
echT PressScience

Doi:10.32604/cmc.2025.063723

ARTICLE

Low-Complexity Hardware Architecture for Batch Normalization of CNN
Training Accelerator

Go-Eun Woo, Sang-Bo Park, Gi-Tae Park, Muhammad Junaid and Hyung-Won Kim*

Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju, 28664,
Republic of Korea
*Corresponding Author: Hyung-Won Kim. Email: hwkim@chungbuk.ac.kr
Received: 22 January 2025; Accepted: 28 May 2025; Published: 03 July 2025

ABSTRACT: On-device Artificial Intelligence (AI) accelerators capable of not only inference but also training neural
network models are in increasing demand in the industrial AI field, where frequent retraining is crucial due to
frequent production changes. Batch normalization (BN) is fundamental to training convolutional neural networks
(CNNs), but its implementation in compact accelerator chips remains challenging due to computational complexity,
particularly in calculating statistical parameters and gradients across mini-batches. Existing accelerator architectures
either compromise the training accuracy of CNNs through approximations or require substantial computational
resources, limiting their practical deployment. We present a hardware-optimized BN accelerator that maintains
training accuracy while significantly reducing computational overhead through three novel techniques: (1) resource-
sharing for efficient resource utilization across forward and backward passes, (2) interleaved buffering for reduced
dynamic random-access memory (DRAM) access latencies, and (3) zero-skipping for minimal gradient computation.
Implemented on a VCU118 Field Programmable Gate Array (FPGA) on 100 MHz and validated using You Only Look
Once version 2-tiny (YOLOv2-tiny) on the PASCAL Visual Object Classes (VOC) dataset, our normalization accelerator
achieves a 72% reduction in processing time and 83% lower power consumption compared to a 2.4 GHz Intel Central
Processing Unit (CPU) software normalization implementation, while maintaining accuracy (0.51% mean Average
Precision (mAP) drop at floating-point 32 bits (FP32), 1.35% at brain floating-point 16 bits (bfloat16)). When integrated
into a neural processing unit (NPU), the design demonstrates 63% and 97% performance improvements over AMD
CPU and Reduced Instruction Set Computing-V (RISC-V) implementations, respectively. These results confirm that
our proposed BN hardware design enables efficient, high-accuracy, and power-saving on-device training for modern
CNNs. Our results demonstrate that efficient hardware implementation of standard batch normalization is achievable
without sacrificing accuracy, enabling practical on-device CNN training with significantly reduced computational and
power requirements.

KEYWORDS: Convolutional neural network; normalization; batch normalization; deep learning; training; hardware

1 Introduction
Deep Neural Networks (DNNs) [1] have achieved superior performance in many fields, including image

recognition and natural language processing. However, there are several challenges when it comes to training
models: vanishing gradient [2,3], exploding gradient [3], and overfitting [4] which slow down or even
destabilize the training. To solve these problems, Rectified Linear Unit (ReLU) [5], gradient clipping [6], or
dropout [7] can be used. Many solutions have been proposed to alleviate these problems, but normalization
is one of the most powerful techniques to speed up and stabilize deep learning.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.063723
https://www.techscience.com/doi/10.32604/cmc.2025.063723
mailto:hwkim@chungbuk.ac.kr

3242 Comput Mater Contin. 2025;84(2)

Normalization can be used for faster training and reducing the risk of being trapped in a local optimum.
It changes the distribution of the activation map to enable all the features to contribute equally. It reduces
over-reliance on a particular feature. In addition, normalization matches the mean and variance of each
layer’s inputs and makes weight initialization less sensitive. By virtue of this, training speed increases, and
the gradient vanishing problem is resolved. Generally, Batch Normalization (BN) is applied to Deep Neural
Network (DNN) training. Ioffe and Szegedy (2015) [8] demonstrated that BN can accelerate training by
reducing internal covariate shift. This is frequently employed in Convolutional Neural Networks (CNNs) [9]
for image processing tasks, because it helps maintain more consistent distributions of the convolutional
feature maps. During convolution operations, features can vary widely in scale and dynamic range, which
can slow down or even destabilize training. By normalizing these features, BN mitigates internal covariate
shift and ensures more stable activations, enabling faster convergence and often leading to better overall
performance. Subsequently, Santurkar et al. [10] experimentally proved that BN smooths the solution space,
enabling faster and more stable training. There are many analyses about normalization [11–14] as well.
Afterwards, Ioffe proposed [15] to maintain performance in mini-batch, complementing the problem of BN.

However, even though normalization improves deep learning performance [16–18], there are some
challenges to implementing the training engine on hardware. For the inference, the normalization layer just
conducts scaling and shifting using pre-trained parameters. On the other hand, training requires several
computation steps in forward and backward propagation, increasing latency and large hardware size. One
approach [19] to mitigating these challenges is to reduce precision to minimize hardware resources and
optimize data access to lower latency.

All normalization techniques, like BN, layer normalization [20], instance normalization [21], and group
normalization [22], commonly scale features by subtracting the mean and dividing by the standard deviation.
This process can introduce additional latency because of calculating the mean and standard deviation and
accessing the external memory. In addition, standard deviation requires non-linear operations, like square
and square root, which incur hardware overhead. Also, in backward propagation [23], the hardware gets more
complex structures and computations, including partial derivative operations, as the chain rule is applied.
Especially, obtaining the gradient of the normalization layer’s input is greatly complicated due to the influence
of the standard deviation’s non-linear computations.

