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ABSTRACT: This study systematically reviews the applications of generative artificial intelligence (GAI) in breast
cancer research, focusing on its role in diagnosis and therapeutic development. While GAI has gained significant
attention across various domains, its utility in breast cancer research has yet to be comprehensively reviewed. This
study aims to fill that gap by synthesizing existing research into a unified document. A comprehensive search was
conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines,
resulting in the retrieval of 3827 articles, of which 31 were deemed eligible for analysis. The included studies were
categorized based on key criteria, such as application types, geographical distribution, contributing organizations,
leading journals, publishers, and temporal trends. Keyword co-occurrence mapping and subject profiling further
highlighted the major research themes in this field. The findings reveal that GAI models have been applied to improve
breast cancer diagnosis, treatment planning, and outcome predictions. Geographical and network analyses showed
that most contributions come from a few leading institutions, with limited global collaboration. The review also
identifies key challenges in implementing GAI in clinical practice, such as data availability, ethical concerns, and model
validation. Despite these challenges, the study highlights GAI’s potential to enhance breast cancer research, particularly
in generating synthetic data, improving diagnostic accuracy, and personalizing treatment approaches. This review
serves as a valuable resource for researchers and stakeholders, providing insights into current research trends, major
contributors, and collaborative networks in GAI-based breast cancer studies. By offering a holistic overview, it aims to
support future research directions and encourage broader adoption of GAI technologies in healthcare. Additionally, the
study emphasizes the importance of overcoming implementation barriers to fully realize GAI’s potential in transforming
breast cancer management.
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1 Introduction
GAI, a term that has gained attention recently across a wide spectrum of applications and domains, from

experts to layman, from working adults to schooling children, regardless of formal working and/or leisure
entertainment purposes, as well as daily errand planning. The emergence of consumer-facing products,
for example, ChatGPT [1], StyleGAN [2], and/or MidJourney (AI image generator from text) [3] have
revolutionizing the approaches of problem-solving amongst consumers in different facets of daily life. In
clinical settings, GAI is not new however, some renowned architectures, for example, Generative Adversarial
Networks (GAN), Recurrent Neural Networks (RNN), and Variational Autoencoders (VAE) have been used
for decades in medical image analysis [4–6], diagnostic and treatment of cancers, as well as laboratory-related
applications. These architectures are less scalable, compared to the state-of-the-art models, which have
traditionally restricted their development to smaller scales in terms of parameters, data, and computational
resources, formalizing the foundation models for modern architectures in GAI.

AI, the umbrella term that encompasses all computational algorithms with capabilities to perform task-
specific activities that conventionally require human intelligence, for example, decision-making, pattern
recognition, and learning from past experiences. The idea of mimicking human intelligence was first
conceived by Alan Turing in 1950 [7] and later the phrase: “artificial intelligence”, was coined by John
McCarthy in 1956, specifically to remark an important subject area in science and engineering, as a sub-
element of machine intelligence [8]. Early AI systems, which are commonly regarded as expert systems, are
mainly knowledge-driven where well-defined rules are used as the backbone of the system [9–11]. Thanks to
the advancement in computational engineering, deep learning, a sub-element of AI, has made great strides in
unsupervised learning of features from the sample/training datasets while performing task-specific activities
(e.g., pattern recognition) automatically with promising performance that matches or even surpasses human
performance [12]. Fig. A1 in Appendix A shows a brief timeline of AI advancement, while Fig. 1 shows the
Venn diagram of AI and the respective sub-elements.

AI: expert systems

Machine learning: support vector machine; decision trees;

etc

Deep learning: neural networks; convolutional neural

networks; etc

GAI: GAN; VAE; Diffusion model; language model;

transformers; normalizing flow model; hybrid model

Figure 1: Venn diagram of AI and the respective sub-elements

In deep learning, the two primary models are discriminative and generative models (the main focus
of this study). Understanding the differences between these two models is essential, as each serves distinct
purposes and approaches within the field of AI, particularly in breast cancer research. A discriminative
model is intended to model and formalize the relationship between the input features (i.e., learned features)
and the output labels (i.e., detection results). A generative model however learns from the inherent dataset
and focuses on the probabilistic generation of new outputs, instead of providing decisions on extant data,
for example, classification and clustering of extant data. Unlike the discriminative model, the outputs
from the GAI are often not replicable, such that the same prompt may result in different solutions. These
solutions however remain valid, fulfilling the input prompt from the users. Therefore, the utilization of
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discriminative and generative models in clinical settings are different but complement one another. In
breast cancer, discriminative models (e.g., convolutional neural networks) are widely used in detection and
classification activities, for example, benign and malignant breast cancer classification [13–15]; prognosis
and risk prediction typically on the likelihood of breast cancer recurrence or progression based on patient
data [16,17]; outcome predictions that aid in predicting outcomes based on clinical, imaging, or genomic
data [18], allowing clinicians to adjust treatment plans dynamically; and therapy optimization, for example,
optimizing radiation or chemotherapy dosages by learning patterns in past treatment data [19,20]. Whereas
GAI models (e.g., GAN) are often used in generative-oriented activities where creation or synthesis events
are genuinely required, fulfilling the input prompt. GAI can improve breast lesion detection [21], facilitate
image synthesis and data augmentation to generate augment datasets for training purposes [22,23], facilitate
diagnosis and treatment procedures [24–26], enhance the quality of breast medical images [27], and explore
the drug structures and results validation [28]. Fig. 2 shows the general concept of discriminative and
generative models in deep learning.

Training data
Decision

determination
Output labels

Input prompt Synthesis Output contents

Discriminative model 

Generative model

Figure 2: General concept of discriminative and generative models in deep learning (figure reproduced from [29]
under Creative Commons CC BY license, Springer Nature)

1.1 Definition of GAI
In recent years, AI has become a ubiquitous term that is being used in a wide spectrum of domains

with remarkable betterment. However, to adopt AI (or GAI) in the clinical setting, the system (so-called
AI system) must be first defined and characterized, depending on the intended purposes associated with
different risk categories. Defining AI systems is important, as this outlines clear boundaries and expectations
for what the system is designed to do, how it operates, what the expected outcomes are, and the potential
risks associated with it. Risk assessment is crucial, allowing users to understand, anticipate, and mitigate
potential negative outcomes that could arise from AI usage, involving critical domains, for example, ethical
consideration, safety and security, trust and public confidence, prevention of harm and legal risks, data
privacy and security, as well as robustness and reliability. With the introduction of the AI Act, manufacturers
are now required to identify which AI systems fall within the regulation scope and are consequently
subject to act compliance and obligations. Table 1 shows the list of definitions of AI systems with respect to
different sources.
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Table 1: List of AI system definitions chronologically (table reproduced from [30] under Creative Commons CC BY
license, Springer Nature)

Sources of definition Definitions
The Organization for Economic
Co-operation and Development

(OECD) Recommendation of
the Council on Artificial

Intelligence 2019 [31]

“An AI system is a machine-based system that can, for a given set
of human-defined objectives, make predictions, recommendations,
or decisions influencing real or virtual environments. AI systems

are designed to operate with varying levels of autonomy”

Commission proposal—(Art.
3(1)) [32]

“AI system means software that is developed with one or more of
the techniques and approaches listed in Annex I and can, for a
given set of human-defined objectives, generate outputs such as
content, predictions, recommendations, or decisions influencing

the environments they interact with”

Council General
Approach—(Art. 3(1)) [33]

“AI system means a system that is designed to operate with
elements of autonomy and that, based on machine and/or

human-provided data and inputs, infers how to achieve a given set
of objectives using machine learning and/or logic- and knowledge
based approaches, and produces system-generated outputs such as
content (generative AI systems), predictions, recommendations or
decisions, influencing the environments with which the AI system

interacts”

European Parliament
position—(Art. 3(1)) [34]

“AI system means a machine-based system that is designed to
operate with varying levels of autonomy and that can, for explicit

or implicit objectives, generate outputs such as predictions,
recommendations, or decisions, that influence physical or virtual

environments”

OECD Recommendation of the
Council on Artificial

Intelligence 2023 [35,36]

“An AI system is a machine-based system that, for explicit or
implicit objectives, infers, from the input it receives, how to

generate outputs such as predictions, content, recommendations,
or decisions that can influence physical or virtual environments.

Different AI systems vary in their levels of autonomy and
adaptiveness after deployment”

1.2 Classification of GAI
Fig. 3 shows the classification of models in GAI, highlighting the respective architecture component

and training method in each model. The architecture component defines how a model processes information
and subsequently generates outputs, while the training method shapes the performance and effectiveness of
a model.

Briefly, the architecture of VAE is based on an encoder-decoder structure and uses variational inference
in the training process [37,38]. VAEs are designed to learn compressed representations of input data by
mapping it to a latent space. In the latent space, new samples can be generated by sampling and decoding from
the learned distribution. A key highlight of VAEs is that the model incorporates a probabilistic framework,
allowing them to generate diverse samples by drawing from a distribution rather than a fixed point, thus,
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making VAEs particularly suitable for tasks where a variety of output options is desirable, such as generating
new images, reconstructing missing data, and/or performing anomaly detection.

GAN consists of two main components, namely, the generator and the discriminator. The primary
role of the generator is to produce synthetic samples, for example, images, to deceive the discriminator,
which evaluates whether a given sample is real or fake [39]. These two networks are trained adversarially,
with the generator improving its output to fool the discriminator, and the discriminator improves capability
in detecting fakes, formalizing a competition between the two leads (i.e., generator and discriminator),
ultimately yielding highly realistic and diverse data. GANs have proven effective in areas, for example, image
generation, video synthesis, and music composition. Despite their impressive results, GANs are known for
being challenging to train, often requiring careful balancing between the generator and the discriminator to
avoid issues like mode collapse.

