sensitive attributes to prevent attribute linkage attacks and improves
data privacy protection. The core concept is to ensure that each equivalence class in the data contains at
least k indistinguishable entities and at least l different sensitive attribute values. Similarly, L-Diversity has
its limitations. When the diversity of sensitive attributes within the dataset is low, achieving the desired
level of protection is challenging. Moreover, enhancing diversity often increases processing complexity,
significantly reducing utility, and still leaving gaps in privacy protection [27]. In 2007, Li et al. proposed
the concept of T-Closeness [28]. The transition from L-Diversity to T-Closeness is particularly significant
because it introduces a new constraint: in addition to K-Anonymity, the distribution of sensitive attributes
within each anonymized group should be close to the overall distribution. By quantifying the closeness of
the distribution of sensitive attributes, T-Closeness further strengthens privacy protection, ensuring that
even in the face of background knowledge attacks, personal information remains effectively protected from
identification. T-Closeness maintains the difference between the distribution of sensitive attributes within an
anonymity group in the dataset and the distribution of the corresponding sensitive attributes across the entire
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dataset below a predefined threshold t. T-Closeness also has its challenges, such as high implementation
complexity [29].

Anonymization is not only widely used in traditional fields such as healthcare and finance, but also
plays a crucial role in emerging domains like the Io Vehicles, Internet of Things, blockchain, artificial
intelligence, and machine learning [30,31]. For example, anonymization of data in the IoV can enhance
traffic efficiency and safety while preserving user privacy. The conflicting requirements of real-time data
processing, accuracy, privacy protection, and the vast volume of information pose significant challenges
to anonymization technologies in these emerging fields [32]. However, reliability and data processing
complexity are interdependent, with high reliability inevitably leading to lower efficiency. It is well known
that three major factors affect the efficiency of privacy protection: the privacy protection algorithm, the
operating objects (data), and hardware resources. When hardware resources are immutable, optimizing the
operating objects (data structure and dimensions) is a feasible solution to enhance processing efficiency while
maintaining reliability.

In recent years, the combination of differential privacy and deep learning has become a new trend. Ho
et al. [33] proposed a differential privacy framework based on generative adversarial networks to preserve
spatio-temporal features while protecting the privacy of trajectory data. For dynamic data streams, Fan
and Xiong [34] designed an adaptive noise injection mechanism to optimize privacy budget allocation
by predicting data distribution changes via LSTM. In the Telematics scenario, Zhao et al. [35] combined
local differential privacy with edge computing to achieve distributed desensitization of in-vehicle terminal
data. Although these methods enhance privacy guarantees, the noise accumulation effect leads to long-
term data utility degradation, and it is difficult to meet the real-time requirements in vehicular collaborative
computing scenarios.

2.2 PCA and VP-Tree
PCA is a statistical method used for feature extraction and dimensionality reduction [36]. It aims

to project high-dimensional data into a lower-dimensional space through a linear transformation while
retaining as much of the original data’s key information as possible. PCA helps in removing noise, empha-
sizing the main features, and reducing the data’s dimensionality, thereby enhancing model performance.
The application of PCA effectively addresses the “curse of dimensionality” encountered in high-dimensional
data processing, making data handling and analysis more efficient in fields such as machine learning, image
processing, and genomic data analysis. The data dimensionality reduction process based on PCA is illustrated
in Fig. 2.

Figure 2: Dimensionality reduction process of data set based on PCA

VP-Tree, a metric tree, is a data structure designed for implementing range and nearest neighbor
searches within metric spaces. First proposed by Peter N. Yianilos in 1993, it excels in performing proximity
searches and demonstrates significant advantages when handling high-dimensional data [37]. The core
principle of VP-Tree lies in leveraging distance properties within metric spaces to organize data. This is
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achieved by selecting specific nodes as vantage points and partitioning the data based on their distances
relative to these vantage points. This method of data organization allows for the rapid exclusion of nodes that
do not match the query distance during searches, thereby significantly enhancing search efficiency. Further-
more, VP-Tree exhibits excellent scalability for high-dimensional datasets, showing superior performance
in managing large-scale and complex datasets. It is particularly effective in multidimensional data search,
pattern recognition, machine learning, recommendation systems, and bioinformatics [38,39]. By reducing
the number of distance calculations required during searches, VP-Tree lowers query time and increases
efficiency when processing large datasets.

In emerging application scenarios such as the Internet of Vehicles (IoV) and artificial intelligence, VP-
Tree demonstrates unique value. With ongoing technological advancements, VP-Tree has been continuously
optimized, resulting in several variants such as MVP-Tree and BV-Tree [40,41]. These variants employ various
optimization strategies to enhance the efficiency and scalability of the original structure, further cementing
VP-Tree’s utility in handling extensive and intricate data environments.

2.3 IoV Privacy Protection
The commonly used data desensitization technologies for IoV currently include anonymization and

differential privacy [42,43]. The advantages and disadvantages of these two data desensitization technologies
are shown in Table 1. The user privacy issue that needs to be addressed in the desensitization of vehicle
networking data is to protect the privacy of sensitive data of users, and prevent the leakage of sensitive
data due to inference, data analysis, and mining, while ensuring the legal compliance of vehicle networking
applications and implementation. To achieve legal compliance with data desensitization technology, it is
necessary to determine the authorization and informed consent of the data subject (i.e., the user) and to
conduct a data protection impact assessment. Due to the issue of low data availability in differential privacy,
and the need for intelligent services to be provided to users through data analysis in IoV, low data availability
can lead to a decrease in service quality. Therefore, we adopt anonymization to desensitize streaming data in
IoV. However, anonymization also has some drawbacks, such as difficulty in solving privacy quantification
issues and difficulty in resisting powerful background knowledge attacks. The amount of data collected
by IoV is very large, and it is impossible to predict what kind of background knowledge the attacker has.
Therefore, it is necessary to improve the ability of anonymization to process streaming data while enhancing
its ability to resist powerful background knowledge attacks, which is also the focus of this study.

Table 1: Advantages and disadvantages of two data desensitization technologies

Advantages Disadvantages
Anonymization The original data will not be modified,

ensuring the authenticity and validity
of the data with minimal information

loss.

Anonymization cannot resist powerful
background knowledge attacks and
cannot solve the problem of privacy

quantification.
Differential privacy Based on a solid data foundation,

privacy protection is strictly defined,
and quantitative evaluation methods

are provided to resist background
knowledge attacks.

Differential privacy is achieved by
adding noise or a random response,
which reduces data availability and

results in significant information loss.
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Although existing research has made significant progress in the area of privacy protection in Telematics,
the following key research gaps still exist: (1) traditional data partitioning methods (e.g., KD-Tree, Ball-Tree)
do not fully consider the replication overhead and communication cost in high-dimensional data streaming
scenarios, which leads to limited processing efficiency (According to our experiment, the time consumed
by the traditional methods increases by 58% when QI = 9); (2) existing anonymization algorithms (e.g.,
CASTLE) are difficult to balance reliability and real-time in dynamic spatio-temporal environments, and
experiments show that the probability of information leakage of CPPM under homogeneous attacks is 2.31%
higher than that of DST-PPM; (3) a unified processing framework for mixed data types (e.g., numerical speed
and discrete brand that exist simultaneously in the Telematics network) is missing, and the existing methods
tend to independently process different types of data, leading to a decrease in clustering accuracy (According
to our experiment, the GLM value of the traditional method is 50% higher); (4) the lack of a systematic
scheme for anonymization optimization under the distributed stream processing architecture, especially how
to effectively combine dimensionality reduction and tree indexing in frameworks such as Flink remains to
be explored.

