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ABSTRACT: The increasing adoption of unmanned aerial vehicles (UAVs) in urban low-altitude logistics systems,
particularly for time-sensitive applications like parcel delivery and supply distribution, necessitates sophisticated
coordination mechanisms to optimize operational efficiency. However, the limited capability of UAVs to extract state-
action information in complex environments poses significant challenges to achieving effective cooperation in dynamic
and uncertain scenarios. To address this, we presents an Improved Multi-Agent Hybrid Attention Critic (IMAHAC)
framework that advances multi-agent deep reinforcement learning (MADRL) through two key innovations. Firstly,
a Temporal Difference Error and Time-based Prioritized Experience Replay (TT-PER) mechanism that dynamically
adjusts sample weights based on temporal relevance and prediction error magnitude, effectively reducing the inter-
ference from obsolete collaborative experiences while maintaining training stability. Secondly, a hybrid attention
mechanism is developed, integrating a sensor fusion layer—which aggregates features from multi-sensor data to
enhance decision-making—and a dissimilarity layer that evaluates the similarity between key-value pairs and query
values. By combining this hybrid attention mechanism with the Multi-Actor Attention Critic (MAAC) framework, our
approach strengthens UAVs’ capability to extract critical state-action features in diverse environments. Comprehensive
simulations in urban air mobility scenarios demonstrate IMAHAC’s superiority over conventional MADRL baselines
and MAAC, achieving higher cumulative rewards, fewer collisions, and enhanced cooperative capabilities. This work
provides both algorithmic advancements and empirical validation for developing robust autonomous aerial systems in
smart city infrastructures.
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1 Introduction
The low-altitude economy is an emerging economic model distinguished by technological innovation,

operational flexibility, and multi-sector integration, serving as a driving force for future development.
Unmanned Aerial Vehicles (UAVs) have been extensively applied in key areas of the low-altitude economy,
such as stereoscopic agricultural [1], logistics delivery [2], and activity monitoring [3,4].

In the field of logistics and transportation, the cooperative objective optimization problem for multi-
agent systems is both critical and challenging [5–7]. Multi-UAV systems outperform single-UAV systems in
time efficiency and collaboration [8]. Wu et al. [9] and Kong et al. [10] applied MADRL to UAV systems in
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the logistics and transportation domain, demonstrating high efficiency. MADRL enables agents to interact
and collaborate, making it more effective than traditional models for addressing complex multi-agent
optimization challenges.

MADRL approaches encounter a non-stationarity problem due to behavior changes caused by agent
interactions during training. The Centralized Training with Decentralized Execution (CTDE) paradigm
effectively mitigates this issue by utilizing global information during training to improve stability [11].
Under CTDE, decentralized actor networks infer actions based on local observations, while centralized
critic networks provide a comprehensive global perspective. Notably, the MAAC model achieves superior
performance, particularly in environments with restricted inter-agent communication [12].

However, when applying the aforementioned methods to the UAV logistics models, we observed that
relying solely on similar information among UAVs often leads to poor decision-making due to the inability
to account for differing information. To address these problems, this paper proposes a novel attention
mechanism fused into the MAAC model, aiming to enhance collaboration efficiency among UAVs while
reducing system energy consumption. The main contributions of this paper are as follows:

• Hybrid Attention Mechanism Design: The proposed IMAHAC algorithm enhances the MAAC frame-
work by adding a sensor fusion layer in the actor network, integrating data from sensors like radar
and inertial systems for improved UAV navigation. Additionally, a dissimilarity in the critic network
computes state difference weights, enhancing training stability and avoiding errors from over-reliance
on similar information.

• TT-PER Method Application: We introduce a prioritized experience replay (PER) method and improve
it to Temporal Difference Error and time-based prioritized experience replay (TT-PER). This approach
minimizes the influence of outdated experiences, enhancing training efficiency and stability.

• Partially Observable Markov Decision Process (POMDP): Multi-UAV cooperative tasks demand fast
operation, high delivery precision, highly collaborative, and collision-free transportation planning. To
tackle these challenges, the problem is modeled as a POMDP. Reinforcement learning enables each UAV
to make task decisions based on its observations and state, ensuring efficient collaboration.

