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ABSTRACT: The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by
enabling real-time monitoring and diagnosis of patients. Recognizing Medical-Related Human Activities (MRHA) is
pivotal for healthcare systems, particularly for identifying actions critical to patient well-being. However, challenges
such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition
(HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has
focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method
tailored for MRHA detection, leveraging multi-stage deep learning techniques integrated with IoT. The approach
employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted
Bottleneck Convolutions (MBConv) blocks, followed by Convolutional Long Short Term Memory (ConvLSTM) to
capture spatio-temporal patterns. A classification module with global average pooling, a fully connected layer, and a
dropout layer generates the final predictions. The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,
focusing on MRHA such as sneezing, falling, walking, sitting, etc. It achieves 94.85% accuracy for cross-subject
evaluations and 96.45% for cross-view evaluations on NTU RGB+D 120, along with 89.22% accuracy on HMDB51.
Additionally, the system integrates IoT capabilities using a Raspberry Pi and GSM module, delivering real-time alerts
via Twilios SMS service to caregivers and patients. This scalable and efficient solution bridges the gap between HMR
and IoT, advancing patient monitoring, improving healthcare outcomes, and reducing costs.

KEYWORDS: Real-time human motion recognition (HMR); ENConvLSTM; EfficientNet; ConvLSTM; skeleton data;
NTU RGB+D 120 dataset; MRHA

1 Introduction
Human Motion Recognition (HMR) systems aim to automatically identify and monitor individual

or group activities, playing a crucial role in healthcare by tracking physical and medical-related activities.
Among these, medical-related human activities (MRHA), such as sneezing, coughing, falling, and staggering,
are vital for ensuring patient safety and well-being. However, accurate detection of MRHA remains a
significant challenge. With the global elderly population expected to reach 2.1 billion by 2050, according
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to the World Health Organization (WHO) and the United Nations, the demand for effective healthcare
solutions is becoming increasingly critical. Many elderly individuals live alone or in care facilities where
healthcare professionals are often outnumbered, leading to insufficient monitoring and increased risks.
Detecting MRHA, such as falls or signs of distress, is essential to enable real-time interventions and
prevent critical incidents. Falls are a particularly significant concern, causing over 646,000 deaths and 37
million severe injuries annually, as reported by the WHO. As the elderly population grows, accounting for
approximately 16% of the global population by 2050, the need for automated MRHA detection systems
becomes increasingly urgent. These systems enhance patient safety, provide continuous monitoring, and
reduce the strain on healthcare professionals [1–4]. Medical-Related Human Activity (MRHA) recognition
systems are vital for ensuring safety and providing continuous monitoring of in-home care and assisted
medical facilities. These systems enable timely interventions in cases of medical emergencies, such as falls,
significantly reducing mortality risk by 80% and minimizing extended hospital stays by 26% [5]. Current
approaches for MRHA detection primarily use wearable sensors and vision-based methods [3], with sensors
capturing acceleration changes associated with falls [6] and vision-based systems analyzing video data [7].
However, developing robust automated MRHA recognition systems is crucial to deliver timely interventions
and prevent severe injuries and fatalities. In this study, we selected the NTU RGB+D 120 and HMDB51
datasets due to their diverse range of human activities, including several medically relevant motions such as
falling, walking, sitting, drinking, and eating, which are crucial for healthcare applications. NTU RGB+D
120, in particular, is one of the largest and most widely used action recognition datasets.

1.1 Current Fall Detection Systems and Their Challenges
Despite advancements, existing MRHA recognition technologies face significant limitations. Wearable

sensor-based systems, though effective in detecting acceleration changes, often struggle with user comfort,
false positives during non-critical activities, and low compliance among elderly individuals with cognitive
impairments [8]. Vision-based systems provide a non-invasive alternative but raise privacy concerns, as
video feeds can compromise individual anonymity and legal safeguards, even when encoding techniques
are employed to obscure clarity. Skeleton-based data, derived from pose estimation algorithms [9] or Kinect
systems [10], offers a promising solution. Kinect systems are used in human activity recognition (HAR) by
capturing 3D skeletal data through depth sensors and tracking key joints to build a model of human posture
and movement. This approach preserves privacy by omitting identifiable information while maintaining
robustness against challenges such as background noise and lighting variations. Skeleton-based data also
have lower dimensionality, ensuring efficient motion representation with reduced computational costs.
Recent studies have highlighted the efficacy of skeleton-based MRHA recognition. For instance, Zahan
et al. [11] achieved over 94% accuracy on URFD and UPFD datasets using Graph Convolutional Networks
(GCNs) combined with Convolutional Neural Networks (CNNs). Similarly, Egawa et al. [2] applied a
modified GCN model to the ImVia RU-Fall dataset, reporting a 99.00% accuracy.

