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ABSTRACT: The newly emerging neural radiance fields (NeRF) methods can implicitly fulfill three-dimensional (3D)
reconstruction via training a neural network to render novel-view images of a given scene with given posed images. The
Instant Neural Graphics Primitives (Instant-NGP) method further improves the position encoding of NeRF. It obtains
state-of-the-art efficiency. However, only a local pixel-wised loss is considered when training the Instant-NGP while
overlooking the nonlocal structural information between pixels. Despite a good quantitative result, it leads to a poor
visual effect, especially the completeness. Inspired by the stochastic structural similarity (S3IM) method that exploits
nonlocal structural information of groups of pixels, this paper proposes a new method to improve the completeness
of fast novel view synthesis. The proposed method first extends the thread-wised processing of the Instant-NGP to the
processing in a custom thread block (i.e., a group of threads). Then, the relative dimensionless global error in synthesis,
i.e., Erreur Relative Globale Adimensionnelle de Synthese (ERGAS), of a group of pixels corresponding to a group of
threads is computed and incorporated into the loss function. Extensive experiments validate the proposed method. It
can obtain better quantitative results than the original Instant-NGP with fewer iteration steps. PSNR is increased by
1%. Amazing qualitative results are obtained, especially for delicate structures and details such as lines and continuous
structures. With the dramatic improvements in the visual effects, our method can boost the practicability of implicit
3D reconstruction in applications such as self-driving and augmented reality.
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1 Introduction
Three-dimensional (3D) reconstruction of a scene from a group of images is a primary task in

computer vision [1–4]. It plays a vital role in many applications, such as self-driving, augmented reality, and
medical diagnosis. This task has advanced significantly due to recent developments in learning-based neural
rendering approaches. By training a fully connected neural network, i.e., a multilayer perceptron (MLP),
learning-based neural rendering approaches [1] can implicitly reconstruct a given 3D scene via photorealistic
novel view synthesis only with some posed images.

The first among these neural rendering approaches is the Neural Radiance Fields (NeRF) [1], which
achieves novel view synthesis of a given scene by implicitly encoding volumetric density and color through
an MLP. The success of NeRF has sparked a wave of using implicit expressions for 3D reconstruction and
significantly changed the field of computer vision and computer graphics. However, the rendering quality of

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.063693
https://www.techscience.com/doi/10.32604/cmc.2025.063693
mailto:wangliang@bjut.edu.cn


3732 Comput Mater Contin. 2025;84(2)

NeRF needs further improvements, and the NeRF training is still expensive, even on a graphic processing
unit (GPU). Then, various methods are proposed to improve NeRF further. Some of them focused on
improving the rendering quality. For example, Xie et al. [4] designed a nonlocal multiplex training paradigm
for NeRF by proposing the stochastic structural similarity (S3IM) loss term and incorporating it into the
loss function. Different from most of the existing works, the Instant Neural Graphics Primitives (Instant-
NGP) [5] method focuses on improving the efficiency of training and rendering of neural graphics primitives
while maintaining accuracy by exploiting the multi-resolution hash coding and linear interpolation. Similar
to NeRF, Instant-NGP also optimizes a point-wise loss and makes point-wise predictions. It obtained state-
of-the-art performance. Most importantly, it makes applying neural rendering to real applications possible.
However, the qualitative results of Instant-NGP, especially some fine details shown in the red bounding box
in Fig. 1, still need improvements. Such the fine details loss of the Instant-NGP is fatal to applications such as
augmented reality, self-driving, and medical diagnosis, which hinders its application in practice. Improving
the rendering quality of Instant-NGP further while remaining efficient is still a challenge.

Figure 1: Qualitative results on DL3DV dataset. The 1st and 4th rows show the ground truth, the 2nd and 5th rows
show the results of Instant-NGP, and the 3rd and 6th rows show the results of our NGP-ERGAS. Notice details marked
by red rectangles

To further enhance the rendering quality of delicate details while maintaining efficiency, an improved
Instant-NGP method with the relative dimensionless global error in synthesis (Erreur Relative Globale
Adimensionnelle de Synthese, ERGAS [6]), i.e., NGP-ERGAS, is proposed in this paper. Inspired by S3IM [4],
the collective supervision of a group of pixels with rich structural information instead of the point-wise
supervision of the original Instant-NGP is used. First, a thread-based strategy in which multiple threads
are set as a custom thread block to process image pixels collectively is proposed to extend the pixel-based
strategy of Instant-NGP [5]. It can overcome the deficiency that the strategy of S3IM [4] cannot be applied to
Instant-NGP due to the parallel programming’s independence and the tiles-based rendering’s inapplicability
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of Instant-NGP. Then, ERGAS is applied to efficiently collect the overall information of custom thread blocks
and incorporated into the loss function to supervise the neural network training. Extensive experiments
on open datasets validate the proposed NGP-ERGAS. It can dramatically improve the qualitative results
of Instant-NGP with fewer iteration steps. Amazing reconstruction effects can be obtained, especially for
delicate structures and details such as lines and continuous structures. The main contributions of this paper
can be summarized as follows:

(1) A new NeRF method, NGP-ERGAS, is proposed to collect the nonlocal structure information to
supervise the neural network training, which can dramatically improve the qualitative results of novel
view synthesis with fewer iteration steps.