2 Related Work
We briefly review here some recent advances most related to our proposed work in the context of UAV-

based Multi-Agent Reinforcement Learning (MARL).

2.1 MADRL Applications in UAVs
MADRL is widely applied in scenarios involving multi-UAV systems, such as path planning [13–15],

target tracking [16,17], and task allocation [18,19]. Xu et al. [20] proposed an improved version of Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) by introducing a novel MARL framework for autonomous
cooperative control of UAV swarms. Similarly, Jin et al. [21] introduced the Boids-PE framework, which
synergizes Boids swarm intelligence with Deep Reinforcement Learning (DRL) to optimize collision-aware
formation control and evasion path planning through Apollonian Circles geometric optimization and self-
play training. Li et al. [22] developed a knowledge-assisted multi-agent reinforcement learning method for
computation offloading and trajectory planning in multi-UAV mobile edge devices. The primary objectives
of their approach were to maximize the success rate of computational task processing and enhance system
fairness while minimizing processing delays. However, in dynamic and complex environments, the above
algorithms may struggle to adapt to environmental changes in real time.
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2.2 Attention Mechanisms in MARL
The attention mechanism is a widely adopted method in machine learning for handling various tasks.

It can be divided into categories such as hierarchical attention [23], cooperative attention and multi-head
attention [24] based on its structure. Yan et al. [25] introduced hierarchical attention into RL and proposed
the HRAMA (Hierarchical Recurrent Attention Multi-Agent Actor-Critic) algorithm. This approach effi-
ciently learns subtask policies at different stages and supports online learning of multi-level strategies. Jiang
et al. [26] developed an attention-based communication model that learns when to communicate and how
to integrate shared information for cooperative decision-making, achieving both efficiency and effectiveness
in multi-agent collaboration. Wang et al. [27] proposed AHAC (Multi-Actor Hierarchical Attention Critic),
a method within the CTDE framework. By combining hierarchical and multi-head attention mechanisms,
this method enhances information processing and supports decision-makers in achieving better outcomes.
Although the multi-head attention mechanism expands MADRL’s ability to focus on diverse elements
and hierarchically integrate information for improved environmental perception, its reliance on similar
information can sometimes cause it to overlook critical differences, leading to suboptimal decisions.

2.3 The Development of UAVs in Logistics
Multi-UAV collaboration has demonstrated significant potential in the fields of logistics and transporta-

tion. Jiang et al. [28] designed a deep reinforcement learning algorithm based on graph neural networks,
which aggregates the feature vectors of neighboring agents to address the challenges of heterogeneous multi-
agent coordination. Liu et al. [29] focused on route planning for UAV logistics and proposed a resource
allocation method based on Double Deep Q-Network (DDQN) to maximize the average total capacity
of links between UAVs. However, task conflicts during multi-UAV collaboration may arise, potentially
impacting overall transportation efficiency.

3 Multi-UAV Cooperative Collaboration Problem
IMAHAC model focuses on integrating the sensor fusion layer and dissimilarity layer into the attention

mechanism to effectively address the multi-UAV cooperation challenges in logistics. Multi-UAV cooperative
logistics involves large-scale data and demands transportation planning that ensures fast operation, high
accuracy, strong collaboration, and collision-free planning. In this paper, the collaborative cooperation of
multi-logistics agents is modeled as a POMDP and solved using a policy gradient approach.

3.1 Partially Observable Markov Decision Processes
The POMDP [30] is a classical reinforcement learning model suitable for decision-making in partially

observable environments. A POMDP is defined as a tuple [S , A, T, P, O , R, γ], where S represents the state
space, defined as the set of states observed by the agents. A is the action space, representing the set of actions
that agents execute at each time step. The state transition function T ∶ S × A1 × ⋅ ⋅ ⋅ × AN → P. P represents
the state transition probability, defining the probability distribution over the next possible states s′ given the
current state s and the actions a of the agents. O represents the observations of the environment perceived
by the agents. R is the reward function. γ ∈ [0, 1] is the discount factor.

3.2 Definition of State, Action and Reward Functions
In this paper, we model the collaboration among agents as a POMDP. The state, action, and reward in

the environment constitute the fundamental elements of the POMDP. The state represents the observations
received by the UAVs, the action denotes the available movement options, and the reward reflects the
feedback or return based on the UAVs’ actions.
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State Space S: The UAVs acquire information from three distinct sensors: ray-cast sensors for collision
avoidance, inertial navigation system (INS) sensors for monitoring flight status and self-awareness, and radar
(RADAR) sensors for identifying the positions of other UAVs and the distribution centers.