GAI models Variational Autoencoders (VAE)
Vector Quantized-Variational Autoencoder (VQ-

VAE)

� Encoder-decoder Recurrent Variational Autoencoder (RVVAE)

� Variational inference [40] Constrained Graph Variational Autoencoder 

(CGVAE)

Crystal Diffusion Variational Autoencoder 

(CDVAE)

Junction Tree Variational Autoencoder (JT-VAE)

Diffusion Models Denoising Diffusion Model

� Noise forward-denoising Latent Diffusion Model

� Iterative refinement [41] Denoising Diffusion Probabilistic Model (DDPM)

Geometry Complete Diffusion Model (GCDM)

Video Diffusion Model (VDM)

Language Models Visual Language Model (VLM)

� Recurrent neural network Collaborative Language Model (CLM)

� Supervised [42] Large Language Model (LLM)

Normalizing Flow Model MoFlow

� Coupling layers

� Maximum-likelihood estimation 

[43]

Generative Adversarial Networks 
(GAN)

� Generator-discriminator

� Adversarial [41]

Transformers

� Encoder-decoder

� Supervised [44]

Hybrid Models
� Combination of different models

� Varied

Figure 3: Classification of GAI models (figure adapted from [40–44] under Creative Commons CC BY license, MDPI),
where “⊗” and “∅” denote architecture components and training methods, respectively
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Diffusion models involve a unique approach that starts with noisy data and progressively refines it
through iterative denoising steps, which generate high-quality samples [41]. These models are trained by
learning the dynamics of this noise-diffusion process, making them highly effective at tasks requiring precise,
fine-grained detail, such as high-resolution image synthesis. The noising step inputs random noise into the
data, and the denoising step gradually reconstructs the original signal through multiple iterations. Diffusion
models have recently gained attention for their ability to outperform GANs in certain image generation tasks,
specifically, in tasks in which the generation of detailed textures is required and successfully addresses some
of the training instabilities seen in GANs.

Transformers employ an encoder-decoder architecture and make extensive use of self-attention mecha-
nisms, which allow the model to capture long-range dependencies within data sequences [42]. Transformers
are specifically effective in tasks that involve sequence data, for example, natural language processing, where
the generation of coherent text or translation between languages is involved. The self-attention mechanism
helps the model focus on relevant parts of the input sequence, making it highly scalable and efficient
for tasks that involve handling large datasets with complex relationships. Notably, transformer models
like Generative Pre-trained Transformers (GPTs) have demonstrated groundbreaking performance in text
generation, translation, and summarization tasks.

Language models are typically built using RNNs or Long Short-Term Memory (LSTM) networks, which
are designed to handle sequential data by predicting the next token in a sequence [43]. These models are
trained through supervised learning and are specifically well-suited for generating natural language text, for
example, completing sentences or writing paragraphs. The ability of language models to predict the next
word in a sequence makes them crucial in applications like chatbots, translation systems, and automated
content creation. With the rise of transformer-based models, language models have achieved even greater
performance in generating coherent and contextually accurate text.

Normalizing Flow models use a sequence of invertible transformations, namely coupling layers, to
transform data into a simpler distribution, for example, Gaussian distribution [44]. The key highlight of the
normalizing flows is that the model preserves the exact probability density, allowing for accurate learning
of complex distributions. By retaining density information in the data transformation process, this model is
particularly suitable for tasks, for example, density estimation and probabilistic modeling. Normalizing Flow
models are trained using maximum-likelihood estimation, making them useful in applications that require
precise probability estimates, for example, anomaly detection or uncertainty quantification.

Hybrid models combine elements from multiple GAI models, allowing them to leverage the strengths
of different models [40]. For example, a hybrid model can integrate the probabilistic sampling capabilities of
VAEs with the adversarial training of GANs to achieve both diversity and realism in generated samples. By
combining different architectures and training methods, hybrid models offer flexibility and can be tailored
to meet specific generative goals, whether for image synthesis, text generation, or other creative tasks. These
models are often designed to overcome the limitations of individual architectures, providing a more robust
solution to GAI challenges.



Comput Mater Contin. 2025;84(2) 2021

1.3 Aims and Outline of the Study
Motivated by vigorous advancement in computation engineering and tremendous growth in world

interest using GAI in breast cancer research, here, a systematic bibliographic survey focusing on GAI in
breast cancer is presented. To ensure optimal search, no limiter is set on the publication year. The primary
research questions of this study are: “What are the applications and impacts of generative AI in breast cancer
diagnosis and treatment?” and “How has generative AI been utilized to enhance outcomes in breast cancer
research, particularly in predictive modeling, diagnostics, and therapeutic development?”. The research
question is framed as such to ensure the inclusion of all aspects of GAI models available within breast
cancer. The present study is intended to focus on collating and synthesizing new insights and drawing
constructive conclusions while highlighting the research gaps and challenges in the topic of interest. This
study is organized as follows: Section 2 offers an overview of breast cancer diagnosis and treatment. Section 3
details the methodology employed in this systematic review. Section 4 presents synthesized findings from the
included studies. Section 5 discusses self-assessment, limitations, challenges, and future directions. Finally,
the conclusion is presented in Section 6.

2 Brief Descriptions of Diagnosis and Treatment of Breast Cancer
Here, the study primarily focuses on the diagnosis and treatment of breast cancer, formalizing the two

main domains in cancer management. Diagnosis of breast cancer refers to the process of identifying the
presence of cancer in the breast. This typically involves various tests and procedures, for example, clinical
breast examination, breast imaging procedure, and biopsy grading [12,45]. In breast imaging procedures,
imaging modalities such as non-ionizing radiation, gamma radiation (nuclear medicine), X-ray source,
magnetic field, and ultrasound wave are commonly used [8,46]. Diagnosis of breast cancer is mainly to detect
abnormal cells or tumors, determine their type, size, and stage, and assess whether the cancer has spread.

Treatment in breast cancer involves the medical management of the disease, including a combination of
therapies, for example, surgery, chemotherapy, radiation therapy, hormone therapy, and targeted therapies.
The choice of treatment is dependent on multi-facet factors, for example, the type and stage of the cancer,
hormone receptor status, and overall health of the patient. The primary goal is to remove and/or destroy
cancer cells and prevent recurrence. Briefly, some of the novel treatments, approved by the Food and Drug
Administration (FDA) as targeted therapies for breast cancer are anti-estrogen, LH-RH analogs (goserelin
and leuprolide), CDK4/6 inhibitor (Ribociclib, Palbociclib, and Abemaciclib), PI3Ki inhibitor (Pictilisib,
Pilaralisib, and Voxtalisib), pan-PI3K inhibitor (Buparlisib), TKI (Neratinib and Lapatinib), and mAb [47].

3 Methods
The present study follows the PRISMA guidelines [48]. The review methodologies herein are adopted

and adapted from the previously published protocol/works [49].

3.1 Information Sources and Search Strategy
The proposed search strategies are the output of collaborative discussion from a team comprised of engi-

neering and medical experts. As the present study focuses on generative AI in breast cancer, the search strings
included two elements: “generative AI” and “breast cancer”. These elements are intentionally formulated in a
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broad manner to ensure optimal inclusion of data from all aspects (including diagnosis and treatment) that
primarily adopt/integrate generative AI in breast cancer. The search strategies included limiters, for example,
English language and journal articles. No limiter is set on publication years to maximize the data retrieved.
The “AND” and “OR” operators were used to formalize the search string in the present study (see Table 2).
The systematic literature searches were last performed in December 2024 in four core databases: Scopus,
Web of Science Core Collection, and PubMed, in lieu of search engines provided by specific publishers,
such as SpringerLink, ScienceDirect, Multidisciplinary Digital Publishing Institute (MDPI), and Frontiers.
Mendeley reference management software was used for reference management and related purposes.

Table 2: Search string

Operator Broad elements Keywords and alternative phrases
AND GAI Generative AND artificial AND intelligence OR generative AND ai

Breast cancer Breast AND cancer

3.2 Eligibility Criteria
3.2.1 Inclusion Criteria

Eligible studies were English-language original peer-reviewed journal research articles. Once a relevant
journal research article was retrieved, the references of the articles were screened to explore potential articles
that had not been identified in the initial search. This procedure iterates until no further articles are found. In
Phase 1, only original peer-reviewed journal research articles were considered eligible. In Phase 2, screening
was done on the abstract of the articles. The eligible materials were then subjected to full-text screening. In
the full-text screening phase, a dual-independent approach was adopted, such that all articles were screened
by two independent reviewers where the reviewers were blinded to the other’s decision. If necessary, a
discussion is held between the independent reviewers for eligibility evaluation, especially when the articles
partially fulfill the inclusion criteria. If required, a third reviewer was consulted to attain consensus. The
main inclusion criteria are: (1) the journal articles were using generative AI and (2) the journal articles were
focusing on breast cancer (or multiple cancers that must include breast cancer). The last search of this study
was performed on 24 December 2024. Fig. 4 summarizes the flowchart of the systematic search process in
accordance with the PRISMA guideline [48]. Based on the flowchart, using the search strings as in Table 2, a
total of 3827 articles were first identified. Implementation of exclusion criteria of Phases 1 and 2, resulting in
31 articles eligible for the subsequent synthesis stage. In Phase 1, a total of 39 articles were excluded, whereas
in Phase 2, only 4 articles were excluded. The complete PRISMA checklist is detailed in Tables A2 and A3
in Appendix C.
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Figure 4: Flowchart of the systematic search in accordance with the PRISMA guideline [48]

3.2.2 Exclusion Criteria
Articles published in non-English languages were excluded. Materials, for example, master’s and

doctoral theses or dissertations, books, book chapters, grey literature, conference papers, review articles,
application notes, brief communications, tutorials, and duplicate works were excluded. Protocol articles were
securitized separately for eligibility. Protocol articles that solely reported methodology and protocol in breast
cancer, with no study outcomes, were excluded.

3.3 Data Extraction
Qualitative and quantitative data from each included article were carefully distilled and systematized

into a functional summary endpoint. Qualitative data, for example, type of modalities, dataset, methods,
and findings were extracted, compiled, and tabulated using a table. Quantitative data, for example, statistical
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findings, co-occurrence analysis, and bibliometric information, were collated and systematized to offer a
holistic view of the topic of interest. Charts, graphics, and tables were used as a medium to synthesize
the mineable data. For all included articles, the affiliation and author name were manually disambiguated
(for example, “Harvard Medical School” and “HMS” are both referring to the same affiliation) to avoid
duplication in the analysis using software such as VOS Viewer [50].

3.4 Results Synthesis
Qualitative and quantitative findings from the included works were reported narratively via the

descriptive approach, supported using charts, graphics, and tables. Statistical calculations and compilation of
data were done using Microsoft Excel 2019. Co-occurrence analysis and bibliometric findings were generated
using VOS Viewer 1.6.20 software for Windows [50]. Quantitative findings, for example, classification of
included works was illustrated using a pie chart; geographical distribution was illustrated using a world
map chart; distribution of most contributing journals and publishers using bar charts; temporal publication
analysis using a line graph; subject profiling using a treemap; and keywords co-occurrence, co-authorship
occurrence, and country-ship analysis using bibliometric networks.

3.5 Definition of Performance Metrics Used in the Literature
The confusion matrix is one of the most commonly used performance metrics from the body of the

literature, which is specifically useful in summarizing the classification performance of a classifier with
respect to the testing/validating data. Typically, the confusion matrix consists of a two-dimensional matrix,
where one axis represents the true class of an object, and the other represents the class predicted by the
classifier. Table 3 provides an example of a confusion matrix for a three-class classification task with classes
A, B, and C. The first row of the matrix indicates that 15 objects belong to class A, with 12 correctly classified
as A, one misclassified as B, and two as C.