(2) ERGAS is applied to a custom thread block to collect the nonlocal structural information of threads
instead of an image patch, which can overcome the deficiency of Instant-NGP that the independence
of parallel programming and the inapplicability of tiles-based rendering.

(3) Extensive experiments on open datasets are performed to validate the proposed NGP-ERGAS.

The rest of this paper is organized as follows: Section 2 presents the background and related
work. Section 3 elaborates on the proposed method. Section 4 reports experimental results. Finally, Section 5
concludes this paper.

2 Background and Related Work

2.1 Novel View Synthesis
Given images of a scene or object from certain views, novel view synthesis aims to generate images of

novel viewpoints different from those of any given image. According to the scene representation model, the
novel view synthesis methods can roughly be classified as mesh-based, volume-based, and neural rendering
fields-based.

The mesh-based methods exploit the mesh-based representations [7,8], which can generate new view
images using gradient-based mesh optimization based on image reprojection. However, the optimization is
generally challenging due to poor conditioning and local minima of the loss function. Moreover, this class
of methods needs a good initialized template mesh with fixed topology, which is generally unavailable for
real applications.

The volume-based methods use volumetric representation to realize novel view image synthesis. Early
work [9] directly rendered the voxel grid using the observed images. Recent methods [10,11] first utilized
deep learning techniques to predict 3D scenes in volumetric representations, then rendered the desired new
views. These volume-based methods have achieved impressive results in novel view synthesis. Especially, they
have fewer visual artifacts in comparison with mesh-based methods. However, the volume-based methods
are hard to scale to high-resolution and large-scale scenes due to their explicit representation’s poor time and
space complexity.

Unlike existing methods, the newly emerging neural radiance fields-based methods [1,2,4,5] use the
implicit expression to fulfill novel view synthesis. The neural radiance fields-based novel view synthesis
methods implicitly encode a volume of the scene within the parameters of a fully connected neural network,
i.e., an MLP. These methods can dramatically reduce the storage cost and boost the quality of novel view
synthesis, which opens a new era of novel view synthesis. However, although some neural radiance fields-
based methods, such as Instant-NGP [5] and so on, have significantly boosted the quantitative results and
speed, the qualitative results (i.e., the visual effects), especially some fine details, still need improvements.
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2.2 Neural Radiance Fields
NeRF [1] maps a scene represented by a 5D function (x , y, z, θ , ϕ) to the view-dependent RGB

color c = (r, g , b) and corresponding volume density σ with an MLP network: fΘ ∶ (x, d) → (c, σ), where
x = (x , y, z) is a 3D location, (θ , ϕ) is a 2D viewing direction whose 3D Cartesian unit vector is d, and Θ is
the MLP’s weights [1]. NeRF estimates Θ via minimizing the mean square error (MSE) between the rendered
image pixel color value Ĉ (r) for camera ray r and the ground truth pixel color value C (r) for all camera
rays {r}, i.e., the loss function,

L (Θ) = 1
∣ ∣ Σ

r∈
∥Ĉ (r) − C (r)∥2 (1)

where r (t) = o + td represents the ray/pixel of a target view with pose which is with origin o, ray unit
direction d and transmittance distance along the ray t, = {r}, and ∣ ∣ is the cardinality of the set , and
the rendered pixel color value Ĉ (r) of camera ray r (t) with near and far bounds tn and t f [12] is

Ĉ (r) = ∫
t f

tn
T(t)σ(t)c(t)dt (2)

where T(t) = ex p(−∫
t

tn
σ(s)ds) denotes the accumulated transmittance along the ray from tn to t. NeRF

significantly advances the novel view synthesis.
Then, various variants and improvements [13–15] have been developed for different application scenar-

ios. One class of them focuses on improving the rendering quality. For example, Mip-NeRF [13] improved
the ability to render details using tapered rays. Xie et al. [4] found that NeRF only considers the differences
between single pixels and cannot reflect the rich structural information in the image; then, they proposed a
nonlocal multiplex training paradigm, S3IM, to improve the rendering quality. D-NeRF [14] extends NeRF
to the dynamic domain.

