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ABSTRACT: The Pressure Sensitive Paint Technique (PSP) has gained attention in recent years because of its significant
benefits in measuring surface pressure on wind tunnel models. However, in the post-processing process of PSP images,
issues such as pressure taps, paint peeling, and contamination can lead to the loss of pressure data on the image,
which seriously affects the subsequent calculation and analysis of pressure distribution. Therefore, image inpainting
is particularly important in the post-processing process of PSP images. Deep learning offers new methods for PSP
image inpainting, but some basic characteristics of convolutional neural networks (CNNs) may limit their ability
to handle restoration tasks. By contrast, the self-attention mechanism in the transformer can efficiently model non-
local relationships among input features by generating adaptive attention scores. As a result, we propose an efficient
transformer network model for the PSP image inpainting task, named multi-scale dilated attention transformer
(D-former). The model utilizes the redundancy of global dependencies modeling in Vision Transformers (ViTs) to
introduce multi-scale dilated attention (MDA), this mechanism effectively models the interaction between localized and
sparse patches within the shifted window, achieving a better balance between computational complexity and receptive
field. As a result, D-former allows efficient modeling of long-range features while using fewer parameters and lower
computational costs. The experiments on two public datasets and the PSP dataset indicate that the method in this article
performs better compared to several advanced methods. Through the verification of real wind tunnel tests, this method
can accurately restore the luminescent intensity data of holes in PSP images, thereby improving the accuracy of full field
pressure data, and has a promising future in practical applications.

KEYWORDS: Pressure-sensitive paint technology; deep learning; image inpainting; vision transformer; self-attention
mechanism

1 Introduction
Pressure Sensitive Paint (PSP) technology, as a non-touch optical measurement technique for full-field

pressure distribution on surfaces, has been significantly developed and widely applied since the late 20th
century, driven by disciplines such as biochemistry, optics, information technology, and image processing
technology. The technique works by coating the surface of the object with a special pressure-sensitive material
and using a laser or ultraviolet lamp as an excitation light source to induce the paint to emit fluorescence or
phosphorescence, and then taking the fluorescent intensity image, and using the Stern-Volmer formula to
calculate the surface pressure distribution after image processing [1]. PSP technology has the benefits of wide
detection range, low cost, short preparation time, and can better solve the flow field interference problem
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caused by traditional detection technology. Currently, PSP technology has matured and has been used in
many aerospace pressure measurement tests.

However, during the post-processing of PSP images, due to various factors such as paint peeling, setting
of artificial markers, and noise from image acquisition equipment, defects such as black holes and noise
often appear in the images, which can seriously affect the subsequent calculation and analysis of pressure
distribution. Therefore, image inpainting is particularly important in the post-processing of PSP images.
Effective image inpainting techniques can improve the image quality and ensure the precision and reliability
of subsequent pressure distribution calculations, thereby further promoting the application and development
of PSP technology in the aerospace field.

The current PSP technology mainly relies on traditional algorithms for image inpainting, which can
be categorized into two types: diffusion-based [2] and patch-based methods [3]. Although these methods
perform well when handling simple scenes or images with small damaged regions, they often struggle to
generate semantically consistent and visually reasonable restoration results in complex scenarios due to their
lack of understanding of high-level semantic information in images. Consequently, their practical application
effectiveness is limited. In recent years, the rapid development of deep learning has opened new research
directions for PSP image inpainting, however, relevant research papers in this field remain relatively scarce.
We expect to achieve new breakthroughs in this field through in-depth research.

PSP image inpainting differs from regular image inpainting in that its defects are typically discretely
distributed, varying in shape and size, and exhibit significant differences from surrounding pixels [4].
Since the color distribution of PSP images directly reflects the surface pressure distribution, the inpainting
task requires not only visual rationality and semantic consistency but also strict adherence to the physical
laws of the pressure flow field, ensuring that each luminescence intensity data point accurately represents
the pressure value of the corresponding location. PSP images are characterized by texture consistency,
local continuity, and the lack of complex structural information, so the inpainting model must balance
local texture continuity with the precision of global pressure distribution. This high-precision requirement
makes PSP image inpainting a complex task that integrates visual and physical consistency. Convolutional
Neural Networks (CNNs), due to their inherent localized receptive fields, struggle to fully capture non-local
relationships between features [5], limiting their applicability in PSP image inpainting. Visual Transformers
(ViTs), due to their own structure, can obtain global contextual information and have the ability to acquire
and store long-range dependency information, enabling them to achieve overall perception and macro
understanding of images [6].

For the special requirements of PSP image inpainting, we propose a transformer network based on a
multi-scale dilated attention mechanism (MDA), termed D-former. Specifically, to effectively capture key
feature responses in PSP images and acquire global contextual information, we propose a dilated attention
mechanism (DA) based on the locality and sparsity characteristics of the global attention mechanism
in ViTs [7]. By performing self-attention calculations between sparsely selected image patches within
neighboring regions, this mechanism not only effectively expands the receptive field and retains the ability to
capture dependencies among relevant features but also significantly reduces the computational complexity
of global attention.

To further enhance the model’s performance, we introduce the multi-scale dilated attention module
(MDA). This module is capable of simultaneously capturing local details and global contextual information
by setting different dilation rates for DA at various attention heads, thereby efficiently acquiring the texture
characteristics and global pressure distribution of PSP images. We integrate the MDA module into a trans-
former block and create a U-Net style-based [8] transformer architecture (D-former). This design not only
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achieves a receptive field that covers the entire image at the shallow layer but also models the global depen-
dencies between multi-scale relevant features, enabling accurate and reasonable restoration of PSP images.
Experiments demonstrate that D-former exhibits higher restoration accuracy and stronger robustness in the
PSP image inpainting task compared to existing inpainting methods, while achieving efficient global feature
modeling with lower computational and memory resources. Additionally, we conduct extensive ablation
experiments on D-former to validate the effectiveness of the MDA module and demonstrate its advantages
in balancing local inpainting accuracy and the consistency of global pressure distribution.

The main contributions of our work are summarized as follows:

• We propose a novel multi-scale dilated attention (MDA) mechanism to capture critical features and
global contextual information in images, while significantly reducing the computational overhead of
global attention.

• The MDA module is integrated into the transformer block, and we employ the improved transformer
module to model global pixel relationships.

• We integrate the proposed transformer module with a U-Net style network [8] to propose a
novel inpainting network D-former, which performs superior performance over existing state-of-the-
art methods.

• We specifically create a PSP image dataset and conduct extensive comparison experiments on this dataset
and two public datasets, validating the restoration performance and generalization capability of our
proposed model for PSP images.

2 Related Work

2.1 Image Inpainting
Before deep learning, because of the inability to understand the semantics of images, non-learning

methods could only reconstruct missing regions based on local neighborhood information [2] or fill pixels
based on all observed regions [3]. These methods often have better results when dealing with small damaged
regions or basic background padding, while their effectiveness is restricted when facing images with complex
patterns. To make the network capable of outputting semantic results, Pathak et al. [9] introduce the
Generative Adversarial Network (GAN) [10] and train a conditional image generation model using CNN.
Some researchers choose to use additional image information (such as edges [11], structures [12], and
semantics [13]) to guide the model in completing the image. Nevertheless, several of these approaches involve
multi-stage or multi-model architectures, which pose difficulties for end-to-end training. For example,
CTSDG [12] studies texture and structure from each other on a two-stream network. RFR [14] gradually
completes the image through multiple iterations.