To address the dynamic nature of vehicular networking, recent studies have proposed various enhance-
ment schemes. Song et al. [44] designed a dynamic pseudonym management framework based on fog
computing, which realizes region-level pseudonym switching through roadside unit collaboration. To cope
with location privacy threats, Tu et al. [45] proposed a spatio-temporal K-anonymization model to construct
dynamic anonymization regions using vehicle movement pattern prediction. In V2X communication sce-
narios, Aujla et al. [46] developed a fine-grained access control protocol based on attribute encryption, which
is combined with blockchain to realize audit trails. These schemes make progress in specific scenarios, but
generally face bottlenecks in the efficiency of high-dimensional data processing and lack a unified processing
mechanism for mixed attribute types.

3 Analysis of IoV Privacy Preserving

3.1 IoV Data Desensitization
With the widespread application of big data technology across various industries, data anonymization

has become a crucial topic, particularly in emerging fields like the Internet of Vehicles (IoV). The Internet
of Vehicles entails a network system where various sensors, controllers, and information-gathering devices
collect abundant data on vehicle operational status, driving environments, etc. This data is subsequently
transmitted via wireless communication technology to data centers for processing and analysis [26]. IoV user
data refers to the data provided or generated by users while using a car, which is associated with the user’s
identity and car usage behavior. This user data can be categorized into three types, as shown in Fig. 3. (1) User
and vehicle identity data, mainly refers to data that identifies the user’s natural person identity, virtual identity,
vehicle identity, or authentication-related identity. (2) User usage data mainly refers to data generated during
the use of the car, including operational data and usage record data. (3) Vehicle status data mainly refers to
the periodic collection of component and overall vehicle state information, including performance data and
operational condition data.

The Internet of Vehicles (IoV) involves a vast amount of personal and vehicle information, and the
misuse, leakage, or illegal provision of sensitive information poses significant threats to users’ personal
and property safety. Effectively utilizing this data while safeguarding user privacy becomes paramount.
Data anonymization serves as a method to achieve privacy protection during data utilization and sharing
by employing techniques such as renaming, masking, or transforming sensitive information. IoV data
anonymization is essential for ensuring compliance with regulations and securely applying data in practical
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business and research contexts, thereby enhancing data usability and value. It effectively enhances user trust
in IoV services, thereby promoting their broader application and development.
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Figure 3: User data collected from IoV

3.2 Model of Data Desensitization
In the practice of data desensitization in the Internet of Vehicles (IoV), common techniques include

data masking, data encryption, data generalization, and data perturbation. Data masking is a process that
hides user identity by replacing or deleting sensitive information, such as substituting a user’s real name with
‘XXX’. Its implementation simplicity is a boon, but the downside is that it may reduce the practical value of
data. Conversely, data encryption encrypts sensitive data to prevent unauthorized users from reading it. For
instance, the AES algorithm might be employed to encrypt the identity information of the vehicle owner.
This method offers high security, but the encryption and decryption process may increase the computational
overhead of the system. Data generalization, on the other hand, seeks to protect privacy by making specific
data vague, like generalizing a specific address to a city name. This method can help maintain the statistical
characteristics of data while offering relatively lower levels of privacy protection. Data perturbation works
by adding noise or random values to blur data content, e.g., making slight random adjustments to vehicle
speed data. This approach can effectively protect privacy while preserving the overall trend of the data, but
it may impact the accuracy of the data.

Through the combined application of these techniques, we can ensure data availability and practical
value while protecting privacy. By optimizing the application of the above techniques, we can further
enhance the efficiency of data processing and the level of privacy protection. The theoretical model of data
desensitization in IoV, as shown in Fig. 4, involves the IoV platform receiving data collected by sensors,
storing the data in a database, and performing data desensitization. When third-party applications request
access to data or make queries, the platform sends them the desensitized results, thereby ensuring the privacy
of users.

Based on the analysis in the previous section, anonymization techniques such as K-Anonymity,
L-Diversity, and T-Closeness are viable methods for ensuring data privacy in vehicular networks. These
three anonymization techniques were chosen due to their unique yet complementary strengths. Conducting
experiments and analyses using these rules is essential for understanding their effectiveness and efficiency



Comput Mater Contin. 2025;84(2) 2281

in distributed environments. We will test the performance of the algorithm satisfying these rules in our
experiments. These experiments will allow for the assessment of their performance and effectiveness in
distributed, real-time settings. Comparing the privacy guarantees provided by each rule helps identify trade-
offs between computational overhead and privacy protection, which is crucial for validating the practicality
of these anonymization techniques in large-scale, dynamic environments.
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Figure 4: Desensitization model for IoV data

3.3 DST-PPM
In emerging application scenarios such as the Internet of Vehicles (IoV) and artificial intelligence,

data arrives in the form of high-speed data streams containing substantial amounts of private information.
However, traditional data stream privacy protection algorithms struggle to simultaneously meet the require-
ments of reliability, scalability, and efficiency in these contexts. This challenge has driven us to explore new
solutions, among which the VP-Tree structure stands out due to its superior scalability. VP-Tree demonstrates
significant advantages in handling high-dimensional data. Each node in a VP-Tree contains a data point and
a radius. Points closer to the node’s point than the radius are placed in the left child, while points farther
away are placed in the right child. To illustrate the construction of a VP-Tree, consider an example where
point 28 is chosen as the vantage point (VP) due to its distance from other points. This point serves as the
level-0 vantage point (root node) of the VP-Tree. A sphere with a carefully calculated radius r is drawn around
point 28, such that half of the remaining points lie within the sphere and the other half lie outside it. The points
inside the sphere are allocated to the root node’s left subtree, while those outside are allocated to the right
subtree. This process is recursively applied to both the inside-sphere points and the outside-sphere points.
Ultimately, this method results in the formation of a VP-Tree, as illustrated in Fig. 5. This method of data
organization allows for the rapid exclusion of nodes that do not match the query distance during searches,
thereby significantly enhancing search efficiency. Furthermore, VP-Tree exhibits excellent scalability for
high-dimensional datasets, showing superior performance in managing large-scale and complex datasets.
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Figure 5: An illustrative example of VP-Tree structure. Red points form a cluster, and blue points form another cluster

Moreover, utilizing Principal Component Analysis (PCA) for dimensionality reduction of data streams
facilitates the rapid construction of the tree structure. In view of this, we propose to use a new data structure
to create a new privacy protection mechanism and call it the Principal Component Enhanced Vantage-
point tree (PEV-Tree), a lightweight variant of VP-Tree, which is easier to build and offers faster access
speeds. The PEV-Tree data stream can reduce the number of distance calculations required during the
search process, thereby enhancing the real-time performance of privacy protection algorithms. This makes
it more suitable for scenarios such as the IoV and artificial intelligence, which demand efficient processing
of massive datasets.

In the PEV-tree-based data partitioning process, we need to determine a specific level of the VP Tree.
Then, each computation node is assigned to a specific node or multiple tree nodes at level m. The constructed
VP-Tree is binary, so the level can be chosen based on the number of distributed computing nodes. For
example, the level for 8 partitions should be at least 3, not counting the root level, as 23 = 8. If the chosen level
is m, the number of partitions is 2m. Additionally, the VP-Tree initially needs to be filled with enough stream
data to grow it to at least level m. Since the nodes of each VP-Tree do not overlap with each other, The Times
of data replication and information exchange are reduced. Therefore, for a data stream consisting of n data
items and d quasi-identifier attributes, with a replication rate of v per data item, and a cluster of ∣P∣ computing
nodes, the communication overhead of the VP-Tree based data partitioning method is O(n∗d∗v∗ct), where
ct is the cost of constructing the VP-Tree, a constant. By using PCA, the construction cost can be significantly
reduced. Therefore, when there are many quasi-identifier attributes, it is better to use the PEV-Tree-based
distributed anonymization algorithm.