1.2 Emerging Datasets and Research Gaps
Two important datasets, NTU RGB+D 120 and HMDB51, include videos of medical-related activities

like sneezing, coughing, sitting, and walking, which are useful for healthcare. However, only a few researchers
have used these datasets for MRHA recognition, and the reported accuracy is still low. Improving MRHA
recognition using these datasets can lead to systems that are more accurate, private, and flexible. Future work
should focus on creating better models that work well for different populations and activity types.
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1.3 Research Motivation
The growing elderly population and increasing fall rates highlight the need for accurate, efficient,

and privacy-preserving medical-related human activity (MRHA) recognition systems. Falls are a major
cause of injury and mortality in older adults, driving up healthcare costs and affecting quality of life.
Traditional solutions like wearable sensors and vision-based systems face issues such as low accuracy,
portability challenges, and privacy concerns. This study proposes a robust solution leveraging IoT and
mobile technology for real-time patient monitoring. By using skeleton data to capture joint movements while
ensuring privacy, the research aims to develop an advanced human motion recognition (HMR) framework
for healthcare. This approach enhances safety, improves outcomes, and reduces costs, advancing modern
healthcare systems.

1.4 The Goal and Scope of the Study
This study develops a real-time Medical-Related Human Activity (MRHA) recognition system using a

multi-stage deep learning model and IoT integration. It features direct mobile notifications without third-
party apps for fast, secure health alerts. The system is rigorously validated for accuracy, offering timely,
data-driven support for improved patient care. Key contributions includes:

• Novel Hybrid Deep Learning Model for MRHA Recognition: We propose ENConvLSTM, a
multi-stage deep learning model combining EfficientNet for spatial features and ConvLSTM for spatio-
temporal integration. It addresses key HMR challenges like high computational cost, low accuracy, and
poor adaptability. Using seven MBConv blocks, it enhances spatial representation and motion analysis.

• Exceptional Performance on Benchmark Datasets: The model is evaluated on the NTU RGB+D
120 that is presented in Fig. 1 and HMDB51 datasets, focusing on MRHA such as sneezing, falling,
walking, and sitting. It achieves 94.85% accuracy for cross-subject evaluations and 96.45% for cross-view
evaluations on NTU RGB+D 120, along with 89.22% accuracy on HMDB51. These results demonstrate
the model’s capability to handle both spatial and temporal data aspects effectively.

• Real-Time IoT-Integrated MRHA Recognition System: A real-time IoT system using Raspberry Pi and
a GSM module with Twilio API delivers instant SMS alerts, eliminating the need for third-party apps.
It recognizes 12 MRHAs (e.g., sneezing, falling, walking), enabling early diagnosis, timely intervention,
and improved healthcare outcomes.

Figure 1: Sample example of “NTU RGB+D 120” dataset

The paper is organized as follows: Section 2 presents the literature review and major contribu-
tions. Section 3 describes the dataset, selection criteria, and preprocessing. The proposed methodology is
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discussed in Section 4, followed by experimental results and performance evaluation in Section 5. Real-
time implementation and analysis are presented in Section 6. Section 7 concludes the paper and suggests
future directions.