To address the intricate hardware design, the previous works have presented the approximated normal-
ization techniques. Banner (2018) [24] first proposed the range batch normalization (RBN), which obtains
standard deviation according to the range of the input distribution based on the min-max range using the
characteristics of Gaussian distribution [25]. Hereby the risk of arithmetic overflows due to the sum of
squared large input can be prevented, and computing standard deviation can be approximated simply by
replacing the scale parameter. With the benefit of hardware-friendliness, this research is applied to other
research, Bactran (2021) [26], LightNorm (2022) [27], ACBN (2023) [28]. The basis of this method is the
central limit theorem, meaning that if there is a sum of many inputs, they can expect it to be approximately
a Gaussian distribution. However, as known in the logic, it is difficult to assume that it follows the Gaussian
if there are not enough inputs. Therefore, in the case of small networks, datasets, or small-sized mini-batch,
a suitable standard deviation approximation may not be obtained, which may also affect the normalization’s
performance. Reference [27] demonstrated that in block floating point (BFP10) using 4 groups, the training
accuracy degrades by 2.01%. The other approximate technique is L1-norm batch normalization (2019) [29].
This replaces the non-linear calculation, square and square root operations, with the linear calculation,
absolute and sign operations. It can significantly save floating point units (FPUs) as well as reduce area and
power consumption. However, this quantized method also has the hazard of distorting the data distribution.
On the other hand, the non-approximated standard batch normalization (SBN) has also been implemented.

Comput Mater Contin. 2025;84(2) 3243

Reference [30] presents the hardware design and chip implementation of SBN. They share the forward and
backward block’s adders, a multiplier, and a square operator; however, they remain the large-size circuit,
even managing all generated data in static random-access memory (SRAM). This leads to the problem of
generating additional FPUs and reducing the area efficiency because of the low reusability of the calculators.
In addition, other studies make BN more efficient by combining it with activation functions to reduce
hardware overhead [31] or by eliminating batch dependence altogether [32].

In summary, existing approaches present a fundamental trade-off in batch normalization hardware
design. Approximation-based methods (such as RBN and L1-norm BN) offer hardware efficiency but
suffer from accuracy degradation. This is particularly problematic in small networks or with limited mini-
batch sizes where the Gaussian distribution assumption becomes invalid. Conversely, non-approximately
SBN implementations maintain accuracy but result in large hardware footprints with inefficient resource
utilization. This is due to limited hardware sharing and poor calculator reusability. To address these
limitations, this paper proposes a normalization design that minimizes accuracy degradation by avoiding
approximation techniques. It simultaneously reduces hardware size through optimized resource sharing and
efficient memory management.

In edge devices, where resources are limited, optimizing BN is crucial to achieving real-time processing
capabilities without compromising accuracy. The forward and backward propagations involve computational
costs, such as calculating statistical parameters and gradients across mini-batches. These steps require
substantial floating-point resources, resulting in high latency and large hardware overhead. To address these
constraints, this paper focuses on designing a minimal latency and resource-efficient BN accelerator. We
optimize SBN targeting with up to 1.5% accuracy degradation in brain floating point 16 bits (bfloat16)
precision for both forward and backward passes. Additionally, we fully implement hardware including
forward, backward and parameter updates based on Stochastic Gradient Descent (SGD).

The main contributions of this work are as follows:

1) Hardware Optimization: We propose an optimization methodology for SBN. We save hardware
resources by sharing the overlapped hardware functions and arithmetic elements to maximize reusabil-
ity. The proposed design achieves up to 1.35% accuracy degradation while accelerating BN layer
operations in bfloat16 precision, making it highly efficient for real-time systems.

2) FPGA Verification: We verify the proposed BN accelerator by implementing VCU118 FPGA and
comparing it with the Intel CPU. Our FPGA implementation shows a 72% reduction in latency
compared to the Intel CPU while maintaining functional equivalence. We also implement the BN layer
design on the existing neural processing unit (NPU) and validate the functionality.

2 Backgrounds
Batch normalization (BN) is widely adopted in CNNs due to achieving stable and faster training.

Unlike layer normalization, which normalizes across all features within a layer, or group normalization,
which normalizes groups of channels, BN leverages mini-batch statistics on a per-channel basis. This allows
for higher learning rates and faster convergence. As illustrated in Fig. 1, the BN layer is placed after the
convolution layer and before the activation layer in CNN training. The output of the convolution layer passes
through the post-processing layer, which includes BN, ReLU, and pooling. The BN layer’s performance affects
the processing speed of the subsequent layers. This is because the activation and pooling layers are pipelined
with the normalization operation. Therefore, optimizing BN is necessary for efficient training.

3244 Comput Mater Contin. 2025;84(2)

Figure 1: Layer configuration and computation diagram of CNN training

Training a CNN involves both forward and backward propagation, along with weight updates. During
the forward pass, features propagate the network. The mini-batch feature is normalized by BN to maintain a
distribution conducive to learning for each mini-batch. Backward propagation then computes gradients by
propagating the cost function backward through the network. The sections below further explain the forward
and backward processes of BN.

2.1 Forward Propagation
Batch normalization performs standardization and scaling of feature maps during training, ensuring

consistent distribution across mini-batches. This process involves two steps: normalize and rescale. The
normalization step subtracts the mean and divides by the variance for each channel. This can introduce a
zero-mean, unit-variance distribution. Subsequently, the normalized distribution is then adjusted using the
learnable parameters, gamma (γ) and beta (β). This rescales and shifts the data, allowing the network to
adjust and optimize feature representation.

For a mini-batch of input feature, Xc ∈ RB×H×W , where c is the channel number, B is the mini-batch
size, H is the feature map’s height and W is the width. BN is performed as Eqs. (1)–(4), where the xi means
i th element of Xc , and m is total size of Xc . Eqs. (1) and (2) describe the statistical parameter, mini-batch’s
mean and variance used for normalization step. Eq. (3) represents the normalization process, while Eq. (4)
applies scaling and shifting to the normalized distribution using learnable parameters.

μ = 1
m∑

m
i=1 xi , //mini-batch’s mean (1)

σ 2 = 1
m∑

m
i=1(xi − μ)2, //mini-batch’s variance (2)

x̂i =
xi − μ√

σ 2+ ε
, // normalize (3)

yi = γx̂i + β, //scale and shift (4)

Inference and training follow distinct processes. In inference, the BN layer uses pre-trained parameters,
such as the running mean and running variance. In Contrast, during training, the BN layer computes
the mean and variance for every mini-batch and normalizes the input features accordingly. This mini-
batch-based normalization introduces additional latency. Additionally, training requires excessive dynamic
random-access memory (DRAM) access. This is because it needs to read the convolution layer’s output and

Comput Mater Contin. 2025;84(2) 3245

write the BN layer’s normalized results (x̂i) for backward propagation. Fig. 2 illustrates the differences of
external memory access between inference and forward propagation during training. Here, the normalized
value x̂ is denoted as Xbn , and the output of normalization layer is referred to as Ybn .

