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ABSTRACT: Differential evolution (DE) algorithms are simple and efficient evolutionary algorithms that perform well
in various optimization problems. Unfortunately, they inevitably stagnate when differential evolutionary algorithms
are used to solve complex problems (e.g., real-world artificial neural network (ANN) training problems). To resolve
this issue, this paper proposes a framework based on an efficient elite centroid operator. It continuously monitors the
current state of the population. Once stagnation is detected, two dedicated operators, centroid-based mutation (CM)
and centroid-based crossover (CX), are executed to replace the classical mutation and binomial crossover operations
in DE. CM and CX are centred on the elite centroid composed of multiple elite individuals, constituting a framework
consisting of elitism centroid-based operations (CMX) to improve the performance of the individuals who fall into
stagnation. In CM, elite centroid provide evolutionary direction for stagnant individuals, and in CX, elite plasmoids
address the limitation that stagnant individuals can only obtain limited information about the population. The CMX
framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes
and state-of-the-art DEs with varying populations. Numerical experiments on benchmark functions show that the
proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the
stagnation problem and improving performance.
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1 Introduction
In the engineering domain, mathematical equations describe the behaviour of real systems. However,

such an approach requires accurate knowledge of the system. With the system’s increasing complexity, its
modelling becomes nonrealistic and inaccurate. To deal with this problem, the artificial neural network
(ANN), which can learn and approximate relationships between input and output, was proposed. It has been
successfully applied to solve a lot of industrial problems, such as fault diagnosis [1], system control [2], object
recognition [3], noise detection [4], image processing [5] and so on. The objective function describing the
neural network training problem is multimodal. As a result, gradient-based algorithms easily suffer from a
local minimum. Global optimization techniques can be used to remedy this problem. Differential evolution
(DE) [6,7], proposed by Storn and Price, is one of the most successful and popular evolutionary algorithms
(EAs) for global optimization [8]. In the last two decades, a steady rise has been occurring in the research
of DE and its applications to real-world optimization problems [9–11], expert systems [12] and machine
learning [13]. Numerous advanced DE variants, such as rank-based DE (RBDE) [14], self-adaptive DE
(SaDE) [15], and parameter adaptive DE (JADE) [16], have been proposed, achieving impressively enhanced
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performance on artificial benchmark functions compared to the classic DE algorithm. However, when DE
was applied to train a neural network [17], the performance of most existing variants, such as SaDE and
JADE, was unsatisfactory due to stagnation.

The stagnation problem of the DE algorithm was first reported by Lampinen et al. [18] and further
discussed by Guo et al. [19]. It refers to the situation where the algorithm fails to improve before finding
a global optimal solution. However, unlike premature convergence, stagnation occurred even though the
diversity of the population was relatively high. On stagnation, the newly generated individuals are rarely
better solutions. To alleviate this problem, many archive-based strategies have been proposed to improve the
evolution of stagnant individuals in populations. Historical information in the archive can help the algorithm
to make more accurate operations. A successful-parent-selecting (SPS) framework was introduced in [19].
Its main idea was to archive successful update solutions in an external population for parent selection when
stagnation occurred. Besides, Zhou et al. [20] presented a DE framework with a guiding archive (GAR) for
the same purpose. If a stagnated individual was found, the base solution in the mutation strategy would be
replaced by an individual from the guiding archive. The guiding archive stored individuals in several non-
overlapping sub-regions of the entire space. Meanwhile, Liang et al. proposed a new Gaussian estimation of
distribution algorithm (EDA2) [21], which uses the historical excellent solution archive to assist in estimating
the covariance matrix of the Gaussian model. When dealing with the basins of attraction (BoAs), Wang
et al. proposed history-guided hill exploration (HGHE-DE) [22], which introduces an archive to store all
evaluated solutions. The archived information is used to help separate the search space into hill regions that
correspond to the BoAs and calculate the potential of the hill regions. Wang et al. proposed dynamic hybrid
niching-based DE (DHNDE) [23] with two archives to store inferior offspring and optimal offspring. The
inferior archive limits the exploratory DE runtime to improve diversity, and the optimal archive collects all
the excellent solutions to avoid losing them. In the particle swarm optimization (PSO), a PSO variant named
scatter learning PSO algorithm (SLPSOA) was proposed by Ren et al. [24], and a scattered pool of high-
quality solutions was introduced. Particles select their exemplars in the archive according to a roulette wheel
rule to find promising solution regions.

Although the above work has made significant progress in the stagnation problem using historical
information in the archive, associations between elite individuals in the parent population are often
overlooked in the stagnation problem. This motivates us to propose a framework of elitism centroid-based
operations (CMX), where the centroid will be assembled from elite individuals. When stagnation is detected,
a centroid-based crossover (CX) rather than the classic binomial crossover is adopted in the DE algorithm.
In addition, a novel centroid-based mutation (CM) strategy, “origin-to-centroid”, is also proposed in the
framework to improve the convergence efficiency. Empirical results on typical test functions indicate that
the proposed CMX method can significantly improve the performance of the classic DE algorithm and its
advanced variants. The effectiveness of CMX is further observed in artificial neural network training. DE
algorithms improved by CMX achieve the best performance in testing and significantly outperform the
original, SPS and GAR methods.

