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ABSTRACT: Rice spike detection and counting play a crucial role in rice yield research. Automatic detection
technology based on Unmanned Aerial Vehicle (UAV) imagery has the advantages of flexibility, efficiency, low cost,
safety, and reliability. However, due to the complex field environment and the small target morphology of some rice
spikes, the accuracy of detection and counting is relatively low, and the differences in phenotypic characteristics of rice
spikes at different growth stages have a significant impact on detection results. To solve the above problems, this paper
improves the You Only Look Once v8 (YOLOv8) model, proposes a new method for detecting and counting rice spikes,
and designs a comparison experiment using rice spike detection in different periods. The method improves the model’s
ability to detect rice ears with special morphologies by introducing a Dynamic Snake Convolution (DSConv) module
into the Bottleneck of the C2f structure of YOLOv8, which enhances the modul€’s ability to extract elongated structural
features; In addition, the Weighted Interpolation of Sequential Evidence for Intersection over Union (Wise-IoU) loss
function is improved to reduce the harmful gradient of low quality target frames and enhance the model’s ability to locate
small spikelet targets, thus improving the overall detection performance of the model. The experimental results show
that the enhanced rice spike detection model has an average accuracy of 91.4% and a precision of 93.3%, respectively,
which are 2.3 percentage points and 2.5 percentage points higher than those of the baseline model. Furthermore, it
effectively reduces the occurrence of missed and false detections of rice spikes. In addition, six rice spike detection
models were developed by training the proposed models with images of rice spikes at the milk and wax maturity stages.
The experimental findings demonstrated that the models trained on milk maturity data attained the highest detection
accuracy for the same data, with an average accuracy of 96.2%, an R squared (R?) value of 0.71, and a Root mean squared
error (RMSE) of 20.980. This study provides technical support for early and non-destructive yield estimation in rice in
the future.
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1 Introduction

In China, agriculture serves as a foundational sector and plays a crucial role in ensuring both economic
growth and societal progress [1,2]. Rice is one of the world’s major food crops, and increasing its level of rice
production is crucial to guaranteeing national food security and stable economic incomes for farmers [3].
The rice spike is the organ through which the rice grain grows and is directly related to the final yield.
Therefore, the accurate identification of rice spikes plays a crucial role in rice yield prediction. Conventional
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methods for acquiring phenotypic data of rice spikes primarily rely on manual operations. These approaches
are labor-intensive, inefficient, and prone to biases introduced by human subjectivity. As the labor cost
increases year by year, the cost of obtaining phenotypic data also rises annually. Therefore, it is difficult to
meet the actual needs of modern precision agriculture production. Rice yield is closely related to the number,
morphology, and development of rice spikes, and the phenotypic shapes of rice in different growth periods
show obvious differences. So the study of rice spike detection in different periods is of great significance in
achieving more accurate yield estimation and providing key data support for food security and agricultural
production planning.

In recent years, UAV aerial photography detection technology has been developing rapidly and has
found wide application in various scenarios, boasting such advantages as high flexibility, short image
acquisition time, low cost, and high ground resolution [4]. The integration of UAVs and remote sensing
technology enables high-precision, high-resolution remote sensing monitoring and data acquisition in farm-
land, thus giving rise to agricultural UAV remote sensing technology. This technology offers data support
for agricultural information collection and represents one of the crucial development directions in precision
agriculture research. Compared with satellite and aerial remote sensing, UAV remote sensing features lower
dependence on weather conditions and higher resolution. In contrast to traditional monitoring methods,
UAV remote sensing is more efficient and non-destructive, providing a novel tool for the applied research of
remote sensing at the field scale [5-7].