Figure 2: Difference of external memory access between inference and forward propagation during training

In inference, only a single image and weights of the convolution and batch normalization layers are
loaded for each process. Unlike training, inference bypasses additional operations such as mean and variance
calculations since it relies entirely on pre-computed data stored in external memory. On the other hand,
training processes a mini-batch, typically consisting of 8 or 32 images, along with the required weights.
During forward propagation, the normalization layer computes the mean and variance for mini-batch. This
process necessitates storing all convolution results and reloading them from external memory to normalize
the features.

2.2 Backward Propagation
Backward propagation involves complex operations due to the chain rule. Eqs. (5)–(7) represent the

gradients of BN layer and its parameters, while Eq. (8) describes the parameter update formula based on
SGD. Specifically, Eq. (5) provides the partial derivative of the BN layer, quantifying the change from the
layer’s output to the input loss. The gradient of intermediate values, such as normalized values, mean and
variance, influence this derivative, adding complexity to the backward process.

The gradient of gamma is calculated as the accumulated sum of the output loss gradient multiplied by
x̂, as described in Eq. (6). Similarly, the gradient of beta is calculated by summing the output loss gradient,
as shown in Eq. (7). Finally, the computed parameter gradients are updated using the formula in Eq. (8). The
variable P indicates the learnable parameter gamma and beta, and lr demonstrates learning rate.

∂L
∂xi
= ∂L

∂x̂i
⋅ 1√

σ 2+ ε
+ ∂L

∂σ 2 ⋅
2 (xi − μ)

m
+ ∂L

∂μ
⋅ 1

m
, //gradient of BN layer (5)

∂L
∂γ
= ∑m

i=1
∂L
∂yi

x̂i , //gradient of gamma (6)

∂L
∂β
= ∑m

i=1
∂L
∂yi

, //gradient of beta (7)

P ← P − lr ⋅ ∂L
∂P

, //parameter update (8)

3246 Comput Mater Contin. 2025;84(2)

3 Proposed Optimization Methodology

3.1 Formula Rearrangement
To implement hardware-optimized normalization, it is necessary to reorganize the normalization

formula. In the forward pass, variance can be calculated using random variable variance instead of sample
variance. Sample variance, described in Eq. (2), requires reloading input samples after computing the mean,
leading to additional external memory access. This inefficient computation increases power consumption
and causes latency due to frequent interactions with external memory. To address these inefficiencies, the
random variable variance in Eq. (9) is adopted. From a statistical perspective, each mini-batch in a deep
neural network can be considered a set of samples drawn independently from the distribution of a random
variable. The mean and variance of each mini-batch per channel converge to the population mean and
variance, in accordance with the Central Limit Theorem. Using Eq. (9), the mean and variance can be
computed simultaneously in parallel, where E[x] is the expectation of Xc .

σ 2 = V [Xc] = E [X2
c] − E [Xc]2 . (9)

Particularly, backward propagation requires extensive computations, with additional complexity arising
from the gradients of the mean, variance, and intermediate results, as shown in Eq. (5). To solve this, Eq. (5)
is reorganized to better reflect the flow for hardware implementation. The gradients of each intermediate
value are calculated using partial derivatives. First, we compute the gradient of the normalized value, then
derive gradients for variance and mean, which are then substituted into the original formula to obtain a
more hardware-friendly expression. Finally, the rearranged formula is presented in Eq. (10). This formula is
derived by calculating the gradients of the intermediate values using the chain rule and substituting them
accordingly. The square root of the variance added epsilon (ε) is approximated as the standard deviation
(σ) for simplification. Using this approach, the gradient sequence input to the BN layer can be computed by
subtracting the scaled normalization tensor, obtained during the forward pass, at the same positions.

∂L
∂x̂i
= ∂L

∂yi
⋅ γ, //gradient of normalized x̂i

∂L
∂σ 2 = −

1

2 (
√

σ 2+ ε)
2 ∑

m
j=1

∂L
∂x̂ j
⋅ x̂ j , //gradient of variance

∂L
∂μ
= −1√

σ 2+ ε
∑m

j=1
∂L
∂x̂ j

, //gradient of mean

∂L
∂xi
= ∂L

∂x̂i
⋅ 1√

σ 2+ ε
+ ∂L

∂σ 2 ⋅
2 (xi − μ)

m
+ ∂L

∂μ
⋅ 1

m
, //original formula

= ∂L
∂yi
⋅ γ√

σ 2+ ε
+ −1

2 (
√

σ 2+ ε)
2 ∑

m
j=1

∂L
∂x̂ j

x̂ j ⋅
2 (xi − μ)

m
+ −1√

σ 2+ ε
∑m

j=1
∂L
∂x̂ j
⋅ 1

m

= γ
σ
[∂L

∂yi
− 1

m
(x̂i∑

m
j=1

∂L
∂y j

x̂ j +∑
m
j=1

∂L
∂y j
)] , (∵

√
σ 2+ ε ≅ σ)

= γ
σ
⋅ ∂L

∂yi
− γ

σ
⋅ 1

m
[(∂L

∂γ
⋅ x̂i +

∂L
∂β
)] , //rearranged formula (10)

Comput Mater Contin. 2025;84(2) 3247

3.2 Resource-Sharing
Batch normalization involves two stages in both forward and backward passes. In the forward pass,

Stage 1 calculates mean and variance, while Stage 2 normalizes input features. In the backward pass, Stage
1 computes gamma and beta gradients, and Stage 2 derives the BN activation gradient. Parameter updates
occur after all backpropagation steps.