The others aim to improve training and rendering efficiency, such as Instant-NGP [5], Plenoxels [16],
DVGO [17], and TensoRF [18]. The Plenoxels [16] method completely eliminates the dependence on MLPS
and directly uses sparse voxel grids to represent scenes, thus achieving efficient reconstruction. DVGO [17]
follows a similar route and accelerates the scene reconstruction process by introducing a sparse voxel grid and
combining a shallow MLP to further extract features. These two methods make full use of the high efficiency
of voxel structure in representing the geometric information of the scene. However, both face the dilemma
of high accuracy and computational complexity caused by fine voxel partitioning. Then, TensoRF [18] adopts
tensor decomposition technology to decompose the high-dimensional voxel grid into low-rank factors,
which realizes the dimensionality reduction and compression of high-dimensional data and significantly
reduces space occupation. TensoRF dramatically reduces the memory consumption caused by additional
voxel modeling. However, it is only suited to limited scenes and cannot handle unbounded scenes with
both foreground and background content. Unlike previous methods that directly store high-dimensional
voxel data, Instant-NGP [5] uses multi-resolution hash coding combined with shallow neural networks to
significantly accelerate the training and rendering of NeRF. It achieves fast training and real-time rendering
while maintaining high-quality image rendering. It is the state-of-art and the most popular NeRF.

Due to its state-of-the-art performance, Instant-NGP [5] has been taken as the basis of many works on
the editability of NeRF. For example, LAENeRF [19] learned a mapping from the desired light termination
to the final output color, enabling style modification. Shum et al. [20] realized the addition or removal of
objects in 3D models. Most of the latest published work takes Instant-NGP as the 3D model generation tool.
However, the visual effect of Instant-NGP still needs further improvements. The proposed NGP-ERGAS
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improves the visual effect of Instant-NGP, which can achieve high performance even with low iteration steps
of network training.

2.3 Instant-NGP
NeRF [1] takes the frequency encoding [21] for each element of position x = (x , y, z), which encodes a

scalar position p ∈ R as a multi-resolution (L ∈ N) sequence of sine and cosine functions as follows:

Enc (p) = (sin (20πp) , sin (21πp) , ⋅ ⋅ ⋅ , sin (2L−1πp) , cos (20πp) , cos (21πp) , ⋅ ⋅ ⋅ , cos (2L−1πp)) (3)

Frequency encoding in NeRF must traverse every point on a ray, resulting in high computational cost.
Instant-NGP [5] achieves fast training speed by introducing multi-resolution hash coding and linear

interpolation. It divides the space into voxels of different resolutions and determines the voxel position based
on the points on the ray. The values of points are calculated by voxel vertex interpolation, and the position
in each resolution is concatenated to generate feature vectors, which are input into the MLP for training. It
significantly improves rendering speed with a smaller MLP network. However, its visual effects, especially
some fine details shown in Fig. 1, still need improvements.

Some latest works [19,20] take the Instant-NGP as the basis to extend the editability of NeRF. The others
further improve the Instant-NGP. NGP-RT [22] deals with the hash conflicts by sorting color and density as
hash features and using the attention mechanism. It also applies the precomputed occupancy distance grid to
reduce computation cost. Korhonen et al. [23] proposed an efficient NeRF with an online hard sample mining
strategy. It significantly improves the efficiency of Instant-NGP. Different from these works, the proposed
NGP-ERGAS improves the visual effect by incorporating the nonlocal structure information of pixels into
the trained network.

2.4 S3IM
Considering that NeRF [1] only considered the differences between single pixels when computing

the loss function, which omitted the rich structural information in the image, Xie et al. [4] proposed the
stochastic structural similarity (S3IM) to improve the rendering quality of novel views.

S3IM [4] introduces the Structural Similarity (SSIM) [24], which is a commonly used quality metric
for image quality assessment, into the loss function of NeRF. Since directly adding the SSIM of multiple
pixels within an area centered at the rendering pixel could not improve the rendering quality, S3IM takes
a stochastic strategy to form a rendered patch via randomly sampling pixels to compute its SSIM. Then,
repeat the random patch forming and SSIM computing M times. Finally, take the average of the M computed
SSIM as the S3IM to supervise the learning of neural fields. Due to the collective and nonlocal structural
information contained in a group of data points being considered, the S3IM significantly improves the
rendering quality of novel views.

However, for each rendering pixel, performing S3IM involves M times random patch forming and SSIM
computing. That is, its computational cost is heavy. So, the S3IM could not be applied to the instant NeRF
methods, such as Instant-NGP, due to their independence of parallel programming and inapplicability of
tiles-based rendering. Different from S3IM, the proposed NGP-ERGAS takes a thread-based strategy and
the ERGAS-based loss function to incorporate the nonlocal structural information. It significantly improves
the visual effect of Instant-NGP with fewer iterations.
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2.5 ERGAS
ERGAS (Erreur Relative Globale Adimensionnelle de Synthese) [6] is a metric first proposed to assess

the quality of remote sensing images. It is commonly used to evaluate the performance of image processing
or compression algorithms.