Researchers have shown great interest in using deep learning techniques to detect phenotypic traits
and yield prediction in rice spikes. Ramachandran and Sendhil Kumar [8] introduced a spike detection
framework termed boundary-sensitive knowledge distillation. This method boosts the performance of target
detection models on UAV-acquired rice spike datasets by applying feature distillation to emphasize the
retention of edge-region features of rice spikes, while employing an imitation mask to differentiate spike-
relevant foreground characteristics from unrelated background content. Madec et al. [9] utilized Faster
regions with convolutional neural networks (Faster R-CNN) to estimate the density of wheat spikelets
with an accuracy of 91%. Qiu et al. [10] initially adopted The Simplify Optimal Transport Assignment
(SimOTA) method [11] for label allocation, followed by The Attention-based Intrascale Feature Interaction
(AIFI) module [12] to redesign the feature extraction layer in YOLOVS5s, and finally the Channel-wise
Knowledge Distillation for Dense Prediction (CWD) distillation method is used to employed to achieve a
trade-off between inference speed and detection precision. Zhang et al. [13] improved the Fast R-CNN by
introducing null convolution, which improves the problem of poor model detection accuracy due to the
small target of rice spike, and the detection accuracy reaches 80.3%, which is improved by 2.4 percentage
points compared to the pre-improvement period. Li et al. [14] used the MobilenetV3 lightweight model with
an attention mechanism to replace the backbone network of YOLOVS5s, and the average detection accuracy
of the improved spike detection model reached 97.78%, which significantly improves the spike detection
in complex environments. Although existing research has improved the detection accuracy of the target
detection model through a variety of methods, most of them are designed for the detection and application of
rice images at a single scale, which leads to lower accuracy and poor generalization of the model when applied
to images in complex field environments. Additionally, UAV-based rice spike detection still faces challenges
such as intricate field backgrounds, high rice planting density, and occlusions between rice spikes—issues
that continue to push the advancement of target detection algorithms.

Therefore, this study proposes an innovative rice spike detection model based on YOLOVS, and the main
contributions of the work done in this paper are as follows:

(a) Construct a brand new dataset containing images of rice at the milk and wax maturity stages taken
using a UAV to further enhance the generalization ability of the model, and at the same time used to
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validate the applicable rice growth period of the improved target detection model in this study, and
contribute to the future realization of UAV-based rice yield estimation.

(b)  The more advanced snake dynamic convolution is introduced into the feature extraction network of
YOLOVS, allowing it to adaptively expands or increases the receptive field based on the rice spike
features. This improves the network’s ability to identify subtle rice spike features that may otherwise
be overlooked.

(c) In the regression calculation of the bounding box, we filter the bounding box by using WIoU and
improve the model’s detection performance for small targets on rice ears by assigning a certain weight
to the small target box to synthesize a balance between standard and high-quality target boxes.

2 Materials and Methods
2.1 Data Sample Collection

The rice spike images were collected from the field in two distinct temporal periods: the first period
occurred during the milk ripening stage in mid-August 2023, while the second period was during the wax
ripening stage in mid- to early-September 2023. The collection location was situated within an experimental
area of the National Modern Agricultural Industrial Park of Jalaid Banner. To ensure data diversity, images
were primarily captured in experimental fields with different rice varieties and planting densities. The
collection equipment for the rice spike dataset was a DJI Mavic 2 UAV. The images were captured using the
manual shooting mode of the drone, with its gimbal shooting angle ranging from —62° to —90°, a camera
field of view (FOV) of 84°, a total of 20.48 million pixels, and a resolution of 4864 x 3648. The UAV images
were collected on sunny days between 10:00 and 14:00, with the shooting height maintained at 0.5 m-1 m
above the rice canopy.

2.2 Data Enhancement and Dataset Construction

To minimize the number of duplicate images and reduce the interference of non-target images during
model training, manual screening was carried out for data cleaning of the collected images. As a result, a
total of 149 images were obtained. Since detecting small rice spikelet targets requires a large dataset for deep
learning models to extract meaningful features, data augmentation techniques such as panning, flipping,
mirroring, and noise addition were applied to enhance data diversity. The data augmentation method is
shown in Fig. 1. This improves the model’s generalization and helps prevent overfitting. Eventually, a dataset
containing 1066 rice images is created, and the rice images are not duplicated. In this study, the Labellmg
annotation tool was used to label rice spikes in the images, and the main objects of annotation were all the
rice spikes within the image and the rice spikes with an area greater than 30% of the edge of the image, and
the rest of the image was labeled as the background. The processed data is divided into training sets, test sets,
and validation sets in the ratio of 7:2:1.

2.3 Rice Spike Detection Method

YOLO series algorithms are the current advanced target detection methods. YOLOvV8 has a fast
detection speed, optimal recognition performance, a network structure that is uncomplicated, real-time, and
so on [15]. It includes five model variants—YOLOv8n, YOLOvS8s, YOLOv8m, YOLOvSI, and YOLOv8xl—
which differ in network depth and width. Among them, YOLOvS8n is the most lightweight, offering the
highest detection speed but the lowest accuracy. In contrast, the other models improve detection precision
by increasing the model’s depth and width, though at the cost of slower detection. In this paper, the data
collection environment is the actual field environment, where rice spike samples are densely distributed and
possess a multitude of characteristics, including small targets. Despite the lowest accuracy of YOLOvSn,
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it offers a high detection speed and requires a relatively modest amount of computational resources.
Consequently, it is hypothesised that YOLOv8n will apply to embedded devices in the future, with the
potential to achieve real-time detection. Therefore, in this paper, we use YOLOv8n as the base structural
model for optimization.