However, mean/variance accumulation in forward Stage 1 overlaps with gradient accumulation in
backward Stage 1. Implementing these operations separately would require at least two extra adders and one
multiplier. To avoid this overhead, we propose block sharing. The hardware structure in Fig. 3 reuses the
same computation flow at different time steps, reducing resource redundancy and improving efficiency.

Figure 3: Overall architecture of proposed BN block and shared block’s flow

The normalization module consists of a computation block, parameter memory, and forward/backward
blocks. The computation block includes seven shared units: two add/sub units, two multipliers, two dividers,
one square root unit, and an accumulation buffer. These units handle the majority of the computational
workload. Fig. 3 shows how it is used during Forward Stage 1, Backward Stage 1, and Backward Stage 2.

In the forward pass, outputs and squared outputs from the processing element (PE) array are accumu-
lated per channel for each mini-batch. Once all mini-batch accumulations are complete, the system moves
to a new time step and reuses the same functional units to compute both the mean and standard deviation.
In the backward pass, loss gradients (after pooling and ReLU) are accumulated to compute gamma and beta
gradients. These gradients are stored in a buffer and applied once Stage 2 finishes. Stage 2 then generates the
inputs needed for the backward block.

The parameter memory stores the mean, variance, gamma, and beta values computed by the compu-
tation block. These parameters are updated during training. The forward block contains logic for Eqs. (3)
and (4), and the backward block handles Eq. (10). Fig. 4a and b shows the overall computation flow, which
includes the forward and backward blocks. The forward block can also be used for inference, and inputs to
the backward block are concurrently computed in the shared computation block.

3248 Comput Mater Contin. 2025;84(2)

Figure 4: Computation flow of BN block: (a) forward; (b) backward

3.3 Interleaved Buffer
Most prior work using smaller datasets, such as modified national institute of standards and technology

database (MNIST), kept all data in on-chip memory [30]. However, larger datasets (e.g., PASCAL Visual
Object Classes (VOC) and ImageNet) require external DRAM to store parameters and outputs. To efficiently
handle DRAM access for batch normalization (BN), we adopt a dual input buffer. Two first-in-first-out
(FIFO) buffers store data in n-column chunks when n × n pooling is used. The purpose of processing a
two-column image is to guarantee that four adjacent pixels are consistently available for 2 × 2 pooling.
This approach enables parallel reading, normalizing, and writing operations without having to wait for an
entire tile.

In single buffer design, the BN circuit would idle while data reads/writes for each tile, increasing delay.
By contrast, our dual buffer approach shown in Fig. 5a divides the tile into two-column units, improving
continuous input to the BN hardware and reducing internal storage from a full-tile buffer to a much smaller
dual-column buffer. The buffer size reduction follows as Eqs. (11) and (12).

Singl e bu f f er size = Til e_width × Til e_height × Data_width (11)
Dual bu f f er size = 2 × 2 × Til e_height × Data_width (12)

Here, “2 × 2” represents the dual buffers, each processing two columns. Therefore, this can reduce the
buffer size to ‘4/tile_width’ compared to the single buffer. As tile width grows, the memory savings become
more significant.

Fig. 5b illustrates the timing of read, post-process, and write with dual input buffer applied. It goes
through the following steps:

1) BUFF0 reads two columns from DRAM, while the post-processing circuit remains idle.
2) BUFF1 begins filling with the next two columns as BUFF0 is processed.

Comput Mater Contin. 2025;84(2) 3249

3) Completed BN results are written back to DRAM, then a write-done flag triggers the next read.
4) This procedure repeats for all channels, ensuring the BN circuit does not idle for a full

tile-read/write cycle.

Figure 5: Interleaved buffer for normalization: (a) process architecture; (b) timing diagram

The proposed pipeline (Eqs. (13) and (14)) achieves about a 53% speedup in post-processing compared
to a single-buffer tile-based approach. By overlapping read, write, and BN operations in smaller units, we
minimize DRAM access delays and resource requirements, making is especially advantageous for larger tile
size.

Til e unit process = tread ∶1c × (Wt) + tprocess∶1c × (Wt) + twr i te∶1c × (Wt) (13)

Column unit process = tread ∶1c × (2) + tprocess∶2c × (
Wt
2
) + twr i te∶1c × (2) (14)

(Wt: Tile width)
(tread ∶1c : 1-column read time)
(tprocess∶nc : n-column process time)
(twr i te∶1c : 1-column write time)

3.4 Zero-Skipping for Sparse Parameter Gradient
In batch normalization, gamma and beta gradients are obtained by adding up output gradients. When

zero gradients exist, their accumulation has no effect on the final result. In particular, non-maximum entries
result in zero gradients when using max pooling. These values can be skipped because they have no effect on
the output.

3250 Comput Mater Contin. 2025;84(2)

Fig. 6a,b illustrates how zero-skipping applies to gamma and beta gradient calculations under max
pooling. Without zero-skipping, in a 2 × 2 max pool, three of the four pixels are zero, making 3/4 of the
gradient map redundant. By skipping non-maximum zero gradients, the computational load is effectively
reduced to 1/4 of the original cost.

Figure 6: Data sparsity on maxpool layer: (a) without zero-skip; (b) with zero-skip

A prior study [28] also highlighted gradient sparsity in BN backward operations when ReLU layer
produces zero gradients for negative inputs. Similarly, designing BN backward logic with awareness of
upstream operations, such as max pooling can further optimize efficiency by leveraging data sparsity.

3.5 Square Root Design for High Accuracy
Ensuring high accuracy in standard deviation calculations requires avoiding approximations. However,

square root operations introduce substantial hardware overhead. Many conventional approaches rely on
iterative approximation methods—such as CORDIC [33,34] or Newton-Raphson [35]—that increase cycles
and latency. Others use LUT-based Taylor expansions [36,37], incurring additional on-chip memory costs.

To address this, we apply the method from [38] to design a low-cost square root unit targeting bfloat16
precision. Cubic spline interpolation determines the mantissa, while integer operations and bit-shifting set
the exponent. This approach eliminates the need for LUTs and iterative approximations, reducing hardware
costs and making it suitable for the BN block.