Table 3: Confusion matrix for three-class classification task

Assigned class

A B C

Actual class
A 12 1 2
B 1 9 0
C 0 0 6

In binary classification tasks, a simplified version of the confusion matrix is often used, where one class
is designated as positive and the other as negative. The four cells of the matrix represent true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN), as shown in Table 4. Here, TP refers to
the correctly predicted positive events, TN refers to the correctly predicted negative events, FP indicates the
incorrectly predicted positive events, and FN represents the incorrectly predicted negative events.
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Table 4: Confusion matrix for two-class classification task, classification into positive and negative classes

Assigned class

Positive Negative

Actual class Positive TP FN
Negative FP TN

From the obtained TP, TN, FP, and FN, performance metrics, for example, Accuracy, Recall/Sensitivity,
Precision, Specificity, F1-score, and Area under the curve (AUC) can be computed. High values denote a
better performance and are preferable in the study. The equations for Accuracy, Recall/Sensitivity, Precision,
Specificity, F1-score, and AUC are as follows (Eqs. (1)–(6)), where d in Eq. (6) denotes the differential element
(the small change) in the false positive rate (i.e., 1-Specificity).

Accurac y = TP + TN
TP + TN + FP + FN

(1)

Recal l/Sensitiv ity = TP
TP + FN

(2)

Precision = TP
TP + FP

(3)

Speci f icity = TN
TN + FP

(4)

F1 − score = 2 ∗ Recal l ∗ Precision
Recal l + Precision

(5)

AUC = ∫
1

0
Recal l(1 − Speci f icity)d(1 − Speci f icity) (6)

The p-value is a metric used in hypothesis testing to assess the statistical significance of an observed
effect or outcome. It represents the probability of obtaining a test statistic as extreme as the one observed,
assuming that the null hypothesis is true. The formula for calculating the p-value depends on the statistical
test being used (e.g., z-test, t-test, chi-squared test, etc.). Eqs. (7)–(9) show the formula for calculation of the
two-tailed test (commonly known as the z-test or t-test), one-tailed test, and chi-squared test, respectively.

p = 2 × P(Z ≥∣ zobs ∣) (7)

where zobs is the observed test statistic; P(Z ≥∣ zobs ∣) is the probability that a standard normal random
variable exceeds the absolute value of the observed z-score (area under the tail).

p = P(Z ≥ zobs) (8)

where zobs is the observed test statistic; P(Z ≥ zobs) is the probability corresponding to the test statistic under
the null hypothesis.

p = P(x2 ≥ x2
obs) (9)
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where x2
obs is the observed chi-squared statistic; P(x2 ≥ x2

obs) is the probability under the chi-squared
distribution. The p-value test is commonly used to determine whether to reject the null hypothesis (i.e., H0)
in favor of the alternative hypothesis (i.e., H1). A small p-value, typically ≤0.05, indicates that the observed
data is unlikely under the null hypothesis, suggesting that the null hypothesis may be false, and the alternative
hypothesis may be more plausible. Whereas, a large p-value, typically >0.05 suggests that the observed data
is consistent with the null hypothesis, hence, lack of evidence to reject the hypothesis.

Mean Squared Error (MSE) is a widely used metric for assessing the performance of regression models.
It calculates the average of the squared differences between the actual values and the predicted values from the
model. The MSE gauges how accurately the predicted values align with the true data points. It is always non-
negative, with lower values indicating a better fit of the model to the data. Conversely, a higher MSE implies
that the model’s predictions are further from the actual values. The formula for MSE is shown in Eq. (10).

MSE = 1
n∑

n
i=1(yi − ŷi)2 (10)

where n denotes the number of data points (sample size); yi denotes the actual/true value for the i-th data
point; ŷi denotes the predicted value for the i-th data point;∑n

i=1(yi − ŷi)2 denotes the sum of the squared
differences between the actual/true and predicted values. The difference calculation is computed for each
data point, i, by calculating the difference between the actual value, yi , and the predicted value, ŷi . The
difference value is then squared to eliminate negative values and to give more weight to larger errors. The
sum of these squared differences is averaged by dividing by the total number of data points, n, giving the
mean squared error. Because the MSE equation involves a square of the differences between actual/true and
predicted values, the MSE is then sensitive to outliers. MSE is often used to compare different models or
algorithms by seeing which has the lowest error. A smaller MSE indicates better performance, with 0 being
the ideal value, denoting no difference between predicted and actual/true values.

Intersection over Union (IoU) is a metric frequently used to assess the performance of object detection,
segmentation, and other tasks that require evaluating the spatial overlap between predicted and ground truth
regions. It quantifies the overlap between two areas, such as the predicted bounding box (or segmentation
mask) and the ground truth bounding box (or mask). Eq. (11) presents the IoU formula, where the Area of
Overlap represents the region where the predicted and ground truth areas intersect (i.e., the shared portion
of both regions), and the Area of Union refers to the total area covered by both the predicted and ground
truth regions, excluding the overlap (i.e., the combined area of both regions).

IoU = Area o f Overl ap
Area o f Union

(11)

The ideal IoU value is 1, indicating that the predicted region exactly matches the ground truth. To the
opposite extreme (IoU of 0), the equation implies no overlap between the predicted and ground truth regions.
Higher IoU is preferable in all cases, indicating better alignment between the predicted and actual regions,
with values closer to 1 being ideal.

Mean IoU is an extension of IoU, mainly used for multi-class segmentation tasks. The Mean IoU
computes the IoU for each class in a dataset and then takes the average over all classes. This gives
a more comprehensive evaluation metric when dealing with multiple objects or regions across several
classes. Eq. (12) shows the formula of Mean IoU, such that C denotes the number of classes; Area of Overlap
for Class i and Area of Union for Class i denote the overlap and union areas for class i across all images or
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regions in the dataset.

Mean IoU = 1
C

C
∑
i=1

Area o f Overl ap f or Cl ass i
Area o f Union f or Cl ass i

(12)

The Mean IoU calculates the IoU for each class independently and then averages the results across
all classes. The equation is particularly useful in semantic segmentation, where you need to evaluate how
well the model predicts boundaries across multiple classes. Higher Mean IoU indicates better segmentation
performance, with values closer to 1 indicating near-perfect segmentation.

The Intraclass Correlation Coefficient (ICC) is a statistic used to assess the reliability or agreement
between measurements made by different observers, instruments, or measurement methods. ICC is espe-
cially useful when the measurements are made on the same subjects or items and can be used to evaluate
consistency or conformity within groups of measurements. The ICC is commonly used in domains, for
example, medicine, psychology, and medical image analysis, where multiple measurements or ratings are
obtained for the same subjects under different conditions.

Eq. (13) shows the general form of the ICC formula, such that ICC (1,1) assesses absolute agreement
between raters or measurements; ICC (2,1) assesses consistency across raters when raters are consid-
ered interchangeable; and ICC (3,1) assesses reliability when specific raters or instruments are used and
generalization to other raters is not desired.

ICC = Between sub ject variance
Between sub ject variance +Within sub ject variance

(13)

where “Between subject variance” denotes the variation between different subjects or items being measured,
and “Within subject variance” denotes the variation between repeated measurements or raters for the same
subject. ICC is mainly used in measuring the consistency or reliability of a measurement across different
raters or instruments or to determine the level of agreement across two or more raters who provide ratings
or scores for the same subjects.

The Peak Signal-to-Noise Ratio (PSNR) is a commonly used metric in image processing to assess the
quality of a reconstructed or compressed image in relation to its original version. It measures the degree
of distortion caused by lossy compression or other image processing methods by comparing the original
and modified images. PSNR is particularly valuable for evaluating image compression algorithms, such as
those used for image restoration through denoising or super-resolution techniques. The formula for PSNR
is shown in Eq. (14).

PSNR = 10 ⋅ log10
MAX2

MSE
(14)

where MAX denotes the maximum possible pixel value of the image. PSNR helps determine how much
distortion or noise is introduced when compressing an image and is extremely useful in measuring the
effectiveness of methods, for example, denoising, deblurring, and other image reconstruction techniques.
A high PSNR value indicates that the processed image is closer to the original image, with less noise or
distortion, whereas a low PSNR value implies that the processed image has higher distortion/noise, making
it less similar to the original.

The Structural Similarity Index (SSIM) is a metric used to evaluate the similarity between two images.
Unlike traditional methods, for example, MSE or PSNR, which focus on pixel-level differences, SSIM assesses
image quality by considering structural information, resembling human visual perception. It compares the
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luminance, contrast, and structure of the images to determine their similarity. SSIM is especially beneficial in
image processing tasks like compression, denoising, and enhancement, where preserving structural integrity
is essential. The formula for SSIM is presented in Eq. (15).

SSIM (x , y) =
(2μx μy + C1)(2σx y + C2)
(μ2

x + μ2
y + C1)(σ 2

x + σ 2
y + C2)

(15)

where μx and μy denote the means (average pixel intensity) of images x and y, representing luminance; σ 2
x

and σ 2
y denote the variances of x and y, representing the contrast; σx y denotes the covariance between x and

y, representing the correlation in structure between the images. When the SSIM equals to 1, the images are
identical in terms of luminance, contrast, and structure; when the SSIM equals to 0, no structural similarity
between the images. Thus, an SSIM value closer to 1 implies higher structural similarity, denoting that the
processed image retains more of the original’s structural features.

The Kappa Value, also known as Cohen’s Kappa, is a statistical metric used to measure the degree
of agreement between two raters or evaluators who categorize items into distinct groups. It is particularly
valuable when assessing how well two different observers align in classifying the same items while accounting
for the likelihood of agreement occurring by chance. Cohen’s Kappa quantifies the level of agreement between
the two classifications, offering insight into whether the observed agreement surpasses what would be
expected randomly. This metric is widely used in fields like psychology, medicine, and social sciences to
assess the reliability of observers or raters. The formula for Cohen’s Kappa is shown in Eq. (16).

Cohen′s Kappa = P0 − Pe

1 − Pe
(16)

where P0 denotes the observed agreement, computed based on the proportion of times the raters agree (the
total number of agreements divided by the total number of observations); Pe denotes the expected agreement,
computed based on the proportion of times the raters would be expected to agree by chance. The Pe is
calculated based on the relative probabilities of each category being assigned by the raters. Cohen’s Kappa
commonly falls within the range of [0, 1], such that a value close to 1 is preferable, denoting perfect agreement
between raters.

The Dice Coefficient, or Sorensen-Dice Index, is a statistical metric used to evaluate the similarity
between two sets. It is widely used in image analysis and medical imaging to assess the accuracy of image
segmentation and classification. The Dice Coefficient ranges from 0 to 1, where 0 signifies no overlap between
the sets, and 1 denotes perfect overlap. The formula for the Dice Coefficient is shown in Eq. (17).