Action Space A: The UAVs can perform seven different types of actions: up, down, forward, backward,
left, right, and stationary immobility. The stationary state represents either a no-command condition or a
collision avoidance mechanism.

Reward Fuction R:
Travel Reward rtrav e l : To encourage UAVs to transport cargo along the shortest possible path, a reward

mechanism is implemented at each time step. This reward is determined by the difference in distance between
the current time step, dcurr, and the previous time step, dpre, where each distance represents the UAV’s
proximity to its target. Before picking up cargo, the target is the nearest package, while after pickup, the target
is the delivery destination. If the UAV moves farther from the target during the current time step compared
to the previous one, an immediate negative reward is applied. The travel reward function is mathematically
expressed as: rdr iv ing = (dpre − dcurr) × 0.5.

Cooperative Reward rcoo p: To train multi-UAV cooperative logistics transportation, the reward mecha-
nism is assigned based on the type of action and the nature of collaboration. Picking up and completing small
cargo tasks are non-collaborative actions, where only the UAV responsible for the task receives a reward of
+20.0. In contrast, large cargo tasks require collaboration between two UAVs; the first UAV and the second
UAV receive rewards of +10.0 and +20.0, respectively, for picking up the cargo, and both earn +30.0 upon
completing the transportation. Meanwhile, improper actions lead to penalties—for example, a single UAV
dropping large cargo incurs a penalty of −8.0, while both UAVs dropping cargo simultaneously result in a
penalty of −15.0 each. Different rewards and penalties are assigned based on various scenarios, aiming to
improve the efficiency of UAVs in delivering cargo.

Collision penalty rpenal t y : During training, UAVs utilize ray-casting to detect and avoid collisions with
obstacles such as buildings and other UAVs. Any collision results in an immediate penalty, with a negative
reward of −10 assigned to discourage such behavior.

Based on the above definition, the final formula for reward is: r = rtrav e l + rcoo p + rpenal t y .

4 IMAHAC Model

4.1 IMAHAC Structure and Training Algorithm
To maximize the utility of sensor-collected data, mitigate errors caused by the attention mechanism’s

over-reliance on similarity-based information, and improve the efficiency of information processing during
operations, several enhancements were made to the MAAC model. Specifically, a sensor fusion layer was
introduced to process each UAV’s local observations, enabling more effective integration of sensor data.
Additionally, a dissimilarity layer was incorporated to optimize the use of global information shared among
UAVs. To further enhance training efficiency, the experience buffer was modified to prioritize sampling based
on the Temporal Difference Error (TD-error) of experiences and the time they were stored in the buffer,
thereby minimizing the influence of outdated experiences on agent training. The overall architecture of the
proposed IMAHAC model is illustrated in Fig. 1.
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Figure 1: Algorithm structure

The overall workflow of IMAHAC is built upon the foundation of the MAAC model, including the
gradient computation of both the loss function and the objective function. Each agent is equipped with its
own independent actor and critic networks, operating under a CTDE paradigm. During the training phase,
the observations of all agents are used as inputs to the critic network of the corresponding agent. In the
execution phase, the decentralized actor network relies solely on the agent’s local observations of input data to
select actions for inference. The IMAHAC model is applicable to N agents equipped with M types of sensors.
The IMAHAC training algorithm is shown in Algorithm 1.

Algorithm 1: IMAHAC training algorithm
Input : Environment state space O, action space A, reward function R
output : Optimized policy πθ

i for each agent i
Initialize : Critic networks Qψ

i and actor networks πθ
i ;

Synchronize target networks Qψ
i ← Qψ

i , πθ
i ← πθ

i ;
Experience replay buffer B;
Step 1: Collect initial experiences
repeat

for each time step t do
Observe state ot

i from the environment;
Compute action at

i = πθ
i (ot

i) using the actor network;
(Continued)
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Algorithm 1 (continued)
Execute action at

i in the environment;
Receive next state ot′

i and reward rt
i ;