The rest of the paper is organized as follows: Section 2 introduces the basic DE and related
work. Section 3 presents the proposed CMX method. Section 4 identifies its superiority through a perfor-
mance comparison with the original DEs and emerging SPS and GAR frameworks (SPS-DEs and GAR-DEs,
respectively) on CEC2014 benchmark functions. Section 5 concludes this paper.
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2 Backgrounds

2.1 Classic DE Algorithm
Differential evolution (DE) is a simple yet powerful evolutionary algorithm. Considering a

D-dimensional optimization problem, DE maintains a population of candidates, denoted by PG =
{→x 1,G ,→x 2,G , ⋅ ⋅ ⋅ ,→x N P ,G}, where NP is the population size, →x i ,G = (xi ,1,G , xi ,2,G , ⋅ ⋅ ⋅ , xi ,D ,G) is a D-
dimensional parameter vector, and G is the generation number. Starting with an initial population P0, three
operations are executed at each generation until terminal conditions are fulfilled, as described below.

Mutation: Mutation is conducted on the target vector →x i ,G to generate a mutant vector →v i ,G . The most
frequently used mutation strategies include:

(1) DE/rand/1
→

v i ,G =
→

x r1 ,G + F (→x r2 ,G −
→

x r3 ,G) (1)

(2) DE/best/1
→

v i ,G =
→

x best ,G + F (→x r1 ,G −
→

x r2 ,G) (2)

(3) DE/current-to-best/1
→

v i ,G =
→

x i ,G + F (→x best ,G −
→

x i ,G) + F (→x r1 ,G −
→

x r2 ,G) (3)

(4) DE/current-to-pbest/1
→

v i ,G =
→

x i ,G + F (→x pbest ,G −
→

x i ,G) + F (→x r1 ,G −
→

x r2 ,G) (4)

where rm ∈ {1, 2, ⋅ ⋅ ⋅ , NP} / {i} with m = 1, 2, 3 and rm ≠ rn if m ≠ n.
→

x best ,G and
→

x pbest ,G are, respectively,
the optimal solution and one of the top p ×NP fittest solutions at the current generation G, where p is within
(0, 1). F is a scaling parameter within (0, 1].

Crossover: Following mutation, crossover is performed between →

v i ,G and →

x i ,G to generate a trial
individual →u i ,G . The widely used binomial crossover is formulated as follows:

ui , j ,G = {
vi , j ,G if rand j (0, 1) < CR or j = jrand
xi , j ,G otherwise (5)

where randj (0, 1) is a uniformly distributed random number within (0, 1), jrand is a random integer in the
range of [1, D], and CR is a crossover factor within [0, 1].

Selection: In selection, the trial vector→u i ,G and target vector→x i ,G compete, while the fitter one is selected
as offspring, i.e.,

→

x i ,G+1 =
⎧⎪⎪⎨⎪⎪⎩

→

u i ,G if f (→u i ,G) ≤ f (→x i ,G)
→

x i ,G otherwise
(6)

where f (⋅) is the objective function of the problem (Note: Minimization is assumed in Eq. (6)).
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2.2 Advanced DE Variants
Many advanced DE variants have been proposed in the past two decades, and their work is summarized

in Table S1. The relevant research background is next described in detail in two categories: advanced strategies
for mutation/crossover and parameter setting/adaptation.

Concerning advances in mutation/crossover strategies, many modifications have been proposed. The
rank-based DE (RBDE) proposed by Sutton et al. [14] imposes pressure by introducing a rank-based
differential mutation. Qin et al. [15] proposed the SaDE algorithm, in which four mutation strategies with
different characteristics are adaptively used at different searching stages. JADE [16], developed by Zhang
and Sanderson, introduces a new “current-to-pbest/1” strategy. In the ensemble of mutation strategies and
control parameters with the DE (EPSDE) [25], Mallipeddi et al. improved the performance of DE by ensemble
mutation strategies. Composite DE (CoDE) [26], presented by Wang et al., employs three well-studied strate-
gies to sample three candidates and then select the best one. Multi-population ensemble DE (MPEDE) [27],
designed by Wu et al., ensembles different mutation strategies into multi-population to effectively adjust
the mutation strategies. Wang et al. proposed a novel DE variant based on covariance matrix learning and
bimodal distribution parameter setting named CoBiDE [28]. Yu et al. proposed the Global Optimum-based
Search in Differential Evolution (DEGoS) [29], which dynamically adjusts the search strategy for stagnant
individuals by monitoring unsuccessful global optimum updates and utilizing feedback from the global
optimum. Zhang et al. proposed a novel DE based on evolutionary scale adaptation (ESADE) [30] that
selects offspring based on the successful evolutionary scale. The Biased Selection Operation in discrete
DE (EDE) [31] innovatively reduces individual stagnation probability by permitting inferior trial vectors
to enter the subsequent generation population. In objective-dimension feedback method (ODFDE) [32],
dimensional information is applied to the adjustment of strategies. Meanwhile, Gao et al. proposed a novel
JADE variant with chaotic local search (CLSDE) [33], which integrates a chaotic local search mechanism to
enhance the exploration and exploitation of JADE. Meng et al. proposed the Two-stage Differential Evolution
(TDE) algorithm [34], which constructs an archive of non-stagnant individuals specifically designed for
regenerating stagnant solutions. Furthermore, Zeng et al. introduced a Target Vector Replacement Strategy
(TVRS) [35], where stagnant individuals are randomly replaced with non-stagnant individuals to crossover.
Besides, Liu et al. proposed the DE algorithm with an attention-based prediction strategy (CDE-AP) [36],
significantly enhancing information exchange in mutation operators through an archive that systematically
collects non-dominated solutions across all populations. In an adaptive framework (ACoS) [37] proposed by
Liu et al., the cumulative superior solutions archive establishes an Eigen coordinate system, which accurately
reflects the features of the function landscape.