Dice Coe f f icient = 2∣A∩ B∣
∣A∣ + ∣B∣ (17)

where A denotes the set of predicted positive samples; B denotes the set of ground truth positive samples; ∣A∣
denotes the number of elements (or pixels) in set A; ∣B∣ denotes the number of elements (or pixels) in set B;
and ∣A∩ B∣ denotes the number of elements (or pixels) that are common to both sets A and B.

Fréchet Inception Distance (FID) is a metric used to assess the quality of images produced by generative
models, such as GANs. It calculates the distance between the distributions of real and generated images
in a feature space, which is derived from a pre-trained Inception network, a specific type of convolutional
neural network. The FID score evaluates both the quality and diversity of the generated images, making it a
commonly used metric for evaluating generative models. The formula for FID is shown in Eq. (18).

FID = ∥μr − μg∥
2 + Tr(Σr + Σg − 2(Σr Σg)1/2) (18)
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where μr and μg denote the mean vectors of the features extracted from the real images and generated
images, respectively; Σr and Σg denote the covariance matrices of the feature representations for the real and
generated images, respectively; Tr denotes the trace of a matrix, which is the sum of the diagonal elements.
The FID score can be ranged from 0 to infinity, where lower values indicate better performance. A score
of 0 means that the generated images perfectly match the real images in the feature space. It is important
to remark that the FID is sensitive to both the quality of generated images and the respective diversity. The
FID can effectively capture mode collapse scenarios, where a model generates limited variations of images,
leading to a higher FID score.

4 Results

4.1 Classification of the Articles in Terms of Generic Categories
Based on Fig. 4, the search string, as formalized in Table 2, resulted in 31 included articles. These

articles were then characterized into two generic categories, namely diagnosis and treatment. Notice that
one included article reported findings using GAI in both the categories. Henceforth, a new category, namely
Diagnosis & Treatment (i.e., hybrid category) is created. Fig. 5 shows the classification of the 31 included
articles. According to Fig. 5, the diagnosis category formalized the main body of the literature, accounting
for 90.3% (28 articles) of the included articles. This is followed by articles in treatment and hybrid categories,
respectively accounted for 6.5% (2 articles) and 3.2% (1 article). This could be attributed to the superiority
of GAI in accomplishing task-specific events [8], for example, data generation and augmentation [22],
abnormalities detection [51,52], image-to-image translation [53,54], which formalized the core foundation
in computer-aided diagnostics.

Figure 5: Analysis on the generic categories

In the treatment domain, personalized regimens may be required most of the time. The capability of
GAI in the detection of non-clinical significance can result in overtreatment [12], subsequently leading to
unnecessary clinical procedures and associated to morbidity [55], leading to lower interest in using GAI
for breast cancer treatment purposes. Table A1 in Appendix B summarizes the details of the 31 included
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articles, comprised of useful information, for example, the generic category, modalities, dataset, methods,
and core findings.

4.2 Geographical Scientometric Analysis
Fig. 6 shows the geographical scientometric analysis of the included articles. The geographical dis-

tribution of the contributing organizations in GAI in breast cancer research demonstrates a wide global
engagement, with notable concentrations in certain regions. The USA leads with 8 contributions, highlight-
ing its dominant role in AI-driven breast cancer research. China and India each follow with 4 contributions,
indicating strong research activity in Asia. Other Asian countries such as Japan and Korea also show
significant participation, with 3 and 2 contributions, respectively. European countries like Germany, Spain,
Switzerland, and France collectively contribute 7 works, showcasing the region’s involvement in integrating
AI with medical research. While Australia, Bangladesh, and the Netherlands each contribute 1 study,
this distribution indicates active participation from both developed and developing nations. This wide
geographical spread underscore the global importance and collaboration in leveraging AI for breast cancer
diagnosis and treatment across diverse healthcare systems. To better illustrate the collaboration between
different countries, a co-country-ship network analysis is generated, as in Fig. 7. Because of small number of
included articles in this study, the co-country-ship network may look scatted. The network provided however
remain valid in illustrating the collaborative relationship between the countries as aforementioned. The
network reveals three distinct clusters, dominated by the USA, China, and Italy, with the USA at the core of
the contributions. This is followed by China, establishing a close network with the United Kingdom. The third
cluster features Italy, collaborating with Switzerland, forming the third strong partnership in the network.

Figure 6: Geographical scientometric analysis of the included review works
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Figure 7: Co-country-ship network analysis

4.3 Distribution of the Most Contributing Journals
Fig. 8 shows the most contributing journals in reporting findings using GAI in breast cancer. Overall,

a total of 29 journals were collated from the 31 included articles. Based on Fig. 8, insufficient evidences were
found to substantiate or to support the argument on the most contributing journals herein. This is because
the distribution of journals is found relatively scarce corresponding to the entire body of the literature. From
the collected data, the journal, namely Journal of Medical Imaging and Dignostics, both ranked as the most
contributing journals, but accounted only 6.5% (two articles), respectively, from the included articles. The
scattered distribution may be due to the broad applicability of “diagnosis,” which aligns with the aims and
scopes of various journals, for example, those shown in Fig. 8. It is important to note that diagnosis in breast
cancer occurs at multiple stages, for example, during the examination phase using mammograms or during
grading using histopathology images. These diverse diagnostic processes fit within the scope of numerous
journals, leading to their widespread inclusion.

Figure 8: Analysis of most contributing journals
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4.4 Distribution of the Most Contributing Publishers
As mentioned in Section 3.1, general databases, for example, Scopus, Web of Science Core Collection,

and PubMed, were used for the literature search process. From all the included articles, 14 publishers
were retrieved, such that the top five most contributing publishers are Springer, Elsevier, MDPI, SPIE, and
Wolters Kluwer. Fig. 9 summarises the contributing publishers retrieved from the included articles. From
the figure, Springer appeared to be the most contributing publisher, accounted 22.6% (7 articles) in total.
This is followed by Elsevier (19.3%, 6 articles), MDPI (12.9%, 4 articles), SPIE (9.6%, 3 articles), and Wolters
Kluwer (6.5%, 2 articles). In general, publishers maintain an oligopolistic hold on the publishing industry,
a trend consistent with previous findings from an analysis spanning four decades (1973–2013). This analysis
identified Elsevier, Taylor & Francis, and Springer as leading publishers across various topics. The same
trend as well can be observed from some of the recent reviews in various fields, for example, agriculture,
engineering, applied mathematics, and medicine. The oligopolistic structure of the publishing industry
is likely to persist, as building a reputable publishing company requires significant time and resources.
Furthermore, researchers may hesitate to submit their work to newer publishers to avoid the risks associated
with potential predatory publishers.

Figure 9: Analysis of most contributing publishers

4.5 Temporal Scientometric Analysis
Fig. 10 shows the temporal scientometric analysis for the included articles. In order to maximize the

data retrieved pertaining to the proposed search string, no limiter is implemented on the publication year.
Based on the figure, the temporal distribution demonstrates a continual increment in the topic of interest,
with the first relevant publication in the year 2007. Relevant publication in GAI, specifically in breast cancer
was not evident from the years 2008 to 2015, with limited growth observed. This slow start can be attributed
to the early stage of AI development, where machine learning and AI applications in healthcare were still
nascent, and there was limited access to large datasets, computing power, and expertise. However, from
2018 to 2022, there was a gradual increase in publications, reflecting the rise of deep learning techniques,
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particularly with the introduction of GAI in 2014. These advancements allowed for greater exploration in
medical imaging, including tasks like cancer diagnosis, image segmentation, and data augmentation. The
availability of better computational resources, such as GPUs, and the development of pre-trained models
further fueled research efforts, leading to an increase in publications. The most significant surge occurred in
2023 and 2024, with the number of publications rising sharply to 11 and 9, respectively. This dramatic increase
is likely due to the growing adoption of advanced generative AI models, such as YOLO and transformer-
based architectures, which have proven highly effective in medical imaging applications. Researchers are
increasingly recognizing the potential of AI in enhancing breast cancer diagnosis, classification, and even
generating synthetic datasets for training purposes. This surge also reflects the broader trend of AI integration
in healthcare, as interdisciplinary collaborations between AI researchers and medical professionals become
more common, leading to more impactful studies and publications. Overall, the trend indicates that GAI’s
role in breast cancer research is rapidly expanding, with further growth expected as AI technologies continue
to evolve and find new applications in the medical field.

Figure 10: Temporal scientometric analysis of the included review works

4.6 Subject Areas Profiling
Fig. 11 shows the subject areas profiling retrieved from the included articles in this study. Based on

the figure, the subject area profiling for the 31 included works in GAI applied to breast cancer reveals a
multidisciplinary research trend. Medicine is as the most dominant field, particularly in Radiology, Nuclear
Medicine, and Imaging. This is then followed by Oncology, a sub-field of Medicine, reflecting the critical
role of AI in medical imaging and cancer diagnosis. The presence of Computer Science areas, for example,
AI Applications, Computer Vision, and Pattern Recognition highlights the use of computational methods
in image analysis and diagnostics. Engineering fields, for example, Biomedical Engineering and Electrical
Engineering underscore the integration of technology for enhanced healthcare solutions. Biochemistry,
Genetics, and Molecular Biology, with emphasis on Cancer Research, and Materials Science also play crucial
roles, pointing to advancements in the understanding and treatment of breast cancer through biomaterials
and molecular studies. This multidisciplinary approach showcases the convergence of medicine, computer
science, and engineering in leveraging AI to improve breast cancer diagnosis and treatment.
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Figure 11: Subject area profiling

4.7 Keywords Co-Occurrence Mapping
Fig. 12 shows the thematic landscape of the included articles, focusing on GAI in breast cancer.