Figure1: Data augmentation method. The (a) image is the original image; (b) is the image after adjusting the brightness;
(c) is the mirrored image; (d) is the image after rotating it by a random angle and adjusting its brightness; (e) is the
image after rotating it by a random angle; (f) is the image after adding the noise

2.3.1 Dynamic Snake Convolution (DSConv)

In 2023, Qi et al. proposed a Dynamic Snake Convolution (DSC) structure f designed to extract local
features from tubular structures [16]. This convolution structure enhances the sensitivity to the target shape
and boundary. This enhancement is achieved by continuously adapting the convolution kernel’s shape during
the feature learning process, facilitating precise segmentation between slender and weak local structural
features and complex and variable global morphological features. The structure of DSConv is shown in Fig. 2.

The Dynamic Serpentine Convolution (DSC) enhances traditional convolution by introducing defor-
mation offsetssA to the standard kernel, enabling it to better adapt to intricate geometric patterns. This added
flexibility allows the kernel to focus more effectively on complex structures. However, unrestricted learning
of these offsets can cause the network to shift its attention away from the actual target, so DSConv also adopts
an iterative strategy (Fig. 3) to select the following observation positions for each target to be processed in
turn, which ensures the continuity of attention without spreading out the sensory range too much due to
the large deformation offset. DSConv straightens the standard convolution kernel on an X- and Y-axis basis.
Taking the direction of the coordinate axes as an example, the selection of the position of each grid in the
convolution kernel is a cumulative process, where the position from the center of the convolution kernel,
away from the central grid, depends on the position of the previous grid, i.e., an offset is added to this A,
Ae(-1,1).
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Figure 3: The left part is the schematic diagram of the coordinate calculation. The right part is DSConv’s receptive field

Fig. 3 illustrates the coordinate transformation process involved in the DSConv iteration. Due to
changes in the two dimensions (x-axis and y-axis), the DSConv covers a 9 x 9 region during deformation.
The DSConv is better suited for the elongated tubular structure due to its dynamic nature, leading to a better
perception of key features.

Yolov8n’s network architecture consists of three main components: the backbone, the multi-scale feature
fusion module (Neck), and the detection head. The C2f module enhances input feature representations
by applying operations like transformation, branching, and fusion, ultimately producing more informative
and representative outputs. This improvement not only boosts the network’s performance and feature
representation capacity, but also enhances its adaptability to complex data scenarios, making it a key element
in the overall architecture. Compared with other crops like wheat, rice ears are often characterized by their
slender and narrow shape. In this case, the standard convolutional kernel can only capture local features,
which will inevitably lead to the loss of some feature information and ultimately have a negative impact on
the target detection results. Moreover, the convolution size of the C2f module is mostly fixed, which makes
it difficult to detect the target object in depth. Under real-world field conditions, rice is typically grown at
high planting densities, where spike structures often exhibit adhesion, overlapping, and entanglement. These
characteristics tend to cause false detections and missed targets, thereby degrading the overall accuracy
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and reliability of the detection model. To address this issue, we integrated the snake dynamic convolution
(DSC) structure into the C2f module by replacing the standard convolution in the Bottleneck with DSConv,
resulting in a modified block referred to as Bottleneck-DSC. Accordingly, the enhanced C2f module is named
C2f_DSC. The architecture of the revised C2f module is illustrated in Fig. 4. The improved architecture for
rice spike detection is illustrated in Fig. 5.
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Figure 4: Improved C2f structure diagram
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Figure 5: Schematic diagram of the improved rice ear detection network structure

2.3.2 Wise-IoU

Complete Intersection over Union (CloU) is adopted as the regression box boundary loss function in
YOLOV8 to gauge the error between the predicted and real bounding boxes. By introducing centroid distance,
aspect ratio calculation, and area difference calculation in addition to the basic intersection over union
ratio, it comprehensively measures the similarity between the predicted and real boxes. This approach more
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precisely guides the optimization of the model during the bounding box regression task. However, the small
rice ear targets are usually located in the detailed regions of the image or the complex parts of the background.
However, the loss function of CIoU, which focuses on the center of the bounding box and the overlapping
region, is not effective in handling the relative positional relationship between complex backgrounds and
small targets. As a result, it is difficult for CIoU to achieve the effective detection of small rice ear targets. The
expressions of the CloU loss function are shown in Eqs. (1)-(4) [17].