2 Related Works
The convergence of IoT and mobile technologies has revolutionized healthcare, enabling real-time

patient monitoring and diagnosis. One of the crucial areas in this domain is human motion recognition
(HMR), which various methodologies have employed over the last few years. In this survey, we consider
only the “NTU RGB+D 120” dataset. Cross-Subject (CS) and Cross-View (CV) are two accuracy evaluation
methods. Plizzari et al. (2021) [12] proposed the Spatial-Temporal Transformer Network (ST-TR), combining
a Graph Convolutional Network (GCN) and a transformer to enhance human activity recognition (HAR)
by capturing global attention across spatial and temporal dimensions. The model achieved a cross-subject
accuracy of 88.60% and a cross-view accuracy of 94.70%, effectively addressing spatial and temporal
complexities in HAR. Ref. [13] introduced the Temporal-Aware Adaptive Skeleton Graph Network (TA-
ASGN), which combines transformers with temporal adaptive skeleton graphs for improved HAR. The
model achieved a cross-subject accuracy of 89.80% and a cross-view accuracy of 95.30%, excelling in subject
variation and viewpoint adaptation. Duan et al. (2022) [14] developed a Graph Convolution and Transformer
Hybrid Model for skeleton-based action recognition. By integrating GCNs for local spatial feature extraction
and transformers for global temporal attention, the model achieved a cross-subject accuracy of 90.10%
and a cross-view accuracy of 96.20%, demonstrating robustness in spatio-temporal action recognition.
Zhao et al. (2022) [15] introduced Skeleton-Aware Geometry Feature Learning for HAR, which leverages
geometric relationships in skeleton data to improve recognition accuracy. This method achieved a cross-
subject accuracy of 90.00% and a cross-view accuracy of 95.80%, refining skeleton-based HAR through
geometry-aware feature learning.

Ref. [16] introduced Temporal Edge Aggregation for GCN enhancing HAR by aggregating temporal
edge information. This method achieved a cross-subject accuracy of 90.30% and a cross-view accuracy of
96.00%, improving the temporal modeling capabilities of GCN-based HAR systems. Ref. [17] proposed a
hybrid model combining a GCN with a transformer to enhance skeleton-based HAR. By incorporating
an attention mechanism, the model selectively focuses on important spatial-temporal features, achieving a
cross-subject accuracy of 89.70% and a cross-view accuracy of 95.70%, demonstrating its effectiveness in
capturing local and global dependencies. Ref. [18] introduced the Dual Stream Transformer GCN, a model
integrating both temporal and spatial streams to capture dynamic temporal changes and spatial relationships.
The model achieved a cross-subject accuracy of 91.00% and a cross-view accuracy of 96.50%, highlighting its
superior performance in HAR tasks through effective combination of temporal and spatial features. Ref. [11]
achieved over 94% accuracy on URFD and UPFD datasets using Graph Convolutional Networks (GCNs)
combined with Convolutional Neural Networks (CNNs).

Moreover, existing systems are rarely evaluated on vision-based datasets designed explicitly for MRHA
recognition beyond falls. Two promising datasets, NTU RGB+D 120 and HMDB51, include medical-related
human activity video data, offering new opportunities for MRHA recognition research. These datasets
encompass a variety of medical activities, such as sneezing, coughing, sitting, and walking, which are relevant
to healthcare scenarios. Despite this, few researchers have developed MRHA recognition systems based on
these datasets, and their reported accuracy levels remain unsatisfactory. Addressing the limitations of existing
approaches and leveraging these datasets for MRHA recognition could lead to the development of more
effective, privacy-preserving, and versatile systems. Future work should focus on advancing vision-based
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MRHA recognition models, improving their accuracy and generalizability across diverse populations and
activity types.

3 Dataset Description
This study leverages existing HMR datasets, prioritizing datasets based on three criteria: (1) inclusion

of activities listed in Table 1, (2) relevance to the medical domain, and (3) richness of features in the video
dataset. Among the analyzed datasets, NTU RGB+D 120 emerged as the most suitable due to its overlap
with key activities and its potential for improvement, as highlighted in the literature https://rose1.ntu.edu.sg/
dataset/actionRecognition/ (accessed on 28 April 2025).

Table 1: Human Motion Recognition (HMR) datasets with some class activities

S.N. Dataset name Total samples data Total classes
1 ActivityNet 21,313 200
2 Charades 66,493 157
3 HMDB51 6766 51
4 NTU RGB+D 120 114,480 120
5 STAIR Actions 109,478 100
6 UCF101 13,320 101

3.1 “NTU RGB+D 120” Dataset
The NTU RGB+D 120 dataset, developed by Nanyang Technological University, is a benchmark for

human action recognition, featuring 120 motion classes and 114,480 samples captured in RGB video format
(.mp4) at 1920 × 1080 resolution with 24 fps. Each sample includes 3D coordinates of 25 body joints,
enabling detailed skeletal motion analysis. For this study, 12 healthcare-related activities were selected, such
as sneezing/cough, staggering, and chest pain, totaling 13,200 samples, divided into 80% training (10,560
samples) and 20% testing (2640 samples) splits.