Based on the above analysis, we propose the DST-PPM. DST-PPM is a dynamic spatiotemporal privacy
protection mechanism composed of PEV-Tree and stream data privacy protection algorithms (CK-AA,
CL-DA, CT-CA) based on CASTLE. Utilizing PEV-Tree under the Apache Flink framework offers significant
advantages, particularly in efficiently handling metric spaces, which is crucial for high-dimensional data
processing and effectively managing the curse of dimensionality. Given that the original data stream
undergoes dimensionality reduction, PEV-Tree is more efficient in construction and access compared to
VP-Tree. Furthermore, it still partitions space based on distances and vantage points, maintaining the same
excellent scalability as VP-Tree.

The Flink framework, with its robust stream processing capabilities, synergizes with PEV-Tree to ensure
effective data partitioning and reduce computational overhead associated with high-dimensional data.
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Compared to Ball-Tree, KD-Tree, and VP-Tree, PEV-Tree offers a more straightforward implementation and
generally better performance in metric spaces. This is critical for maintaining the required privacy protection
reliability without incurring significant delays. Additionally, the simplicity of PEV-Tree aligns seamlessly with
Flink’s distributed processing model, facilitating the implementation and maintenance of anonymization
algorithms. Integrating PEV-Tree with the Flink framework enhances the scalability and parallelism of
the anonymization process, ensuring that large-scale data streams can be processed distributed manner
while maintaining high throughput and low latency. The combination of PEV-Tree and Flink leverages the
strengths of both technologies, providing a scalable, real-time distributed anonymization solution.

4 Proposed Approach
This study proposes a distributed DST-PPM based on the PEV-Tree framework under Flink, which is

divided into data stream partition windows and data anonymization windows. The data stream partition
window utilizes PCA to perform dimensionality reduction on the data stream, selects a viewpoint, and
calculates the distance to other data points. Based on these distances, the data is partitioned into inner
and outer circles, and then the partitioned data is passed to the corresponding subtasks for processing.
The data de-identification window receives the partitioned data and applies the three privacy protection
algorithms designed in this study (CK-AA, CL-DA, CT-CA) for anonymization. It then checks whether each
partition meets the anonymity requirements (K-Anonymity, L-Diversity, T-Closeness). If not, the data is
further generalized until it satisfies the privacy requirements, and then the generalized data is released. The
main logic is illustrated in Fig. 6.

Figure 6: Principle of data anonymization algorithms based on PEV-tree
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4.1 PEV-Tree Construction Process
The VP-Tree is a distance-based nearest neighbor search algorithm [47,48]. Compared to other tree

structures, the VP-Tree achieves higher computational efficiency in nearest neighbor searches due to its
entirely distance-based binary search characteristic. Kumar et al. [49] have demonstrated that the VP-Tree
can yield better nearest neighbor search results than other hierarchical data structures. However, compared
to the VP-Tree, the PEV-Tree offers lower space storage requirements and faster construction and access
efficiency. PEV-Tree is a lightweight tree-structured dataset obtained by applying PCA for dimensionality
reduction on data streams, and it is based on the VP-Tree.

To illustrate the construction process of the PEV-Tree, we employ a simple 3-ary partitioning example,
which can be easily extended to ε-ary partitioning for ε > 3. First, the PCA technique is used to perform
eigenvalue analysis and ranking on the dataset, retaining the top two features and reconstructing them
into a binary dataset. Subsequently, the dataset is divided into two subsets to construct a binary PEV-
Tree. This vantage point is placed in the root node, with the two resulting subsets forming the left and
right subtrees. These subtrees are processed recursively, constructing further levels of the tree with newly
chosen vantage points until each node houses a single data point, thus completing the tree. Specifically,
given a dataset D containing n points, a point pev is randomly selected as the vantage point in the
reconstructed dataset Dr. The distances between pev and other points in Dr are computed, creating the set
S = {dist(p, pev) ∣ p ∈ Dr − {pev}}. Using the median distance value μ from S, the dataset is divided into two
subsets: D1 consists of points within a distance μ of pev, while D2 consists of points farther than μ from pev,
as illustrated in Fig. 7a.

The process of constructing an ε-ary PEV-Tree (ε > 3) parallels that of a binary PEV-Tree, but with key
differences. First, the PCA technique is applied to the dataset for eigenvalue analysis and ranking, retaining
the top ε1 features and reconstructing them into an ε1-ary dataset. Subsequently, the dataset is divided into
ε1 approximately equal subsets to construct an ε1-ary PEV-Tree. For a given dataset D, a vantage point pev
is randomly selected in the reconstructed dataset Dr. The distances from pev to all other points in Dr are
computed and ordered in ascending fashion. Unlike the binary approach, this method partitions the dataset
into ε1 approximately equal subsets, with pev stored in the first subset for this study. As illustrated in Fig. 7b,
the boundary distances μi (i = 1, 2, ... , ε − 1) demarcate the divisions between Di−1 and Di. Formally, for an
ordered sequence of distances S = {dist(aj, vp) ∣ aj ∈ Dr, j = 0, 1, ... , ∣Dr∣ − 1}, where ∣Dr∣ denotes the total
number of points in Dr, the boundary distances μi can be computed as follows:

μi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, i = 0

S (i × ⌊∣Dr∣
ε1
⌋ − 1) + S (i × ⌊∣Dr∣

ε1
⌋)

2
, i ∈ ∣1, ε1 − 1∣

(1)

where S(j) represents the j-th ordered element in S (j = 0, 1, ... , ∣Dr∣ − 1), and ⌊∣Dr∣/ε1⌋ denotes the floor
function of the integer division ∣Dr∣/ε1. Consequently, for each point p in Di, the distance dist(p, pev) lies
between μi and μi + 1. To elucidate the construction process of the PEV-Tree, consider the dataset Dr =
{a, b, c, d, e, f, g} in a two-dimensional vector space after dimensionality reduction. The binary PEV-Tree
construction process is depicted in Fig. 7c, and the ε-ary case is shown in Fig. 7d: (1) Point e is randomly
selected as the vantage point; (2) the distances between e and all other points are computed, resulting in S =
{dist(p, e) ∣ p ∈Dr − {e}} = {1.414, 2.236, 3.606, 5.099, 5.385, 5.657}; (3) the median value of S is determined,
yielding μ = (3.606 + 5.099)/2 = 4.3525; (4) subsets D1 = {c, b, a} and D2 = {g, d, f } are formed; (5) the points
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within D1 and D2 are recursively organized using the same steps until each subset contains only one data
point. The corresponding binary PEV-Tree structure is illustrated in Fig. 8a.

Figure 7: PEV-Tree partitioning strategy in a 2-dimensional and ε-ary input domain (a,b). This is an example
comparison between binary and ε-ary PEV-Tree partitioning in a 3-dimensional input domain (c,d)

The resulting ε1-ary PEV-Tree structure is presented in Fig. 8b, where ε1 = 3. Analogous to the binary
case: (1) Point e is chosen at random as the vantage point; (2) distances from e to all other points are calculated,
resulting in S = {dist(p, e) ∣ p ∈ Dr} = {0.000, 1.414, 2.236, 3.606, 5.099, 5.385, 5.657}; (3) three boundary
values are defined.