2(b,b
Clou = IoU - Ingt)av 1
c
2 2
P*(b,be) = (xprea = %gt) "+ (Vprea = ygr) @)
c= \/(xmax - xmin)z + (ymax - }’min)z (3)
4 w w ?
V= ; (arctan (Tit) - arctan( h;):j )) (4)

In the above equations, (xp,ed, ypred) is the center of the prediction box, (xgt, ygt) is the center of the
real box, (Xmin> Ymin) and (Xmax> Ymax ) are the coordinates of the lower-left and upper-right corners of the
smallest rectangles enclosing the prediction box and the real box, w,.4 and h .4 are the width and height of
the prediction box, wy, and hy; are the width and height of the real box, v is used to compute the consistency
of the aspect ratio of the prediction frame and the target frame, which is measured here by the tan angle.

Wise-IoU [18,19] addresses the issue of aspect ratios’ impact on small targets in CloU by implementing
a weighting mechanism. WIoU assigns distinct weights to different regions based on their importance.
Specifically, it assigns higher weights to small targets, thereby facilitating the model’s learning of their
features. Furthermore, it equalizes the influence of high-quality anchor boxes and ordinary anchor boxes on
the regression effect of the model. The Wise-IoU loss function is delineated in Eq. (5).

YiiwiloU (bi, gi)
Z?:1 wi

(5)

Lwiu=1-

In the above equation, # is the number of frames, w is the weight value, IoU(b;, g;) is the IoU value of
the predicted and actual frames.

3 Experimental Results and Analysis
3.1 Experimental Environment

The experimental environment contains a hardware environment and a software environment, as
detailed in Table 1.
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Table 1: Experimental environment

Hardware environment Software environment
CPU version 12th Gen Inter(R) Operating Winll
Core(TM) i9-12900H system
Running memory 16 GB Python version 3.10.14
Graphics card NVIDIA GeForce Pytorch version 222
version RTX3060
Graphics card 8 GB Cuda version 11.8
memory

3.2 Network Model Performance Evaluation

In order to objectively and comprehensively evaluate the experimental results of the detection method
proposed in this paper on rice ears, this study used the Precision (P), Recall (R), Average Precision (AP),
and F1 score to evaluate the comprehensive performance of the network model [20]. Precision measures the
proportion of correctly identified targets among all detected instances, while Recall quantifies the proportion
of true targets that are successfully identified by the model The Precision-Recall (P-R) curve is drawn with
Precision on the vertical axis and Recall on the horizontal axis. AP refers to the area under the curve, i.e., the
integral of the P-R curve. This integral is used to evaluate the comprehensive performance of the model.

TP

P=—"  x100% 6
TP+EP (©)
rp 100% (7)
= — X
TP + FN °
1
AP = f PRdR x 100% (8)
0
2x PxR
+

In these formulas, TP represents the count of correctly identified positive rice spike samples; FP refers
to negative samples incorrectly predicted as positive; and FN indicates the number of real positive samples
that the model failed to detect.

To assess the effectiveness of the proposed network model, a comparative experiment was conducted
against the widely used target detection algorithm, Faster R-CNN. All models involved in the comparison
were trained on the same dataset, with identical data augmentation strategies applied. The initial learning
rate was set to 0.001, and the training process was run for 500 iterations.

The results in Fig. 6 show that the test results of the improved model in the test set are generally better
than the base model YOLOS8n. Due to the complex background of the rice spike in the field environment
and the special shape of the rice, dynamic snake convolution is introduced into the model feature extraction
module to make the model pay more attention to the features of the rice spike with a slender shape, and
WIoU is used in the calculation of the model’s loss to improve the accuracy and precision of the model
in detecting the small rice spikes and thus improve the overall detection performance of the model. From
the detection effect graph, we can intuitively see that the improved model proposed in this paper has a better
detection effect in places where the rice spike is denser, so the improved model is effective for the detection
of rice spikes in complex environments; although the improved model enhances the detection ability of rice
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spikes, there are also leakage and wrong detection, which is mainly caused by the fact that the rice spikes are
affixed too close to one another and the the main reasons for this are that the spikes are too close together
and the colors are the same. When the degree of overlap of the rice spike is more than 50%, multiple rice
spikes will still be detected as one spike, resulting in erroneous detection of rice spikes; when the color of the
spike is similar to the background, the model is not able to correctly distinguish between the background
and the spike, resulting in leakage of detection, so in the future research we can use a more advanced edge
feature extraction method to extract the edge features of the spike in a more detailed way and to increase the
ability of spike detection in The problem of low spike detection accuracy caused by the overlapping of a large
number of spikes in complex environments.