Concerning parameter settings/adaptation, self-adaptive DE (jDE) [38] encodes F and CR into each
solution and has them self-adaptively adjusted. JADE [16] collects the successful parameters F and CR and
uses them to produce new parameters using the Cauchy and normal distribution, respectively. Success-
history-based adaptive DE (SHADE) [39], proposed by Tanabe et al., enhances the performance of the
JADE algorithm by introducing a success history parameters adaptation scheme. CoBiDE [28] introduces
a bimodal distribution parameter scheme. Sinusoidal DE (sinDE) [40] introduces a sinusoidal function
for setting the F and CR values. The SHADE variant (L-SHADE) [41] improves the performance of
SHADE by a linear population size reduction scheme. An L-SHADE variant (L-SHADE_cnEpSin) [42] uses
the sinusoidal parameter settings to further enhance L-SHADE. Other techniques, such as Alopex local
search (MDEALS) [43] and two-phase-based promising basins identification (TPDE) [44], have also been
incorporated into DE to improve performance. DE with ensembling populations (EJADE) algorithm [45]
improves JADE with a dual crossover strategy mechanism. DE with domain transform (DTDE) [46], as
Zhang et al. proposed, enhances DE’s performance with the domain transform technique. Learning adaptive
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DE (LDE) [47] combines offline knowledge with online adaptation. Besides, Das et al. introduce the Dynamic
DE with Brownian and quantum individuals (DDEBQ) [48], incorporating an Aging mechanism to eliminate
individuals. An improved multi-operator DE (IMODE) [49], proposed by Sallam et al., divides populations
into sub-populations assigned to distinct operators, their size updated dynamically. A local search (SQP)
is used to enhance performance. Tang et al. developed an Individual-Dependent Parameter (IDP) [9] that
assigns values to F and CR according to the fitness ranking of each individual. Moreover, two-level parameter
adaptation (ADE) [50] was proposed to adjust F and CR based on both the status of the population and
individual status. Collective ensemble learning DE (CELDE) [51] combines the advantages of multiple DEs
by introducing component decomposition and integration. Recent advancements have seen reinforcement
learning techniques effectively integrated into DE frameworks [52,53].

2.3 Stagnation of DE
The stagnation of DE was initially discussed in [18] by investigating the following two phenomena:
(1) The population has not converged to a fixed point, and
(2) DE failed to find any better solutions.
To indicate the diversity of the population PG in generation G, a measure based on the average distance

of PG to its centroid, dG has been adopted [19] and defined as

dG =
1

NP∑
N P
i=1 ∥

→

x i ,G − xG∥ (7)

where
→

x i ,G ∈ PG , ∥●∥ is the Euclidean distance and

xG = (1/NP)∑N P
i=1
→

x i ,G (8)

is the center of PG . If dG could not reach a small enough value, it means that PG converges poorly.
Another measure suggested in [19] helps to reflect DE’s capability to find better solutions. Define qi ,G as

the number of recent consecutive unsuccessful updates of the i-th candidate in the population PG . We have

qi ,G+1 =
⎧⎪⎪⎨⎪⎪⎩

0 if f (→u i ,G) ≤ f (→x i ,G)
qi ,G + 1 otherwise

for i = 1, 2, ⋅ ⋅ ⋅ , NP (9)

When qi ,G ≥ Q, it implies that DE fails to find better solutions. Here, Q is a pre-defined positive
integer called stagnation tolerance. Together with the fact that PG remains diverse, it can be concluded that
stagnation occurs in the i-th individual.

3 Proposed Framework

3.1 Motivation
The motivations of the proposed framework lie in the facts that:

(a) A primary cause of stagnation in the DE algorithm is the limited number of trial vectors that can be
generated using the classic binomial crossover operator [18]. In archive-based strategies, historically
elite individuals are often employed in the mutation and crossover operations of stagnant solutions.
While this approach can enhance the population’s ability to generate promising solutions, reusing
historical elites may inadvertently perpetuate stagnation, especially in repetitive evolutionary cycles.
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To mitigate this risk, it is crucial to prioritize the use of elite individuals from more recent populations,
as they better reflect the current evolutionary state of the population.