3.2 “HMDB51” Dataset
We conducted experiments on the HMDB51 dataset, a benchmark for human action recognition. The

HMDB51 dataset comprises 6766 video clips with a total file size of 2 GB. It features 51 action categories, with
each category containing at least 101 video clips sourced from diverse origins, including movies, YouTube,
and other online platforms. For this study, we selected six classes: walk, stand, eat, sit, and drink—particularly
relevant to medical and healthcare applications. These classes were chosen due to their critical importance
in healthcare scenarios where activity recognition can provide meaningful insights and enhance patient
monitoring systems.

4 Proposed Method
There are many researchers who have been working to develop a human motion recognition (HMR)

system. However, a few researchers have been working to develop IoT-integrating HMR systems. we propose
a new HMR method that uses spatial and temporal features powered by multi-stage deep learning and
integrated with IoT. First, we use EfficientNet to extract spatial features from skeleton frame sequences.
EfficientNet is designed with seven Mobile Inverted Bottleneck Convolutions (MBConv) blocks. Each block
includes a convolutional layer, a depthwise separable layer, and a squeeze-and-excitation (SE) module to

https://rose1.ntu.edu.sg/dataset/actionRecognition/
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create optimized feature representations. These spatial features are then passed to ConvLSTM, which extracts
spatio-temporal features, combining spatial and sequential information. The main components of our study
are given below:

• OpenPose Based BodyPose Extraction: We employed OpenPose to extract 25 key points from the
whole for each frame in the sequence.

• Hybrid Deep Learning Architecture: We introduce a novel hybrid deep learning model, ENCon-
vLSTM, combining EfficientNet and ConvLSTM to address challenges in HMR, such as high
computational demands, low accuracy, and adaptability. The proposed architecture consists of two key
components: efficientnet to extract the spatial feature from input skeleton data. It utilizes seven Mobile
Inverted Bottleneck Convolutions (MBConv) blocks. Each MBConv block comprises a 1 × 1 convolution
layer for feature mapping and a depthwise separable convolution layer for dimensionality reduction. A
squeeze-and-excitation (SE) module for adaptive feature recalibration. Then we extracted the spatio-
temporal feature within ConvLSTM. This takes the spatial features generated by EfficientNet and models
the temporal dependencies across frames, producing robust spatio-temporal features.

• Classification Module: The spatio-temporal features generated by ConvLSTM are passed through a
classification module, which includes Global Average Pooling and Fully Connected Layer, etc. This
multi-stage pipeline ensures robust motion recognition by integrating spatial and temporal model-
ing techniques.

• IoT Integration for Real-Time Alerts: The system integrates IoT components, including a Raspberry
Pi and GSM module, to provide real-time alerts. Twilio’s SMS API is used to send instant notifications
to caregivers and patients, removing the dependency on third-party mobile applications. This feature
enhances the system’s scalability and usability for healthcare scenarios.

4.1 Data Preprocessing
The preprocessing and pose keypoint extraction process begins with detecting 25 skeletal joints of

the human body using the Kinect v2 camera. These joints include key points such as the head, shoulders,
elbows, wrists, hips, knees, ankles, and feet, each represented by 3D coordinates (X , Y , Z). RGB videos are
recorded at a resolution of 1920 × 1080, while depth maps are captured at 512 × 424 resolution. Skeletons are
extracted from video frames at a rate of 24 frames per second (FPS), enabling precise tracking of motion
trajectories. Fig. 2 illustrates the skeletal configuration, which abstracts human poses and movements while
preserving spatial and temporal features crucial for motion analysis. The OpenPose library is used to extract
skeletal data, identifying and tracking the 25 body joints for each individual in the scene. Each frame
provides a reduced yet comprehensive skeletal representation of human movement, significantly simplifying
raw video data. This abstraction captures essential motion patterns, allowing for the analysis of complex
motion dynamics while reducing computational complexity. The skeleton data structure provides an efficient
input format for deep learning models, focusing on critical movement patterns. The preprocessing pipeline
further enhances the data for analysis. Video frames are sampled at 10 frames per second (FPS) to eliminate
redundancy while retaining critical motion information. Each frame is resized to a uniform resolution,
converted to grayscale, and normalized to ensure consistency and compatibility across samples. Finally, the
processed frames are organized into sequential arrays to represent the temporal dynamics of motion and fed
into the feature extraction module.
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Figure 2: The workflow of the proposed methodology this figure represents an end-to-end system for human motion
detection using a deep learning model, followed by real-time monitoring and notification

4.2 Spatial Temporal Feature Extraction
The sequential skeleton information is fed into the feature extraction module. Here first we extract the

spatial feature using EfficientNet and then we fed him into ConvLSTM to extract the spatiotemporal features
defined below.