CNNs have demonstrated good performance in content generation, but their inherent characteristics
limit the ability of image inpainting. Specifically, (a) CNNs mainly focus on local features and are difficult
to capture long-range dependencies. (b) Its convolutional kernel coefficients are spatially fixed, affecting the
adaptability of the network for different inputs. Such characteristics make CNNs perform poorly in restoring
large damaged images. To address this problem, Reference [15] has combined attention operation and fast
Fourier convolution to enhance the capture of global dependencies, but these methods are only applied to a
few low-resolution layers, leading to possible distortions when reconstructing complex scenes. PConv [16]
and GatedConv [17] enhance the restoration performance by optimizing the convolution operation, but may
cause color distortion and texture blurring due to the lack of global dependencies.

Recently, the remarkable achievements of the transformer model [18] in the field of natural language
processing (NLP) have inspired the exploration of its potential for applications in computer vision [6,7].
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For example, MFViT [19] proposes a multimodal data fusion framework that can significantly improve
the classification accuracy of remote sensing images. Driven by this, efforts have been made to apply
transformers to image inpainting [20,21]. These methods model long-range dependencies by employing
multiple spatial self-attention modules. Despite the advantages of the attention mechanism over CNNs
in certain respects, their computational complexity grows quadratically with the spatial resolution, which
makes them challenging when dealing with high-resolution images.

2.2 Visual Transformer
The transformer model was initially developed for sequence processing in NLP [18]. Carion et al. [22]

pioneered its introduction into computer vision for object detection. It has now been applied in many
visual tasks, such as image recognition [7], super-resolution [23], and segmentation [24,25]. However, the
computational complexity of attention in transformers increases exponentially with the number of image
patches, which limits its application in high-resolution images. To make the transformer more suitable for
visual tasks, recent studies have adopted different strategies to reduce complexity. For example, the PVT [25]
network adopts a hierarchical pyramid structure to decrease computational complexity. Reference [26]
substitutes spatial self-attention with channel self-attention with linear complexity. Swin Transformer [6]
is designed to apply self-attention in non-overlapping and shifted windows to reduce complexity. These
methods either apply attention to patches unfolded from the image, or divide the image into regions that
do not overlap each other and independently calculate the attention of each region, which reduces the
computational effort but limits the model’s ability to capture global spatial dependencies among pixels in
the image.

To address this issue, T-former [27] innovatively designs a self-attention mechanism with linear com-
plexity by leveraging the Taylor formula. Lingle et al. [28] achieve efficient attention computation through
vector quantization techniques. Spa-former [29] introduces a sparse self-attention mechanism, reducing
computational costs by computing global pixel interactions across channel features. HINT [21] proposes a
spatially activated channel attention mechanism, effectively alleviating memory pressure due to high compu-
tational complexity. In contrast to these methods, we propose a simple and efficient attention mechanism that
not only enables multi-scale modeling of global context but also maintains low computational complexity.

2.3 Dilated Convolution
Traditional CNNs often expand the receptive field and reduce computational complexity by downsam-

pling or convolving in large strides. Still, these methods reduce the resolution of feature maps, which in
turn negatively affects the model performance for tasks such as object detection and semantic segmentation.
To overcome this limitation, Cohen et al. [30] introduce dilated convolution [31], a technique that can
increase the receptive field while maintaining resolution, and capture feature information at different scales
by adjusting the dilation rate. Furthermore, DDC [32] enhances the flexibility of feature extraction by
utilizing the entire feature map to generate convolution kernel parameters with data specificity.

In contrast to existing methods, we propose an innovative dilated attention operation that integrates
multiple dilation rates into a single self-attention mechanism to model multi-scale feature interactions more
flexibly. The difference from DDC is that our method executes self-attention computation for sparse keys
and values within a shifted window with the query patch at the center. In addition, although a similar study
DiNAT [33] exists, it only uses a single-scale and fixed dilation rate in each stage block and therefore lacks
multi-scale interaction. By contrast, the proposed D-former implements a multi-scale operation within each
block, that is, different dilation rates are assigned to each head to capture and integrate multi-scale semantic
features effectively.
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3 Method
In this section, we describe the overall architecture of a visual transformer image inpainting network

based on multi-scale dilated attention. Firstly, we describe in detail the composition of the transformer block,
which is the central part of the D-former model. Then, we present the DA operation, which effectively models
long-range dependencies in feature maps. MDA module is further proposed, which concurrently captures
contextual semantic dependencies at different scales to fully utilize information within patches.

3.1 Overall Architecture
We construct an efficient transformer network called D-former. The framework of D-former is illus-

trated in Fig. 1. First, the D-former is designed as a multi-stage encoder-decoder network using the U-Net
structure [8]. The input to the network is the damaged image Iin ∈ RH×W×3 and the output is the restored
image with the same resolution. The encoder consists of four stages, each containing multiple layers of
Transformer blocks. While the features propagate progressively in the encoder, operations to decrease the
spatial resolution and increase channel count are performed at each stage. Specifically, the spatial dimension
of the input features decreases by a factor of 2, and the channel dimension increases by a factor of 2 at each
encoder stage. The decoder has a symmetrical structure, where the multilevel features of the encoder stages
are transferred to the corresponding stages of the decoder through skip connection. Each stage in the decoder
performs the opposite operation of the encoder: the spatial resolution is progressively recovered, and the
number of channels is progressively reduced. Lastly, the decoder outputs a restored result with the same
resolution as the input image.

Figure 1: The framework of we proposed D-former. The damaged image Iin is sent into the generator, which is a
U-Net style network composed of multiple transformer blocks. The Transformer block consists of two core modules:
(1) multi-scale dilated attention (MDA). (2) feed-forward network (FFN)

3.1.1 Encoder
The encoder consists of a stack of several transformer blocks with a hierarchical structure, which enables

feature extraction from damaged images Iin ∈ RH×W×3. The transformer block includes a MDA module and
a feed-forward network (FFN) module. The encoder first sends the input Iin into a 7 × 7 convolutional layer
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and obtains low-level feature maps E0 ∈ RH×W×C , where H ×W is the spatial dimension and C is the number
of channels. Next the feature map E0 is sent into four stages of the encoder, each stage consisting of 1, 2, 3, and
4 transformer blocks. Each stage uses the attention of 1, 2, 4, and 8 heads, respectively, with corresponding
dilation rates of r = {[1] , [1, 2] , [1, 2, 3, 4] , [1, 2, 3, 4]}. Between the two stages, a 3 × 3 convolutional layer
with stride 2 is used to downsample for features. The output feature map for each stage is Ei ∈ R

H
2i−1 ×

W
2i−1 ×C2 i−1

,
i = 1, 2, 3, 4. Such that the output of the final stage (4th stage) of the encoder is E4 ∈ R H

8 ×
W
8 ×8C .