μ0 = 0.00 (2)

μ1 =
S (1) + S (2)

2
= 1.83 (3)

μ2 =
S (3) + S (4)

2
= 4.35 (4)

partitioning Dr into three approximately equally sized subsets; (4) the steps above are repeated in each subset.
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Figure 8: Example of the comparison between binary PEV-Tree structure and ε-ary PEV-Tree structure in a
2-dimensional input domain

4.2 Distributed CK-AA Based on PEV-Tree
Based on the PEV-Tree data partitioning method, a distributed algorithm that adheres to the

K-Anonymity principle has been designed, referred to as the Distributed CASTLE Algorithm based on
PEV-Tree (CK-AA for short). Implementing the distributed CK-AA under the Flink framework involves
addressing data privacy, multidimensional data indexing, and distributed computing. The algorithm com-
prises a stream data partitioning window and a data desensitization window. The stream data partitioning
window executes data partitioning based on the PEV-Tree method. The data desensitization window
generalizes and publishes tuples that satisfy the K-Anonymity principle, consistent with the K-Anonymity
publishing rules of the baseline algorithm. The specific algorithm steps are detailed in Algorithm 1.

Algorithm 1: Distributed CASTLE algorithm based on K-Anonymity (CK-AA)
Input: parameter k, data stream S, publishing delay threshold δ, maximum number of clusters (β) that do
not satisfy the K-Anonymity principle.
Output: Data stream S* that satisfies the K-Anonymity privacy protection principle.

1 Setn as the collection of tuples to be published, initially empty;
2 Sety as the collection of clusters that have been published and satisfy the K-Anonymity principle,

initially empty;
Data Stream Partition Window:

3 for each t in S:
4 if t does not contain a timestamp:
5 assigning a timestamp to t;
6 preprocess t for PCA (e.g., normalization if needed);
7 apply PCA to t and reduce its dimensionality;
8 selecting an appropriate partition, t.partition, for t based on the distance to

advantageous points;
9 sending t to its partition, t.partition;

Data Anonymization Window:
10 for each partition p:

(Continued)
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Algorithm 1 (continued)
11 C=BestSelection(t);
12 if C satisfies the K-Anonymity principle:
13 publishing t using the generalized result of cluster C;
14 else:
15 if the cluster containing t does not satisfy the K-Anonymity principle:
16 finding a cluster that satisfies K-Anonymity, includes t, in t’s neighboring grid, and

publishing t using the generalized result of that cluster;
17 if t reaches the publishing delay δ:
18 delay_constraint(t).

The algorithm initially establishes two sets: one for storing tuples to be disclosed (Setn) and another for
holding released clusters that comply with the K-Anonymity principle (Sety). In the data stream partitioning
window, for each data tuple ‘t’, if ‘t’ lacks a timestamp, one is assigned. PCA preprocessing is then performed
to reduce the dimensionality of the data. Subsequently, based on its distance to the dominant point, an
appropriate partition for ‘t’ is selected, and ‘t’ is sent to the corresponding partition. The data anonymization
window, for each partition, opts for the best cluster ‘C’ inclusive of ‘t’. If ‘C’ adheres to the K-Anonymity
principle, ‘t’ is disclosed. If not, a cluster that adheres to K-Anonymity is located within ‘t’s’ proximity grid
and ‘t’ is then disclosed. If ‘t’ reaches the publication delay threshold ‘δ’, delayed publication is carried out.
The entire process aims to ensure the published data stream complies with the K-Anonymity principle while
minimizing publication delay, thereby guarding user privacy and data security.

Table 2 is an example of a data table that does not meet K-Anonymity, with identifiers like Age and the
Last three digits of car number. After being desensitized by this algorithm, the table is transformed to meet
K-Anonymity requirements, as shown in Table 3.

Table 2: Data that is inconsistent with K-Anonymity

Age Last three digits of car number Brand
c1 20 734 Tesla
c2 20 732 BMW
c3 30 386 BYD
c4 40 291 Audi
c5 50 323 Benz
c6 50 325 Volkswagen

In Table 3, the table satisfies K-Anonymity, where k = 2. This means that each of the two quasi-identifier
value attributes appears at least twice in the table: ∣T[Age = 20]∣ = 2, ∣T[Age = [30,40]]∣ = 2, ∣T[Age = 50]∣ = 2,
∣T[N = [730,735]]∣ = 2, ∣T[N = 386]∣ = 2, ∣T[N = [320,325]]∣ = 2. Furthermore, the combinations of attribute
values formed by these two quasi-identifiers appear at least twice in the dataset: c1[QIRT ] = c2[QIRT ],
c3[QIRT ] = c4[QIRT ], c5[QIRT ] = c6[QIRT ].

4.3 Distributed CL-DA Based on PEV-Tree
In Table 4, the data satisfies K-Anonymity, where k = 4, but does not meet L-Diversity.



2288 Comput Mater Contin. 2025;84(2)

Table 3: Data that is consistent with K-Anonymity

Age Last three digits of car number (N) Brand
c1 20 [730, 735] Tesla
c2 20 [730, 735] BMW
c3 [30, 40] 386 BYD
c4 [30, 40] 386 Audi
c5 50 [320, 325] Benz
c6 50 [320, 325] Volkswagen

Table 4: Data that satisfies K-Anonymity but not L-Diversity

Age Car number Brand
<40 A12** Tesla
<40 A12** BMW
<40 A12** Audi
<40 A12** Audi
≥40 B103* Audi
≥40 B103* Tesla
≥40 B103* BMW
≥40 B103* BMW
4* A12** Benz
4* A12** Benz
4* A12** Benz
4* A12** Benz

Note: The symbols * and ** in the column are masking characters
used to anonymize or partially hide sensitive data. * (Single Asterisk):
Represents one masked character (digit or letter). ** (Double Asterisk):
Represents two or more masked characters.

Although the data in Table 4 complies with K-Anonymity, it can be inferred that users who meet
Age = 4* and Car number =A12** all drive Benz cars, so the data table needs further desensitization to meet
L-Diversity and protect users’ privacy.

Building upon CK-AA, a further proposal is made for a PEV-Tree-based Distributed CL-DA. This
algorithm satisfies both K-Anonymity and L-Diversity principles. The specific algorithm steps are detailed
in Algorithm 2.

Algorithm 2: Distributed CASTLE algorithm based on L-Diversity (CL-DA)
Input: parameter k, parameter l, data stream S, publishing delay threshold δ, maximum number of clusters

(β) that do not satisfy the K-Anonymity and L-Diversity principles.
Output: Data stream S* that satisfies the K-Anonymity and L-Diversity privacy protection principles.
1 Setn as the collection of tuples waiting to be published, initially empty;
2 Sety as the collection of clusters that have been published and satisfy both the K-Anonymity and
L-Diversity principles, initially empty;

(Continued)
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Algorithm 2 (continued)
Data Stream Partition Window:

3 for each t in S:
4 if t does not contain a timestamp:
5 assigning a timestamp to t;
6 preprocess t for PCA (e.g., normalization if needed);
7 apply PCA to t and reduce its dimensionality;
8 selecting an appropriate partition, t.partition, for t based on the distance to

advantageous points;
9 sending t to partition, t.partition;

Data Anonymization Window:
10 for each partition p:
11 C=BestSelection(t);
12 if C satisfies both the K-Anonymity and L-Diversity principles:
13 publishing t using the generalized result of cluster C;
14 else:
15 if the cluster containing t does not satisfy the K-Anonymity or L-Diversity

principles:
16 search for a valid cluster including t and publish;
17 if t reaches the publishing delay δ:
18 delay_constraint_kl(t).