4.2.1 EfficientNet Model
EfficientNet [19] is a state-of-the-art deep learning model for spatial feature enhancement and image

classification tasks. It achieves high accuracy with fewer parameters and lower computational costs by scaling
depth, width, and resolution in a balanced manner due to the depthwise separable convolution and sequence
excitation module. Fig. 3b shows the efficient net model diagram, which was constructed with various deep
learning modules to extract the spatial feature from input skeleton data. It utilizes seven Mobile Inverted
Bottleneck Convolutions (MBConv) blocks. Each MBConv block comprises a 1 × 1 convolution layer for
feature mapping and a depthwise separable convolution layer for dimensionality reduction. A squeeze-
and-excitation (SE) module for adaptive feature recalibration. The series of MBConv is mainly used to
downsample and extract meaningful features from the input, which is demonstrated in Fig. 3d. The structure
consists of multiple blocks of convolutions, where the operations can be represented as:

y = f (x; W) =MBConv(x; W) (1)

where x is the input skeleton features, W are the convolutional weights, and y is the output feature map.
EfficientNet progressively reduces the spatial resolution while expanding the depth of features, leading
to high-level representations for the next stage. These blocks apply depth-wise separable convolutions to
efficiently extract hierarchical spatial features, resulting in feature maps from progressively lower resolutions
and deeper feature representations.
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Figure 3: (a) Proposed multi-stage deep learning model constructed with (b) EfficientNet and (c) ConvLSTM beside
the classification module (d) Mobile Inverted Bottleneck Convolutions [20]

4.2.2 ConvLSTM Model
Then we extracted the spatio-temporal feature within ConvLSTM [21]. This takes the spatial features

generated by EfficientNet and models the temporal dependencies across frames, producing robust spatio-
temporal features. This hybrid approach addresses the limitations of existing methods, such as high
computational complexity, low accuracy, and limited adaptability to diverse healthcare scenarios. Fig. 3c
demonstrated the ConvLSTM network diagram, which mainly extended the capabilities of traditional LSTM
networks by integrating convolutional layers.

4.2.3 ENConvLSTM Proposed Model Architecture
Fig. 3 presents a hybrid architecture for human motion recognition, combining EfficientNet for spatial

feature extraction and ConvLSTM for temporal feature modeling. At the top, the EfficientNet architecture
is shown, which processes input frames (224 × 224 resolution) through a series of MBConv blocks. Once
skeleton data is extracted, it is passed through the EfficientNet model for spatial feature extraction.

5 Experiment and Result
The proposed model is evaluated on the NTU RGB+D 120 dataset, focusing on 12 selected medical

classes. The dataset is divided into training (80%) and testing (20%) portions. The model is trained on 80% of
the data, with its performance evaluated on the remaining 20%. During training, the ENConvLSTM model
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minimizes classification loss, typically cross-entropy, using the Adam optimizer to learn and differentiate
between various human activities. Key performance metrics accuracy, precision, recall, and F1-score are
calculated for both cross-subject and cross-view evaluations [22–24]. The model performs exceptionally well,
particularly in cross-view evaluations, which involve more significant variability due to different camera
angles, demonstrating its robustness and generalizability for real-time Human Motion Recognition (HMR)
in healthcare applications.

5.1 Software and Hardware Requirements
The study requires several key software and hardware components. The software includes deep learning

frameworks like TensorFlow, PyTorch, scikit-learn, and Keras, with data processing libraries such as NumPy,
Pandas, and OpenCV, all using Python. Development is done in Jupyter Notebook and PyCharm. The
hardware setup features an AMD Ryzen 9 5900X 12-Core Processor, running on a 64-bit system with Python
3.9.13 and CUDA 11.0. It includes an NVIDIA R© GeForce RTX 3060 graphics card with 6 GB of memory,
64 GB of RAM, and a 4 TB SSD for storage. An Arduino UNO REV3 and a SIM900A GSM module are also
used for SMS communication.

5.2 Ablation Study
The ablation study, as shown in Table 2, compares the performance of the proposed model with several

baseline methods on the HMDB51 dataset using accuracy, precision, recall, and F1-score. It shows that the
proposed combination achieves high performance accuracy compared to the baseline individual methods.