3.1.2 Decoder
The decoder uses the final output of the encoder E4 as input and gradually restores the complete

image Iout ∈ RH×W×3. The decoder has 3 decoding stages, each containing 3, 2, and 1 transformer blocks,
respectively. In each stage, the features are first upsampled through nearest neighbor interpolation, then
connected to the corresponding encoding stage features, and the channels are compressed using 1 × 1
convolution to obtain feature maps Di ∈ R

H
2i−1 ×

W
2i−1 ×C2 i−1

, where i = 1, 2, 3. Next, these features are input into
the transformer block of the corresponding decoder level to obtain dimensionally invariant output features
D
′

i . Finally, the feature map D
′

3 ∈ RH×W×C is transformed into the restored image Iout ∈ RH×W×3 through a
7 × 7 convolutional layer.

3.2 Transformer Block
As shown in Fig. 1, we propose a new transformer block to construct our network, which consists of

two modules: the MDA module and the FFN module.
The MDA module is made of dilated attention with multi-headed attention, a layer normalization (LN),

and a gated operation, as shown in detail in the MDA module in Fig. 1. In the MDA module of a transformer
block at a certain level, the input feature X ∈ RĤ×Ŵ×Ĉ is first fed into the LN layer, and then the linearly
transformed feature is fed into dilated attention with multiple heads to obtain the attention result XMDA.
The dilated attention calculates the attention of each head and concatenates the attention maps of all heads.
In addition, we introduce a spatial gated mechanism that utilizes 1 × 1 convolution and the GELU activation
function to calculate gated values for each spatial position. These gated values are then multiplied element
by element with the attention results to guide spatial features. Finally, the input features are combined with
the adjusted attention results through residual shortcuts to obtain the output feature X̂:

X′ = X + DA(LN (X)) ⊙GELU (Conv (LN (X))) (1)

where X and X′ are the input and output features of the MAD module, respectively.
For the design of FFN, we refer to recent transformers [26], which use residual connections and gated

mechanisms. As shown in Fig. 2, specifically, the gated mechanism is expressed as the unit product of two
parallel path linear transformation layers, which consist of a 1 × 1 convolution and a 3 × 3 deep convolution,
one of which is nonlinearly activated by GELU. Finally, the features obtained from the gated mechanism
are channelized by a 1 × 1 convolutional layer for dimensionality reduction, and the processed results are
residually concatenated with the original input for effective fusion and transfer of information. FFN can be
formulated as:
∧

X = X′ + Conv [Convs (LN (X′)) ⊙GELU (Convs (LN (X′)))] (2)

where X̂ is the output of the FFN in a transformer block at a certain layer, and the Convs include 1 × 1
convolution and 1 × 1 depth-wise convolution.
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Figure 2: The framework of the feed-forward network

3.3 Multi-Scale Dilated Attention
3.3.1 Dilated Attention

To effectively capture key feature responses in PSP images and obtain global contextual information, we
leverage the sparsity and locality of patch interactions of the global attention mechanism in ViTs to propose a
dilated attention (DA) operation. This operation expands the receptive field of the model without increasing
additional computational overhead, enabling it to capture longer-range contextual information. This not
only facilitates the model to learn local texture features in PSP images but also improves the understanding
of its global distribution characteristics. Specifically, the key and value matrices are sparsely selected in a
shifted window centered around the query patch, then self-attention operation is conducted on these relevant
patches. Our DA operation can be described as follows:

X = DA(Q , K , V , r) (3)

where Q, K, and V denote query, key, and value matrices, respectively. Each row of the three matrices
represents a single eigenvector corresponding to the query, key, or value. For the query with position (i , j)
in the original feature map, DA performs self-attention operation by sparsely selecting keys and values in
a w ×w shifted window centered on (i , j) position. In addition, we also design a dilation rate r ∈ N+ to
control sparsity. Specifically, for position (i , j), the component xi j of the output X from the DA operation is
described as follows:

xi j = Attention (qi j , Kr , Vr)

= Soft max(
qi jKT

r√
dk
)Vr , 1 ≤ i ≤W , 1 ≤ j ≤ H, (4)

where H and W are the height and width of the feature map, respectively. Kr and Vr denote the keys and
values selected from the feature maps K and V .

Given the query location at (i , j), the keys and values located at (i′, j′) will be selected to perform the
self-attention operation:

{(i′, j′) ∣i′ = i + p × r, j′ = j + q × r} , −w
2
≤ p, q ≤ w

2
. (5)

DA performs self-attention operations on all query patches in a shifted window manner. For the query
feature on the edge of the feature map, we employ the zero padding method to maintain the size of the
feature map. The proposed DA explicitly satisfies locality and sparsity properties by sparse selection of query-
centered keys and values, which can effectively model long-range dependencies.



3266 Comput Mater Contin. 2025;84(2)

3.3.2 Multi-Scale Dilated Attention
To further address defects of different sizes in PSP images, we apply dilated attention to the multi-

head attention mechanism, proposing multi-scale dilated attention (MDA). By setting different dilation rates
for different attention heads, the MDA module expands the receptive field and at the same time enhances
the model’s comprehension of the global structure, and the module can simultaneously capture multi-scale
semantic information, enabling the model to more flexibly handle defect regions of different sizes in PSP
image, and strengthens the network’s ability to extract multi-scale features, thereby significantly improving
the accuracy and robustness of image inpainting. The introduction of multi-scale dilated attention not only
increases the model’s sensitivity to local details but also strengthens its understanding of global structures,
ensuring that the restored image maintains consistency both locally and globally.

Specifically, as seen in the MDA module in Fig. 1, for the feature map X, we get the corresponding
queries, keys, and values through linear mapping. Then, we split the channels of the feature map into n
different heads, and conduct DA operation between the colored patches in the window around the orange
query patch, using different dilation rates in different heads, when the dilation rates are 1, 2 and 3 using 3 × 3
kernel size, the corresponding receptive field sizes are 3 × 3, 5 × 5 and 7 × 7, respectively. Our MDA module
is described as follows:

hi = MDA(Qi , Ki , Vi , ri), 1 ≤ i ≤ n (6)
XMDA = Concat ([h1 , . . . , hn]) (7)

where ri is the dilation rate of the i-th head, Qi , Ki and Vi denote the feature map slices of the i-th head. The
outputs {hi}n

i=1 are connected in series to obtain the result XMDA of the multi-scale DA. The final output is
then obtained by using the spatial gated mechanism and residual connection.

According to previous research [33], we employ fixed dilation rates of {[1], [1,2], [1,2,3,4], [1,2,3,4]}
at the four stages of the encoder. The early stages primarily focus on local details, thus utilizing smaller
dilation rates, and as the network depth increases, subsequent stages gradually introduce larger dilation rates
to capture broader contextual information. Through defining different dilation rates for each head, our MDA
module effectively converges semantic information at different scales within the receptive field of attention,
effectively decreasing the redundancy of the attention mechanism without requiring complex operations and
additional computational costs.

3.4 Loss Function
The overall loss function Lal l for training our D-former model is as follows:

Lal l = λr Lr + λa La + λp Lp + λs Ls (8)

where Lr denotes reconstruction loss, La denotes adversarial loss, Lp denotes perceptual loss, and Ls is style
loss. We set λr = 1, λa = 0.1, λp = 1, λs = 250.