Figure 6: Comparison of the detection effect of the improved algorithm with other algorithms. (a) is the original image
of the rice spikes; (b) is the detection results of the YOLOvS8 algorithm; (c) is the detection results of the Faster R-CNN
algorithm; (d) is the detection results of the improved algorithm
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As shown by the experimental numerical results in Table 2, the enhanced network achieves a 2.3%
improvement in detection accuracy on the dataset, reaching 91.4%, notably, when the confidence threshold
ranges from 0.5 to 0.95, the accuracy increases by nearly 5%, indicating a substantial enhancement in the
model’s detection capability. Furthermore, the observed mAP@0.5 is markedly higher than mAP@0.5-0.95,
suggesting that the overlap threshold has a significant influence on the accurate identification of rice spikes.

Table 2: Comparison of the performance of the improved algorithm with other algorithms on the test image

Model mAP@0.5 Precision Recall F1
YOLOvV8n 0.891 0.908 0.831 0.868
Faster R-CNN 0.316 0.629 0.323  0.427
YOLOv11 0.839 0.85 0.773 0.81
Ours 0.914 0.933 0.857 0.893

3.3 Ablation Experiment

To evaluate the effectiveness of the proposed rice spike detection approach, ablation experiments were
performed on the original dataset by integrating both the enhanced module and the attention mechanism
component. These experiments were designed to assess the individual impact of each enhancement on
overall model performance. Using YOLOvS8n as the baseline, a total of 10 experiments were conducted. In
each experiment, a single module was added while keeping all training parameters consistent to ensure a
fair comparison. As summarized in Table 3, the proposed model achieves a 2.3% improvement over the
original YOLOv8n. Notably, under the confidence interval of 0.5 to 0.95, the accuracy shows an increase of
nearly 5%, reflecting a substantial enhancement in detection precision. Additionally, the model's mAP@0.5
remains significantly higher than mAP@0.5:0.95%, indicating that intersection-over-union thresholds have
a pronounced effect on spike recognition. This is mainly due to the optimization of the feature extraction
structure of the model, especially the integration of the dynamic snake convolution structure, which makes
the model detection effect significantly improved; the loss function of the model is replaced with the WIoU,
which improves the model’s ability to locate small targets, thus improving the overall detection performance
of the model. In addition, although most existing research on target detection methods enhances the model’s
focus on key features during the down-sampling process by employing attention mechanisms to improve
detection accuracy, experimental analyses suggest a different approach. Integrating the DSC module prior
to the SPPF layer allows the convolutional network to better focus on the critical features of the elongated
rice spikes during the feature extraction process. In contrast, embedding the attention mechanism in the
deeper layers of the network tends to make the model overly sensitive to the distinct morphological traits,
potentially overlooking relevant background information. This disproportionate emphasis can result in the
loss of valuable feature data and consequently lead to a decline in detection accuracy.

Table 3: Results of the ablation experiment

Model Main structure Loss Attention Precision Recall mAP0.5 mAP0.5:0.95

Yolov8n 0.908 0.831 0.891 0.58
Y010V8n-dy C2f DSC 0.952 0.853 0.91 0.625
Y010V8—Dys C2f DSC 0.889 0.819 0.875 0.544

(Continued)
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Table 3 (continued)

Model Main structure Loss Attention Precision Recall mAP0.5 mAP0.5:0.95
Yolov8-CBAM  C2f DSC CBAM 0.872 0.793 0.858 0.508
Yolov8-CA C2f_DSC CA 0.862 0.821 0.886 0.518
Yolov8-GAM C2f_DSC GAM 0.889 0.807 0.871 0.54
Yolov8-Siam C2f DSC Siam 0.877 0.801  0.863 0.518
Yolov8-Dy-E C2f_DSC EloU 0.917 0.845 0.903 0.606
Yolov8-Dy-W C2f_DSC WIloU 0.933 0.857 0.914 0.629
Yolov8-Dy-F C2f_DSC Focal 0.927 0.849  0.908 0.621