Initially, two sets are initialized: Setn, intended for storing tuples awaiting release, initially empty; and
Sety, for storing the published clusters that meet both the K-Anonymity and L-Diversity principles, also
initially empty. In the data stream partitioning window, for each data tuple ‘t’, if ‘t’ lacks a timestamp, one
is assigned. PCA preprocessing is then performed to reduce the dimensionality of the data. Subsequently,
based on its distance to the dominant point, an appropriate partition for ‘t’ is selected, and ‘t’ is sent to
the corresponding partition. Subsequently, in the data anonymizing window, for every partition ‘p’, a prime
cluster ‘C’ encapsulating ‘t’ is selected. Should ‘C’ satisfy both the K-Anonymity and L-Diversity principles,
‘t’ is published using the generalized results of the cluster ‘C’. If ‘C’ fails to meet the K-Anonymity or
L-Diversity principles, the search continues for an inclusive cluster of ‘t’ that fulfills requirements, with ‘t’
then published using the generalized results of the found cluster. During this process, ‘t’ would be subject
to a delay constraint strategy ‘delay_constraint_kl(t)’ should it reach the publication delay threshold ‘δ’. The
entire process aims to ensure the published data stream adheres to both the K-Anonymity and L-Diversity
privacy protection principles, while endeavoring to minimize publication delay as a means to safeguard user
privacy and data security. Specifically, the data stream partitioning window segment primarily ensures the
sensible partitioning of data based on time stamps and distances to the dominant point, thereby ensuring data
within each partition retains a degree of similarity, facilitating subsequent anonymization processing. On the
other hand, the anonymization window ensures the validation of K-Anonymity and L-Diversity within each
partition. By selecting the best cluster and the necessary proximate cluster search when essential, privacy
protection requirements are met during data publication. The introduction of the delay constraint strategy
aims to strike a balance between timely data publication and effective privacy protection, ensuring data is
published within a specific delay threshold, thus enhancing the practicability and reliability of the algorithm.

The data satisfying L-Diversity is shown in Table 5, where l = 4.
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Table 5: Data that satisfies L-Diversity

Age Car number Brand
<40 A125* Tesla
<40 A125* BMW
<40 A125* Audi
<40 A125* Audi
≥40 B103* Audi
≥40 B103* Tesla
≥40 B103* BMW
≥40 B103* BMW
<40 A127* BYD
<40 A127* Audi
<40 A127* Benz
<40 A127* Volkswagen

Note. The symbols * and ** in the column are masking characters
used to anonymize or partially hide sensitive data. * (Single Asterisk):
Represents one masked character (digit or letter). ** (Double Asterisk):
Represents two or more masked characters.

4.4 Distributed CT-CA Based on PEV-Tree
Additionally, by leveraging the distributed computing framework Flink to distribute data across

different nodes, a PEV-Tree-based distributed CT-CA is designed. This algorithm adheres to the T-Closeness
principle. The T-Closeness algorithm ensures that the distribution of sensitive attribute values within equiv-
alence classes matches the global distribution, thus addressing the limitations of the L-Diversity problem.

In privacy protection mechanisms, Earth Mover’s Distance (EMD) is used to measure the differences
between data distributions and evaluate the impact of desensitization operations or synthetic data generation
on the original data structure. By minimizing EMD, it is possible to ensure that the data after privacy
protection processing remains consistent with the original data in terms of statistical characteristics, thereby
protecting privacy while retaining the validity and practicality of the data. The distance between the
distribution P of a sensitive attribute within a class and the distribution Q of that attribute across the entire
table is measured using Earth Mover Distance (EMD). EMD refers to the minimal amount of work needed to
transform one distribution into another by moving distribution mass between them. The definition of EMD
is as follows.

D (P, Q) =WORK (P, Q , F) =
m
∑
i=1

m
∑
j=1

di j fi j (5)

in this context, di j refers to the distance from the ith element in the distribution P of the sensitive attribute
to the jth element in the distribution Q of that attribute across the entire table. fi j refers to the mass from
the ith element in the distribution P to the jth element in the distribution Q. WORK (P, Q , F) is the work
required to transform P into Q, i.e., the EMD distance, and is constrained by the following three equations.

fi j > 0 ⋅ ⋅ ⋅ 1 ≤ i ≤ m, 1 ≤ j ≤ m (6)
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pi −
m
∑
i=1

fi j +
m
∑
j=1

fi j = qi (7)

m
∑
i=1

m
∑
j=1

fi j =
m
∑
j=1

pi =
m
∑
i=1

qi = 1 (8)

In the study of this paper, for categorical attributes, the distance we set between two categorical attribute
data can be considered as always 1 (equal distance), as follows.

D [P, Q] = 1
2

m
∑
i=1
∣pi − qi ∣ = ∑

pi≥qi

(pi − qi) = − ∑
pi<qi

(pi − qi) (9)

The specific steps of the algorithm are shown in Algorithm 3.

Algorithm 3: Distributed CASTLE algorithm based on T-Closeness (CT-CA)
Input: parameter t, data to be anonymized, parameter k, generalization tree H.
Output: An anonymized dataset datasyn that meets the T-Closeness privacy protection standard.
1 Initializing empty sets Set, finalSet; using the overall value space of the dataset to initialize the root node

Root; adding Root to Set;
2 Initializing tmpSet;
3 for each element in Set,
4 using the PEV-Tree-based subspace partitioning method mentioned above to divide the

value space;
5 if the two generated subspaces both satisfy the T-Closeness constraint,
6 adding the two partitioned subspaces to tmpSet;
7 else if any subspace does not satisfy the T-Closeness constraint,
8 adding the parent value space to finalSet;
9 Assigning Set = tmpSet;
10 Repeating steps 2~6 until the Set is empty;
11 for each value space in finalSet,
12 generalizing as an equivalence class to generate datasyn.

Two empty sets, Set and finalSet, are initially initialized, with Root, the root node, initialized using
the aggregate value space of the dataset and subsequently appended to the Set. A temporary set, tmpSet, is
then initialized. For each element in the Set, the value space is divided using the PEV-Tree based subspace
partitioning method. If the two resulting subspaces meet the T-Closeness constraint, they are added to
tmpSet; if any subspace fails to meet the T-Closeness constraint, the parent value space is added to finalSet. Set
is assigned the value of tmpSet and the preceding steps are repeated until Set is empty. Finally, each value space
in finalSet is generalized into an equivalence class to generate an anonymized dataset ‘datasyn’ that meets
the T-Closeness privacy protection standard. The key aspect of the entire process lies in the division of the
value spaces through the PEV-Tree subspace division method, and constant checking of whether the divided
subspaces meet the T-Closeness constraint, thereby ensuring that the final anonymized data adheres to the
privacy protection standard while retaining a high degree of data utilization value. Continuous iterations and
checks throughout the algorithm ascertain that the T-Closeness privacy protection standard isn’t violated
in the anonymization process, while also managing to reintegrate non-compliant value spaces back into the
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pending set, facilitating the stepwise refinement and precise disposal of data. The produced anonymized
dataset ‘datasyn’, effectively safeguards user privacy while preserving the actual application value of the data.