The co-occurrence mapping of keywords reveals three distinct clusters, categorized by objects of interest,
methodologies, and relevant sub-field approaches. The objects of interest cluster appear to be the most
prominent cluster, indicated by the prevalence of keywords, for example, “breast,” “breast neoplasms,” and
“breast tumour.” This is followed by the methodology cluster, characterized by keywords, for example,
“artificial intelligence” and “controlled study.” The third cluster comprises keywords, for example, “image
processing” and “machine learning”. Notably, the keyword “artificial intelligence” appears as the largest dot
on the map, highlighting its widespread adoption across the included articles. This prominence is justifiable,
given the literature search focuses on GAI in breast cancer. Additionally, the sub-field approaches, including
“deep learning”, “generative adversarial networks”, and advancements in algorithms, signify significant
innovations within the realm of artificial intelligence. From the perspective of objects of interest, the mapping
indicates that topics such as “diagnostic imaging”, “mammography”, “breast neoplasms”, and “breast tumours”
have garnered considerable attention from researchers over the past decades.
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Figure 12: Keywords co-occurrence mapping

5 Self-Assessment, Limitations, Challenges, and Future Direction

5.1 Self-Assessment
The present study is a systematic review that focuses on the diagnosis and treatment of breast cancer. To

maximize the data retrieved, no limiter is set on publication years. Here, a structured review methodology
was used to collate, analyze, and synthesize the findings, highlighting patterns, trends, and the contents of
included works in the topic of interest. A structured search strategy was proposed in compliance with the
PRISMA guideline as detailed in Section 3.2. To affirm the quality of this study, an appraisal tool, namely A
Measurement Tool to Assess Systematic Review (AMSTAR) is used to assess the quality of the present study
in view of the content validity (see Table 5). AMSTAR is a self-appraisal tool that is commonly used to assess
the quality of a systematic review, specifically to determine if the systematic reviews are comprehensive,
have proper referencing, and are equipped with added value to the readers. The AMSTAR comprises 11
components for content validity. According to Table 5, the present study obtained one “no”, 10 “yes”, and
one “NA”. Justifications were provided for each component to better support the evaluation outputs, as
recommended by [8].
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Table 5: Quality assessment on this study using AMSTAR appraisal tool. Note: +, −, and NA denote yes, no, and not
applicable, respectively

Item Description Rating Justification
1 Was an ‘a priori’ design

provided?
+ Yes, the eligible criteria are

provided in Section 3.2
2 Was there duplicate study

selection and data extraction?
+ Yes, excluded as detailed

in Fig. 2
3 Was a comprehensive literature

search performed?
+ Yes, as detailed in Section 3.1

4 Was the status of publication
(i.e., grey literature) used as an

inclusion criterion?

– No, inclusion criteria are
provided in Section 3.2.1

5 Was a list of studies (included
and excluded) provided?

+ Yes, provided in Appendix B

6 Were the characteristics of the
included studies provided?

+ Yes, provided in Appendix B

7 Was the scientific quality of the
included studies assessed and

documented?

NA NA

8 Was the scientific quality of the
included studies used

appropriately in formulating
conclusions?

+ Yes, the scientific quality of the
included review works from
different perspectives were

considered (Section 4).
Challenges in GAI adoption in
clinical settings are provided

in Section 5.3
9 Were the methods used to

combine the findings of studies
appropriate?

+ Yes, as detailed in Sections 3.3
and 3.4

10 Was the likelihood of
publication bias assessed?

+ Yes, as detailed in Sections 5.2

11 Was the conflict of interest
stated?

+ Yes, as detailed in the Conflicts
of Interest Section

5.2 Limitations
The findings of this study are subjected to several limitations. First, only full-text articles available in

the English language are included in the synthesis process in accordance with the PRISMA guideline. Non-
English material and/or articles without full text would be excluded in Phase 1 of the exclusion criteria.
This may potentially introduce bias into the analysis, affecting the description of patterns and trends of
the included articles in the topic of interest. Second, based on the proposed search string (Table 2), only
articles utilizing GAI in breast cancer are retrieved. Therefore, emerging GAI models that are reported in
other cancer types that potentially offer useful insight and utility in breast cancer may be excluded. Third,
articles that were not indexed and populated by Scopus, Web of Science Core Collection, and PubMed
databases were not included in the synthesis process. Lastly, grey literature is not included in the synthesis
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activities. This is mainly because the grey literature may lack rigorous peer review, subsequently resulting in
inconsistent quality, associated with risk of bias, and challenging for reproducibility. However, considering
the diversity and structured search methodology (in compliance with the PRISMA guideline) adopted here
in retrieving articles within the topic of interest, the present study is confident with the findings synthesized
from the included articles, such that the majority of the relevant literature has been included, and the findings
accurately represent the current state of research.

5.3 Challenges in GAI Adoption in Clinical Settings
While recognizing GAI as the potential game-changer to meet the ever-increasing demand for quality

healthcare in breast cancer, typically in the era of precision medicine, the technology is inevitable to inherit
challenges in various spectrums for widespread clinical adoption. Awareness of the constraints of the current
GAI-based systems and concerted efforts (from researchers and industry experts) are essential in pushing
GAI technology to impact the future direction of breast cancer research.

Similar to all the discriminative models, the nature of data-driven in GAI-based systems is inevitable
to bias [56,57], as this serves as the foundation for the generative models. Here, two biases are identified:
data bias and algorithm bias. Data bias could potentially occur in the training phase when the training data
comprises information from a specific cohort, while under-represented cohorts may be afflicted by the GAI
outputs, assuming the output solutions fulfill the input prompts. For example, a GAI falsely identifies black
patients as being healthier than white patients who suffered from the same illness when the cost of healthcare
is used as the proxy. This is inaccurate as black patients receive less medical cost attention. Thus, injecting
faulty perception into the training data, which subsequently reflects in the output solutions [58]. Likewise,
countries with poor data registries, especially low-resource countries, are at risk of being under-represented
in GAI-based systems, leading to skewed or inaccurate diagnostic and treatment recommendations [59,60].
If the generative model training data disproportionately reflects healthcare practices and/or patient demo-
graphics from high-resource countries, the GAI-based system may fail to adequately address the unique
needs and/or health profiles of populations in low-resource regions. This can exacerbate existing healthcare
disparities, as the outputs generated by such GAI models might misinterpret conditions prevalent in these
under-represented cohorts. Consequently, bias in training data not only compromises the fairness and
accuracy of GAI outputs but also raises ethical concerns about its application in global healthcare systems,
particularly for vulnerable populations. Algorithm bias or mode collapse is defined as a situation where a
GAI fails to capture the full diversity of the training data, resulting in repetitive or limited variations in
the generated outputs [61]. Often, this bias originates from overfitting, where the generative models fail
to accurately learn the underlying distribution of the training data, producing identical outputs with no
variation [62].

Generalization and adaptation of GAI denote the model capability to produce a new and diverse output
that is not directly replicated from the training data, implying the superiority of GAI in capturing the
underpinning patterns and distributions of the training data and reflected in the output solution [63–66].
For example, a robust GAI shall demonstrate promising performance even when the input prompts are
pertaining to breast histopathology images that are not presented in the training data. A well-generalized
GAI can generate realistic and meaningful data across various scenarios, even when presented with inputs
or conditions that have not been explicitly encountered during training. Generalization is crucial to avoid
overfitting, ensuring that the model can generalize the patterns (from the training data) and adapt to
unseen data while maintaining high performance in real-world applications. Considering the diversity of
incoming patients (i.e., wide variety of races, ethnicity, nationality, and dietary backgrounds), GAIs that
lack generalization are not reliable, increasing the risk associated, afflicting the diagnostic and treatment
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recommendations, ultimately, fragmenting the quality of healthcare service and exacerbate trust in GAI for
clinical adoption. Adapting the GAI models to a new domain is now an ongoing challenge, where techniques,
for example, fine-tuning, domain adaptation, and transfer learning are continued to be explored to address
the present challenge.

Because of the generative nature of GAI, the model is susceptible to hallucination or confabulation,
where the model itself expects a plausible output solution. In fact, the solution generated is unreasonable
with respect to the training data [67,68]. The erroneous and/or misleading output solutions are not a result
of bias, but the output solutions are factually incorrect, unrealistic, and/or completely unrelated to the
training data. To date, the core reasons underpinning hallucination or confabulation are still mysterious,
with early inference that training data embedded with fictional or contradictory content besides factual
information may further promote the risk of hallucination [69]. This may suggest the importance of data
cleaning (i.e., removal of outliers) in the training phase, to avoid skewed models due to disproportionate
influence, distorted learning, and random noise resulting from the outliers. Considering the rich amount
of training data in GAI, data cleaning is tedious and cumbersome however, especially for medical experts
with mediocre knowledge of computational engineering and data analytics. Concerted efforts in data
cleaning, data transparency, and algorithm error-checking mechanisms may be required to mitigate the
aforementioned problem.

Transparency, explainability, and interpretability of an AI system in clinical settings are crucial, as
medical decisions cannot be adopted solely from a “black box” model, which lacks sophisticated reasonings
and justifications, with output solutions that are challenging to verify [70]. Unlike the discriminative model,
the explainable model, for example, Explainable Artificial Intelligence (XAI) [71] in the generative model
is still in its infancy with robust models yet to surface. Additionally, a recent study argues that the GAI
(i.e., typically LLM) that gained interest across multiple spectrums due to its formal reasoning capabilities,
particularly in mathematics may not be accurate. The findings argue the hypothesis with evidence proving
the LLMs may not be capable of genuine local reasoning but, in fact, replicating the reasoning steps based
on the observation in the training phase [72]. Transparency in GAI holds an important role, especially when
multiple output solutions could be produced toward the same input prompts. Thus, sensemaking in fulfilling
the input prompts is essential. To date, most of the GAIs are trained on a pre-trained model with respective
fine-tuning performed in accordance with different circumstances or applications for local adaptation.

From a regulatory standpoint, the use of GAI-generated medical data introduces complex issues
related to data privacy, intellectual property, and legal responsibilities, specifically, in the context of cross-
border healthcare collaboration. Data privacy is a primary concern, as aforementioned, the data-driven
GAI models often rely on large datasets, which may comprise sensitive patient information. Ensuring
compliance with data protection regulations such as the General Data Protection Regulation (GDPR) in the
European Union or the Health Insurance Portability and Accountability Act (HIPAA) in the United States
becomes challenging in cross-border settings, where differing privacy standards may conflict. Additionally,
the origins and handling of data used to train pre-trained models may lack transparency (i.e., black-box),
raising ethical concerns about patient consent and data provenance. Intellectual property issues further
complicate the landscape, as questions arise over the ownership of GAI-generated content, the rights to the
original training data, and liability for errors or misuse of model outputs [73]. Events involving cross-border
collaborations further exacerbate the situation, where intellectual property laws vary significantly between
countries [74,75]. Legal responsibilities also present challenges, as determining accountability for adverse
outcomes or misdiagnoses stemming from GAI-generated recommendations can be difficult, especially
when models are developed in one jurisdiction and deployed in another. Differing healthcare regulations and
liability frameworks across borders further complicate the establishment of clear accountability. Addressing



Comput Mater Contin. 2025;84(2) 2039

these issues requires robust international frameworks to harmonize data privacy standards, clarify intellec-
tual property rights, and establish legal accountability, ensuring the ethical and responsible use of GAI in
global healthcare collaborations.