3.4 Comparative Tests in Different Periods

Rice spike is an important factor affecting rice yield. To realize a more accurate early estimation of rice
yield, this paper designs rice spike detection experiments in different periods to verify the optimal period
for rice spike detection. The growth period of rice can be divided into five key stages: the seedling stage, the
tillering stage, the nodulation stage, the tasseling stage, and the maturity stage. The maturity stage, which is
pivotal to both yield and quality, represents the predominant period for the detection and enumeration of
rice spikes. The maturity stage is further subdivided into milk maturity, wax maturity, and full maturity. The
seedling stage and tillering stage of rice did not grow spikes; the tasseling stage of rice refers to a period when
rice just started to develop spikes, the number and shape of spikes in this period are very unstable, and spike
detection in this period has no practical significance for the prediction of the yield of rice; the rice and the
stem leaves of the full maturity are yellowish-white, therefore, this period is not suitable for spike detection,
so the data in this paper are collected from the milk-ripening and wax-ripening stages of rice. The dataset is
divided into two parts according to the time of acquisition, one part of the images is the milk-ripening stage,
totaling 630 images, and the other part is the wax-ripening stage images, totaling 436 images, and three sets
of experiments are set up, as shown in Table 4, the training set for the first set of experiments is only the
images of the milk-ripening stage of the rice, the training set for the second set of experiments is only the
images of the wax-ripening stage of the rice, and the training set for the third set of experiments is the images
of the milk-ripening stage mixed with the wax-ripening stage. Using the benchmark model and the network
model proposed in this paper to train these three sets of data, six rice spike detection models are obtained,
and the test set is used to verify the model accuracy and the experimental results are shown in Table 5.

Table 4: Grouping of rice spike data sets

Number Form Training set
1 1 Milk maturity
2 1 Wax maturity

3 1 Milk and wax maturity
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Table 5: Comparison of detection accuracy of different rice spike test sets

Model Number Milk maturity Wax maturity
mAP@0.5 mAP0.5:0.95 mAP@0.5 mAP0.5:0.95

1 0.962 0.703 0.114 0.04
Ours 2 0.0403 0.0139 0.855 0.525

3 0.958 0.676 0.881 0.5
1 0.947 0.67 0.153 0.0516
YOLOv8n 2 0.0461 0.016 0.878 0.601
3 0.939 0.631 0.856 0.546

The experimental results indicate that the model trained exclusively on data from rice ears at the milky
ripening stage achieves optimal detection performance for this stage. The improved model demonstrates
mAP@0.5 of 96% and mAP@0.95 which exceeds the YOLOv8n model by 0.7, with the mAP@0.95 of the
improved model reaching 67%. However, the rice spike detection model trained using a single period dataset
is less effective in detecting data from another period, with mAP@0.5 and mAP@0.95 no more than 20%
recognition accuracy. The model trained on combined data from both rice spike growth stages exhibits a
moderate recognition capability across all periods. Its detection performance is notably higher for spikes in
the milky ripening stage—ranking just below the model specifically trained on that stage—while its accuracy
for the wax ripening stage remains comparatively lower.

3.5 Evaluation of Model Counting Performance

The number of rice spikes is a critical factor influencing rice yield. To assess the counting capability
of the proposed model, experiments were conducted on data collected across different growth periods. The
objective was to identify the most suitable model and the optimal period for accurately counting rice spikes,
thereby providing technical support for rice yield predictions. A total of 130 images were randomly selected
from the test and validation sets at the milk and wax maturity stages, respectively, to evaluate the model’s
counting performance. These images were processed and analyzed using the model developed in Experiment
2.4, and the predicted counts were compared with the actual number of rice spikes in the images. In this
study, Root mean squared error (RMSE), and R squared (R?) were used to assess the counting performance
and accuracy of the model. The average difference between the predicted and true values in this dataset
can be derived by calculating the RMSE, the lower the value, the more suitable the model proposed in this
study is for this dataset; R is the square of the correlation coefficient between the actual number of spikes
observed and the number of spikes detected by the model. the higher the R-squared, the better the model is.
The experimental results are shown in Table 6.