5 Experiment

5.1 Experimental Preparation
Datasets. The dataset used in the experiments was artificially simulated streaming big data based on

datasets from an IoV data open platform. The data includes an identity identifier, license plate number, and a
sensitive attribute, position. Among the nine quasi-identifier attributes, there are five continuous attributes,
namely age, heart rate, driving speed, hours per week, and oil consumption, and four discrete attributes,
namely brand, address, gender, and marital status. Each attribute contains an average of 1000 different values.
Due to the limitations of hardware equipment, our experiment still has a certain gap from the real world.
However, it already possesses all the basic characteristics of data streams in the real Internet of Vehicles.
Therefore, it can be regarded as a simplified version of the Internet of Vehicles information system.

Experimental Setup. The experimental environment is based on the Flink distributed computing
framework. There is one Master node, equipped with a server that has 32 GB RAM, 3.4 GHz, and 2 Core
CPU. There are four Worker nodes, each configured with 48 GB RAM, 3.4 GHz, and 4 Core CPU.

Implementation Details. In this paper, three aspects of the algorithm are tested. First, the efficiency of
the algorithm is tested. By inputting vehicular network data of different sizes, the efficiency of the algorithm
is measured based on the execution time. Second, the scalability of the algorithm is analyzed. Here, the
scalability of the algorithm is measured by the speedup ratio and data utility. We test the data utility. Here, the
GLM (Generalization Loss Metric) is used as the criterion for evaluating data utility [50,51]. For the special
application scenario of streaming big data in the IoV, some adjustments are made to the GLM during the
anonymization process. {q1 , ⋅ ⋅ ⋅ , qn} is set as the set of quasi-identifier attributes, and a categorical attribute
qi is firstly considered. Letting DGH be the generalization tree for qi , and given a node v in DGH, the
information loss for v is defined as follows:

V In f oLoss (v) = ∣Sv∣ − 1
∣S∣ − 1

(10)

where Sv represents the set of leaf nodes in the subtree rooted at v in DGH, and S is the set of all leaf nodes
in DGH. Therefore, the information loss for a tuple t generalized to g (v1 , ⋅ ⋅ ⋅ , vn) is defined as follows:

In f oLoss (g) = 1
n∑

n
i=1 V In f oLoss (vi) (11)

The average information loss of the data stream S up to time p is defined as follows:

AvgLoss (S , p) = 1
p∑t i∈S ,tL p≤p In f oLoss (ti) (12)

The efficiency and anonymization effects of three distributed anonymization algorithms based on PEV-
Tree are compared.

5.2 Experimental Efficiency and Scalability
We adopt three distributed anonymization algorithms based on PEV-Tree, namely CK-AA, CL-DA,

and CT-CA, and they are used respectively under the Distributed Spatig-Temporal Privacy Preservation
Mechanism (DST-PPM) and the conventional privacy protection mechanism (CPPM). Experimental results
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were obtained and compared to draw conclusions. The experimental results of the distributed algorithms
that respectively satisfy K-Anonymity, L-Diversity, and T-Closeness for streaming big data in IoV are shown
in Tables 6 and 7 and Figs. 9–11.

Table 6: Running time of three algorithms under different numbers of QI

Number
of QI

CK-AA for
CPPM (s)

CK-AA for
DST-PPM

(s)

CL-DA for
CPPM (s)

CL-DA for
DST-PPM

(s)

CT-CA for
CPPM (s)

CT-CA for
DST-PPM

(s)
2 20 17 31 24 55 37
4 29 25 35 28 64 43
6 33 29 44 35 75 52
8 35 30 58 46 91 64
9 35 31 58 47 91 66

Table 7: Speedup ratios of three algorithms under different cluster sizes

Number of local
computing nodes

CK-AA for DST-PPM CL-DA for DST-PPM CT-CA for DST-PPM

2 0.972 0.935 0.914
3 1.557 1.868 1.931
4 2.989 3.051 3.173
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Figure 9: Running time of three algorithms at different data scales
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Figure 10: Running time of algorithms under different delay threshold values
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Figure 11: Data utility of three algorithms at different data scales

Fig. 9 shows the running time of the three algorithms in the two mechanisms under different data
sizes, with the experimental parameters set as follows: in K-Anonymity, parameter k = 100; in L-Diversity,
parameter l = 20; in T-Closeness, parameter t = 0.15; number of quasi-identifier attributes QI = 9; number
of parallel nodes ∣p∣ = 4; delay threshold δ = 10,000. As can be seen from Fig. 9, DST-PPM has higher
efficiency compared to the three algorithms under CPPM, and this advantage becomes more pronounced
as the amount of data increases. It can be observed that the efficiency of T-Closeness is generally lower than
that of L-Diversity, because under 9 QI, they have similar time cost in resisting linkage and homogeneous
attacks. However, T-Closeness also makes reasonable transformations to the alignment identifier values
to reduce data accuracy and increase the inseparability between different values of the same attribute,
which incurs additional costs and thus increases the overall communication overhead for greater privacy



Comput Mater Contin. 2025;84(2) 2295

benefits. However, under the impetus of our method PEV-Tree, even CT-CA for DST-PPM with the
strongest privacy effect can have a lower time cost than CL-DA for CPPM after 15,000 data volume. This
is because, as the amount of data increases, the three algorithms integrated with PEV-Tree require fewer
times of data partitioning, while the communication between nodes under the traditional method is more
frequent, resulting in an increase in communication costs. CK-AA for DST-PPM obviously has the best time
performance, and the data does not need to be copied or transformed, so with the increase of the amount of
data, the advantages of CK-AA become more obvious, showing good scalability.

Table 6 shows the running times of the three algorithms in the two mechanisms under different numbers
of quasi-identifier attributes (QI), with the parameter settings as follows: k = 100, l = 20, t = 0.15, ∣P∣ = 4,
number of records N = 10,000, delay threshold δ = 10,000. It can be seen from Table 6 that the running
time of the three algorithms under the two mechanisms increases with the increase of the number of QI.
When the number of QI is less than 9, the increase in running time of CK-AA decreases with the increase
of QI, while for CL-DA and CT-CA, the increase in running time increases with the increase of QI. We find
that the time growth of each algorithm tends to be stable when the number of quasi-identifiers reaches 9.
In addition, it can be seen that the algorithm’s efficiency under DST-PPM is generally better than CPPM.
CK-AA is faster and more efficient, followed by CL-DA, while CT-CA is the least efficient. This is because the
communication overhead of CT-CA is not only related to the number of QIs, but also to the cost incurred
during the conversion of quasi-identifier values. The greater the number of QI, the longer it takes for the
T-Closeness algorithm to copy data and convert quasi-identifier values, resulting in lower efficiency.

Fig. 10 shows the running times of the three algorithms in the two mechanisms under different delay
threshold values. The parameter settings in the experiments are as follows: k = 100, l = 20, t = 0.15,
QI = 9, ∣P∣ = 4, number of records N = 20,000. The experimental results show that the running times of
the three algorithms increase with the increase of the delay threshold δ. The larger the δ value, the more
tuples in the buffer need to be processed at once, thereby increasing the running time of the algorithms.
From Fig. 10, compared with CL-DA and CT-CA, CK-AA is less affected by the delay threshold and has
higher computational efficiency. Although CK-AA takes the longest time at δ < 1000, its advantages gradually
become apparent as the delay threshold increases. This is because, as the delay threshold increases, the
number of data copies required by CL-DA and CT-CA at a time also increases. As a result, communication
between nodes becomes more frequent, resulting in increased communication costs. It is worth noting that
under DST-PPM, our approach has a significant time benefit. Among them, the running time of CT-CA for
DST-PPM at δ ≤ 1000 is reduced by nearly half compared with CT-CA for CPPM. For conditions with a high
delay threshold (>1000), we can also ensure the growth rate of CT-CA running time. In addition, CK-AA
for DST-PPM and CL-DA for DST-PPM also have obvious benefits in terms of time efficiency. However,
as the delay threshold δ continues to increase, the running time increment of CL-DA for DST-PPM is still
relatively large. We recommend using CL-DA for DST-PPM in scenarios with a low delay threshold, and it
always maintains the highest efficiency when δ ≤ 1000.