Store transition (ot
i , at

i , rt
i , ot′

i ) in the experience buffer B;
end

until Replay buffer B contains E experiences
Step 2: Training process
repeat

Step 2.1: Sample from buffer;
Sample a batch of transitions (ot

i , at
i , rt

i , ot′
i ) from B;

Step 2.2: Update critic network;
Compute the critic loss:
LQ(ψi) = E(ot

i ,at
i ,rt

i ,ot′
i )∼B[(Q

ψ
i (ot

i , at
i) − yi)

2]
where the target value yi is defined as:
yi = rt

i + γQψ
i (ot′

i , πθ
i (ot′

i ))
Perform gradient descent on LQ(ψi) to update ψi ;
Step 2.3: Update actor network;
Compute the actor objective:
J(πθ

i ) = Eot
i∼B[∇θ i log πθ

i (at
i ∣ ot

i) ⋅ (Q
ψ
i (ot

i , at
i) − b(ot , at

/i) − α log(πθ
i (at

i ∣ ot
i)))]

Perform gradient ascent on J(πθ
i ) to update θi

Step 2.4: Update target networks;
Update the target networks using soft updates:
ψ ← (1 − τ) ⋅ ψ + τ ⋅ ψ
θ ← (1 − τ) ⋅ θ + τ ⋅ θ

until End of the episode;

4.2 IMAHAC Actor Networks
Multiple sensors can capture diverse types of information; however, directly inputting this data into

the network may result in suboptimal utilization of information and negatively impact decision-making
accuracy. The sensor fusion layer enhances feature extraction, enabling UAVs to make more precise naviga-
tion decisions in complex and dynamic environments, thereby improving energy efficiency and operational
stability during task execution.

As shown in the Fig. 2, a deep fusion layer is incorporated into the actor network of the MAAC algorithm
to improve its operational efficiency. Observational data are categorized based on different sensor types,
enabling feature extraction tailored to each category. In our virtual environment, three distinct sensor types
are utilized for the UAVs: an INS for self-awareness of flight states, a ray-cast sensor for collision avoidance
with nearby obstacles, and a RADAR for determining the positions of other UAVs and relay stations.

The data collected from each sensor type are processed through their respective sensor encoders, after
which the encoded outputs are concatenated and passed through two fully connected layers. Each sensor’s
raw data is processed through a dedicated encoder subnetwork to extract task-specific features, with the
specific design shown in Table 1.
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Figure 2: Deep fusion layer in actor networks

Table 1: Sensor observation space

Sensor type Size Description
INS 3 (x, y, z)-coordinates of UAVi.

3 (x, y, z)-velocity of UAVi.
3 cargo type (not holding, small cargo, and big cargo).

Ray-cast 1 × 9 Distance to obstacles in 9 directions.
2 × 9 Encoding of the detected object (nothing, building) of 9 direction.

RADAR 6 (x, y, z, x, y, z)-coordinates of a big cargo hub and a small cargo hub.
2 Distance from UAV to big and small cargo hubs.
6 (x, y, z, x, y, z)-coordinates of each recently sized cargo.
2 Distances from UAVi to the nearest big and small cargos.
4 (x, y, z, d)-if there is a cargo on the UAVi,

the coordinates and distance of the destination are given.
7 × 4 Coordinates of UAVj (size 3), cargo type of UAVj (size 3),

and distance from UAVi to UAVj (size 1).

Note: UAVi is the current, and UAVj are the rest of all UAVs except UAVi.

The deep fusion layer processes multimodal sensor inputs (27-dimensional Ray-cast data, 9-
dimensional INS data, and 48-dimensional RADAR data) through three parallel sensor-specific encoders.
Each encoder employs an independent fully-connected network to extract hierarchical features from its
corresponding sensor modality. These modality-specific representations are subsequently concatenated
and passed through successive fully-connected layers for cross-modal feature integration and dimen-
sionality reduction, ultimately generating a unified latent representation that encapsulates comprehensive
environmental awareness. The mathematical formulation of the deep fusion layer is as follows:

Output = FC2(FC1(Concat(SNE1(sensor1), SNE2(sensor2), SNE3(sensor3))) (1)

where FC1, FC2 and the sensor encoders (SNE1. . .3) represent fully connected layers responsible for feature
extraction and integration.
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4.3 IMAHAC Critic Networks
The attention mechanism in the MAAC model primarily relies on similarity information [24]. However,

in collaborative tasks, information that is dissimilar to the current state can sometimes be more critical.
For instance, observations from a UAV that is farther away but closer to the target may be more important
than those from a nearby UAV. Introducing a dissimilarity layer helps to mitigate misjudgments by the
attention mechanism in specific scenarios, such as distant critical information, similar information with
different tasks, and noise interference. This enhances the model’s efficiency in utilizing information in
complex environments.