In image fusion, the ERGAS metric is applied to two images with different spatial resolutions: the
reference image (ground truth) and the fused new image [25]. The formula for ERGAS is as follows:

ERGAS = 100 h
l

�
� 1

N
K
Σ

k=1
(RMSE (Bk)

μ (k) )
2

(4)

where h and l are the spatial resolutions of the fused and reference images, K is the number of
spectral bands, k is the index of each band, RMSE (Bk) is the root mean square error of the
fused and reference image k-bands, and μ (k) is the mean value of the reference image k-bands. The ERGAS
formula is convenient and concise, which can reduce the requirements for hardware computing capability.

3 Method
Similar to Instant-NGP shown in Fig. 2, the proposed NGP-ERGAS also serves to train the NeRF’s

neural network. NeRF takes a group of images with known positions and orientations as input and outputs
the rendered novel view’s image. In fact, NeRF fulfills this task in the pixel-wise way that each independent
thread realizes efficient spatial sampling through a parallel ray casting mechanism [26]. Similarly, NGP-
ERGAS also trains NeRF in a pixel-wise way.

Figure 2: Flow scheme of Instant-NGP. Instant-NGP calculates the difference between the rendered pixel and the
ground truth, and directly takes it as the loss value for network training, where one pixel difference is calculated by one
thread. The core of Instant-NGP is marked by red bounding box

During the training stage of NeRF, NGP-ERGAS takes the output rendered novel view image and the
corresponding ground truth image as the input and outputs the optimized network parameters of NeRF.
Firstly, the NeRF network with initial parameters predicts the pixel-wise RGB color of the rendered novel
view image. Next, NGP-ERGAS takes the predicted pixels and the corresponding ground truth as the input
to construct the custom thread block to collect nonlocal structure information. Then, the ERGAS value and
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SSIM value of the thread block are calculated and added to the loss function to supervise the training of
the NeRF network. After that, the NeRF network outputs the newly rendered output image with supervised
learned network parameters, which are input into NGP-ERGAS. Iterate this process until the loss function
converges or meets the stop criterion. Finally, the optimized NeRF network parameters are obtained.

In this section, we apply the strategy of efficiently collecting the overall information of custom
thread blocks via the ERGAS loss and incorporating it into the Instant-NGP to improve the novel view
synthesis performance.

3.1 Custom Thread Block
As shown in Fig. 2, when Instant-NGP computes the loss function, calculating the difference between

each pixel pair is assigned to a graphic processing unit (GPU) thread, one thread for each pixel pair. Therefore,
threads in the original Instant-NGP can be regarded as independent pixels, and the idea of randomly
generating image blocks from pixels in S3IM can be introduced into Instant-NGP by setting custom thread
blocks instead of image blocks.

Since each GPU thread determines its specific task with its one-dimensional thread index in the original
Instant-NGP, we can set the thread block according to the index. Set the adjustable custom thread block
containing M1 threads and the thread with index m̂ as its dominant thread. The index range of the custom
thread block is defined as [mmin , mmax], where mmin = ⌈m̂ − M1

2 ⌉, mmax = ⌊m̂ + M1
2 ⌋.

Except for the dominant thread, the remaining threads in the custom thread block are auxiliary threads.
Moreover, each thread has a chance to act as the dominant thread. If the index of an auxiliary thread is 0 or
out of range, this thread will be skipped.

Before calculating the loss function, we must save the pixel information according to the custom thread
block we set. With the help of the thread index, the pixel information of each thread in the custom thread
block is collected. The set of truth colors corresponding to all threads in a thread block is denoted as follows:

(m) = {C (m) ∣m̂ − M1

2
≤ m ≤ m̂ + M1

2
, m ∈ N} (5)

The set of rendered colors contained in all threads in a thread block is denoted as

ˆ(m) = {Ĉ (m) ∣m̂ − M1

2
≤ m ≤ m̂ + M1

2
, m ∈ N} (6)

3.2 ERGAS for Custom Thread Blocks
In S3IM [4], stochastically selected image pixels are considered as a virtual patch and treated as a whole

when training the neural network. However, for each rendering pixel, S3IM involves M times random patch
forming and SSIM computing, which has a computational cost that the Instant-NGP could not afford. In
addition, the strategy of S3IM could not directly apply to Instant-NGP due to the parallel programming
technique adopted in Instant-NGP, where each thread is responsible for the computation task of one pixel.
So, the proposed method transforms the pixel-based strategy into a thread-based strategy, and multiple
threads are set as a custom thread block to process image pixels collectively. To reduce the computational
cost, ERGAS, instead of SSIM, is applied.