4 Hardware Implementation and Verification
We implement the proposed, resource-efficient normalization accelerator in Vivado Verilog RTL. Its

performance is compared to an Intel CPU and other works in terms of hardware size, resource usage,
and power efficiency. To evaluate performance within a neural processing unit (NPU), we integrate the
normalization block into the diagonal cyclic array structure from [39]. We target the You Only Look Once
version 2 tiny (YOLOv2-tiny) CNN detection model on the VOC dataset for demonstration.

Because the BN block follows the convolutional layer, its performance depends on the PE array
structure. Here, the PE array outputs 16 channels, so we utilize 16 BN blocks to process all channels in parallel.

4.1 Accuracy Verification
We train a YOLOv2-tiny on the VOC dataset using PyTorch and implemented the forward and

backward steps of batch normalization through the torch.autograd.Function class. As a baseline, we use

Comput Mater Contin. 2025;84(2) 3251

nn.BatchNorm2d in floating point 32 bits (FP32) with a batch size of 8 for 160 epochs. To compare with
approximation-based methods, we incorporate the bfloat16 square root design from [38] into standard BN
and also experiment with full bfloat16 precision training.

Fig. 7 shows that our method closely maintains the original accuracy. Using FP32, the mean Average
Precision (mAP@0.5, mean Average Precision with IoU threshold of 0.5) drops by only 0.51% compared to
the PyTorch baseline. With bfloat16 precision, the accuracy loss is 1.35%. In contrast, approximation methods
like L1BN and RBN degrade mAP by 6.58% and 4.83%, respectively. Although approximations save hardware
cost, they significantly reduce accuracy. Our standard BN approach keeps the accuracy high with minimal
penalty. Hardware simulation results match the PyTorch model’s bfloat16 outcomes, confirming correctness.

Figure 7: Training results comparison with other approximate approaches

4.2 BN Block
4.2.1 Experimental Setup

We conducted two main experiments. One uses a CPU for software execution and the other uses an
FPGA board for hardware processing. Although we used YOLOv2-tiny (batch size = 8) to measure the
forward and backward latency of the normalization block for validation, the proposed design is model-
agnostic and can be applied to any architecture containing BN layers. Processing time was measured per
layer, and the detailed specifications are as follows:

(1) SW-CPU: We used an Intel Core i5-1135G7 processor (8 MB Cache, 2.4 GHz with 4 physical cores and
8 threads). The software implementation employed the PyTorch ‘nn.BatchNorm2d’ module. The CPU
operated at maximum frequency with fully utilized threads to ensure a fair comparison.

(2) HW-FPGA: Our design with 16 parallel BN blocks is implemented on Xilinx Virtex UltraScale+
VCU118 FPGA platform. The device has 1182 K+ LookUp Tables (LUTs), 2364 K+ Flip-Flops (FFs),
2160 × 36 KB Block RAMs (BRAMs), 6.8 K+ Digital Signal Processor (DSP) slices and 6 Peripheral
Component Interconnect Express (PCIe). The Target frequency is set to 100 MHz.

4.2.2 Experimental Results and Analysis
Table 1 summarizes the results under these conditions. It includes the input data size and processing time

(sum of forward and backward latency) for each normalization layer in YOLOv2-tiny. For clarity, decimal
places are omitted to consider significant figures.

3252 Comput Mater Contin. 2025;84(2)

Table 1: Comparison of BN processing time

No. Input size N ×H ×W × C Data size (KB) Processing time (ms)

SW-CPU HW-FPGA HW-55 nm HW-14 nm
L1 8 × 416 × 416 × 16 43,264 100 23 – –
L2 8 × 208 × 208 × 32 21,632 55 8 – –
L3 8 × 104 × 104 × 64 10,816 35 5 – –
L4 8 × 52 × 52 × 128 5408 25 4 – –
L5 8 × 26 × 26 × 256 2704 15 4 – –
L6 8 × 13 × 13 × 512 1352 35 5 – –
L7 8 × 13 × 13 × 1024 2704 50 22 – –
L8 8 × 13 × 13 × 1024 2704 105 44 – –

Total (ms) 420 115 - -
Power (TDP) 28 W 4.5 W 48.73 mW 11.95 mW

Frequency 2.4 GHz 100 MHz 200 MHz 1 GHz

Under SW-CPU execution, the total runtime is 420 ms. In contrast, the HW-FPGA implementation
takes only 115 ms, achieving a 72% speed improvement. Moreover, when compared to the CPU, the hardware
implementation of the proposed normalization circuit exhibited 84% higher power efficiency.

Examining individual layers, layers with relatively fewer channels (1 to 4) show roughly a 5 times speed
increase, while layers with more channels (7 and 8) show less improvement. This limitation arises from using
16 parallel BN blocks, which are less effective for larger numbers of channels. Nevertheless, the proposed
hardware design still outperforms the CPU in both speed and power efficiency.

Finally, when synthesized in the TSMC 55 nm process at 200 MHz, the designed circuit consumed
approximately 48.73 mW of power. When a process of the accelerator chip is estimated with a 14 nm Samsung
process, it is predicted to operate at 1 GHz and consume about 11.95 mW. Table 1 compares the SW-CPU’s
performance with the proposed accelerator implementation in FPGA (HW-FPGA), SoC in 55 nm Process
(HW-55 nm), and SoC in 14 nm Process (HW-14 nm).

4.3 BN Block Comparison with Prior Works
We compare our design with prior works, including [26–28,30], summarized in Table 2. Overall, our

approach delivers superior performance in terms of latency and power efficiency when compared to both
approximate and standard BN implementations. As we have discussed, it is important to note that the number
of parallel BN blocks used in each design varies according to the output channels of the PE array. Therefore,
to facilitate a fair resource comparison, we normalized each design’s reported resource usage by dividing it
by the number of BN blocks they employed. Moreover, the synthesized chip area also has different processes.
Consequently, we define the unit cell and write the approximate number of cells.