Reconstruction loss: the reconstruction loss Lr is the L1-distance between the output Iout and the ground
truth Ig t , which can be defined as:

Lr =∥ Iout − Ig t ∥1 (9)

Adversarial loss: The formula for adversarial loss La is:

La = EIg t [log D (Ig t)] + EIout [log [1 − D (Iout)]] (10)
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here, D is the discriminator network Patch GAN [34], which can generate natural image details.
Perception loss: The perception loss Lp compares the difference between the depth feature map of the

generated image and the real image, and the formula is:

Lp = E [∑
i

1
Ni
∥ ϕg t

i − ϕout
i ∥1] (11)

where ϕi is the feature map from the i-th pooling layer of VGG-16 pre-trained on ImageNet, and Ni is the
number of elements in ϕi .

Similarly, the style loss is defined as follows:

Ls = Ei [∥ G (ϕi
g t) −G (ϕi

out) ∥1] (12)

where G represents the Gram matrix on the feature map, G (ϕ) = ϕT ϕ.

4 Experiments
We describe the datasets, experimental details, and comparison models in our experiment setting. We

compare the inpainting results of our proposed D-former and advanced methods on two public datasets,
and evaluate the inpainting effect of the D-former model on PSP images on the PSP image dataset. Finally,
we perform an ablation study of the modules and loss functions in the D-former model.

4.1 Experimental Settings
4.1.1 Dataset

We evaluated the restore performance of the D-former model on three datasets.

1. PSP dataset: Real pressure-sensitive paint test images from the China Aerodynamics Research and
Development Center (CARDC) are cropped to create a training dataset of 15,000 images and a testing
dataset of 1000 images. The training set is expanded to 20,000 samples by means of panning, scaling,
rotating and adding noise to improve the generalization ability of the model under different working
conditions. As shown in Fig. 3.

2. Paris StreetView dataset [35]: This dataset mainly includes city buildings collected from Google
StreetView in Paris. It contains 14,900 training images and 100 test images and is suitable for training
inpainting models of various buildings.

3. CelebA-HQ dataset [36]: This dataset focuses on the faces of some celebrities and is a high-resolution
version of the CelebA dataset. It includes 30,000 images, and we use the first 2000 images to test the
model and the remaining 28,000 images for training. It is commonly used in model training for face
editing and restoration.

4. Irregular mask dataset: Following existing methods, we use the irregular mask dataset of Liu et al. [16] as
the test mask to evaluate all trained models. The irregular mask data contains 6 categories with different
hole ratios, each with 2000 masks. We evaluated all models using masks with mask ratios of 10%–20%,
20%–30%, 30%–40%, and 40%–50%.



3268 Comput Mater Contin. 2025;84(2)

Figure 3: PSP image dataset

4.1.2 Experimental Details
Our D-former was programmed using PyTorch and trained on a single RTX 6000 GPU with batch

size 6. We optimized the network using AdamW with β1 = 0.5 and β2 = 0.9 [11]. We first trained the model
from scratch with a learning rate of 10−4, and then fine-tuned it with a learning rate of 10−5. For the PSP
dataset, 300,000 and 50,000 iterations were used for training and fine-tuned, respectively, and for the Paris
StreetView dataset, 400,000 and 200,000 iterations were used for the training from scratch and fine-tuned
stages. For CelebA-HQ, the training and fine-tuned stages used 450,000 and 200,000 iterations, respectively.
All input images were resized to 256 × 256.

4.1.3 Comparison Model
To show the performance of our D-former, we compare it with five advanced models. These models

include RFR [14], LGNet [37], T-former [27], Spa-former [29], and HINT [21]. To be fair, a part of the data
is obtained by testing directly using the officially released pre-trained models, and the rest of the data is
reproduced and tested according to the paper.

RFR [14]: A recurrent inpainting method with special contextual attention that recursively restores
missing regions and gradually strengthens the results.

LGNet [37]: a multilayer network architecture for image inpainting that combines networks with
different receptive fields, considering the complexity of missing regions.

T-former [27]: A U-net style image inpainting network constructed by the proposed linear attention.
Spa-former [29]: An efficient transformer-based image inpainting network that utilizes a novel attention

mechanism with linear complexity.
HINT [21]: An end-to-end high-quality inpainting transformer that utilizes a novel mask-aware pixel-

shuffling downsampling module can extract visible information from corrupted images.

4.2 Qualitative Analysis
We selected PSP images with pressure taps for the qualitative evaluation of the models. In PSP

technology, it is crucial to restore luminescent intensity data at these locations accurately, hence, we chose
30%–40% masks that could cover the pressure taps. Fig. 4 demonstrates the inpainting results of various
models on the PSP dataset, while Figs. 5 and 6 show the qualitative evaluation results on the Paris StreetView
and CelebA-HQ datasets, respectively. It depicts the overall quality of inpainting results at 30%–40%
mask rates.
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Figure 4: Qualitative results of different methods on the PSP Image dataset: (a) Input Image; (b) Masked Image; (c)
RFR; (d) LGNet; (e) T-former; (f) Spa-former; (g) HINT; (h) Ours

Figure 5: Qualitative results of different methods on the Paris StreetView dataset: (a) Input Image; (b) Masked Image;
(c) RFR; (d) LGNet; (e) T-former; (f) Spa-former; (g) HINT; (h) Ours

Figure 6: Qualitative results of different methods on the CelebA-HQ dataset: (a) Input Image; (b) Masked Image; (c)
RFR; (d) LGNet; (e) T-former; (f) Spa-former; (g) HINT; (h) Ours
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Through visual comparison, the inpainting results obtained using Spa-former and HINT methods
are relatively satisfactory, but they are still prone to problems such as blurring, artifacts, and semantic
inconsistencies. For example, the holes are not fully restored in Fig. 4f,g and Fig. 5f,g shows artifacts,
and Fig. 6f,g shows distorted eyes and inconsistent colors. Similarly, other methods also exhibit noticeable
problems, such as distorted boundaries (second and third rows in Fig. 4c,d) and mask traces (first row
in Fig. 4c,e), artifacts (first row in Fig. 5c–e) and unrestored window structures (second row in Fig. 5c,d), as
well as blurring and artifacts of the eyes in Fig. 6c,d. Compared with these models, our restored images can
present more reasonable and realistic visual effects in most cases.

4.3 Quantitative Analysis
4.3.1 Evaluation of Inpainting Effectiveness

We chose several common metrics for image inpainting tasks to evaluate the model performance [27]:
PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index) scores, which are evaluated based
on low-level pixel values. FID (Fréchet Inception Distance) score, which calculates distance based on
deep high-level representations, measures image quality similar to human perception. The performance of
different models on three datasets under different mask ratios is shown in Table 1, tests with different ratios of
masks under the same dataset use the identical set of test images. Compared with a set of comparative models,
including RFR [14], LGNet [37], T-former [27], Spa-former [29], and HINT [21], our proposed D-former
exhibits excellent performance on all three datasets.