Table 2: Ablation study of the proposed model with HMDB51 dataset

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%)
LSTM 76.44 75.96 76.42 78.18

ConvLSTM 70.35 71.07 73.33 69.28
EfficientNetB0 72.57 74.24 72.57 75.45

EfficientNet (B0–B7) 76.75 74.48 71.73 73.65
Proposed (ENConvLSTM) 89.22 88.12 86.54 87.96

5.3 Proposed Model Parameters List
The proposed model has 8,138,104 parameters, of which 8,095,640 are trainable and 42,464 are non-

trainable. The model is trained with a batch size of 16 for 100 epochs using sparse categorical cross-entropy
as the loss function and Adam as the optimizer, with a learning rate of 0.001. Fig. 4 highlights Adam’s
superior performance over SGD, RMSprop, and Adagrad in training the proposed model. Adam achieves
the highest validation accuracy (approaching 0.95) and the lowest validation loss due to its adaptive learning
rate mechanism, which accelerates convergence and improves generalization. The smooth accuracy and
loss curves further demonstrate Adam’s stability and effectiveness, whereas other optimizers show slower
convergence and higher validation losses. These results confirm Adam as the most effective optimizer for
this model.
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Figure 4: Model optimizers comparison: (a) Validation accuracy and (b) Validation loss curve for NTU dataset

5.4 Performance Matrix with NTU RGB+D 120 Dataset
We evaluated the proposed method with the NTU RGB+D medical related action dataset with various

configurations, including cross-subject evaluation and cross-view evaluation. It involves splitting the dataset
such that training and testing samples are from different subjects, ensuring the model generalizes well to
unseen individuals. The model achieved a cross-subject accuracy of 94.85%. It involves splitting the dataset
based on different camera views, ensuring the model performs well across various perspectives. The model
achieved a cross-view accuracy of 96.45%. Key performance metrics—accuracy, precision, recall, and F1-
score—are calculated for both cross-subject and cross-view evaluations, as shown in Table 3.

Table 3: Other performance evaluation metrics on NTU RGB+D 120 dataset

S.N. Performance martics Dataset evaluation methods

Cross-Subject (%) Cross-View (%)
1 Accuracy 94.85 96.45
2 Precision 93.70 95.90
3 Recall 94.30 96.10
4 F1-Score 94.00 96.00

In the cross-subject evaluation, the accuracy exhibits a robust upward trend from an initial 75.01% to
a final 96.85%, with some minor fluctuations and eventual stabilization. Concurrently, the loss decreases
consistently from 0.60 to 0.04, reflecting an overall improvement in model performance. Similarly, the cross-
view evaluation shows a strong accuracy progression, starting at 78.34% and reaching 96.45% by the end,
with minor variations throughout and a stabilizing trend. The loss trend in this evaluation mirrors that of the
cross-subject assessment, declining from 0.55 to 0.03, indicating effective learning and convergence. Both
evaluations demonstrate an effective model performance enhancement over time, with accuracy improving
and loss decreasing, culminating in stable performance metrics.
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5.4.1 State of the Art Comparison for the NTU RGB+D 120 Dataset
The performance of the ENConvLSTM model is compared with several state-of-the-art models, includ-

ing traditional methods and recent deep-learning approaches shows in Table 4. Each Performance Evaluation
Method (Cross-View and Cross-Subject) is graphically presented in Fig. 5a,b. The proposed ENConvLSTM
model significantly outperforms the other models across cross-subject and cross-view evaluations on the
NTU RGB+D 120 dataset, showing excellent accuracy, precision, recall, and F1 score results. This indicates
that the proposed model is highly robust and performs well across different subjects and viewing conditions.

Table 4: State of the art comparison for NTU RGB+D 120 dataset

Used model with citation NTU RGB+D 120

Methods Cross-Subject (%) Cross-View (%)
MS-G3D [25] 86.92 88.44

PA-ResGCN-B19 [26] 87.34 88.37
Dynamic GCN [27] 87.37 88.68

CTR-GCN [28] 88.99 90.62
4s Shift-GCN [29] 85.9 87.6

ST-TR [30] 89.95 96.12
GA-GCN [31] 92.38 92.83

ENConvLSTM (Proposed) 94.85 96.45

Figure 5: Performance comparison among different tested models on the NTU RGB+D 120 dataset with (a) cross-view
(b) cross-subject configuration

5.5 Performance Accuracy and State of the Art Comparison for HMDB51 Dataset
Fig. 6 presents the confusion matrix and loss with various optimizations. Therefore, we consider the