RMSE =\| 3" (3 - 5i)’ (10)
m i3
R2:1_Zi(j/i_yi)2 (11)

¥ (7‘)’1’)2
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In the above equations, y; is the true value of the number of rice spikes, yi is the number of rice spikes
detected by the model, y is the mean value of the rice spike samples, >*; (9i — y; )2 is the error generated by
the model detection, }; (¥ — y; )? is the error arising from the average of the rice spike samples.

The results of the above experiments indicate that models trained on a mixture of data from both periods
demonstrate a positive correlation with the counts of data from the milk-ripening period; the training and
testing of the models for the same period are positively correlated; and the training of models using data
from only one period exhibits a negative correlation with the counts of data from the other period.

Table 6: Comparison of counting results of different rice panicle test sets

Model Number Milk maturity Wax maturity
True Detected r RMSE True Number r RMSE
1 175 192 0.663 22.611 281 44 -6.38  253.458
YOLOvS8n 2 175 7 -19.193  170.81 281 263 0.267  56.956
3 175 197 0.514 27152 281 264 0.618 57.659
1 175 190 0.710 20980 281 86 -4.238 213.524
Ours 2 175 17 -16.062 161.047 281 270 0.57 61.162
3 175 193 0.606 24461 281 265 0.609  58.346

The model that was trained using the dataset from the milk-ripening period is more suitable for
estimating rice yield during the milk-ripening period; the model that was trained using the wax-ripening
period is more suitable for estimating rice yield during the wax-ripening period; and if the desired model has
to be able to detect rice ears in both periods, then UAV imagery has to be collected from both periods to train
the model. The efficacy of the detection model is found to be less pronounced during the wax maturity stage
in comparison to its performance during the milk maturity stage. This is attributed to the gradual increase in
the weight of rice from the milk maturity stage to the wax maturity stage, which results in an enhancement
of the overlap of the rice ears. Therefore, the model proposed in this paper is most effective for the detection
and counting of rice ears at the milky ripening stage of rice.

4 Conclusions

This study comprehensively evaluates the performance of the YOLOvS algorithm in rice spike detection,
focusing on rice spike detection in real-world growing environments. By analyzing the morphology and
state of rice in the field environment, the limitations of the YOLOv8 network under special conditions are
emphasized, which mainly include the use of UAV aerial images of rice with a large number of small targets
and a complex background of rice spike targets, and a dynamic serpentine convolution-based rice spike
detection method is targeted to solve the blurring of spike features that occurs in the detection of rice spikes
by using UAVs. The biggest contribution made by this method is the use of a dynamically variable convolution
kernel instead of the standard convolution kernel, which can extract the rice cob features more completely,
and greatly reduce the probability of detection accuracy due to the blurring of the cob edges caused by
the target detection model in the special condition of the rice cob distance being too close; this paper also
strengthens the detection capability of this method for the small target in the image of the UAV through
the use of the WIoU as the regression bounding box loss function, which effectively solves the problem of
small target in the image of UAVs. Detection ability effectively solves the problem of poor detection due to
small targets of rice ears in rice images taken by UAVs. In addition, this study explores the optimal period
for rice spike detection and counting, the data sets from different periods were used for training and testing,
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finally, the detection method proposed in this study is applicable to the detection and counting of rice spikes
during the milky ripening period, which provides technical support for the early yield estimation of rice. In
addition, from the milk-ripening stage to the wax-ripening stage of rice, the color and morphology of rice
produce great differences, and factors such as the close proximity of leaves and the overlap of rice spikes due
to maturation and enlargement bring difficulties and challenges to the accurate identification and counting
of rice spikes under the complex environment of rice fields, and in the future research, we can consider using
a camera with a higher resolution to collect data and obtain clearer edge features of the spikes, which will
improve the detection effect of the model. In future research, we will further explore reducing the number
of parameters and the number of operations of the method to realize the real-time monitoring of rice yield.
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Abbreviations

UAV Unmanned Aerial Vehicle

DSConv Dynamic Snake Convolution

WIoU the Weighted Interpolation of Sequential Evidence for Intersection over Union
R R squared

RMSE Root mean squared error

Faster R-CNN  Faster regions with convolutional neural networks
SimOTA Simplify Optimal Transport Assignment

CWD Channel-wise Knowledge Distillation for Dense Prediction
YOLO You Only Look Once

ATFI Attention-based Intrascale Feature Interaction

FOV Field of View

CloU Complete Intersection over Union
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