Table 1: Quantitative results of different methods on the PSP Image, Paris StreetView, and CelebA-HQ datasets, bolded
in the table indicates optimal results

Dataset PSP image Paris street view CelebA-HQ

Masks 10%–
20%

20%–
30%

30%–
40%

40%–
50%

10%–
20%

20%–
30%

30%–
40%

40%–
50%

10%–
20%

20%–
30%

30%–
40%

40%–
50%

PSNR↑

RFR 43.39 39.58 36.79 34.71 31.75 27.76 25.99 24.25 30.93 28.94 26.85 24.87
LGNet 44.37 40.21 37.07 34.83 29.59 26.48 24.22 22.44 32.55 29.28 27.11 25.21

T-former 45.16 40.70 38.02 35.16 32.09 29.52 27.27 25.06 33.28 30.10 27.48 25.54
Spa-former 45.21 41.21 38.07 35.70 32.54 29.63 27.33 25.21 33.65 30.37 27.83 25.78

HINT 45.20 40.99 38.04 35.36 32.40 29.57 27.31 25.08 33.29 30.11 27.75 25.74
Ours 45.27 41.25 38.21 35.83 32.88 29.65 27.35 25.31 34.71 31.11 28.38 26.00

SSIM↑

RFR 0.992 0.984 0.974 0.962 0.933 0.891 0.838 0.778 0.969 0.943 0.926 0.889
LGNet 0.994 0.987 0.977 0.965 0.924 0.863 0.798 0.725 0.976 0.955 0.935 0.909

T-former 0.995 0.989 0.978 0.969 0.959 0.921 0.876 0.820 0.981 0.961 0.939 0.913
Spa-former 0.995 0.989 0.981 0.971 0.961 0.921 0.878 0.822 0.983 0.964 0.944 0.918

HINT 0.995 0.988 0.980 0.970 0.960 0.918 0.878 0.820 0.982 0.961 0.942 0.914
Ours 0.995 0.990 0.982 0.971 0.969 0.938 0.888 0.828 0.988 0.971 0.949 0.921

FID↓

RFR 2.36 4.84 9.16 17.63 18.33 27.93 39.84 48.96 5.17 4.06 4.89 6.11
LGNet 1.70 4.17 7.62 15.95 15.53 24.39 36.81 47.18 1.87 3.21 4.57 5.80

T-former 1.59 3.85 7.33 13.71 13.45 23.78 35.79 46.36 1.60 2.70 3.97 5.66
Spa-former 1.48 3.18 6.83 13.24 13.23 23.67 35.29 46.15 1.44 2.63 3.76 5.23

HINT 1.55 3.70 7.14 13.55 13.36 23.71 35.73 46.28 1.53 2.65 3.87 5.41
Ours 1.38 3.02 6.63 10.81 11.39 19.43 28.49 39.61 1.29 2.25 3.59 4.91

Additionally, to further analyze the computational complexity of the model, we compare the perfor-
mance of D-former with other comparative models and baseline models in Table 2 across multiple metrics,
including multiply-accumulate operations (MAC), floating point operations per second (FLOPs), number of
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parameters, inference time for a single image, and GPU memory consumption. The results in Table 2 clearly
demonstrate that, compared to other methods, our model has the most streamlined parameter count and
delivers the best inference time. Moreover, our approach also exhibits lower computational complexity in
terms of FLOPs.

Table 2: Complexity measurement of different models on the PSP Image dataset. Bolded in the table indicates optimal
results

Model MAC FLOPs Params Inference time GPU_Memory_Usage
RFR 206.1 G 176.1 G 30.6 M 38.48 ms 8458 MB

LGNet 69.6 G 55.4 G 115.0 M 78.74 ms 12,218 MB
T-former 84.5 G 51.3 G 14.8 M 83.58 ms 21,378 MB

Spa-former 46.8 G 44.4 G 13.2 M 52.66 ms 22,062 MB
HINT 75.9 G 52.4 G 139.0 M 74.85 ms 9232 MB

Swin-B [6] 27.6 G 15.4 G 88.0 M 54.93 ms 21,630 MB
DiNAT [33] 28.4 G 13.7 G 90.0 M 46.94 ms 20,162 MB

Ours 44.4 G 15.7 G 12.4 M 33.36 ms 10,876 MB

Combining the results in Tables 1 and 2, it can be concluded that, thanks to the long-range dependency
capture capability and dynamic parameters brought by the proposed MDA, our D-former can provide
relatively higher-quality restored images with fewer parameters and lower computational complexity when
facing different scenarios (datasets) and encountering different damage situations.

4.3.2 Evaluation of Inpainting Accuracy
(1) Real Wind Tunnel Test Validation
To evaluate the accuracy of the model in restoring the luminescent intensity data of PSP images, a set

of experiments was designed in this part for verification. The PSP tests were conducted in CARDC’s ∅0.7 m
wind tunnel using a flying wing model under strictly controlled environmental conditions including constant
exposure time, temperature, aperture size, and atmospheric pressure, and at a wind speed of 70 m/s, the
experimental model was subjected to image capture at 0○ and 10○ to the horizontal plane, respectively.

The same image processing (denoising, etc.) was first performed on both sets of image data. Fig. 7a
shows the unrestored PSP image, with black dots along the model boundary as marker points, and smaller
holes on the back and lower half of the wing model as pressure taps. Fig. 7 shows the inpainting effects of
different methods. It can be observed that other methods have some holes that have not been restored, and
the restored area is not coherent with the surrounding area, which clearly does not conform to the pressure
distribution. Our restored images have smoother results with consistent context.

In order to quantify the performance of the model in restoring the luminescent intensity data of PSP
images, we use the actual pressure data obtained from pressure taps as a benchmark and compare it with
the pressure data calculated by restoring the luminescent intensity data, and calculate the relative error
between them. The relationship between luminescent intensity data and pressure can be described by the
Stern-Volmer formula:

I0

I
= A+ B P

P0
(13)
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here, A and B are constants (usually determined by calibration experiments), I0 and P0 are the luminescent
intensity value and air pressure at a reference condition, I is the luminescent intensity value predicted by the
model, and the pressure P at any position on the surface of the model can be calculated by this formula.

Figure 7: Comparison of the effect of PSP images of flying wings restored by different methods. The top is 0–70 (angle-
wind speed), and the bottom is 10–70. Zoom in for a better view. (a) Original; (b) Masked Image; (c) RFR; (d) LGNet;
(e) T-former; (f) Spa-former; (g) HINT; (h) Ours

Using the above formula to obtain pressure data at 68 pressure taps, the relative error is calculated
by comparing them with the actual pressure values, and the results are then averaged. The formula for the
average relative error is as follows:

δ = ∑
N
i=1 Δ/T

N
× 100% (14)

where Δ denotes the absolute error between true value and measured value, T denotes the true value, and N
denotes the number of pressure taps.

After calculating the pressure data of the PSP images restored using different methods, we derived the
results. This is shown in Table 3. It can be observed that the restoration results of RFR and LGNet have a large
deviation with a relative error of over 0.2%, while our restoration results have a higher accuracy of around
0.1%. This indicates that the method in this article can effectively restore the luminescent intensity data of
the PSP image and conforms to the flow field pressure distribution.