(b) For a stagnated solution→x i ,G , it is preferable to conduct a crossover between→v i ,G and other candidates
→

x j ,G ∈ PG in the population (or some form of their combinations) rather than between →v i ,G and →x i ,G .
This strategy is based on the understanding that a strong correlation exists between a stagnant solution
and the derived mutation vectors. Decreasing this correlation can generate more diverse and potentially
beneficial trial vectors. Furthermore, introducing an external candidate solution can offer fresh insights
into the fitness landscape, providing valuable new information that may help overcome the current
solution’s stagnation.

(c) In the case of complex multimodal optimization problems, elite individuals are often distributed across
multiple local optima during the evolutionary process. As a result, operations that rely on a single elite
individual to guide the evolution of stagnant solutions may inadvertently push the population towards
multiple sub-optimal regions. To counter this issue, it is essential to consider the positions of various
elite individuals within the fitness landscape. This approach allows for a richer pool of information,
facilitating a more comprehensive search. Consequently, the trial vectors generated are more likely to
survive the selection process, increasing the likelihood of discovering better global optima.

3.2 The CMX Framework
The proposed CMX framework utilizes the stagnation tolerance Q defined in Section 2.3 to detect

stagnation. When stagnation occurs in generation G, i.e., qi ,G ≥ Q, a newly designed Centroid-based
crossover (CX) replaces the classical binomial crossover. The CX is formulated by:

ui , j ,G = {
vi , j ,G if rand j (0, 1) < CR or j = jrand
ck , j ,G otherwise (10)

where ck ,G is the centroid vector defined by:

→

c k ,G =
1
k∑

k
i=1
→

x i ,G (11)

assuming that the population is ranked according to the objective value, i.e., f (→x 1,G) ≤ f (→x 2,G) ≤ ⋅ ⋅ ⋅ ≤
f (→x N P ,G). Therefore,

→

c k ,G is a linear combination of the top k elitism individuals in PG . Furthermore, in
order to make the stagnated vectors converge more efficiently, a novel Centroid-based “origin-to-centroid”
mutation (CM) strategy is proposed, in which the terminal vector(s) of the difference vector(s) in mutation
strategies is replaced by the centroid vector →c k ,G . The word “origin” in “origin-to-centroid” indicates the
randomly selected or target vector in the original mutation strategy. For instance, the proposed CM strategies
for “DE/rand/1” (Eq. (1)) and “DE/current-to-best/1” (Eq. (3)) are given as follows:
→

v i ,G =
→

x r1 ,G + F (→c k ,G −
→

x r2 ,G) (12)
→

v i ,G =
→

x i ,G + F (→x best ,G −
→

x i ,G) + F (→c k ,G −
→

x r1 ,G) (13)

Remark: If the terminal vector(s) of difference vector(s) is (are) the best-so-far vector →x best ,G or the
pbest-so-far vector →x pbest ,G as used in the “DE/current-to-pbest/1” [16] mutation strategy in the JADE and
SHADE algorithms, there is no need for modification.
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To illustrate the effectiveness of CM and CX, we consider a simple example with parameter dimension
D = 2 and DE/rand/1. As shown in Fig. 1a, when CX is conducted merely, the original mutation operation,
DE/rand/1, may cause the stagnated solution to move away from the centroid →c k ,G . Consequently, the
possible trial vectors 1 and 2 could still be far from →

c k ,G even after CX. Fig. 1b illustrates the case for
which only CM is adopted. Based on Eq. (11), the mutant vector →v i ,G can get close to →c k ,G . However, after
the classical binomial crossover, the potential trial vectors 1 and 2 are still far from →

c k ,G . In contrast, by
performing CX and CM together, as depicted in Fig. 1c, the generated trial vectors are the closest to the
centroid. Due to space limitations, the relation between population diversity dG against generation is included
in Fig. S2. As observed, CMX achieves better convergence performance than CM and CX on all the functions,
confirming the illustration given.

Figure 1: Illustration of centroid based crossover (CX) and centroid based mutation (CM): (a) with CX only; (b) with
CM only; (c) with both CX and CM

Algorithm 1 presents the pseudo-code of the proposed CMX framework for DE/rand/1/bin. The green
block shows the operation in each generation, while the two yellow blocks show the operations that must be
performed depending on whether stagnation has been detected or not.

Algorithm 1: CMX-DE/rand/1/bin.
1: Initialize and evaluate population P0; set G = 0; set tolerance Q; initialize qi,G = 0 {i = 1, 2, . . ., NP};
2: While terminal conditions are not met Do
3: Reindex PG from best to worst according to fitness;
4: For i = 1: NP Do
5: If qi,G ≤ Q — no stagnation detected —

—– Mutation —–
6: Randomly choose

→

x r1 ,G ,
→

x r2 ,G ,
→

x r3 ,G from PG where r1 ≠ r2 ≠ r3 ≠ i; generate a mutant vector
→

v i ,G using Eq. (1);
—– Classical binomial crossover —–

7: Generate jrand = randint[1, D];
8: For j = 1: D Do
9: If randj(0, 1) < CR or j = jrand
10: ui,j,G = vi,j,G
11: Else
12: ui,j,G = xi,j,G
13: End for