The adoption of GAI in clinical settings requires comprehensive technical support, planned pre-
ventive maintenance, and robust infrastructure readiness. This includes ensuring the availability of
high-performance workstations and sufficient energy supply to handle the intensive computational demands
of GAI models. Additionally, having skilled experts on hand is crucial to address daily technical diffi-
culties and to provide manpower for routine maintenance and system checks. Cybersecurity is another
critical aspect, as the integrity of GAI models must be safeguarded against potential hacking attempts
that could compromise GAI accuracy and reliability [76]. Mitigation measures must also be in place to
prevent malicious interference, for example, the introduction of noise or unauthorized alterations to the
models, which could jeopardize healthcare services, afflicting the generative recommendations. Ensuring
both technical and cybersecurity readiness is key to the safe and effective implementation of GAI in
clinical environments. Considering all these requirements, ranging from infrastructure and energy to expert
manpower and cybersecurity, the associated cost becomes a significant factor in the adoption process [77].
To keep healthcare affordable, GAI should not solely aim to eliminate occasional errors made by medical
experts but should instead focus on fully automating specific procedures currently performed by experts.
The primary goal of GAI in breast cancer research shall focus on enhancing clinical efficiency while avoiding
unnecessary healthcare costs.

Misuse of GAI is not new, especially in domains involving entertainment and social media using
techniques, for example, deepfakes. Considering the ease and robustness of the deepfake techniques in this
era, the low cost of implementation, as well as sub-optimal legal boundaries, it is challenging to affirm a GAI
is free from malicious actions if a comprehensive adversarial monitoring system is not in place [78]. Factors
contributing to misuse of GAI in breast cancer, especially in diagnosis and treatment can be multi-factorial,
especially involving enormous personal interests that may arise from conflicts, for example, malicious
incidences involving insurance claims and tension between opting for optimal healthcare or medical profit.
These underscore the vulnerability of GAI to malicious actions and exploitation, with potential threats that
collectively hinder trust in GAI in clinical settings.

While GAI poses significant advancement and revolutionizes breast cancer research, typically in diag-
nosis and treatment stages, offering enhanced efficiency and productivity in clinical operations, awareness of
the challenges of GAI adoption is important. The far-reaching risks of GAI, typically in bias, hallucination or
confabulation, and misuse required concerted and sustained efforts from researchers and industry experts
in developing comprehensive mitigation mechanisms and solutions to ensure responsible AI usage. The
adoption of GAI can be performed in multiple stages, where continuous temporal assessment and quality
improvement are implemented at different checkpoints [25], and allows interrogation and feedback from
experts at different levels as well as consumers and the public, aiming for robust and reliable GAI adoption.

5.4 Future Direction
As GAI continues to evolve, its integration into clinical practice requires a multidisciplinary approach,

addressing technical, ethical, legal, and practical considerations. Ensuring the successful deployment of
GAI in breast cancer diagnosis and treatment will depend on collaborative efforts among researchers,
policymakers, healthcare institutions, and clinical practitioners. This section outlines key focus areas and
strategies for advancing GAI in healthcare.

From a researcher’s standpoint, the primary focus should be on developing GAI models that are robust
against bias and capable of generalizing across diverse patient populations. This necessitates the creation
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of inclusive and representative training datasets, particularly from underrepresented cohorts and low-
resource regions. Techniques such as domain adaptation, transfer learning, and federated learning should
be explored to ensure GAI models perform reliably across varied demographics and healthcare settings.
Additionally, XAI for generative models must be advanced to enhance clinicians’ trust in GAI-generated
outputs. Developing interpretable models that provide clear justifications for their recommendations, along
with visualization tools for decision-making processes, will be crucial for bridging the gap between AI and
clinical practice. Furthermore, reducing hallucinations in GAI models is essential for improving reliability.
This can be achieved through robust data-cleaning pipelines, outlier detection mechanisms, and error-
checking algorithms that ensure the accuracy and consistency of generated solutions. Collaboration between
AI developers and medical experts is critical to refining these processes and maintaining clinical relevance.

From a policymaker’s standpoint, establishing legal and ethical frameworks is essential for facilitating
cross-border collaboration in GAI research and deployment. Regional and international alliances are
necessary to create standardized regulations for data privacy, intellectual property, and legal accountability,
ensuring the global adoption of GAI in healthcare. Open-access initiatives, such as DeepSeek, can serve
as models for promoting transparency and equitable access to GAI technologies. Policymakers should
also develop guidelines for data sharing, model ownership, and liability, ensuring that GAI systems are
deployed responsibly and ethically. Effective collaboration among policymakers, researchers, and industry
stakeholders is necessary to establish harmonized frameworks that balance technological innovation with
patient rights and ethical considerations.

From a healthcare institution’s standpoint, a phased approach to GAI adoption should be considered for
seamless integration into clinical workflows. Initially, GAI can be implemented in low-risk applications such
as data augmentation, image synthesis, and preliminary diagnostic support, allowing healthcare providers
to build confidence in the technology while minimizing risks to patient care. Establishing scalable and
secure computational infrastructure is crucial for supporting the demands of GAI in clinical settings. This
includes high-performance workstations, energy-efficient systems, and robust cybersecurity measures to
protect sensitive patient data and maintain the integrity of GAI models. Additionally, comprehensive training
programs and workshops should be provided to clinical practitioners to equip them with the necessary
knowledge for effectively utilizing GAI technologies in medical practice.

From a clinical practitioner’s standpoint, collaboration with healthcare institutions is crucial in estab-
lishing strong data governance frameworks that comply with data privacy regulations such as GDPR
and HIPAA. This includes verifying the provenance of training data used in GAI models and obtaining
informed patient consent for data usage. Before fully integrating GAI into clinical workflows, clinicians
should treat GAI-generated recommendations as supplementary tools, rather than definitive solutions.
Rigorous validation of AI-generated outputs against clinical expertise and established guidelines is necessary
to ensure patient safety and prevent over-reliance on AI systems. Clinical practitioners also play a vital
role in advocating for the ethical use of AI by participating in policy discussions, addressing biases in AI
models, and ensuring that GAI technologies prioritize patient welfare and equity. Continuous research and
collaboration between clinicians and AI researchers are essential to refine GAI models and ensure their
practical applicability in real-world healthcare settings.

Achieving full integration of GAI in clinical practice will require a multidisciplinary effort. Experts from
various fields must exchange knowledge, break down research silos, and complement each other’s expertise
to foster the development of innovative solutions. By addressing the technical, legal, and practical challenges,
GAI has the potential to revolutionize breast cancer diagnosis and treatment, ultimately improving patient
outcomes and advancing precision medicine.
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6 Conclusion
In this study, a holistic birds-eye view of the research reviewing past literature with GAI in breast cancer

is presented. Here, a thorough search string in compliance with the PRISMA guideline is proposed. The
findings of the systematic review provide useful insight into the holistic view of how research communities
contribute, the primary methods employed, the findings of included works, the publications trend, and the
development of collaborative networks over time. Based on the analysis outcomes, this study highlighted:
(1) the main research domain in GAI in breast cancer research fall within the diagnosis category, accounting
for 90.3% (28 articles) of the included articles; (2) geographical scientometric analysis shows that USA leads
the AI-driven breast cancer research with 8 contributions in the body of the literature; (3) the Journal of
Medical Imaging and Dignostics are both ranked as the most contributing journals; (4) the publisher, namely
Springer is found to be the most contributing publisher, accounted 22.6% (7 articles) in total; (5) based on
the temporal scientometric analysis, from 2018 to 2022, there was a gradual increase in publications with
the highest publications of 11 and 9 in 2023 and 2024, respectively; (6) in subject area profiling, the subject
area of Medicine appears to be the most dominant field, specifically in Radiology, Nuclear Medicine, and
Imaging; and (7) three broad thematic clusters found in keyword co-occurrence analysis, namely objects
of interest, methodologies, and relevant sub-field approaches. The systematic review serves as a scientific
communication, highlighting the research gap and challenges in the topic of interest. For newcomers to the
field, this systematic review offers a comprehensive and timely overview, providing valuable insights into
the intellectual landscape, understanding literature development, and outlining the potential challenges. For
experienced researchers, it serves as a resource to stay updated, particularly in identifying relevant research
areas that extend beyond their primary focus. For stakeholders, this systematic review can help prioritize
research and funding to support impactful and urgent solutions through GAI integration in breast cancer
research, typically in supporting diagnosis and treatment purposes.
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Appendix A

Figure A1: Brief timeline of AI advancement. Note: SHRDLU is an early natural-language understanding computer
program

Appendix B
Table A1: Summary of the included articles

Reference Year Category Modalities Dataset Methods Findings

[79] 2024 Diagnosis MRI Custom Diffusion probabilistic
models (DDPM) and
generative adversarial

networks (GAN)

1. The GAN-generated images were
favored by both radiologists at the
5% dose level.

2. At the 25% dose level, both
radiologists showed a preference
for the DDPM-generated images.

3. Both GAN and DDPM
demonstrated encouraging
performance in reconstructing
low-dose images.

4. Neither model consistently
outperformed the other across all
dose levels and evaluation metrics.

[21] 2024 Diagnosis Mammogram Custom Cycle-GAN based Lesion
Remover

1. The integrated model combining
all networks achieved AUC values
between 0.963 and 0.974 for
distinguishing images containing
recalled lesions from those of
normal breast tissue.

2. A significant improvement was
observed (p-value < 0.001)
compared to the baseline models,
with AUCs ranging from 0.914 to
0.967.

(Continued)
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Table A1 (continued)

Reference Year Category Modalities Dataset Methods Findings

[25] 2024 Diagnosis NA NA ChatGPT version 3.5
(ChatGPT3.5)

1. In this experiment, ChatGPT
should not be regarded as a
dependable resource for radiation
oncology information, either for
patients or healthcare providers, as
it often produces inaccurate or
incomplete responses.

[80] 2024 Diagnosis Histopathology Custom High-resolution prediction
network (HRPN)

1. The proposed method
demonstrates low error rates (mean
squared error = 1.434, root mean
squared error = 1.198), a high
goodness of fit (R2 = 0.891), and
enhanced image quality (peak
signal-to-noise ratio = 44.548)
compared to a model based on a
generative adversarial
network structure.

[51] 2024 Diagnosis Ultrasonography Kaggle
database

Multi Disease Visual
Attention Condenser

Network (MD-VACNet)

1. The model achieved promising
results in classifying breast cancer
as benign or malignant, with
accuracy, sensitivity, and specificity
scores of 98.47%, 98.42%, and
98.31%, respectively.

[81] 2024 Treatment NA NA Generative pre-trained
transformer 4 (GPT-4)

1. In this experiment, GPT-4 was
unable to recommend initial
medication dosages in response to
the first prompt and failed to offer
a more compassionate,
non-pharmacological approach to
managing anorexia, even after
receiving a follow-up prompt.