Table 3: Average relative error results of pressure data on PSP images restored by different methods. 0–70 means that
the wind speed is 70 m/s and the model is at 0○ to the horizontal. Bolded in the table indicates optimal results

Methods 0–70 10–70

δ ↓

RFR 0.3081% 0.2450%
LGNet 0.2601% 0.2271%

T-former 0.1854% 0.2012%
Spa-former 0.1494% 0.1659%

HINT 0.1647% 0.1805%
Ours 0.1049% 0.1225%

To visualize the restoration accuracy of the model, we conduct a comparative analysis between the
calculated pressure values from the 15 pressure taps in the fourth column of the flying wing model and
the true pressure values obtained using pressure scanner instrument (PSI), and plot the corresponding line
graphs. It can be observed from Fig. 8 that although the calculated results of each model generally follow the
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trend of the true value curve, they all exhibit significant errors. In contrast, our calculated results are closer
to the actual values, with noticeably smaller errors. This comparison visually demonstrates the advantages
of our model in restoring pressure data.

Figure 8: Comparison of pressure data obtained using PSP and PSI techniques at the fourth column of pressure taps
on the flying wing under 10–70 conditions. The orange and blue dots represent the PSP and PSI data, respectively. (a)
RFR; (b) LGNet; (c) T-former; (d) Spa-former; (e) HINT; (f) Ours

(2) Large-Area Defect Evaluation
To validate the model’s restoration capability under extreme PSP damage scenarios, we select PSP images

with pressure taps and simulate large-area damage conditions by covering them with 40%–50% masks. The
D-former and various comparative methods were employed for inpainting, and the qualitative results are
shown in Fig. 9, where it can be observed that our method not only fully restores the damaged regions and
the unique pressure taps, but also maintains excellent pressure consistency. Based on Eq. (13), we calculate
the pressure values at the locations of two pressure taps on each image and combine the true pressure values
to calculate the relative errors using Eq. (14). The results are presented in Table 4. The experimental results
demonstrate that even under extreme damage conditions, our model can achieve high precision inpainting
effects, highlighting its potential for practical applications.
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Figure 9: Qualitative comparison of PSP image with pressure taps and large damaged areas restored by different
methods: (a) Input Image; (b) Masked Image; (c) RFR; (d) LGNet; (e) T-former; (f) Spa-former; (g) HINT; (h) Ours

Table 4: Average relative error results at pressure taps on large damaged PSP images restored by different methods,
Group 1 represents the first image above. Bolded in the table indicates optimal results

Methods Group 1 Group 2 Group 3

δ ↓

RFR 0.0128% 0.0284% 0.0506%
LGNet 0.0102% 0.0242% 0.0486%

T-former 0.0841% 0.0216% 0.0402%
Spa-former 0.0067% 0.0129% 0.0349%

HINT 0.0060% 0.0148% 0.0341%
Ours 0.0056% 0.0101% 0.0297%

4.4 Ablation Study
4.4.1 Effectiveness of the MDA Module
• Experiment I (G + G + G + G): Global attention is used in all four stages [7].
• Experiment II (D + G + G + G): Using MDA module only in the first stage.
• Experiment III (D + D + G + G): Using MDA module in the first and second stages.
• Experiment IV (D + D + D + G): Using MDA module in stages 1, 2, and 3.
• Experiment V (D + D + D + D): Using MDA module in all four stages.

We use MDA module in all transformer blocks in our D-former. To demonstrate the effectiveness of
our proposed MDA, we explore the performance of using MDA modules at different stages. The baseline
model uses multi head self-attention (MHA) [7] instead of the MDA module in all stages. Over the four
stages of the model, we progressively replace the global MHA module with MDA module at each stage. The
ablation experiment is conducted on the PSP Image dataset, and Fig. 10 shows the qualitative results of each
experiment. Table 5 shows the quantitative results of models with different structures. The results show that
the performance of the model using MDA module in stage 1 is much better than that using only global
attention. As the proportion of MDA module increases in the model stage, the performance of the model
reaches a small peak using MDA modules in stages 1 and 2, and then declines. The best model performance
is achieved when all stages use MDA module. This further demonstrates the effectiveness of the proposed
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locality and sparse attention mechanism, as well as the redundancy of modeling dependencies between all
image patches.

Figure 10: Qualitative comparison results of ablation experiments: (a) Input Image; (b) Masked Image; (c) Experiment
I; (d) Experiment II; (e) Experiment III; (f) Experiment IV; (g) Experiment V

Table 5: Experimental results for different stages of the MDA module analyzed on the PSP image dataset. Bolded in
the table indicates optimal results

Dataset PSP image

Masks ratio 10%–20% 20%–30% 30%–40% 40%–50%

PSNR↑

Experiment I 36.76 35.70 34.42 32.96
Experiment II 39.42 38.54 36.77 35.00
Experiment III 40.64 39.05 36.99 35.18
Experiment IV 39.15 38.15 36.79 34.97
Experiment V 45.27 41.25 38.21 35.83

SSIM↑

Experiment I 0.980 0.978 0.972 0.962
Experiment II 0.987 0.984 0.976 0.966
Experiment III 0.989 0.985 0.977 0.967
Experiment IV 0.987 0.984 0.977 0.967
Experiment V 0.995 0.990 0.982 0.971

FID↓

Experiment I 5.59 4.85 7.33 12.87
Experiment II 4.62 4.12 6.73 11.76
Experiment III 2.98 4.00 6.62 11.23
Experiment IV 4.01 4.23 6.76 12.15
Experiment V 1.38 3.02 6.63 10.81

To evaluate the capability of the MDA module in capturing global context and local details, we conduct
a visualization analysis of attention maps for the above versions of the model. Specifically, we applied the
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grad-CAM technique [38] to the last layer of the model’s encoding stage, generating heat maps that were
overlaid on the original images, thus allowing us to intuitively observe the key regions the model focuses on
during image inpainting. As shown in Fig. 11, the model without the MDA module (Fig. 11c) exhibits a more
uniform weight distribution, primarily capturing texture features. Experiment II (Fig. 11d), which introduces
the MDA module at the shallow layers, begins to focus on information surrounding the missing regions. As
the proportion of the MDA module increases in the encoder stage, the model gradually focuses on the global
features of the image. Ultimately, our model (Fig. 11g) demonstrates the ability to simultaneously capture
large-scale features and local details, showcasing enhanced contextual understanding.

Figure 11: Heat map results. Darker colors indicate more attention. (a) Input Image; (b) Masked Image; (c) Experiment
I; (d) Experiment II; (e) Experiment III; (f) Experiment IV; (g) Experiment V

4.4.2 Effects of Attention Head Count and Dilation Rate
To investigate the effects of two key parameters in the MDA module on model performance, we design

a series of experiments for analysis. Based on the settings of the number of heads in the multi-head attention
mechanism from previous studies [6,29], we select three combinations of attention head numbers as shown
in Table 6, and evaluate the performance of models with different dilation rates on the PSP dataset. As
shown in Table 6, when the dilation rate of the MDA module is moderate, it can effectively leverage both
the locality and sparsity of attention without causing redundant information modeling due to an excessively
large receptive field (e.g., global attention), thereby achieving optimal model performance. Accordingly, we
set the dilation rates of the model to {[1],[1,2],[1,2,3,4],[1,2,3,4]}.