Bactran [26] integrates BN within each of its 512 PEs, introducing a standard BN (SBN) but at higher
hardware cost than our method. They also propose an approximate range BN (RBN), which still consumes
more power and overall resources (except for LUTs) than our design. LightNorm [27] applies RBN and
lower precision to reduce the area, but has an accuracy trade-off. ACBN [28] also adopts RBN and leverages
data sparsity, yet our shared-block structure uses fewer computing units while retaining SBN. In [30], SBN
without external memory required large on-chip storage. In contrast, our method uses fewer resources and
still applies standard BN efficiently. Overall, our approach provides a low-cost standard BN accelerator,
outperforming approximation-based designs in resource efficiency and power consumption.

Comput Mater Contin. 2025;84(2) 3253

Table 2: Comparison with previous works of batch normalization

Criteria [26] [27] [28] [30] This work
Specified name Bactran LightNorm ACBN – –

Year 2021 2022 2023 2021 2025
Network MobileNet-V1 ResNet-50 VGG-16 Custom 2 layers YOLOv2-tiny
Dataset MNIST ImageNet CIFAR-100 MNIST VOC

Precision FP16 BFP10, group = 4 FP1 FP32 Bfloat16
Frequency (MHz) 100 150 200 100 100 (FPGA),

200 (Chip-55 nm)
1000 (Chip-14 nm)

Device VU440 Chip implemented ZCU102 Chip implemented VCU118
BN Type SBN RBN RBN RBN SBN SBN

BN Block 512 512 32 32 4 16
FPUs/Block 22 20 17 20 20 14
LUTs/Block 1256 1034 – 1361 – 1192
FFs/Block 670 499 – 636 – 231

DSPs/Block 2 2 – 6 – 0
BRAMs 264 264 – 14.5 – 31

Memory Size 1.4 MB2 1.4 MB2 88 KB 65.25 KB2 591 KB3 74 KB
Process – – CMOS 45 nm – CMOS 0.18 um TSMC 55 nm Samsung

14 nm
Single BN Area (um2) – – 4184 – 1,000,000 7982 (55 nm) 2401

(14 nm)
Unit Cell4 – – 2 M – 30 M 2.6 M

Power (FPGA/Chip) 5.966 W/- 5.612 W/- -/37.04 mW 3.291 W/- -/140.87 mW 4.5 W/48.73 mW
(55 nm)

11.95 mW (14 nm)
Accuracy Drop – – 2.03% – – 1.35%

Note: 1No accurate marking about precision. 2Memory size estimation = #BRAM × 36 × 1024 bits. 3Estimated values
based on the network used in the paper. 4Unit Cell = Area (um2)/{Process (nm)}2.

4.4 NPU with BN Block
We integrate the BN block into the NPU design from [39], which uses a diagonal cyclic array with

2304 multiply-accumulate (MAC) units. To verify the design, we implement it on an FPGA based on Virtex
UltraScale+ VU19P with 4085 K+ LUTs, 8171 K+ FFs, 2160 × 36 KB BRAMs, 3.8 K+ DSP slices and 8 PCIe.
This performs training operation for CNN model called YOLOv2-tiny using the VOC datasets.

Table 3 shows the comparison result of training performance. Compared to an AMD Ryzen 5 5600X
CPU and an embedded RISC-V core (both operating with the same hardware environment), our integrated
BN block at 100 MHz improved performance by 63% over the CPU and by 97% over RISC-V. The CPU spent
about one second on data caching, and the RISC-V was even slower due to limited optimization. Both of
them also include interrupt handling time. By contrast, our BN accelerator avoided these delays.

For clarification, the ‘ [39]+CPU’ configuration in Table 3 represents the total processing time including
interrupt handling when the existing NPU design (without a normalization accelerator) relies on the CPU
to handle normalization’s forward and backward operations. Meanwhile, the ‘ [39] +this work’ configuration
shows the results when our proposed BN training IP is integrated into the NPU instead of using the
CPU for normalization tasks. This demonstrates that our hardware BN design enhances overall NPU
training performance.

3254 Comput Mater Contin. 2025;84(2)

Table 3: Training performance of the normalization block in hardware and software

Criteria [39] + CPU [39] +This work Contrast
FPGA device VU19P VU19P –
MAC units 2304 2304 –

BN operation CPU HW (FPGA) RISC-Vvs HWAMD RISC-V
SW Frequency 4.3 GHz1 100 MHz – 100 MHz
HW Frequency 100 MHz 100 MHz 100 MHz 100 MHz

Forward (s) 1.71 21.34 0.38 98% ↓
Backward (s) 1.31 15.91 0.51 96% ↓

Weight Gradient (s) 1.59 16.35 0.78 95% ↓
Total (s) 4.61 53.60 1.67 Speed 97% ↑

FPS (image/s) 1.52 0.15 4.79 31.9× ↑

FPGA Design [39] +This work (VU19P)

Num. of LUTs 2,599,344 63.62%
Num. of FFs 488,053 5.97%

Num. of DSPs 2357 61.38%
SRAM (KB) 910 –
Power (W) 16.5 –

Note: 1All core boost clock frequency (base 3.7 GHz, Mazx 4.6 GH).

5 Conclusion
Batch normalization (BN) plays a critical role in training convolutional neural networks; however, its

large computational requirements make hardware implementation complex and challenging. Particularly,
the standard deviation calculation increases hardware overhead due to the sum of squares and square root
operations. In this work, we propose an efficient standard BN hardware design that significantly reduces
overhead. By sharing hardware resources for forward and backward propagation, we reduce floating-point
units by 36% compared to SBN and by 30% relative to [30]. Additionally, our dual-input buffering minimizes
on-chip memory requirements, and zero-skipping in the backward pass lowers computations by a factor of
1/n2 in the n × n max-pooling layer.

Our implementation on a VCU118 FPGA achieves 72% speedup and 83% higher power efficiency than
an Intel CPU. Integrated into the existing NPU, our BN accelerator at 100 MHz also demonstrates 63%
and 97% faster performance compared to a 4.3 GHz AMD CPU and an embedded RISC-V at 100 MHz,
respectively. These results underscore the effectiveness of the proposed BN accelerator, suggesting that it can
be a compelling solution for various hardware-accelerated AI applications moving forward.