In the Critic Network, each agent is assigned an independent critic network. while the state encoder is
shared among all agents. As illustrated in the Fig. 3, the observation oi of agent i is processed by the state
encoder to produce a state embedding vector (SEi), and the action ai is passed through the state-action
encoder to generate the state-action embedding (SAEi). Meanwhile, the state embeddings (SE j) from other
agents are simultaneously input into both the multi-head attention layer and the dissimilarity layer.

Figure 3: Dissimilarity layer in Critic networks

The multi-head attention layer, constructed based on the scaled dot-product mechanism, calculates
the similarity between the encoded observations of agent i and those of agent j to generate the attention
values (AV), enabling selective aggregation of relevant information. UAVs within a neighboring distance
often exhibit similar observations; by assigning higher weights to these similar inputs, each UAV can obtain
a broader field of view, which helps reduce the likelihood of collisions among agents.

The purpose of the multiple attention mechanism is to spread attention in many different directions.
However, the information captured in the subspace is uncontrollable and too much concentration can lead
to a single message. To overcome these challenges, We introduce a dissimilarity layer in the critic network,
which leverages the cosine distance between the outputs of different attention heads as a regularization term.
This layer helps to alleviate performance issues caused by excessive focus within the attention mechanism,
quantifies the dispersion of attention across subspaces, and improves the overall stability and robustness of
the learning process.
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The dissimilarity weights between the observation data of agents are derived by scaling the cosine
similarity value with a negative scalar, as expressed in Eq. (2):

CD(SEi , SEn) = −1 ⋅ SEi ⋅ SEn

max(∥SEi∥2 ⋅ ∥SEn∥2, ε) (2)

Negative dissimilarity values are set to zero to emphasize information from agents with distinct
observation patterns. Each agent’s observation data is then weighted by the cosine dissimilarity values,
and the resulting data are concatenated. This concatenated output is fed into a fully connected layer. The
concatenated representation of AV, (SEi), and the dissimilarity values (DV) is then passed through fully
connected layers to enhance the critic value estimation.

4.4 Normalization Layer
Although multi-head attention mechanisms have been successfully utilized in reinforcement learn-

ing [31], their integration can heavily influence the learning rate during pretraining. If the learning rate is
too high, it may cause abrupt gradient fluctuations, resulting in unstable training. Conversely, a low learning
rate can hinder progress by slowing down the learning process. To mitigate these challenges, a normalization
layer is incorporated between the FC1 and FC2 layers in the critic network. This normalization layer improves
training stability and facilitates a more efficient learning process.

After calculating the influence of other agents using the DV, a normalization layer is integrated to
establish a Pre-Normalization Layer Norm (Pre-LN) paradigm [32]. This approach has been demonstrated
to be more effective in mitigating the instability of attention mechanisms, particularly when operating under
high learning rates, thereby improving overall training robustness.

4.5 Prioritized Experience Replay
When training the UAV with the IMAHAC algorithm, the gradient is updated incrementally, which

can lead to the loss of valuable experience data crucial for future updates and negatively affect training
efficiency. To overcome this limitation, the TT-PER method is introduced, prioritizing experience samples
based on their TD-error and storage time in the replay buffer. During sampling, the selection probability
of each experience is determined by its priority, which not only enhances training efficiency but also
minimizes the influence of outdated experiences, thereby optimizing the agent’s policy and ensuring greater
training stability.

The sampling probability of an experience in this paper is defined as:

P(i) = pσ
i

∑k pσ
k

(3)

here, pi > 0 denotes the priority assigned to experience sample i, and the hyperparameter σ controls the
degree to which priority influences the sampling process. When σ = 0, the sampling reduces to a uniform
distribution. We set σ = 0.6 in this paper.