(Continued)
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Algorithm 1 (continued)
14: Else — stagnation detected —

—– CM —–
15: Generate k = randint[1, NP]; generate an elitism centroid vector →c i ,G using Eq. (11); randomly

choose
→

x r1 ,G ,
→

x r2 ,G from the current population PG where r1 ≠ r2 ≠ i; generate a mutant vector
→

v i ,G using Eq. (13);
—– CX —–

16: Generate jrand = randint[1, D];
17: For j = 1: D Do
18: If randj(0, 1) < CR or j = jrand
19: ui,j,G = vi,j,G
20: Else
21: ui,j,G = ck,j,G
22: End for
23: Evaluate the fitness of →u i ,G ;

— Selection —
24: If f (→u i ,G) ≤ f (→x i ,G)
25:

→

x i ,G+1 =
→

u i ,G , qi ,G+1 = 0
26: Else
27: →

x i ,G+1 =
→

x i ,G , qi ,G+1 = qi ,G + 1
28: End For //end for line 4
29: G = G + 1;
30: End While

4 Experimental Result
In this section, experiments are performed on 30 CEC2014 benchmark functions [54] to identify

the effectiveness of the proposed CMX method. Following the suggestion in [54], the performance of an
algorithm is measured by the best solution E obtained with 104 × D function evaluations, where D is the
parameter dimension of the function. E will be taken as zero if smaller than 10–8. For comparison, the “CMX”
variants (CMX-DEs) and their competitors (DEs, SPS-DEs [19] and GAR-DEs [20]) are independently run
on each function for 51 trials [54]. All the algorithms were implemented using MATLAB language and
executed on an Intel Core i7 3.4 GHz PC with 8 GB of RAM in a Windows 10 environment.

For clarity, the significantly better-performed algorithm is highlighted in bold, while the smallest value
of E obtained by all compared algorithms is underlined. To compare different algorithms, a 5% significance
level Wilcoxon signed-rank test is used to compare each pair of the 51 E values. It should be remarked that
the Wilcoxon test considers all 51 results to give conclusive remarks on performance. The symbols “+”, “=”,
and “−” indicate that CMX-DEs are significantly better than, the same as and worse than the compared
algorithm, respectively. The “+/=/−” in the last rows of the tables gives the comparison summary.

4.1 Effectiveness of the CMX Framework
The CMX framework is integrated with six classic and advanced DE variants: DE/rand/1/bin [6],

DE/best/1/bin [6], SaDE [15], RBDE [14], JADE [16], and SHADE [39]. The parameter settings for these
algorithms are tabulated in Table S2.
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The experimental results on the 30-D (i.e., D = 30) CEC2014 test set are shown in Tables S3 and S4, and
the comparison results based on the Wilcoxon signed-rank test are summarized in Table 1. From Tables 1, S3
and S4, it is clear that the CMX framework significantly improves the performance of the original DEs. In 180
cases, CMX-DEs outperform original DEs in 106 cases, perform similarly in 56 cases and only underperform
in 18 cases. Specifically, CMX-DE/rand/1/bin wins, ties and loses to DE/rand/1/bin in 26, 1 and 3 functions,
respectively. CMX-DE/best/1/bin significantly improves DE/best/1/bin in 19 functions and loses in 1 case
(F28). Compared with SaDE, CMX-SaDE is superior in 8 functions and worse in 5 cases. CMX-RBDE
exhibits better performance than RBDE in 26 functions. CMX-JADE outperforms JADE in 14 functions but
underperforms in 2 (F10 and F14). CMX-SHADE is significantly better than SHADE in 13 functions and
worse in 5 (F1, F14, F22, F25 and F28).

Table 1: Comparison results of CMX-DEs with baseline DEs

vs. Algorithm Win Tie Lose
DE/rand/1/bin 26 1 3
DE/best/1/bin 19 10 1

SaDE 8 17 5
RBDE 26 2 2
JADE 14 14 2

SHADE 13 12 5
Total 106 56 18

In summary, the CMX framework significantly improves the performance of all six algorithms except
SaDE. In SaDE, one of the strategies is the rotationally invariant strategy “DE/current-to-rand/”, in which no
crossover is employed. As a result, CX operation is not applied for this case.

To thoroughly evaluate the effectiveness of the CMX framework, we conducted a detailed comparative
analysis of CMX-JADE and JADE, focusing on the characteristics of various test functions. As shown in
Table S4, CMX-JADE demonstrates a significant performance improvement over JADE across four distinct
characteristics of the test functions:

(1) Unimodal Functions (F1–F3): For functions F1 and F3, CMX-JADE consistently outperforms JADE,
while for function F2, both algorithms exhibit comparable performance. Incorporating an elitism
centroid within the CMX framework enhances JADE’s convergence capabilities on simpler problems.

(2) Simple Multimodal Functions (F4–F16): CMX-JADE performs superior on seven functions (F5, F6, F9,
F11–F13). This improvement can be attributed to effectively utilizing the elitism centroid within local
search regions. In the crossover operations of the CMX framework, the randomly selected→x r1 , g element
in the “DE/current-to-best/1” strategy has been replaced by the elitism centroid. This modification
provides more relevant information that effectively addresses the exploitation needs during the latter
stages of the evolutionary process, as opposed to relying solely on random individuals.