4.4.3 Ablation Study of Loss Function
To validate the rationality of our selected loss functions and hyperparameter settings, this section con-

ducts systematic ablation experiments. The experimental design includes two aspects: first, the contribution
of each loss function to model performance is evaluated by sequentially removing the reconstruction loss
Lr , adversarial loss La , perceptual loss Lp, and style loss Ls ; second, based on the optimal hyperparameter
combination (λr = 1, λa = 0.1, λp = 1, λs = 250) determined through Optuna search [39], we compare and
analyse it with other weight combinations that perform well.
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Table 6: Analyze the number of attention heads and the dilation rate of the MDA module on the PSP dataset. Bolded
in the table indicates optimal results

Head num in 4 stage Dilation rate PSNR↑ SSIM↑ FID↓

1 [1,2,4,8]
[1],[1,2],[1,2],[1,2] 38.64 0.966 6.58

[1],[1,2],[1,2],[1,2,3,4] 39.52 0.976 5.84
Ours {[1],[1,2],[1,2,3,4],[1,2,3,4]} 40.90 0.983 4.18

2 [2,4,8,12] [1,2],[1,2],[1,2,3,4],[1,2,3,4] 37.14 0.965 10.53
[1,2],[1,2,3,4],[1,2,3,4],[1,2,3,4,5,6] 35.12 0.954 12.99

3 [3,6,12,24] [1],[1,2,3],[1,2,3,4],[1,2,3,4,5,6] 38.34 0.961 6.75
[1,2,3],[2,3,4],[1,2,3,4],[1,2,3,4] 36.81 0.957 10.86

The experimental results are shown in Table 7, which indicates that each loss function improves
the performance of the model to varying degrees, proving their necessity in the overall loss function,
with the removal of the adversarial loss having the most pronounced impact on model performance. In
the hyperparameter comparison experiments, our parameter combination exhibits the best performance,
confirming the rationality of the parameter selection. Ablation experiments are performed on the PSP image
dataset, the mask is the whole test mask dataset.

Table 7: Ablation study of loss functions and hyperparameter settings. Bolded in the table indicates optimal results

Methods PSNR↑ SSIM↑ FID↓
w/o Lr 38.22 0.971 9.40
w/o La 36.71 0.969 11.51
w/o Lp 38.83 0.974 7.58
w/o Ls 39.25 0.978 5.43

A [1,2,0.5,1] 40.83 0.982 4.35
B [1,0.01,1,60] 40.79 0.982 4.32

Ours (λr + 0.1λa + λp + 250λs) 40.90 0.983 4.18

5 Conclusion
This article introduces an efficient PSP image inpainting network D-former, which is based on a

multi-scale dilated attention mechanism. For the characteristics of PSP images and practical inpainting
requirements, the MDA module we proposed fully leverages the localization and sparsity properties of
self-attention mechanism in networks, by expanding the self-attention range, the module can capture
receptive fields of different scales in each attention head, thereby efficiently integrating multi-scale semantic
information and effectively reducing the redundancy of self-attention mechanism without requiring complex
operations or additional computational costs. By capturing local details and global contextual information
in PSP images through the MDA module, the D-former model can more accurately restore the luminescent
intensity data at the holes of PSP images, generating luminescent intensity images with local continuity and
global distribution consistency. Qualitative and quantitative experiments verify that D-former outperforms
the other five advanced models and has the lowest complexity. In addition, ablation experiments further
confirm that the MDA module can enhance the focus of attention, effectively filter out irrelevant information
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or noise, thus improving the effectiveness of image inpainting. Notably, physical experiments validate the
advantages of D-former in PSP image processing: compared to other methods, the network can restore the
luminescent intensity data of PSP images more precisely, obtain the surface pressure distribution of the wind
tunnel model, and also performs well in large-area damage scenarios.

Although our method has achieved certain success in PSP image inpainting tasks, it still faces challenges
of structural and semantic inconsistencies when dealing with large damaged areas in complex scenes. To
address this issue, we plan to explore multimodal learning approaches in future research, integrating textual
and structural information to enhance inpainting performance. Additionally, D-former method is limited
by computational resources when restoring high-resolution images, resulting in constrained performance.
Therefore, we will also focus on designing more efficient attention mechanisms and lightweight models to
better handle the inpainting of high-resolution images.

Acknowledgement: The authors gratefully acknowledge the technical support provided by the China Aerodynamic
Research and Development Centre.

Funding Statement: This research was partly supported by the National Natural Science Foundation of China under
Grant 12202476, author Chunhua Wei, https://www.nsfc.gov.cn/.

Author Contributions: Conceptualization, Jinrong Li; methodology, Jinrong Li and Zhisheng Gao; resources, Chun-
hua Wei; supervision, Chunhua Wei and Lei Liang; writing—original draft preparation, Jinrong Li; writing—review and
editing, Lei Liang and Zhisheng Gao. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data supporting the reported results are available upon request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Gregory JW, Asai K, Kameda M, Liu T, Sullivan JP. A review of pressure-sensitive paint for high-speed and unsteady

aerodynamics. Proc Inst Mech Eng Part G J Aerosp Eng. 2008;222(2):249–90. doi:10.1243/09544100jaero243.
2. Bertalmio M. Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE. IEEE Trans

Image Process. 2006;15(7):1934–8. doi:10.1109/TIP.2006.877067.
3. Buyssens P, Daisy M, Tschumperlé D, Lézoray O. Exemplar-based inpainting: technical review and new heuristics

for better geometric reconstructions. IEEE Trans Image Process. 2015;24(6):1809–24. doi:10.1109/TIP.2015.2411437.
4. Jiang T, Li Q, Chen S, Chang Y, Zhang Q. Image inpainting of wind tunnel test based on Otsu method and FMM.

Acta Aeronaut Et Astronaut Sin. 2020;41(2):123293. (In Chinese). doi:10.7527/S1000-6893.2019.23293.
5. Deng Y, Hui S, Zhou S, Meng D, Wang J. Learning contextual transformer network for image inpainting. In:

Proceedings of the 29th ACM International Conference on Multimedia; 2021 Oct 20–24; Online. doi:10.1145/
3474085.3475426.

6. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical vision transformer using shifted
windows. In: Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct
10–17; Montreal, QC, Canada. doi:10.1109/ICCV48922.2021.00986.

7. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai XH, Unterthiner T, et al. An image is worth 16 × 16
words: transformers for image recognition at scale. arXiv:2010.11929. 2020.

8. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In:
Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; 2015 Oct 5–9;
Munich, Germany. doi:10.1007/978-3-319-24574-4_28.

https://www.nsfc.gov.cn/
https://doi.org/10.1243/09544100jaero243
https://doi.org/10.1109/TIP.2006.877067
https://doi.org/10.1109/TIP.2015.2411437
https://doi.org/10.7527/S1000-6893.2019.23293
https://doi.org/10.1145/3474085.3475426
https://doi.org/10.1145/3474085.3475426
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1007/978-3-319-24574-4_28


Comput Mater Contin. 2025;84(2) 3279

9. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. Context encoders: feature learning by inpainting. In:
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27–30;
Las Vegas, NV, USA. doi:10.1109/CVPR.2016.278.

10. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets.
arXiv:1406.2661v1. 2014.