The scheme chart of the proposed method is illustrated in Fig. 3. We introduce the adjustable custom
thread block to compute pixel differences in the GPU thread. To improve the computation of pixel differences,
a thread centered on the custom thread block is considered the dominant thread.
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Figure 3: Pipeline of the proposed NGP-ERGAS’s core algorithm. It substitutes for the part marked by the red bounding
box in Fig. 2. NGP-ERGAS introduces the nonlocal consideration of S3IM into Instant-NGP, which considers threads
nonlocally. ERGAS values of custom thread blocks are calculated and incorporated into the loss function

For RGB images, there are only three bands (i.e., color channels), so K in ERGAS is set to 3, M1 is the
number of threads in a thread block, Cm

k represents the ground truth color value of the kth band of the pixel
corresponding to the mth thread in the thread block, Ĉm

k represents the rendered color value of the kth band
of the pixel corresponding to the mth thread. In the same thread block, the numbers of threads are the same,
so the coefficient h/l equals 1. Ultimately, we have the following ERGAS:

ERGAS = 100

�
�

1
3

3
Σ

k=1

⎛
⎜⎜⎜⎜⎜
⎝

√
1

M1

M1
Σ

m=1
(Cm

k − Ĉm
k )2

1
M1

M1
Σ

m=1
Cm

k

⎞
⎟⎟⎟⎟⎟
⎠

2

(7)

The error of these pixels is globally considered when calculating the ERGAS in a custom thread block,
and the E (m̂) term of the dominant thread is obtained.

E (m̂, M1) = 1
M1

M1
Σ̂

m=1
ERGAS(Ĉ (m̂) − C (m̂)) (8)

where M1 is the number of threads in the thread block, Ĉ (m̂) and C (m̂) denote the set of rendered colors
and the set of truth colors corresponding to the thread in the thread block, respectively.

Since ERGAS itself cannot directly calculate the gradient, we average it and merge it with the original
color loss of the dominant thread, i.e., Eq. (1), to complete the transformation of the loss function of the
dominant thread. The new loss function is

LERG AS(Θ) = 1
∣ ∣ Σ

m̂∈
∥C (m̂) − Ĉ (m̂) + λ1E(m̂, M1)∥2 (9)

where λ1 is the weight parameter of E(m̂, M1), and and ∣ ∣ are same with those shown in Eq. (1).
To further enforce the constraint of local structural information, the SSIM loss term

LSSIM = 1 − SSIM (10)
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is also added to the loss function, whose computation formula can be found in [4]. Then, the final loss
function has the form:

Lal l = LERG AS + λ2LSSIM (11)

where λ2 is the weight coefficient of the SSIM loss term.
Regarding the selection of hyperparameters, we first perform multiple experiments by adding a single

LERG AS loss term to obtain the best value of λ1. Fixing λ1, and then performing experiments after adding the
LSSIM loss term, the best value was determined to be λ2.

The proposed method can be summarized as Algorithm 1. Since more pixels/threads are considered
in the loss function to train the network, the loss function is enriched. So, more pixel information and the
thread block’s global information are considered when training the network, and the proposed NGP-ERGAS
can quickly reconstruct and render the structural integrity of the scene with significant quality improvement
and low iteration steps. At the same time, because of the addition of the idea of centralized consideration of
the custom thread block, the mutual influence between the pixels in the thread block is introduced, which
leads to the rendering and reconstruction efficiency being slightly lower than the original Instant-NGP.

Algorithm 1: Multiple threads training via NGP-ERGAS
1: Let be an SGD-like training algorithm;
2: While no stopping criterion has been met do
3: Set the current pixel as the dominant thread, randomly select M1 − 1 pixels to form a data minibatch

of rays . The threads corresponding to these M1 pixels form a custom thread block. Denote the
index of the thread corresponding to the current pixel as m;

4: Get the ground truth color of the current thread,C (m);
5: Compute the rendered color of the thread block, Ĉ (m) with Eq. (2);
6: Calculate the ERGAS of the thread block generated by the current thread with Eq. (7) and their

average E (m̂, M1) according to Eq. (8);
7: The value of E (m̂, M1) is then added to the original loss function to obtain the new one with Eq. (9);
8: The SSIM loss LSSIM is obtained with Eq. (10);
9: Obtain the final loss function Lal l with Eq. (11);
10: Compute the gradient ∇Lal l (Θ);
11: Update the network parameters Θ by ;
12: end while
13: return the updated network parameters Θ

4 Experiments

4.1 Performance Evaluation
Firstly, the public datasets NeRF_synthetic provided by NeRF [1] are used to validate the proposed NGP-

ERGAS. NeRF_synthetic is a synthetic dataset consisting of the training set with 100 images and the test
set with 200 images. To ensure a fair comparison with the standard Instant-NGP [5] (Standard), all MLP
networks are trained on the same RTX4060 with the same setting. Networks are trained in 4000 steps in
each scenario.