(3) Hybrid Function (F17–F21): CMX-JADE significantly enhances JADE’s performance on functions
F18 and F19. In complex problems, the fitness landscape is often characterized by multiple local
optima, making it challenging to generate promising solutions using traditional external archives and
binomial crossover operations. The elitism centroid leverages multiple elite individuals in the crossover
operation, supplying stagnant individuals with information about new candidates outside the current
population, thereby improving their exploration capabilities.
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(4) Composition Functions (F23–F30): CMX-JADE outperforms JADE on functions F26 and F28 while
demonstrating comparable performance on the remaining functions.

The analysis presented above illustrates that the integration of the CMX framework significantly
enhances JADE’s performance, particularly in the context of Simple Multimodal Functions, through effective
crossover operations. Furthermore, the CM operations contribute additional potential candidate solutions
to the population, thereby improving the algorithm’s overall exploration.

Table 2 shows the comparison results according to multi-problem Wilcoxon’s test. It can be observed
that CMX-DE/rand/1/bin, CMX-DE/best/1/bin, CMX-RBDE and CMX-JADE significantly outperform the
corresponding baseline DE with a p-value < 0.05. CMX-SHADE also performs better than SHADE but is less
significant with a p-value = 0.10.

Table 2: Comparison results of CMX-DEs with Baseline DEs according to multi-problem Wilcoxon’s test

vs. Algorithm R+ R− p-value
DE/rand/1/bin 417.5 17.5 8.5 × 10−7

DE/best/1/bin 346.0 89.0 0.004
SaDE 240.5 224.5 >0.2
RBDE 409.5 25.5 3.67 × 10−6

JADE 373.5 91.5 0.002
SHADE 293.0 142.0 0.10

To investigate the stagnation issue, the values of dG and qi,G of each algorithm against generation G are
plotted on four representative 30-dimensional functions (unimodal function F3, simple multimodal function
F9, hybrid function F19 and composition function F25) over 51 trials, as presented in Figs. 2 and 3.

Fig. 2 shows that dG for most CMX-DEs is much smaller than for the original DEs. For F3, dG for CMX-
DE/rand/1/bin, CMX-DE/best/1/bin and CMX-RBDE are much smaller than those for the original DEs. dG
has already dropped to small values for SaDE and SHADE, showing no stagnation problem in F3. The CMX
framework solves the first F3 stagnation problem, except for JADE. dG remains high for F9 and F19, showing
stagnation problems for both. dG values for all CMX-DEs decrease, showing CMX effectiveness. For F25,
the dG decrease is significant for most CMX-DEs, except for CMX-SADE, CMX-JADE and CMX-SHADE,
which are already at low values. The CMX framework can help the initial DEs converge more efficiently and
avoid stagnation.

Fig. 3 shows the variation of the average q values of the CMX-DEs and the original DEs. For F3, the
values of qi,G for CMX-DE/rand/1/bin and CMX-RBDE decrease to lower than those of the corresponding
DEs. The value of qi,G in CMX-DE/best/1/bin increases with generation, but dG remains small. The population
is converging. New individuals are hard to find but not stuck. For F9 and F19, qi,G falls to lower values than the
DEs. For F25, qi,G decreases in CMX-DE/rand/1/bin, CMX-DE/best/1/bin and CMX-RBDE. The decrease of
qi,G in the CMX-DEs allows the algorithms to search more efficiently and prevents stagnation.

Overall, Figs. 2 and 3, Tables S3 and S4, conclude that the CMX method can deal with stagnation in the
original DEs and significantly enhance performance.
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Figure 2: The values of dG achieved by the original DEs and CMX-DEs against generation G on 30-dimensional
CEC2014 benchmark functions F3, F9, F19 and F25 over 51 independent runs

Figure 3: The values of qi,G achieved by the original DEs and CMX-DEs against generation G on 30-dimensional
CEC2014 benchmark functions F3, F9, F19 and F25 over 51 independent runs
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4.2 Comparison with the SPS Framework
This subsection compares the CMX framework with the SPS framework presented in [19]. The

parameter settings for this subsection are tabulated in Table S2.
The experimental results of CMX-DEs and SPS-DEs on the 30-D CEC2014 functions, presented in

Tables S5 and S6 and summarized in Table 3, show that CMX-DEs outperform SPS-DEs in 77 cases, are
similar in 69 cases, and inferior in 34 cases out of 180. Specifically, CMX-DE/rand/1/bin excels in 24 functions
and underperforms in 6. CMX-DE/best/1/bin outperforms SPS-DE/best/1/bin in 13 functions and lags in 6.
CMX-SaDE surpasses SPS-SaDE in 5 functions (F9, F13, F16, F19, F26), but performs worse in 8 (F5, F8, F10,
F12, F18, F20, F22, F30). CMX-RBDE is superior in 23 functions and inferior in 4 (F5, F12, F14, F24) compared
to SPS-RBDE. CMX-JADE outperforms SPS-JADE in 5 cases (F3, F5, F9, F12, F13) and underperforms in
6 (F6, F10, F11, F15, F22, F28). CMX-SHADE shows superior performance in 7 functions (F5, F9, F17, F18,
F19, F21, F23) and inferior performance in 4 (F10, F13, F16, F22) compared to SPS-SHADE. Wilcoxon’s test
results in Table 4 indicate that CMX-DE/rand/1/bin and CMX-RBDE significantly outperform their SPS
counterparts with other comparable cases.