Despite these advantages, our approach has certain limitations. First, the square root unit used for
standard deviation calculation is optimized for a specific precision target (bfloat16). If implementations with
different precision requirements are needed, additional dedicated computation units would be required.
Second, our design optimizes on-chip memory and forward/backward propagation flow specifically for bat
normalization. Since it’s tailored for BN, applying it to other normalization techniques such as LN or GN
would require additional controllers for different datapaths.

Future efforts could explore hybrid precision approaches to accommodate varying model requirements,
as well as dynamic scheduling or approximate computation strategies tailored for edge devices. Investigating

Comput Mater Contin. 2025;84(2) 3255

advanced memory hierarchies or dataflow optimizations may further improve performance and efficiency,
expanding the applicability of this BN accelerator in next-generation AI systems.

Acknowledgement: The authors would also like to thank the respected editor and reviewer for their support.

Funding Statement: This work was supported by the National Research Foundation of Korea (NRF) grant for RLRC
funded by the Korea government (MSIT) (No. 2022R1A5A8026986, RLRC) and was also supported by Institute of
Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No. 2020-0-01304, Development of Self-Learnable Mobile Recursive Neural Network Processor Technology).
It was supported by the MSIT (Ministry of Science and ICT), Republic of Korea, under the Grand Information
Technology Research Center support program (IITP-2024-2020-0-01462, Grand-ICT) supervised by the IITP (Institute
for Information & Communications Technology Planning & Evaluation) and it was supported by the Korea Technology
and Information Promotion Agency for SMEs (TIPA) and supported by the Korean government (Ministry of SMEs and
Startups)’s Smart Manufacturing Innovation R&D (RS-2024-00434259).

Author Contributions: As the primary, Go-Eun Woo is the main contributor in the detailed theory, implementation,
and evaluating the performance of the presented research. Sang-Bo Park made contributions in defining the architecture
and improving the performance of the NPU design. Gi-Tae Park made contributions in verifying the NPU design in
FPGA. Muhammad Junaid made contributions in developing accurate simulator for training operation with brain-16
floating point format based on CUDA programming. As the advisor, Hyung-Won Kim guided the research direction
and reviewed NPU design and performance evaluation. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature. 2015;521(7553):436–44. doi:10.1038/nature14539.
2. Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J

Uncertain Fuzz Knowl Based Syst. 1998;6(2):107–16. doi:10.1142/S0218488598000094.
3. Hanin B. Which neural net architectures give rise to exploding and vanishing gradients? Vol. 31. In: Advances in

neural information processing systems. Montreal, Canada. Red Hook, NY, USA: Curran Associates, Inc.; 2018.
4. Ying X. An overview of overfitting and its solutions. J Phy Conf Series. 2019;1168(2):022022. doi:10.1088/1742-6596/

1168/2/022022.
5. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th

International Conference on Machine Learning (ICML-10); 2010 Jun 21–24; Haifa, Israel. p. 807–14.
6. Zhang J, He T, Sra S, Jadbabaie A. Why gradient clipping accelerates training: a theoretical justification for

adaptivity. In: International Conference on Learning Representations ICLR 2020; 2020 Apr 30; Addis Ababa,
Ethiopia. doi:10.48550/arXiv.1905.11881.

7. Nitish S, Hinton GE, Krizhevesky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural
networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58.

8. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift.
arXiv:1502.03167. 2015.

9. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Vol. 25.
In: Advances in neural information processing systems. Lake Tahoe, NV, USA. Red Hook, NY, USA: Curran
Associates, Inc.; 2012.

https://doi.org/10.1038/nature14539
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.48550/arXiv.1905.11881

3256 Comput Mater Contin. 2025;84(2)

10. Santurkar S, Tsipras D, Ilyas A, Madry A. How does batch normalization help optimization? Vol. 31. In: Advances
in neural information processing systems. Montreal, Canada. Red Hook, NY, USA: Curran Associates, Inc.; 2018.

11. Li Y, Wang N, Shi J, Liu J, Hou X. Revisiting batch normalization for practical domain adaptation. arXiv:1603.04779.
2016.

12. Summers C, Dinneen MJ. Four things everyone should know to improve batch normalization. arXiv:1906.03548.
2019.

13. Bjorck N, Gomes CP, Selman B, Weinberger KQ. Understanding batch normalization. Vol. 31. In: Advances in
neural information processing systems. Montreal, Canada. Red Hook, NY, USA: Curran Associates, Inc.; 2018.

14. Sun J, Cao X, Liang H, Huang W, Chen Z, Li Z. New interpretations of normalization methods in deep learning.
Proc AAAI Conf Artif Intell. 2020;34(4):5875–82. doi:10.1609/aaai.v34i04.6046.

15. Ioffe S. Batch renormalization: towards reducing minibatch dependence in batch-normalized models. Vol. 30.
In: Advances in neural information processing systems. Long Beach, CA, USA. Red Hook, NY, USA: Curran
Associates, Inc.; 2017.

16. Garbin C, Zhu X, Marques O. Dropout vs. batch normalization: an empirical study of their impact to deep learning.
Multimed Tools Appl. 2020;79(19):12777–12815. doi:10.1007/s11042-019-08453-9.

17. Thakkar V, Tewary S, Chakraborty C. Batch normalization in convolutional neural networks—a comparative study
with CIFAR-10 data. In: 2018 Fifth International Conference on Emerging Applications of Information Technology
(EAIT); 2018 Jan 12–13; Kolkata, India. p. 1–5. doi:10.1109/EAIT.2018.8470438.

18. Lubana ES, Dick R, Tanaka H. Beyond batchnorm: towards a unified understanding of normalization in deep
learning. Adv Neural Inf Process Syst. 2021;34:4778–91.

19. Junaid M, Aliev H, Park S, Kim H, Yoo H, Sim S. Hybrid Precision Floating-Point (HPFP) selection to optimize
hardware-constrained accelerator for CNN training. Sensors. 2024;24(7):2145. doi:10.3390/s24072145.

20. Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv:1607.06450. 2016.
21. Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings

of the 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22–29; Venice, Italy. p. 1501–10.
22. Wu Y, He K. Group normalization. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV);

2018 Sep 8–14; Munich, Germany. p. 3–19.
23. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.

1986;323(6088):533–6. doi:10.1038/323533a0.
24. Banner R, Hubara I, Hoffer E, Soudry D. Scalable methods for 8-bit training of neural networks. Vol. 31,

In: Advances in neural information processing systems. Montreal, QC, Canada. Red Hook, NY, USA: Curran
Associates, Inc.; 2018.

25. Soudry D, Hubara I, Meir R. Expectation backpropagation: parameter-free training of multilayer neural networks
with continuous or discrete weights. Vol. 27. In: Advances in neural information processing systems. Montreal,
QC, Canada. Red Hook, NY, USA: Curran Associates, Inc.; 2014.

26. Yang Z, Wang L, Luo L, Li S, Guo S, Wang S. Bactran: a hardware batch normalization implementation for CNN
training engine. IEEE Embedd Syst Lett. 2021;13(1):29–32. doi:10.1109/LES.2020.2975055.

27. Noh SH, Park J, Park D, Koo J, Choi J, Kung J. LightNorm: Area and Energy-Efficient Batch Normalization
Hardware for On-Device DNN Training. In: 2022 IEEE 40th International Conference on Computer Design
(ICCD); 2022 Oct 23–26; Olympic Valley, CA, USA; 2022. p. 443–50. doi:10.1109/ICCD56317.2022.00072.

28. Li B, Wang H, Luo F, Zhang X, Sun H, Zheng N. ACBN: approximate calculated batch normalization for efficient
DNN on-device training processor. IEEE Trans Very Large Scale Integr (VLSI) Syst. 2023;31(6):738–48. doi:10.1109/
TVLSI.2023.3262787.

29. Wu S, Li G, Deng L, Liu L, Wu D, Xie Y, et al. L1-Norm batch normalization for efficient training of deep neural
networks. IEEE Trans Neural Netw Learn Syst. Jul 2019;30(7):2043–51. doi:10.1109/TNNLS.2018.2876179.

30. Ting YS, Teng YF, Chiueh TD. Batch normalization processor design for convolution neural network training
and inference. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS); 2021 May 22–28; Daegu,
Republic of Korea. p. 1–4. doi:10.1109/ISCAS51556.2021.9401434.

https://doi.org/10.1609/aaai.v34i04.6046
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.1109/EAIT.2018.8470438
https://doi.org/10.3390/s24072145
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/LES.2020.2975055
https://doi.org/10.1109/ICCD56317.2022.00072
https://doi.org/10.1109/TVLSI.2023.3262787
https://doi.org/10.1109/TVLSI.2023.3262787
https://doi.org/10.1109/TNNLS.2018.2876179
https://doi.org/10.1109/ISCAS51556.2021.9401434

Comput Mater Contin. 2025;84(2) 3257

31. Ge J, Cui X, Xiao K, Zou C, Chen Y, Wei R, et al. BNReLU: combine batch normalization and rectified linear unit to
reduce hardware overhead. In: 2019 IEEE 13th International Conference on ASIC (ASICON); 2019 Oct 29–Nov 1;
Chongqing, China; 2019. p. 1–4. doi:10.1109/ASICON47005.2019.8983577.

32. Singh S, Krishnan S. Filter response normalization layer: Eliminating batch dependence in the training of deep
neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020
Jun 13–19; Seattle, WA, USA; 2020. p. 11237–46.

33. Hong W, Chen H, Quan L, Fu Y, Li L. Low-cost high-precision architecture for arbitrary floating-point nth
root computation. In: 2023 IEEE International Symposium on Circuits and Systems (ISCAS); 2023 May 21–25;
Monterey, CA, USA; 2023. p. 1–5. doi:10.1109/ISCAS46773.2023.10181944.

34. Ray A. A survey of CORDIC algorithms for FPGA based computers. In: Proceedings of the 1998 ACM/SIGDA Sixth
International Symposium on Field Programmable Gate Arrays; 1998 Feb 22–25; Monterey, CA, USA. p. 191–200.

35. Wang LK, Schulte MJ. Decimal floating-point square root using Newton-Raphson iteration. In: 2005 IEEE
International Conference on Application-Specific Systems, Architecture Processors (ASAP’05); 2005 Jul 23–25;
Samos, Greece. p. 309–15. doi:10.1109/ASAP.2005.29.

36. Wei J, Kuwana A, Kobayashi H, Kubo K, Tanaka Y. Floating-point square root calculation algorithm based on
taylor-series expansion and region division. In: 2021 IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS); 2021 Aug 9–11; Lansing, MI, USA. p. 774–8.

37. Kwon TJ, Draper J. Floating-point division and square root implementation using a taylor-series expansion
algorithm with reduced look-up tables. In: 51st Midwest Symposium on Circuits and Systems; 2008 Aug 10–13;
Knoxville, TN, USA. p. 954–7. doi:10.1109/MWSCAS.2008.4616959.

38. Woo GE, Kim HW. Cubic spline interpolation square-root compute unit for cost-efficient batch-normalization
calculation of accurate DNN training. J Inst Electron Inf Eng. 2025;62(2):19–28. (In Korean).

39. Park SB. Reconfigurable CNN Training Accelerator Design Based on Efficient Memory Access Reduction
Techniques [master’s thesis]. Cheongju, Republic of Korea: Chungbuk National University; 2024.

https://doi.org/10.1109/ASICON47005.2019.8983577
https://doi.org/10.1109/ISCAS46773.2023.10181944
https://doi.org/10.1109/ASAP.2005.29
https://doi.org/10.1109/MWSCAS.2008.4616959

	Low-Complexity Hardware Architecture for Batch Normalization of CNN Training Accelerator
	1 Introduction
	2 Backgrounds
	3 Proposed Optimization Methodology
	4 Hardware Implementation and Verification
	5 Conclusion
	References