Adam optimizer for this study. This matrix offers a detailed view of accuracy for each individual class. Fig. 6a
shows the confusion matrix of the proposed model for the HMDB15 dataset. From this matrix, we can see
that the diagonal line represents the true classes, while the off-diagonal data represents false detections.
The classes “drink,” “eat,” and “walk” achieve remarkable accuracy in this dataset. However, the other
classes show comparatively lower accuracy. We analyze the validation loss curve relative to the number
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of iterations, as illustrated in Fig. 6b. The curve indicates that the ADAM optimizer outperforms both
the SGD and RMSProp algorithms. Based on the analysis, Adam is likely the best-performing optimizer
among the three optimizers, such as Adam [32], SGD [33,34], and RMSProp [33,35]. This is because
Adam combines the advantages of both RMSProp and momentum, leading to faster and more reliable
convergence [33]. It adapts the learning rate during training and uses past gradient information to accelerate
learning, making it efficient and effective for many deep learning problems [35]. These standard classification
metrics for the HMDB51 dataset are listed in Table 5, where the average accuracy in our experiment is
89.22%. Table 6 provides a comparative analysis of various models tested on the HMDB51 dataset for human
action recognition. The proposed model, a multi-stage model, achieves the highest accuracy of 89.22%,
showcasing its superior performance. Models such as STM Framework [36] and Attention-Based LSTM
with 3D CNN [37] demonstrate strong performance with accuracies of 80.40% and 87.98%, respectively,
while EfficientNet delivers an impressive accuracy of 88.70% [38]. In contrast, earlier models like VicTR
(B/16) [39] and SVT Self-Supervised Transfer [40] achieve relatively lower accuracies of 67.28% and 57.80%,
respectively. Additionally, reference [41] proposed a Vision Transformer (ViT) model, achieving 59.74% and
68.2% accuracy on HMDB51 by leveraging self-attention. Moreover, reference [42] introduced a Dual-Stream
Framework, achieving 78.62% accuracy by separately processing temporal and spatial features for improved
action recognition, surpassing recent approaches over traditional methodologies.

Figure 6: (a) Confusion matrix (b) Loss curve for the HMDB51 dataset

Table 5: Classification result for the HMDB51 dataset

Selected class levels Precision (%) Recall (%) F1-Score (%) Accuracy (%)
drink 89.00 93.00 91.00 –

eat 89.00 95.00 92.00 –
fall_floor 84.00 69.00 76.00 –

sit 85.00 86.00 86.00 –
stand 91.00 79.00 85.00 –
walk 91.00 96.00 93.00 –

Average 88.17 86.33 87.17 89.22
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Table 6: State-of-the-art comparison for the proposed model with HMDB51 dataset (Sort by Year)

Author and citation Model name Year Accuracy (%)
Ranasinghe et al. [40] Self-supervised transfer 2022 67.28, 57.8

Sarraf et al. [41] ViT 2023 59.74, 68.2
Saoudi et al. [37] Attention-LSTM-3DCNN 2023 87.98

Burton-Barr et al. [38] Act-control vision 2024 88.70
Kahatapitiya et al. [39] VicTR (B/16) 2024 51.00

Hussain et al. [43] Dual-stream framework 2024 78.62
Jiang et al. [36] STM framework 2024 80.40

Proposed EfficientNetB0ConvLSTM 2024 89.22

6 Real-Deployment
Finally, the proposed deep learning system is integrated with a Raspberry Pi and GSM module to

send real-time alerts via Twilio SMS service, keeping caregivers and patients informed instantly. This
system is scalable, efficient, and proactive, helping to improve patient monitoring and outcomes and reduce
healthcare costs.

6.1 Real Time Implementation
Fig. 7 shows the interconnection between an Arduino UNO and the SIM900 GSM module to implement