Quantitative results are shown in Table 1. It can be seen that the performance of our NGP-ERGAS is
improved in terms of the four indicators of Peak Signal-to-Noise Ratio (PSNR) [27], Structural SImilarity
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Metric (SSIM) [24], Learned Perceptual Image Patch Similarity (LPIPS) [28] and Universal Quality Index
(UQI) [29], while the running times are slightly inferior to the original algorithm. Qualitative results are
shown in Fig. 4. It can be seen that the visual effect of rendered images obtains significant improvements.
In Fig. 4, for the reflective area of the smooth surface on the top of the Drums image, i.e., the area marked
by the pink rectangle in the first row, our NGP-ERGAS renders the spot successfully, while the standard
Instant-NGP fails. As shown in the second row, for the area marked by the green square in the Drums image,
the reflective area rendered by our NGP-ERGAS matches the size of the true image well, while the standard
Instant-NGP fails. In the last row, our NGP-ERGAS successfully renders the lights in the Ship image marked
by the yellow rectangle, while the standard Instant-NGP fails. Therefore, our method exhibits higher quality
in reconstructing fine details, such as metallic luster and lighting.

Table 1: Quantitative results on NeRF_synthetic

Scene Training PSNR (↑) SSIM (↑) LPIPS (↓) UQI (↑) Time/s

Lego Standard 34.203 0.99907 0.15219 0.99907 51
Ours 34.093 0.99910 0.13719 0.99910 51

Drums Standard 25.507 0.99211 0.24597 0.99211 49
Ours 25.515 0.99240 0.29862 0.99240 51

Chair Standard 33.024 0.99865 0.23314 0.99865 59
Ours 33.254 0.99869 0.19103 0.99870 59

Hotdog Standard 35.755 0.99940 0.16517 0.99865 59
Ours 35.791 0.99940 0.26959 0.99940 59

Ficus Standard 31.595 0.99925 0.23336 0.99925 42
Ours 31.518 0.99925 0.21847 0.99925 45

Mic Standard 34.940 0.99956 0.25368 0.99956 56
Ours 34.977 0.99957 0.27383 0.99957 57

Materials Standard 28.530 0.99644 0.15248 0.99645 46
Ours 28.559 0.99657 0.04293 0.99657 47

Ship Standard 28.901 0.99843 0.34923 0.99843 48
Ours 29.175 0.99854 0.16837 0.99854 50

Then, the Tanks & Temple Dataset [30] is used to perform further evaluation. To make a comparison,
the results of the DVGO-S3IM [17] and Instant-NGP are also reported. The number of iteration steps is
4000. The experiment uses two sub-datasets. One consists of the first three scenes shown in Table 2, which
is used in DVGO-S3IM, and the other consists of scenes from the Tanks & Template dataset. The former’s
training and test sets are the same as those in DVGO-S3IM. For the latter, the test set consists of images with
numbers divisible by 10, and the remaining images form the training set. Due to UQI being unavailable for
DVGO-S3IM, only PSNR, SSIM, and LPIPS are reported.
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Figure 4: Qualitative results on NeRF_synthetic dataset. The 1st column shows ground truth images of Drums and
Ship. The 2nd to 4th column shows enlarged details of the ground truth, result of Instant-NGP (Standard) and result of
NGP-ERGAS (Ours), respectively

Table 2: Quantitative results on Tanks & Temple dataset

Scene Training PSNR (↑) SSIM (↑) LPIPS (↓) Time/s

Family
DVGO-S3IM 8.977 0.74026 0.47459 52
Instant-NGP 26.902 0.91068 0.02459 76

Ours 29.639 0.91487 0.01925 62

Barn
DVGO-S3IM 13.064 0.69835 0.60252 80
Instant-NGP 25.286 0.99012 0.02752 66

Ours 25.511 0.99034 0.03115 81

Caterpillar
DVGO-S3IM 9.727 0.70597 0.52874 79
Instant-NGP 24.213 0.98511 0.03314 72

Ours 24.324 0.98771 0.03854 81

Auditorium
DVGO-S3IM 14.854 0.65028 0.80585 100
Instant-NGP 20.304 0.98626 0.05223 62