2. GPT-4 could serve as a preliminary
screening tool by offering basic
management suggestions, which
should be reviewed and validated
by healthcare professionals prior to
any formal consultation.

[56] 2024 Diagnosis;
Treatment

NA NA Large language models
(LLMs)

1. Radiologists aiming to enhance
productivity should become
acquainted with modern large
language models (LLMs) and their
various versions.

[53] 2024 Diagnosis Ultrasonography Custom Deep convolutional GAN
(DCGAN) image

1. The diagnostic accuracy from
synthetic images was 86.0% for
Reader 1 and 78.0% for Reader 2,
compared to 88.0% and 78.0%,
respectively, when using
original images.

2. The kappa coefficients were 0.625
for synthetic images and 0.650 for
original images.

(Continued)
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Table A1 (continued)

Reference Year Category Modalities Dataset Methods Findings

[26] 2024 Diagnosis NA NA Chat generative pretrained
transformer (ChatGPT)

and Bing AI

1. Out of the 117 questions assessed,
ChatGPT and Bing achieved
average scores of 3.9 and 3.2,
respectively (p < 0.001), with
corresponding overall DISCERN
scores of 4.1 and 4.4.

2. When analyzed by disease type,
ChatGPT and Bing scored 3.9 and
3.6 for prostate cancer (p = 0.02),
3.7 and 3.3 for lung cancer (p <
0.001), 4.1 and 2.9 for breast cancer
(p < 0.001), and 3.8 and 3.0 for
colorectal cancer (p < 0.001).

3. Based on question type, the average
scores for ChatGPT and Bing were
3.6 and 3.4 for prognostic questions
(p = 0.12), 3.9 and 3.1 for
treatment-related questions (p <
0.001), and 4.2 and 3.3 for
miscellaneous queries (p = 0.001).

4. At least one panelist identified
serious or significant flaws in 3% of
ChatGPT’s responses and 15% of
Bing’s responses.

[28] 2023 Treatment NA NA Virtual Screening with
Generative Neural Network

(GNN) via MolAICal
(ZINCMol) software

1. The research investigated a
systematic approach for accurately
determining a drug’s structure and
validated the method through the
results obtained.

2. This lays the groundwork for
experimentally synthesizing the
inhibitor and conducting in-vitro
and in-vivo studies against the
MCF7 breast cancer cell line.

[54] 2023 Diagnosis Mammogram INbreast,81
OPTI-

MAM,82
BCDR,83

CBIS-
DDSM,86

and
CSAW.88

Medigan, a comprehensive
platform for pretrained

generative models,
implemented as an

open-source,
framework-independent

Python library

1. The study of Medigan was
conducted across three areas: (a)
facilitating community-wide
sharing of restricted data, (b)
exploring evaluation metrics for
generative models, and (c)
enhancing clinical
downstream tasks.

[82] 2023 Diagnosis NA NA LLM ChatGPT 3.5 1. The concordance rate in evaluating
invasive breast cancer profiles is
58.8%.

[83] 2023 Diagnosis NA NA ChatGPT (Generative
Pre-trained

Transformer)-3.5 and
GPT-4’s (OpenAI, San
Francisco, California)

1. Both ChatGPT-3.5 and ChatGPT-4
attained an average OE score of
1.830 (out of 2) for breast cancer
screening prompts. ChatGPT-3.5
demonstrated an average SATA
accuracy of 88.9%, while
ChatGPT-4 showed a higher
average accuracy of 98.4% for
these prompts.

2. For breast pain prompts,
ChatGPT-3.5 scored an average OE
of 1.125 (out of 2) and an average
SATA accuracy of 58.3%, whereas
ChatGPT-4 achieved an average OE
score of 1.666 (out of 2) and a SATA
accuracy of 77.7%.

(Continued)
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Reference Year Category Modalities Dataset Methods Findings

[84] 2023 Diagnosis Mammogram Custom Conditional GAN (CGAN) 1. Four types of artifacts were
identified, including checkerboard,
breast boundary, nipple-areola
complex, and black spots around
calcification artifacts, with an
overall incidence rate exceeding
69%. The individual incident rates
varied between 9% and 53% across
both normal and
mammographically-occult
cancer samples.

[85] 2023 Diagnosis CT, MRI,
PET, and

digital X-ray
images

DICOM
datasets

Multi-class 3D U-Net with
a pre-trained

ResNet(2+1)D-18 encoder
branch, cascaded with a 2D

PatchGAN

1. The proposed method achieved
mean Dice similarity coefficient
values between 0.89 and 0.98,
Hausdorff distance values ranging
from 2.25 to 8.68 mm, and mean
surface distance values varying
from 0.62 to 2.79 mm.

[78] 2023 Diagnosis Thermal
imaging,

mammogra-
phy, MRI
and ultra-

sonography

DMR dataset Infrared-GAN 1. The proposed model was assessed
using three distinct datasets,
resulting in a Dice score of 0.94 and
a mean intersection over union of
0.932.

[86] 2023 Diagnosis Digital
X-ray images

Digital
Database for

Screening
Mammogra-
phy (DDSM)

dataset

Multi-latent code inversion
enhanced Generative
Adversarial Network

(dm-GAN)

1. The proposed dm-GAN generates
breast images with improved
accuracy, achieving a 1.84 dB
increase in Peak Signal-to-Noise
Ratio (PSNR) and a 5.61%
reduction in Fréchet Inception
Distance (FID).

2. It also produces images 1.38 times
faster than the current
state-of-the-art methods.

[24] 2023 Diagnosis Ultrasonography Custom Large language model
(LLM)

1. Data were collected from
2931 patients.

2. The overall accuracy achieved was
87.7%.

3. The accuracy for lymphovascular
invasion was 98.2%. Developing the
prompts took 3.5 h, while
processing them took 15 min.

4. Using the ChatGPT application
programming interface incurred a
cost of US $65.8, and when
including the estimated wage, the
total cost amounted to US $95.4. In
a comparative estimation, both the
“LLM-assisted manual” and “LLM”
methods were found to be more
time- and cost-efficient than the
“full manual” approach.

[22] 2023 Diagnosis Histopathology BreakHis
dataset

Gaussian-Laplacian
pyramid and pyramid

blending with similarity
measures with GAN

1. The impact of augmentation on the
F1 score for 40x, 100x, 200x, and
400x histopathology images is
84.77%, 83.35%, 86.36%, and
83.73%, respectively.

(Continued)
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Reference Year Category Modalities Dataset Methods Findings

[23] 2023 Diagnosis Cytology
images

Wisconsin
Breast
Cancer

Diagnostic
dataset &

Wisconsin
Breast
Cancer

Prognostic
Dataset

Tabular variational
autoencoder (TVAE) and
the conditional generative

adversarial network
(CTGAN)

1. The proposed TVAE model
outperformed in generating
synthetic breast tumor data,
achieving Chi-Squared test (CS
test) scores of 0.916 (prognosis)
and 0.964 (diagnosis), as well as
Kolmogorov-Smirnov test (KS test)
scores of 0.887 (prognosis) and
0.928 (diagnosis).

2. The proposed architecture
outperformed all other machine
learning and deep learning
classifiers, achieving an accuracy of
96.66% in diagnosis and 82.83%
in prognosis.

[27] 2022 Diagnosis PET images DICOM
datasets

pix2pix GAN 1. The quantitative evaluation of the
proposed method showed
significantly higher SSIM (p < 0.01)
and PSNR (p < 0.01) for 26-second
synthetic images, and higher PSNR
for 52-second images (p < 0.01)
compared to the original images.

2. The proposed model enhanced the
quality of low-count time dbPET
synthetic images, with a more
pronounced effect on images with
lower counts.

[87] 2021 Diagnosis Mammogram Custom AI-GAN 1. The experiments showed that
adversarial samples caused the
AI-CAD model to produce
incorrect diagnoses in 69.1% of
cases that were initially classified
correctly by the model.

2. The study highlights the critical
need for ongoing research into the
safety concerns of medical AI
models and the development of
potential defensive strategies
against adversarial attacks.

[88] 2021 Diagnosis Mammogram CBIS-
DDSM;

Inbreast;
Custom

Connected-Unets 1. CBIS-DDSM Dice score: 89.52%
IoU: 80.02%
INbreast Dice score: 95.28%
IoU: 91.03%
Custom Dice score: 95.88%
IoU: 92.27%

[89] 2021 Diagnosis Histopathology Custom Generative Adversarial
Network for Distribution

Analysis (GANDA)

1. The GANDA model can
conditionally generate images
depicting intratumoral quantum
dot (QD) distribution, constrained
by the tumor vessels and cell nuclei
channels, while preserving the
same spatial resolution
(pixel-to-pixel).

2. It demonstrates minimal loss
(mean squared error, MSE = 1.871)
and high reliability (intraclass
correlation, ICC = 0.94).

3. This capability enables quantitative
analysis of QD extravasation
distance (ICC = 0.95) and subarea
distribution (ICC = 0.99) on the
generated images, without needing
the actual QD distribution data.

(Continued)



Comput Mater Contin. 2025;84(2) 2047

Table A1 (continued)
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[90] 2020 Diagnosis Fluorescence
images

Custom Virtual-fluorescence-
staining method based on

deep neural networks
(VirFluoNet)

1. Utilizing deep learning to virtually
generate fluorescence images can
significantly lower the cost, time,
and effort involved in sample
preparation, including processes
like chemical fixation and staining.

2. The mean absolute error (MAE) is
<0.005, 0.017, and 0.012 for
4′ ,6-diamidino-2-
phenylindole/hoechst, endoplasmic
reticulum, and mitochondria
prediction, respectively.

3. The peak signal-to-noise ratio
(PSNR) exceeds 40/34/33 dB, and
the structural similarity index
(SSIM) is greater than
0.925/0.926/0.925 for the
same predictions.

[65] 2020 Diagnosis Cone-beam
computed

tomography

Custom Three cycle-consistent
generative adversarial

networks (cycle- GANs)

1. A synthetic computed tomography
image was generated in 10 s.

2. Image similarity was similar
between models trained on various
anatomical sites and a single model
for all sites.

3. Mean dose differences of less than
0.5% were observed in
high-dose regions.

4. Mean gamma (3%, 3 mm) pass rates
were obtained across all sites.

[91] 2019 Diagnosis Ultrasonography Custom Deep convolutional
generative adversarial
networks (DCGANs)

1. The proposed DCGAN is capable
of generating high-quality, realistic
synthetic breast ultrasound images
that are indistinguishable from the
original ones.