Table 7 shows the speedup ratios of the three algorithms under different cluster sizes by DST-PPM, with
the parameter settings as follows: k= 100, l = 20, t = 0.15, QI= 9, number of records N = 20,000, delay threshold
δ = 10,000. From Table 7, the speedup ratios of all three algorithms linearly increase with the growth of the
cluster size, indicating that the three VP-Tree algorithms have good performance and scalability.

Fig. 11 shows the generalization loss metric (GLM) test of CK-AA for DST-PPM, CL-DA for DST-PPM,
and CT-CA for DST-PPM based on PEV-Tree, and compares it with three baselines under CPPM, in other
words, the comparison of data utility. The parameters for the experiment are set as follows: k = 100, l = 20,
t = 0.15, QI = 9, ∣P∣ = 4, delay threshold δ = 10,000. It is clear from Fig. 11 that as the number of records per
window increases, the GLM parameters of all three algorithms decrease simultaneously. This is because, as
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new tuples of data continue to arrive, newly formed clusters are added to published clusters, increasing the
likelihood that data arriving later will be overwritten by existing clusters, providing higher data availability.
However, compared with CPPM, when the number of data streams increases to a certain extent, the decrease
in data utility can be controlled within a stable range. We observe that when the number of data streams is
greater than 25,000, DST-PPM can ensure the stability of data utility. When the number of data streams is
small, DST-PPM can maintain better data utility. It is worth noting that CT-CA for DST-PPM improves data
utility by nearly 50% compared to CT-CA for CPPM. Due to the reduction of PEV-Tree and our reconstructed
VP-Tree data structure, the accuracy of dynamic clustering is increased, thus improving the availability of
data. In addition, CK-AA and CL-DA under DST-PPM have significantly improved data utility.

5.3 Evaluation of Data Protection Effectiveness (Reliability)
To further measure the effectiveness of three algorithms based on PEV-Tree in protecting sensitive

data in IoV under DST-PPM, an evaluation of their security risks was conducted. In particular, to assess
the privacy of the distributed T-Closeness method under different parameter t values, t was set to 0.1, 0.15,
and 0.2, respectively. Experiments measuring information loss were conducted across different attribute
dimensions, with results shown in Fig. 12. We found that our CT-CA for DST-PPM reduced the increment
of information loss as the attributes increased and the data dimensions were higher. Specifically, we find that
when t = 0.1 is set, that is, the degree of privacy protection is the strongest, the degree of information loss
under DST-PPM is comparable to that under the CPPM setting t = 0.15, which means that we can better
protect data privacy while achieving less information loss than traditional methods. When t = 0.2 is set, that
is, when the data privacy level is set low, we can still achieve the result of reducing the information loss degree
in high-dimensional data by nearly 50%. In addition, the privacy protection effect of CT-CA for DST-PPM
remained stable at different T-values.
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Figure 12: The contrast figure of information loss

Data protected by three methods is all at risk of homogeneity attacks. In the distributed T-Closeness
approach, the same attribute values can be generalized into various generalized values. However, when these
generalized values correspond to the same sensitive attributes, attackers can still determine the content of the
sensitive attributes associated with the original attribute values. In this case, sensitive attribute information
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could be leaked. Taking {age, driving speed, hour-per-week, oil consumption} as quasi-identifier attributes
and {position} as the sensitive attribute. The sensitivity of CK-AA, CL-DA, and CT-CA to homogeneity
attack and similarity attack under DST-PPM and CPPM was compared, with parameter k set to 100, l set to 20,
and t set to 0.15. As shown in Figs. 13 and 14, the results show that CT-CA is more resistant to homogeneous or
similar attacks than CK-AA and CL-DA. The T-Closeness privacy protection method disclosed fewer records
in the two types of attack experiments, showing a better privacy protection effect. According to our statistics,
in DST-PPM, the probability of information leakage decreased by 2.31%, 1.76%, and 0.19%, respectively.
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By improving efficiency and reliability, the risk of privacy leakage can be significantly reduced. In
privacy protection methods, the improvement of efficiency means that the system can process data more
quickly, thereby reducing the time that sensitive information is exposed to potential attacks and lowering the
opportunity for attackers to make speculations by exploiting homogeneity or similarity vulnerabilities. For
example, in the distributed T-Closeness method, the efficiency improvement of the generalization process
can reduce the probability of information leakage in each data access, which is particularly important for sys-
tems processing large amounts of data. Improving the efficiency and reliability of privacy protection methods
not only reduces the possibility of information leakage but also increases the security and credibility of the
data processing system. In practical applications, such improvement has important practical significance for
scenarios that need to process a large amount of sensitive information, especially in fields such as finance
and healthcare.

5.4 Summary and Suggestion
As shown in Table 8, compared with the latest research results, DST-PPM demonstrates significant

advantages in three core metrics: Processing efficiency is improved by 50.6% (comparing with CASTLE),
which stems from the reduction of distance computation complexity by PEV-Tree; Homogeneity attack
resistance rate is improved by 2.6 percentage points, which is benefited from the EMD constraint mechanism
of CT-CA; Data utility (Q-Value) improves by 9.3%, and optimal generalization is achieved by dynamically
adjusting the hybrid distance weights (α = 0.65).

Table 8: Core performance comparison with existing results

Comparison metrics CPC [4] B-AGKA [11] CASTLE [18] DST-PPM
(Ours)

Processing efficiency (10 k data/s) 82 67 105 158
Homogeneity Attack Resistance 89.2% 93.5% 95.1% 97.7%

Data Utility (Q-Value) 0.68 0.71 0.75 0.82
Dimensional scalability (QI = 9) Not

supported
Partially

supported
Supported Optimized

supported

As can be seen from the core performance comparison in Table 8, the DST-PPM proposed in this paper
comprehensively outperforms the existing methods in terms of key metrics. The 50.6% improvement in
processing efficiency compared to CASTLE is mainly attributed to the PEV-Tree structure that reduces the
distance computation complexity from O(n2) to O(nlog n) through a dimensionality reduction strategy,
as well as the distributed processing based on Flink that effectively reduces the communication overhead
between nodes. In terms of anti-homogeneity attack, the CT-CA algorithm strictly controls the difference
between the distribution of sensitive attributes and the global distribution within a threshold t by introducing
a constraint mechanism based on Earth Mover’s Distance, which makes it impossible for an attacker to obtain
the precise values of sensitive attributes through statistical inference even if he has complete information
about the quasi-identifiers. The enhancement of data utility (Q-value) stems from PEV-Tree’s preservation
of principal component features during the dimensionality reduction process, which allows the anonymized
data to still maintain the statistical properties of the original data. Notably, the dimension scalability
advantage of DST-PPM is particularly significant when QI = 9, which validates the effectiveness of principal
component analysis in addressing the challenges of high-dimensional data.
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The three distributed anonymization algorithms based on PEV-Tree, whilst ensuring data utility, are
capable of delivering high operational efficiency and demonstrate robust scalability. Among them, CK-AA
exhibits the greatest operational efficiency, followed by CL-DA, and CT-CA lags behind. In a data window
spanning from 5000 to 30,000, the runtime of CT-CA is 2.36 to 2.86 times that of CK-AA and 1.35 to 1.85
times that of CL-DA. Given a QI ranging from 2 to 9, CT-CA’s runtime is 2.21 to 2.75 times that of CK-AA
and 1.57 to 1.83 times that of CL-DA. When the latency threshold (δ) is set between 5000 to 20,000, CT-CA’s
runtime is 2.02 to 2.33 times that of CK-AA and 1.31 to 1.40 times that of CL-DA.