Ours 20.451 0.98741 0.04938 82

Museum
DVGO-S3IM 11.237 0.40987 0.93330 94
Instant-NGP 15.160 0.92696 0.11665 65

Ours 15.292 0.92797 0.11701 93

Train
DVGO-S3IM 10.551 0.41681 0.87146 90
Instant-NGP 17.919 0.94813 0.07845 60

Ours 18.089 0.95282 0.07837 75

Temple
DVGO-S3IM 10.735 0.53459 0.84877 86
Instant-NGP 16.915 0.93105 0.11927 56

Ours 17.086 0.93141 0.12931 62
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Quantitative results are shown in Table 2. It can be seen that our NGP-ERGAS has a significant
improvement in PSNR and SSIM, and the values of LPIPS are comparable to those of Instant-NGP. The
qualitative results are shown in Fig. 5, where our method shows significant advantages in visual effects. In
the first row, our model renders a much sharper face compared to Instant-NGP. The bulbs and triangles
in the second and third rows have sharper contours compared to Instant-NGP. For the railing part of the
fourth and fifth rows, our method is able to effectively retain the railing details, while there is an omission
in Instant-NGP. Overall, NGP-ERGAS achieves significant improvements in visual quality. The rendering
results are amazing, especially for details such as line contours. The improved algorithm can better restore
the line contour in the true image in fewer iteration steps. In addition, the number of network parameters
is also reported in Fig. 5. The network parameter numbers of the proposed NGP-ERGAS and the standard
Instant-NPG are about 10K, while those of DVGO-S3IM are about 22K.

Figure 5: Qualitative results on the Tanks & Template dataset. From left to right, each column corresponds to
the ground truth, DVGO-S3IM results, Instant-NGP results, and our NGP-ERGAS results, respectively. Network
parameters of three methods are 22K, 10K and 10K in turn. Notice details bounded by red rectangles

It should be pointed out that DVGO-S3IM has a costly GPU consumption, which is trained and tested
on an L40 GPU with 48 GB memory. In contrast, NGP-ERGAS and Instant-NGP do not require such high
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GPU costs, which are only trained and tested on an RTX4060 GPU. So, the Time shown in Table 2 is only
a reference.

We conducted experiments with Gaussian noise added to the ship scene in the NeRF_synthetic dataset
to test the robustness of our work. As shown in Table 3, our work still performs well with Gaussian noise as
without noise. Moreover, it surpasses the Instant-NGP more on the evaluation index.

Table 3: Qualitative analysis of the ship scene after adding noise

Scene Training PSNR (↑) SSIM (↑) LPIPS (↓) UQI (↑) Time/s

Ship-noise Standard 19.384 0.98899 0.11159 0.98917 40
Ours 19.545 0.98992 0.10234 0.98996 44

In Table 4, we compare the PSNR metrics of NGP-ERGAS with DVGO-S3IM [17] and TensoRF-
S3IM [18] on the NeRF_synthetic dataset. We can see that only Instant-NGP and our work based on NGP
have high quality reconstruction at low iteration steps.

Table 4: Quantitative results of the PSNR metric on NeRF_synthetic

Scene DVGO-S3IM TensoRF-S3IM Instant-NGP Ours
Chair 11.698 14.036 33.024 33.254
Lego 8.904 9.476 34.203 34.093

Drums 9.694 10.948 25.507 25.515
Hotdog 9.595 10.394 35.755 35.791

Ficus 11.821 14.226 31.595 31.518
Ship 6.258 5.884 28.901 29.175

Materials 8.170 8.736 28.530 28.559
Mic 11.207 13.038 34.940 34.977

4.2 Ablation Study
An ablation study on the scene Drums of the NeRF_synthetic dataset [1] is conducted to validate the

proposed NGP-ERGAS. Firstly, the ERGAS loss shown in Eq. (8) is first added to the original MSE loss
function shown in Eq. (1). After that, the SSIM loss shown in Eq. (10) is added to the original MSE loss
function. Finally, the loss function contains both the ERGAS loss term and SSIM loss term, in addition to
the original MSE loss term, as shown in Eq. (11). Experimental results are shown in Table 5.

Table 5: Ablation study of loss function terms on the scene of ship

Drums PSNR (↑) SSIM (↑) LPIPS (↓) UQI (↑)
Instant-NGP 25.507 0.99211 0.24597 0.99211

Instant-NGP + ERGAS 25.495 0.99243 0.32550 0.99243
Instant-NGP + SSIM 25.479 0.99240 0.32256 0.99240

Instant-NGP + ERGAS + SSIM 25.515 0.99240 0.29862 0.99240
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It can be seen that the loss function with ERGAS term has the better SSIM metric, and the loss function
with ERGAS plus SSIM terms is better in terms of PSNR metrics. Among them, there is little difference
between SSIM index and UQI index. Experiments on other scenes also show a similar performance. It is the
reason why the loss function of the proposed NGP-ERGAS shown in Eq. (11) consists of the MSE, ERGAS,
and SSIM loss terms.