In multi-agent systems, outdated experiences can hinder decision-making and reduce success rates,
often showing large TD-error values, assigning high priority to such outdated samples is unreasonable. To
address this, the proposed method incorporates a temporal factor based on the time an experience is stored
in the replay buffer. Older samples receive lower priorities, while recent ones are prioritized. The priority of
an experience sample is defined as:

pi = δ2
i × (1 − e−K×Ti) + ε (4)
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Here, e represents the base of the natural logarithm, ε = 10−4 is a small constant to prevent samples
with zero TD-error from being entirely ignored, and Ti denotes the time value of experience sample i. The
initial value of T is set to 1 and incrementally increases incrementally during training. The parameter K,
we set to K = 0.95 in this paper, quantifies the influence of time on the priority of experiences. Finally, δi =
γQψ

i (o′, a′) − Qψ
i (o, a) represents the TD-error of the i-th experience sample.

The priority formulation achieves a balanced trade-off between TD-error and temporal relevance,
improving both training stability and efficiency.

5 Experiments
We evaluate the performance of the IMAHAC algorithm in a UAV logistic delivery service (UAV LDS)

environment built on OpenAI Gym [33] and compare it with other baseline algorithms. The simulations are
implemented in Python 3.11.

5.1 UAS-LDS Virtual Environment
The UAV-LDS is a virtual drone logistics and delivery environment that connects ground logistics with

aerial drone logistics, facilitating cargo transportation within a three-dimensional urban airspace.
The UAV-LDS simulation environment includes modules for obstacles such as buildings, warehouses,

and transportable cargo. In this setup, UAVs are responsible for transporting both large and small cargo
between distribution centers and destinations. A key feature of the environment is that large cargo requires
the collaboration of two drones to transport, reflecting real-world scenarios where multiple drones must
work together to manage heavier loads. This structure allows for the assessment of the effectiveness of drone
cooperation in logistics operations.

Fig. 4 depicts the UAV-LDS environment where UAVs are tasked with transporting cargo. In the
illustration, gray blocks represent buildings, blue blocks indicate small cargo, and red blocks represent large
cargo. The cargo is generated at the blue distribution centers on the ground, with large cargo assigned to pink
areas and small cargo to green areas. When a UAV approaches cargo within a specified threshold distance, the
cargo attaches to the UAV, simulating real-world logistics processes and streamlining the delivery operations.

Figure 4: The UAV-LDS environment
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5.2 Parameter Setting
The UAS-LDS environment can be customized using the Gym API. In this paper, the experimental

parameters used for training and evaluation are outlined in Table 2.

Table 2: Environmental parameter setting

Parameter description DDPG MADDPG MAPPO MASAC MAAC IMAHAC
Total number of UAVs 5 5 5 5 5 5

Number of episodes 1000 1000 1000 1000 1000 1000
Steps per update 250 250 250 250 250 250

Batch size 1024 1024 1024 1024 1024 1024
Buffer length 1e6 1e6 1e6 1e6 1e6 1e6

Number of attention heads – – – – 4 4
Policy hidden dimension 128 128 128 128 128 128

Learning rate of critic q_lr 0.01 0.01 0.001 0.001 0.001 0.001
Learning rate of policy pi_lr 0.01 0.01 0.001 0.001 0.001 0.001

Discount factor γ 0.99 0.99 0.99 0.99 0.99 0.99
Width of the unity window 480 pixels 480 pixels 480 pixels 480 pixels 480 pixels 480 pixels
Height of the unity window 270 pixels 270 pixels 270 pixels 270 pixels 270 pixels 270 pixels

Number of buildings 3 units 3 units 3 units 3 units 3 units 3 units
MaxSmallbox 100 units 100 units 100 units 100 units 100 units 100 units

MaxBigbox 100 units 100 units 100 units 100 units 100 units 100 units

5.3 Comparison of Baseline Algorithms
The proposed IMAHAC algorithm is compared with the baseline algorithms Deep Deterministic Policy

Gradient (DDPG), MADDPG, Multi-Agent Proximal Policy Optimization (MAPPO) and Multi-Agent Soft
Actor-Critic (MASAC), using the average episodic reward as the evaluation metric. Fig. 5 illustrates the
learning curves of the three algorithms over 20,000 training episodes, where the horizontal axis represents
the number of training episodes, and the vertical axis represents the average episodic reward. The curves
have been smoothed for clarity.