11. Nazeri K, Ng E, Joseph T, Qureshi F, Ebrahimi M. EdgeConnect: structure guided image inpainting using edge
prediction. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW); 2019 Oct 27–28; Seoul, Republic of Korea. doi:10.1109/iccvw.2019.00408.

12. Guo X, Yang H, Huang D. Image inpainting via conditional texture and structure dual generation. In: Proceedings
of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 10–17; Montreal, QC,
Canada. doi:10.1109/ICCV48922.2021.01387.

13. Liao L, Xiao J, Wang Z, Lin CW, Satoh S. Image inpainting guided by coherence priors of semantics and textures.
arXiv:2012.08054v1. 2020.

14. Li J, Wang N, Zhang L, Du B, Tao D. Recurrent feature reasoning for image inpainting. In: Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13–19; Seattle, WA, USA.
doi:10.1109/cvpr42600.2020.00778.

15. Suvorov R, Logacheva E, Mashikhin A, Remizova A, Ashukha A, Silvestrov A, et al. Resolution-robust large mask
inpainting with Fourier convolutions. arXiv:2109.07161v2. 2021.

16. Liu G, Reda FA, Shih KJ, Wang TC, Tao A, Catanzaro B. Image inpainting for irregular holes using partial
convolutions. arXiv:1804.07723v2. 2018.

17. Yu J, Lin Z, Yang J, Shen X, Lu X, Huang T. Free-form image inpainting with gated convolution. arXiv:1806.03589v2.
2018.

18. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Proceedings
of the Advances in Neural Information Processing Systems 30 (NIPS 2017); 2017 Dec 4–9; Long Beach, CA, USA.

19. Yang B, Wang X, Xing Y, Cheng C, Jiang W, Feng Q. Modality fusion vision transformer for hyperspectral and
LiDAR data collaborative classification. IEEE J Sel Top Appl Earth Obs Remote Sens. 2024;17(21):17052–65. doi:10.
1109/JSTARS.2024.3415729.

20. Bai J, Fan Y, Zhao Z, Zheng L. Image inpainting technique incorporating edge prior and attention mechanism.
Comput Mater Contin. 2024;78(1):999–1025. doi:10.32604/cmc.2023.044612.

21. Chen S, Atapour-Abarghouei A, Shum HPH. HINT: high-quality INpainting transformer with mask-aware
encoding and enhanced attention. IEEE Trans Multimed. 2024;26:7649–60. doi:10.1109/TMM.2024.3369897.

22. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transform-
ers. In: Proceedings of the Computer Vision—ECCV 2020; 2020 Aug 23–28; Glasgow, UK. doi:10.1007/978-3-030-
58452-8_13.

23. Yang F, Yang H, Fu J, Lu H, Guo B. Learning texture transformer network for image super-resolution. In:
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun
13–19; Seattle, WA, USA. doi:10.1109/cvpr42600.2020.00583.

24. Liu S, Chi J, Wu C, Xu F, Yu X. SGT-net: a transformer-based stratified graph convolutional network for 3D point
cloud semantic segmentation. Comput Mater Contin. 2024;79(3):4471–89. doi:10.32604/cmc.2024.049450.

25. Wang W, Xie E, Li X, Fan DP, Song K, Liang D, et al. Pyramid vision transformer: a versatile backbone for dense
prediction without convolutions. In: Proceedings of the 2021 IEEE/CVF International Conference on Computer
Vision (ICCV); 2021 Oct 10–17; Montreal, QC, Canada. doi:10.1109/ICCV48922.2021.00061.

26. Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang MH. Restormer: efficient transformer for high-resolution
image restoration. In: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR); 2022 Jun 18–24; New Orleans, LA, USA. doi:10.1109/CVPR52688.2022.00564.

27. Deng Y, Hui S, Zhou S, Meng D, Wang J. T-former: an efficient transformer for image inpainting. In: Proceedings
of the 30th ACM International Conference on Multimedia; 2022 Oct 10–14; Lisboa, Portugal. doi:10.1145/3503161.
3548446.

28. Lingle LD. Transformer-VQ: linear-time transformers via vector quantization. arXiv:2309.16354. 2023.

https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/iccvw.2019.00408
https://doi.org/10.1109/ICCV48922.2021.01387
https://doi.org/10.1109/cvpr42600.2020.00778
https://doi.org/10.1109/JSTARS.2024.3415729
https://doi.org/10.1109/JSTARS.2024.3415729
https://doi.org/10.32604/cmc.2023.044612
https://doi.org/10.1109/TMM.2024.3369897
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1109/cvpr42600.2020.00583
https://doi.org/10.32604/cmc.2024.049450
https://doi.org/10.1109/ICCV48922.2021.00061
https://doi.org/10.1109/CVPR52688.2022.00564
https://doi.org/10.1145/3503161.3548446
https://doi.org/10.1145/3503161.3548446


3280 Comput Mater Contin. 2025;84(2)

29. Huang W, Deng Y, Hui S, Wu Y, Zhou S, Wang J. Sparse self-attention transformer for image inpainting. Pattern
Recognit. 2024;145(3):109897. doi:10.1016/j.patcog.2023.109897.

30. Cohen TS, Welling M. Group equivariant convolutional networks. Proc Mach Learn Res. 2016;48:2990–9.
31. Ma YJ, Shuai HH, Cheng WH. Spatiotemporal dilated convolution with uncertain matching for video-based crowd

estimation. IEEE Trans Multimed. 2021;24:261–73. doi:10.1109/TMM.2021.3050059.
32. Chen Y, Dai X, Liu M, Chen D, Yuan L, Liu Z. Dynamic convolution: attention over convolution kernels. In:

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun
13–19; Seattle, WA, USA. doi:10.1109/CVPR42600.2020.01104.

33. Hassani A, Shi H. Dilated neighborhood attention transformer. arXiv:2209.15001. 2022.
34. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks.

In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22–29; Venice,
Italy. doi:10.1109/ICCV.2017.244.

35. Doersch C, Singh S, Gupta A, Sivic J, Efros AA. What makes Paris look like Paris? Commun ACM.
2015;58(12):103–10. doi:10.1145/2830541.

36. Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of GANs for improved quality, stability, and variation.
arXiv:1710.10196. 2017.

37. Quan W, Zhang R, Zhang Y, Li Z, Wang J, Yan DM. Image inpainting with local and global refinement. IEEE Trans
Image Process. 2022;31:2405–20. doi:10.1109/tip.2022.3152624.

38. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep
networks via gradient-based localization. In: Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV); 2017 Oct 22–29; Venice, Italy. doi:10.1109/ICCV.2017.74.

39. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-generation hyperparameter optimization frame-
work. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining; 2019 Aug 4–8; Anchorage, AK, USA. doi:10.1145/3292500.3330701.

https://doi.org/10.1016/j.patcog.2023.109897
https://doi.org/10.1109/TMM.2021.3050059
https://doi.org/10.1109/CVPR42600.2020.01104
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1145/2830541
https://doi.org/10.1109/tip.2022.3152624
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1145/3292500.3330701

	Multi-Scale Dilated Attention-Based Transformer Network for Image Inpainting
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	5 Conclusion
	References