the real-time scenario. A 12V 2Amp DC adapter powers the Arduino. The TX (transmit) and RX (receive)
pins are crucial for communication. The TX pin of the Arduino connects to the RXD pin of the TTL module
for data transmission, while the RX pin of the Arduino connects to the RDX pin of the TTL module for
receiving data. Both devices share a common ground (GND) for proper operation. This setup enables the
Arduino to communicate with the GSM module for tasks like sending SMS or making voice calls. The
connections include power and ground lines: the red wire represents the VCC (power) connection from
the Raspberry Pi to the ESP8266, while the blue wire indicates the ground (GND) connection. The yellow
wire connects the GPIO pin from the Raspberry Pi to the ESP8266’s TX pin for data transmission, and
the green wire connects another GPIO pin to the RX pin of the ESP8266 for data reception. This setup
enables the Raspberry Pi to communicate with the ESP8266 for wireless connectivity in various projects,
such as IoT applications. Arduino UNO REV3-Compact and Versatile Microcontroller Board with A000066.
Interface a SIM900A GSM module with an Arduino to send and receive SMS. Arduino UNO REV3-
Compact and Versatile Microcontroller Board with A000066. Interface a SIM900A GSM module with an
Arduino to send and receive SMS. Fig. 3 illustrates the proposed system for human motion recognition
using an ENConvLSTM model integrated with an Arduino. It begins with an input video that is processed
to extract skeleton data, represented in a 3D coordinate system (X, Y, Z). This skeleton data is fed into
the ENConvLSTM model, which then utilizes a SoftMax layer to predict the activity being performed.
The predicted activity is communicated to an Arduino, which can be powered by a stable 5V source or
battery, indicating a real-time or recorded data application. This setup enables effective monitoring and
recognition of human activities through skeletal motion analysis. The proposed human motion recognition
system’s performance in the laboratory experiment is satisfactory. However, there are always some differences
between laboratory and real-time scenarios. Table 7 illustrates the result in a real-time scenario, and its visual
representation is shown in Fig. 8.



2526 Comput Mater Contin. 2025;84(2)

Figure 7: Schematic diagram illustrating the connections between an Arduino UNO and a SIM900 GSM TTL module,
highlighting the power supply, TX and RX pin connections, and the common ground to facilitate communication for
tasks such as SMS sending and voice calling

Table 7: Laboratory and real-time experiment performance for the HMDB51 dataset

No. Actual
class

Real-time
observation
(individual)

Laboratory
experiment (%)

Real-time
experiment

(%)

Calculate
score (%)

Loss of
real-time

experiment
(%)

1 fall_floor Individual fall
floor

89.00 87.00 97.75 2.00

2 walk Individual
walking

95.00 91.00 95.79 4.00

3 stand Individual
standing

79.00 77.00 97.47 2.00

4 eat Individual
eating

94.00 90.00 95.74 4.00

5 sit Individual
sitting

86.00 82.00 95.35 4.00

6 drink Individual
drinking

92.00 88.00 95.65 4.00

Average score 89.22 85.83 96.29 3.33
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Figure 8: Real-Time human motion recognition performance metrics (Includes Accuracy and Loss Values) [NTU
RGB+D 120 dataset]

6.2 Sending Alert Message (Notification)
In our proposed system, the model predicts human actions, specifically identifying whether an indi-

vidual is experiencing a fall. Upon detecting a fall event, the system promptly triggers an alert message
to the registered user mobile device. This real-time communication is facilitated through the integration
of Twilio [44], a leading SMS and communication server provider, ensuring reliable and instantaneous
notifications. By leveraging Twilio’s robust platform, we enhance the responsiveness of our human motion
recognition system, thereby significantly improving user safety and emergency response efficiency.

6.3 Work Limitations
While our paper highlights the integration of IoT components like Raspberry Pi and the GSM module,

we acknowledge limitations in latency, reliability, and scalability in real-time scenarios. The system is not
optimized for handling multiple alerts through efficient data transmission and prioritization, which could be
explored in future work. Moreover, challenges such as imbalanced class distributions and noise in real-world
data may also affect model performance. Future research could explore differential privacy and federated
learning for enhanced security, particularly in the context of sensitive patient data.

7 Conclusion and Future Work
This study presents a novel IoT-based framework for real-time Medical-Related Human Activity

(MRHA) recognition, addressing challenges like high computational demands and low accuracy in existing
systems. By combining EfficientNet for spatial feature extraction and ConvLSTM for spatio-temporal
integration, the method achieves strong performance, with 94.85% accuracy for cross-subject and 96.45%
for cross-view evaluations on the NTU RGB+D 120 dataset. It also demonstrates 89.00% accuracy on the
HMDB51 dataset. A key contribution is integrating the MRHA system with a Raspberry Pi and GSM module,
providing real-time alerts through SMS. The system shows promise for improving patient monitoring and
healthcare outcomes, although it may face challenges in real-time applications due to environmental factors.
Future work will focus on multimodal datasets, cloud computing for remote monitoring, and addressing
privacy concerns, ensuring the system practical use in healthcare settings.
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