• DDPG: The DDPG algorithm demonstrates slow learning progress, with its average episodic reward
showing a slight increase during the early stages (2000 episodes) before plateauing. Eventually, it
converges around−30. This indicates that the algorithm exhibits limited learning capability and struggles
to adapt to the complex environmental dynamics in the experimental scenario.

• MADDPG: Compared to DDPG, MADDPG exhibits better performance, with its average episodic
reward rising more rapidly during the early training phase and converging to approximately −20 after
around 5000 episodes. Although its performance surpasses that of DDPG, the relatively low convergence
value indicates certain limitations when handling multi-agent cooperative tasks.

• MAPPO: MAPPO exhibits a rapid performance improvement during the initial training phase; however,
however, its mean episode rewards fluctuate around −10 for the remainder of the training process,
without significant further improvement. This observation suggests that although MAPPO demonstrates
a certain degree of adaptability in the early stages, it encounters limitations in long-term policy
optimization and cooperative decision-making in multi-agent environments.
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• MASAC: The MASAC algorithm demonstrates a stable and continuous performance improvement over
the entire training period. Its mean episode rewards increase steadily from the beginning and ultimately
reach approximately 60 by the 20,000th episode. Although slightly inferior to the final performance
of IMAHAC, MASAC significantly outperforms the other baseline methods, indicating its superior
learning efficiency and policy stability in complex multi-agent scenarios.

• IMAHAC: The IMAHAC algorithm significantly outperforms both DDPG and MADDPG, with a
steep learning curve that improves performance in a robust growth trend. Eventually, it converges to
approximately 80 after 20,000 episodes. This result indicate that IMAHAC possesses robust environ-
mental adaptability and multi-agent collaboration capabilities, significantly improving task completion
efficiency.

Figure 5: Comparison of baseline algorithms

The superior performance of IMAHAC over other baseline algorithms can be attributed to its architec-
tural enhancements, namely the inclusion of a sensor fusion layer in the actor network and a dissimilarity
layer in the critic network. These additions allow the model to better capture complex inter-agent dynam-
ics and environmental features, resulting in improved coordination and learning efficiency. In contrast,
algorithms such as DDPG and MADDPG suffer from limited representational capacity and coordination
mechanisms, leading to slower convergence and lower overall performance. MAPPO demonstrates moderate
early-stage improvements but tends to plateau due to its lack of structured attention or cross-agent represen-
tation modeling. MASAC achieves relatively better performance through entropy-regularized training, yet
still falls short compared to IMAHAC due to the absence of these critical architectural components.

Table 3 presents the un-smoothed average rewards. As shown in the table, under the same number of
drones, IMAHAC outperforms the other four comparison algorithms in terms of rewards.
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Table 3: Average rewards

Arithmetic Number of UAVs Average rewards
IMAHAC 5 52.87
MASAC 5 21.26
MAPPO 5 −12.84

MADDPG 5 −13.12
DDPG 5 −17.56

5.4 Comparison ith MAAC Algorithm
We further selected the classic multi-agent algorithm MAAC for comparison. Both algorithms were run

in the UAS-LDS virtual environment, and a consistent set of training parameters were used for comparison.
The results are shown in the Fig. 6.

Figure 6: Comparison with MAAC algorithm

The results show that, compared to MAAC, IMAHAC demonstrates a significant performance advan-
tage in the later stages of training. Particularly after 20,000 episodes, its reward value rapidly increases and
stabilizes at a high level above 80, while the final reward value of MAAC fluctuates around 60. Additionally,
IMAHAC exhibits smaller fluctuations in the later stages, indicating that its policy is more stable and it has
a stronger ability to adapt to environmental changes.1

To assess the delivery accuracy of different algorithms, we analyzed the number of successful deliveries
for both small and large payloads. As illustrated in Fig. 7, the horizontal axis depicts the performance of
MAAC and IMAHAC algorithms across different task scenarios, while the vertical axis shows the total
number of successfully completed delivery tasks. Additionally, the UAV performance scores were calculated
using the following formula:

Score = Nsmal l + 1.5 ∗ Nl arg e (5)

1The real-time UAV decision-making comparison videos of MAAC and our method are uploaded on GitHub. Check them out at https://github.com/
jidebeibiji/IMAHAC.git (accessed on 21 May 2025).

https://github.com/jidebeibiji/IMAHAC.git
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where Nsmal l and Nl arg e represent the number of successfully delivered small and large payloads, respec-
tively. The weight of 1.5 for large payloads reflects the 50% higher reward assigned during the training phase.