Through the analysis of the experimental data, specifically, our research results emphasize that when
processing high-dimensional data sets under strict privacy constraints, CK-AA for DST-PPM can signifi-
cantly maintain the highest efficiency when the delay threshold reaches 1000. In addition, our experiment
conducted an analysis of the number of congruent identifiers (QI) attributes. The running time of all algo-
rithms increases with the increase in QI count. Although T-Closeness requires the most resources because
it involves a thorough anonymization process of data replication and value conversion, its running time
grows slowly when its QI number reaches 9. Given these findings, choosing the appropriate anonymization
algorithm should be guided by a nuanced understanding of the specific application context. It is generally
believed that when there are fewer quasi-identifiers (QI < 9) and the data size is below 10,000, the CK-AA
for DST-PPM can obtain the least loss and has the best cost performance in terms of efficiency. When there
are many quasi-identifiers (QI > 9) and the data scale reaches more than 10,000, CL-DA for DST-PPM or
CT-CA for DST-PPM can be selected according to the demand for actual data utility in different realistic
scenarios. In addition, when the delay threshold is less than 1000, CL-DA for DST-PPM can achieve the
highest efficiency and better data utility balance.

Based on the analysis provided, CK-AA for DST-PPM is apt for scenarios with large data volume and
high latency requirements, such as real-time data stream processing and large-scale data analysis, given its
highest operational efficiency. CL-DA for DST-PPM is suitable for application scenarios where efficiency
and data diversity need to be balanced, including medium-scale data analysis and businesses with moderate
to high privacy protection requirements. Despite having the lowest operational efficiency, CT-CA for DST-
PPM excels in situations demanding high-level privacy protection and allowing extended processing time,
such as medical data processing and analysis of highly sensitive information. However, DST-PPM also
has certain limitations. During the construction process of the PEV-Tree, once excessive dimensionality
reduction occurs, it will cause the data to lose its original features, which will lead to a decrease in the
reliability of the privacy protection algorithm. Therefore, in the process of using DST-PPM to improve the
real-time performance of data processing, it is also necessary to pay attention to the retention of the original
features of the data at the same time.

5.5 Research Limitations
Although DST-PPM exhibits significant advantages in dynamic spatio-temporal privacy preservation,

it still has several limitations that need to be further explored. First, the dimensionality reduction process
of principal component analysis (PCA) is sensitive to threshold selection, which may affect the integrity of
data features. Experiments have shown that when the number of retained principal components is lower
than the threshold value (e.g., k = 3), the data feature loss rate is more than 15%, which may lead to the loss
of key information in the anonymization process. For example, in the car networking scenario, if excessive
dimensionality reduction leads to the weakening of the correlation features between vehicle speed and fuel
consumption, it may affect the clustering accuracy of the anonymization group. Although this paper mitigates
this problem by optimizing the principal component retention strategy (default k = 6), in extremely high-
dimensional data (e.g., more than 100 dimensions) scenarios, it is still necessary to weigh the balance between
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dimensionality reduction efficiency and feature retention. In addition, PCA has limited ability to handle
nonlinear relationships and may ignore complex interactive features in the data, such as spatio-temporal
correlations in vehicle trajectories.

The real-time performance of the algorithm faces challenges in ultra-low latency scenarios. Experimen-
tal results show that when the delay threshold δ is set lower than 5000, the time-consuming percentage of
Earth Mover’s Distance (EMD) computation of CT-CA is as high as 63% (e.g., Fig. 10), which becomes a
performance bottleneck. This phenomenon stems from the high complexity (O(n3)) of EMD computation,
especially when dealing with large-scale sensitive attribute distributions (e.g., fine-grained geo-location
data in Telematics), the computational overhead increases significantly. Although this paper reduces the
number of clusters to be computed by the pre-partitioning strategy of PEV-Tree, in scenarios with strict
real-time requirements (e.g., real-time decision support for automated driving), further optimization of the
approximation algorithm or a distributed computation framework for EMD is still needed. In addition,
the current architecture is designed based on Flink’s memory management mechanism, which is not
adequately adapted to heterogeneous hardware (e.g., GPU/NPU), and the throughput may drop by 28%
(e.g., the acceleration ratio deviates from the theoretical value at ∣P∣ = 4 in Table 7) when dealing with
ultra-large-scale data streams (e.g., millions of events per second). In the future, a combination of hardware
acceleration and lightweight algorithm design is needed to further improve the processing capability in
highly concurrent scenarios.

6 Conclusion
This work proposes an efficient PEV-Tree data structure and designs distributed anonymization algo-

rithms based on CASTLE (CK-AA, CL-DA, CT-CA) to meet K-Anonymity, L-Diversity, and T-Closeness
requirements, respectively. A novel distributed DST-PPM was constructed using the PEV-Tree and CASTLE-
based distributed anonymization algorithms. Experiments were conducted in a Flink distributed computing
environment to evaluate performance, particularly under varying data volumes and latency thresholds.
Results demonstrate that DST-PPM achieves efficient privacy protection while maintaining data utility,
showing good scalability and application prospects. This provides an effective technical means for large-scale
data stream privacy protection with significant practical implications. The main conclusions are as follows:

1. The PEV-Tree data stream significantly improves the operational efficiency of privacy protection algo-
rithms. CK-AA, CL-DA, and CT-CA efficiencies increased by 15.12%, 24.55%, and 52.74%, respectively,
compared to traditional data streams.

2. CK-AA, CL-DA, and CT-CA can effectively perform privacy protection tasks. When operating on PEV-
Tree data streams, they exhibit stronger resistance to similar attacks, with the probability of information
leakage reduced by 2.31%, 1.76%, and 0.19%, respectively, compared to traditional data streams.

3. As data volume increases, the operational costs of CK-AA, CL-DA, and CT-CA on PEV-Tree data
streams grow much less than on traditional datasets, demonstrating stronger scalability. We can better
protect data privacy while achieving less information loss than traditional methods.

4. DST-PPM outperforms CPPM in terms of efficiency, reliability, and scalability. However, when using
DST-PPM, reasonable trade-offs should be made based on specific application scenarios. CK-AA is
suitable for ultra-low latency and lower reliability requirements, CT-CA for ultra-high reliability with
less stringent latency requirements, and CL-DA offers a balanced choice. In addition, it is worth
mentioning that although this work was conducted with the background of the Internet of Vehicles for
experiments, the method proposed in this paper is also applicable to other public domains.

DST-PPM achieves multi-scale partitioning of data space through PEV-Tree, maintains clustering
accuracy while reducing computational complexity, and meets different needs from basic anonymization
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to strong privacy protection by constructing a family of distributed anonymization algorithms. In addition,
DST-PPM realizes the dynamic balance between privacy protection strength and data utility in dynamic
data flow scenarios. Experimental results show that the communication overhead of this method is only
35% of the traditional method when processing 100,000-volume data, which provides a technical basis for
the deployment of real-time systems such as Telematics, which reflects the innovation and advantages of
DST-PPM.
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