4.3 Generalization Ability
Experiments are performed on the DL3DV [31] dataset to evaluate the generalization ability. The

DL3DV [31] is a large-scale dataset published in CVPR 2024, which consists of posed images and can be
used to evaluate NeRF algorithms in various aspects. The experiment configuration is the same as that of the
second sub-dataset of the Tanks & Template dataset reported in Section 4.1.

Quantitative results are shown in Table 6. It can be seen that the proposed NGP-ERGAS (Ours) performs
better than Instant-NGP in terms of PSNR, SSIM, and UQI, and has similar LPIPS. That is, the proposed
method has comparable or even better performance in comparison with the original Instant-NGP methods
on quantitative results. In addition, there is only a slight delay in the training time for NGP-ERGAS compared
to Instant-NGP.

Table 6: Quantitative results on DL3DV dataset

Scene Training PSNR (↑) SSIM (↑) LPIPS (↓) UQI (↑) Time/s

1 Standard 25.204 0.99279 0.02112 0.99284 65
Ours 25.269 0.99307 0.02153 0.99301 79

2 Standard 21.781 0.98389 0.02768 0.98359 54
Ours 22.197 0.98483 0.02675 0.98507 60

3 Standard 23.965 0.99090 0.02938 0.99023 53
Ours 24.169 0.99058 0.02931 0.99070 58

4 Standard 21.732 0.98227 0.03204 0.98253 63
Ours 21.795 0.98272 0.03477 0.98286 64

5 Standard 26.648 0.99442 0.00922 0.99453 57
Ours 26.765 0.99470 0.00930 0.99468 58

6 Standard 24.469 0.98985 0.02436 0.98993 65
Ours 24.552 0.98976 0.02404 0.98996 66

7 Standard 24.277 0.98733 0.01936 0.98812 64
Ours 24.611 0.98881 0.01887 0.98901 68

8 Standard 24.968 0.99138 0.01652 0.99178 64
Ours 24.972 0.99220 0.01638 0.99202 65

9 Standard 22.493 0.98410 0.02675 0.98432 61
Ours 22.509 0.98438 0.02811 0.98451 65

10 Standard 21.211 0.97498 0.03857 0.97442 60
Ours 21.428 0.97493 0.03766 0.97583 65
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Qualitative results are shown in Fig. 1. It can be seen that the proposed NGP-ERGAS dramatically
improves the visual effects. NGP-ERGAS significantly outperforms Instant-NGP for detail rendering,
especially for continuous structures such as railings. The Instant-NGP generally ignores distant objects,
while NGP-ERGAS can better render these objects and provide higher structure integrity. NGP-ERGAS
also performs better in rendering details such as contours and lines. It is because, under the same training
conditions, NGP-ERGAS considers more threads/pixels simultaneously, significantly improving rendering
quality while the training time only increases slightly.

The enhanced structural completeness achieved by NGP-ERGAS shows particular promise for real
applications demanding rigorous environmental reconstruction accuracy. Our method’s improved railing
reconstruction (as shown in Fig. 1) could help prevent critical obstacle omission errors for a self-driving
car requiring precise collision prediction. Similarly, for virtual reality applications and immersive gaming
environments, the ability to guarantee high integrity of architectural structures during rapid scene generation
addresses the fundamental requirements of spatial presence and interactive authenticity. While these initial
results demonstrate the framework’s potential for time-sensitive 3D reconstruction tasks, further engineering
optimizations remain necessary for industrial-scale implementation.

5 Conclusion
This paper presents a novel NeRF method, NGP-ERGAS, to improve the performance of novel view

synthesis. To overcome the deficiency that S3IM cannot be applied to Instant-NGP due to the independence
of parallel programming and not rendering tiles of Instant-NGP, the proposed method transforms the pixel-
based strategy to a thread-based strategy and sets multiple threads as a custom thread block to process
image pixels collectively. Then, ERGAS is applied to collect the nonlocal information of custom thread
blocks efficiently and incorporates it into the loss function to supervise the neural network training. Finally,
extensive experiments on open datasets are performed to validate the proposed NGP-ERGAS. Experimental
results show that the proposed NGP-ERGAS can dramatically improve the quality of novel view synthesis
with fewer iteration steps, especially visual effects for fine structures and details.

Limitations and future work: While NGP-ERGAS demonstrates significant performance improve-
ments, our current implementation introduces moderate computational overhead due to the parallel
processing architecture’s increased per-thread workload. Future research will prioritize optimizing thread-
task distribution through load-balancing strategies and dynamic task allocation mechanisms to accelerate
training convergence. From an application perspective, we recognize the critical need for both model
efficiency and inference speed in practical deployment scenarios. Subsequent investigations will explore
neural network quantization techniques and parameter pruning approaches to achieve more compact model
representations without compromising reconstruction quality.
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