Table 3: Comparison results of CMX-DEs with SPS-DEs

vs. Algorithm Win Tie Lose
SPS-DE/rand/1/bin 24 0 6
SPS-DE/best/1/bin 13 11 6

SPS-SaDE 5 17 8
SPS-RBDE 23 3 4
SPS-JADE 5 19 6

SPS-SHADE 7 19 4

Table 4: Comparison results of CMX-DEs with SPS-DEs according multi-problem Wilcoxon’s test

vs. Algorithm R+ R− p-value
SPS-DE/rand/1/bin 372.5 62.5 4.29 × 10−4

SPS-DE/best/1/bin 261.5 173.5 >0.2
SPS-SaDE 186.5 248.5 >0.2
SPS-RBDE 407.0 58.0 1.37 × 10−4

SPS-JADE 174.0 291.0 >0.2
SPS-SHADE 288.5 176.5 >0.2

To evaluate the ability of SPS and CMX frameworks to handle stagnation, the values of dG and qi,G of
all the SPS-DEs and CMX-DEs vs. generation G on the four representative functions (F3, F9, F19 and F25)
are shown in Figs. S1 and S3, respectively.

Fig. S1 shows that most of the CMX-DEs obtain a much smaller dG value than those of the corresponding
SPS-DEs. Moreover, Fig. S3 also shows that CMX-DEs can achieve a smaller qi,G than SPS-DEs in most
stagnation cases unless it converges. The smaller dG and qi,G confirm the superiority of CMX over SPS in
dealing with stagnation and conclude with the comparison results shown in Tables S4 and S5.



Comput Mater Contin. 2025;84(2) 2485

4.3 Comparison with the GAR Framework
This subsection compares the CMX framework with the GAR framework presented in [20]. The related

parameters in this subsection are shown in Table S6. It is remarked that the parameters for the GAR
method are the same as those suggested in the original literature [20] except DE/best/1/bin. Because the
parameter setting of DE/best/1/bin in the original work [20] will cause CMX and GAR to be too convergent.
The characteristics of CMX and GAR when solving the stagnation cannot be observed. Thus, a different
parameter setting is utilized. Both frameworks are incorporated into the previous six DEs and evaluated for
performance comparison.

Tables 5, S8 and S9 summarize the experimental results of CMX-DEs and GAR-DEs on the 30-D test
suit. CMX-DEs are more efficient than GAR-DEs. CMX-DEs outperform GAR-DEs in 99 cases, perform
similarly in 60 and lose in 21 cases out of 180. Specifically, CMX-DE/rand/1/bin performs better, similar and
worse than GAR-DE/rand/1/bin in 18, 5 and 7 functions. CMX-DE/best/1/bin performs better, the same or
worse in 28, 2 and 0 functions. CMX-SaDE outperforms GAR-SaDE in 9 cases (F5, F9, F10, F12, F13, F15,
F16, F22 and F26) and loses in 5 cases (F6, F8, F14, F23 and F28). CMX-RBDE outperforms GAR-RBDE in 13
functions but underperforms in 2. CMX-JADE performs better than GAR-JADE in 12 functions and worse in
5. CMX-SHADE outperforms GAR-SHADE in 19 functions and performs lower on two (F1 and F25). Table 6
shows that CMX is significantly better in 3 cases (DE/best/1/bin, RBDE and SHADE) with p-value < 0.05.

Table 5: Comparison results of CMX-DEs with GAR-DEs

vs. Algorithm Win Tie Lose
GAR-DE/rand/1/bin 18 5 7
GAR-DE/best/1/bin 28 2 0

GAR-SaDE 9 16 5
GAR-RBDE 13 15 2
GAR-JADE 12 13 5

GAR-SHADE 19 9 2
Total 99 60 21

Table 6: Comparison results of CMX-DEs with GAR-DEs according multi-problem Wilcoxon’s test

vs. Algorithm R+ R− p-value
GAR-DE/rand/1/bin 267.0 198.0 >0.2
GAR-DE/best/1/bin 451.0 14.0 2.04 × 10−7

GAR-SaDE 295.5 169.5 >0.2
GAR-RBDE 331.0 134.0 0.04
GAR-JADE 216.0 219.0 >0.2

GAR-SHADE 387.0 78.0 9.51 × 10−4

To evaluate the ability of GAR and CMX to solve stagnation, the values of dG and qi,G of all the GAR-DEs
and CMX-DEs vs. generation G on the four representative functions (F3, F9, F19 and F25) are shown in Figs.
S4 and S5, respectively.
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From Fig. S4, it can be observed that most CMX-DEs obtain much smaller dG values than those of the
corresponding GAR-DEs. Moreover, Fig. S5 shows that CMX-DEs can achieve smaller qi,G than GAR-DEs
in most stagnation cases.