2. Interobserver agreement was
excellent, with correlation values
(∣r∣) ranging from 0.708 to 0.825 (p
< 0.001).

[92] 2019 Diagnosis Mammogram BCDR;
INbreast

Cycle-consistent GANs
model (CycleGAN)

1. At the lower resolution, the overall
performance remained unaffected
by the CycleGAN modifications
(AUC 0.70 vs. 0.76, p = 0.67).

2. One radiologist demonstrated a
decrease in cancer detection (0.85
vs. 0.63, p = 0.06).

3. At the higher resolution, all
radiologists showed a significantly
reduced cancer detection rate in
the modified images (0.80 vs. 0.37,
p < 0.001).

[93] 2018 Diagnosis Peptides
data

Custom Recurrent neural network
with long short-term

memory cells

1. Six of the active peptides selectively
targeted and killed MCF7 cancer
cells with at least three times the
specificity, without affecting
human erythrocytes.

2. These results validate the
application of constructive
machine learning in the automated
design of peptides with specific
biological activities.

(Continued)
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[94] 2016 Diagnosis Molecules
data

Molecules
data

(Human
intestinal

transporter
database:

QSAR
modeling

and virtual
profiling of

drug uptake,
efflux and

interactions)

Generative topographic
mapping (GTM)

1. The proposed GTM is employed to
create 21 classification models that
correlate the structure of organic
molecules with their inhibition and
transport activities for
11 transporters.

2. These models deliver predictive
performance on par with
well-known machine learning
techniques like kNN, Random
Forest, and Support
Vector Machine.

3. A distinctive GTM-based
applicability domain definition
helps remove uncertainty regions,
thereby improving the
models’ performance.

[95] 2007 Diagnosis Gene
expression

data

Breast
cancer data

(Gene
expression
profiles in
hereditary

breast
cancer)

Hierarchical statistical
model: kernel-imbedded
Gaussian process (KIGP)

1. Simulation studies demonstrated
that the KIGP performed nearly as
well as the theoretical Bayesian
bound, with no prior knowledge of
the underlying generative model.

2. This high performance was
observed not only with a linear
Bayesian classifier but also with a
highly non-linear
Bayesian classifier.

Appendix C

Table A2: The PRISMA checklist

Section and
topic

Item # Checklist item Location where
item is

reported
TITLE

Title 1 Identify the report as a systematic
review.

Title

ABSTRACT
Abstract 2 See the PRISMA 2020 for Abstracts

checklist.
Abstract

INTRODUCTION
Rationale 3 Describe the rationale for the review

in the context of existing knowledge.
Section 1.3

Objectives 4 Provide an explicit statement of the
objective(s) or question(s) the review

addresses.

Section 1.3

METHODS
Eligibility

criteria
5 Specify the inclusion and exclusion

criteria for the review and how studies
were grouped for the syntheses.

Section 3.2

(Continued)
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Section and
topic

Item # Checklist item Location where
item is

reported
Information

sources
6 Specify all databases, registers,

websites, organisations, reference lists
and other sources searched or

consulted to identify studies. Specify
the date when each source was last

searched or consulted.

Section 3.1

Search strategy 7 Present the full search strategies for all
databases, registers and websites,

including any filters and limits used.

Section 3.1

Selection
process

8 Specify the methods used to decide
whether a study met the inclusion

criteria of the review, including how
many reviewers screened each record

and each report retrieved, whether
they worked independently, and if

applicable, details of automation tools
used in the process.

Section 3.3

Data collection
process

9 Specify the methods used to collect
data from reports, including how

many reviewers collected data from
each report, whether they worked
independently, any processes for

obtaining or confirming data from
study investigators, and if applicable,

details of automation tools used in the
process.

Sections 3.1
& 3.2.1

Data items 10a List and define all outcomes for which
data were sought. Specify whether all
results that were compatible with each
outcome domain in each study were
sought (e.g., for all measures, time

points, analyses), and if not, the
methods used to decide which results

to collect.

Table A1

(Continued)
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Section and
topic

Item # Checklist item Location where
item is

reported
10b List and define all other variables for

which data were sought (e.g.,
participant and intervention

characteristics, funding sources).
Describe any assumptions made about

any missing or unclear information.

Table A1

Study risk of
bias assessment

11 Specify the methods used to assess risk
of bias in the included studies,

including details of the tool(s) used,
how many reviewers assessed each

study and whether they worked
independently, and if applicable,

details of automation tools used in the
process.

Section 5.2

Effect measures 12 Specify for each outcome the effect
measure(s) (e.g., risk ratio, mean

difference) used in the synthesis or
presentation of results.

NA
(Meta-analysis
not performed)

Synthesis
methods

13a Describe the processes used to decide
which studies were eligible for each
synthesis (e.g., tabulating the study

intervention characteristics and
comparing against the planned groups

for each synthesis (item #5)).

Section 3.2.1

13b Describe any methods required to
prepare the data for presentation or

synthesis, such as handling of missing
summary statistics, or data

conversions.

Section 3.3

13c Describe any methods used to tabulate
or visually display results of individual

studies and syntheses.

Section 3.3

(Continued)
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Section and
topic

Item # Checklist item Location where
item is

reported
13d Describe any methods used to

synthesize results and provide a
rationale for the choice(s). If

meta-analysis was performed, describe
the model(s), method(s) to identify
the presence and extent of statistical

heterogeneity, and software package(s)
used.

Section 3.3
(Meta-analysis
not performed)

13e Describe any methods used to explore
possible causes of heterogeneity

among study results (e.g., subgroup
analysis, meta-regression).

NA
(Meta-analysis
not performed)

13f Describe any sensitivity analyses
conducted to assess robustness of the

synthesized results.

NA
(Meta-analysis
not performed)

Reporting bias
assessment

14 Describe any methods used to assess
risk of bias due to missing results in a

synthesis (arising from reporting
biases).

Section 5.2

Certainty
assessment

15 Describe any methods used to assess
certainty (or confidence) in the body

of evidence for an outcome.

NA
(Meta-analysis
not performed)

(Continued)
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Section and
topic

Item # Checklist item Location where
item is

reported
RESULTS

Study selection 16a Describe the results of the search and
selection process, from the number of
records identified in the search to the

number of studies included in the
review, ideally using a flow diagram.

Fig. 4

16b Cite studies that might appear to meet
the inclusion criteria, but which were
excluded, and explain why they were

excluded.

Section 3.2.1

Study
characteristics

17 Cite each included study and present
its characteristics.

Table A1

Risk of bias in
studies

18 Present assessments of risk of bias for
each included study.

NA
(Meta-analysis
not performed)

Results of
individual

studies

19 For all outcomes, present, for each
study: (a) summary statistics for each
group (where appropriate) and (b) an
effect estimate and its precision (e.g.,
confidence/credible interval), ideally

using structured tables or plots.

Table A1

Results of
syntheses

20a For each synthesis, briefly summarise
the characteristics and risk of bias

among contributing studies.

NA
(Meta-analysis
not performed)

20b Present results of all statistical
syntheses conducted. If meta-analysis

was done, present for each the
summary estimate and its precision

(e.g., confidence/credible interval) and
measures of statistical heterogeneity. If

comparing groups, describe the
direction of the effect.

NA
(Meta-analysis
not performed)

20c Present results of all investigations of
possible causes of heterogeneity

among study results.

NA
(Meta-analysis
not performed)

20d Present results of all sensitivity
analyses conducted to assess the

robustness of the synthesized results.

NA
(Meta-analysis
not performed)

(Continued)
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Section and
topic

Item # Checklist item Location where
item is

reported
Reporting

biases
21 Present assessments of risk of bias due

to missing results (arising from
reporting biases) for each synthesis

assessed.

Section 5.2

Certainty of
evidence

22 Present assessments of certainty (or
confidence) in the body of evidence

for each outcome assessed.

Section 5.2

DISCUSSION
Discussion 23a Provide a general interpretation of the

results in the context of other
evidence.

Table A1
& Section 5.3

23b Discuss any limitations of the evidence
included in the review.

Section 5.2

23c Discuss any limitations of the review
processes used.

Section 5.2

23d Discuss implications of the results for
practice, policy, and future research.

Sections 5.3 & 6

OTHER
INFORMA-

TION
Registration
and protocol

24a Provide registration information for
the review, including register name

and registration number, or state that
the review was not registered.

Ethics Approval
statement

24b Indicate where the review protocol can
be accessed, or state that a protocol

was not prepared.

Ethics Approval
statement

24c Describe and explain any amendments
to information provided at registration

or in the protocol.

Ethics Approval
statement

Support 25 Describe sources of financial or
non-financial support for the review,

and the role of the funders or sponsors
in the review.

Funding
statement

Competing
interests

26 Declare any competing interests of
review authors.

Conflicts of
Interest

statement

(Continued)
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Table A2 (continued)

Section and
topic

Item # Checklist item Location where
item is

reported
Availability of
data, code and
other materials

27 Report which of the following are
publicly available and where they can

be found: template data collection
forms; data extracted from included

studies; data used for all analyses;
analyticx` code; any other materials

used in the review.

Availability of
Data and
Materials
statement

Table A3: PRISMA 2020 for Abstracts Checklist

Section and
Topic

Item # Checklist item Reported
(Yes/No)

TITLE
Title 1 Identify the report as a systematic review. Yes
BACKGROUND
Objectives 2 Provide an explicit statement of the main

objective(s) or question(s) the review
addresses.

Yes

METHODS
Eligibility
criteria

3 Specify the inclusion and exclusion
criteria for the review.

Yes

Information
sources

4 Specify the information sources (e.g.
databases, registers) used to identify

studies and the date when each was last
searched.

Yes

Risk of bias 5 Specify the methods used to assess risk of
bias in the included studies.

Yes

Synthesis of
results

6 Specify the methods used to present and
synthesise results.

Yes

RESULTS
Included
studies

7 Give the total number of included studies
and participants and summarise relevant

characteristics of studies.

Yes

(Continued)
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Table A3 (continued)

Section and
Topic

Item # Checklist item Reported
(Yes/No)

Synthesis of
results

8 Present results for main outcomes,
preferably indicating the number of
included studies and participants for

each. If meta-analysis was done, report
the summary estimate and

confidence/credible interval. If
comparing groups, indicate the direction

of the effect (i.e. which group is favoured).

Yes, the number
of included
studies is

provided, a
meta-analysis

was not
performed in

this study
DISCUSSION
Limitations of
evidence

9 Provide a brief summary of the
limitations of the evidence included in the

review (e.g. study risk of bias,
inconsistency and imprecision).

Yes

Interpretation 10 Provide a general interpretation of the
results and important implications.

Yes

OTHER
Funding 11 Specify the primary source of funding for

the review.
Yes

Registration 12 Provide the register name and registration
number.

Yes

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement:
an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information,
visit: http://www.prisma-statement.org/
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