Figure 7: Comparison of delivery performance

Experimental results demonstrate that the IMAHAC algorithm significantly outperforms MAAC across
all types of tasks. Notably, in scenarios requiring multi-UAV cooperative transportation, IMAHAC not only
increases the median number of successful deliveries but also exhibits a larger upper quartile range. This
indicates enhanced cooperative transport capabilities and adaptability. These findings highlight the distinct
advantages of IMAHAC in improving UAV collaborative delivery efficiency and its superior adaptability to
complex transportation demands.

Finally, we compared the average runtime per episode (in seconds) and the average number of collisions
for IMAHAC against other baseline algorithms. The results are presented in the Fig. 8.

Figure 8: Comparison with running time and number of collisions
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The experimental results clearly demonstrate the superior performance of IMAHAC. It achieved the
shortest average running time (4.78 s) and the lowest average number of collisions (1.10), indicating both
high efficiency and strong safety. MAAC and MASAC followed, with slightly higher runtimes (5.59 and
6.43 s) and moderate collision rates (1.91 and 2.33). In contrast, MADDPG and DDPG showed significantly
higher runtimes (7.16 and 9.38 s) and collision counts (3.10 and 3.56), suggesting reduced adaptability and
coordination. In general, IMAHAC outperformed all baselines in terms of efficiency and collision avoidance.

6 Discussion and Conclusions

6.1 Discussion
The proposed IMAHAC algorithm demonstrates strong potential in the emerging field of urban low-

altitude logistics. In complex urban environments, efficient coordination of UAV-based transportation is
crucial, while traditional methods often suffer from poor adaptability and limited scalability.

IMAHAC adopts an attention-based actor-critic architecture integrated with a CTDE strategy, enabling
improved performance in task allocation and cooperative control. Moreover, the introduction of a well-
designed reward mechanism significantly enhances the obstacle avoidance capability, thereby reducing
collision risks in urban low-altitude airspace and improving the overall safety of UAV operations.

Application scenarios for UAV logistics include last-mile delivery, where autonomous parcel distribu-
tion can be achieved in congested urban areas, and emergency logistics, such as rapid supply delivery during
disasters or critical events. In addition, with the gradual development of urban infrastructure—such as aerial
corridors and vertical take-off and landing (VTOL) platforms—IMAHAC is well suited for managing UAV
traffic and task coordination in increasingly complex low-altitude airspace.

6.2 Conclusions
To address the issues of low efficiency and poor coordination in multi-UAV transport tasks, we propose

an IMAHAC algorithm, developed within a virtual logistics environment based on the OpenAI Gym system.
The IMAHAC algorithm integrates a hybrid attention mechanism with the TT-PER prioritized replay
mechanism and embeds them into the MAAC framework. The performance of the proposed model is
evaluated through the average rewards obtained by multiple UAVs. Experimental results demonstrate that
IMAHAC outperforms other baseline algorithms and proves effective in multi-UAV logistics scenarios. The
detailed description is as follows:

1. In the proposed model, the sensor fusion layer is incorporated into the actor network, extracting
features from various sensors to enable UAVs to efficiently utilize diverse sensor data. Meanwhile, the
dissimilarity layer is employed in the critic network, leveraging cosine similarity to provide the target
UAV with highly dissimilar data from other UAVs. Training in the UAV-LDS simulation environment
demonstrates that IMAHAC outperforms traditional reinforcement learning models in terms of energy
efficiency and collaborative capability.

2. The TT-PER prioritized experience replay determines the priority of experiences based on the TD-
error and the time they are stored in the experience buffer. This approach helps to prevent outdated
experiences from adversely affecting UAV decision-making.

3. Under identical experimental conditions, IMAHAC transported more cargo compared to MAAC,
demonstrating superior collaboration capabilities and enhanced obstacle avoidance performance.
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