4.4 Comparison with CEC2021 High-Ranking Algorithm
To evaluate the CMX framework, we integrate it with the advanced DE variant (MadDE) algorithm [55],

a top performer in CEC 2021 competitions. MadDE uses a multiple adaptation (Mad) strategy and secured
second place in non-shifted problem categories. Our analysis compares the CMX-MadDE framework with
the baseline MadDE implementation.

Detailed comparative results for 30-D and 50-D problems are presented in Table S14 of the supplemen-
tary file. Statistical analysis shows that CMX-MadDE performs best in 12 benchmark functions, equally well
in 17, and worst on F17 in 30-D. CMX-MadDE outperforms MadDE in 12 functions, matches its performance
in 18, and shows no inferior performance. The following sections explain the improvements of CMX-MadDE
through a detailed examination of four problem categories.

(1) Unimodal Functions (F1–F3): CMX-MadDE shows statistically significant improvements over
MadDE in F1 and F3 across 30-D and 50-D search spaces.

(2) Simple Multimodal Functions (F4–F16): The CMX-MadDE achieves performance enhancements in
F6 and F19 regardless of dimensionality. Notably, in 30-D space, it exhibits superior optimization precision
in F9 compared to the baseline algorithm.

(3) Hybrid Function (F17–F21): The statistical results indicate that as the dimensions increase to 50,
CMX-MadDE shows a significant improvement in Hybrid Function, except for F19.

(4) Composition Functions (F23–F30): The CMX’s advantage is especially significant in 30-D compo-
sition problems, where it outperforms MadDE in 62.5% of cases (5 out of 8 functions). This substantial
improvement demonstrates CMX’s effectiveness in navigating complex, multi-component optimiza-
tion landscapes.

4.5 Overall Performance
The presentation of the results is concluded by summarizing all the functions that have been considered.

The empirical cumulative probability distribution function (ECDF) of the normalized solution errors (NSE)
measure is employed. Due to page limitations, the definition is provided in the supplemental file. The overall
performance of CMX-DEs over the 30-D and 50-D CEC2014 benchmark functions with 51 independent
trials is compared with that of its competitor by utilizing the ECDF measure. To this end, the NSEs for all
CMX-DEs and their competitors are computed first. The algorithms are then classified as CMX-DE, and
comparative DE and their ECDFs are calculated.

Fig. 4 compares CMX-DEs with different DEs, including original DEs, SPS-DEs, and GAR-DEs. These
three figures show that the ECDF values of CMX-DEs are almost always higher than those of the original
DEs, SPS-DEs, and GAR-DEs, confirming that CMX-DEs exhibit better performance than their competitors.

Table S16 compares the time complexity of the considered methods. CMX’s complexity is higher than
the origin and SPS but lower than GAR. Due to page limitations, relevant procedures and discussions are
presented in the supplemental file.
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Figure 4: Empirical cumulative probability distribution function (ECDF) of normalized solution errors (NSE) for
CMX-DEs and the compared DEs over 30-dimensional and 50-dimensional CEC2014 benchmark sets: (left) vs. original
DEs; (middle) vs. SPS-DEs; (right) vs. GAR-DEs

4.6 Performance Sensitivity to Q
To investigate the performance sensitivity to Q, performances of the previous six CMX algorithms with

nine Q values {1, 2, 4, 8, 16, 32, 64, 128, 256} are measured, and the ranking is summarized in Table 7. It can
be seen that over-small or over-large Q does not perform well. This is because when Q is too small, CMX is
frequently used, which results in a diversity loss, while an over-large Q value indicates that CMX will rarely
be performed. Fig. 5 shows the population diversity (dG) against generation on functions F3, F9, F19 and F25
with three Q values: 1, 32 and 256. It is seen that on all the functions, the CMX variant with a smaller Q value
has a faster population diversity decrease.

Table 7: Performance ranking with different Q values

Q 1 2 4 8 16 32 64 128 256
Ranking 7.09 6.27 5.63 4.76 4.28 3.67 3.78 4.30 5.18

Figure 5: (Continued)
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Figure 5: Population diversity against generation of three CMX-SHADE variants with Q = 1, 32, and 256 in the median
run

4.7 Comparison of CMX-SHADE with Well-Known DEs
As presented in Tables S5, S6, S8 and S9, the improved CMX-SHADE variant is the best among all the

aforementioned algorithms. In addition, we have found that it achieves the optimal performance with Q =
128. In this subsection, CMX-SHADE is further compared with ten well-known DE variants, i.e., jDE [38],
SaDE [15], EPSDE [25], JADE [16], CoDE [26], CoBiDE [28], SHADE [39], MPEDE [27], IDE [9] and
sinDE [40] on the CEC2013 functions [56]. Parameters for the considered DEs are kept the same as the
original literature, and the parameter settings for CMX-SHADE are NP = 100, H = 100, MF = {0.7}, MCR =
{0.5}, and Q = 128. The experimental results on the 30- and 50-dimensional CEC2013 functions are shown in
Tables S10 and S11, and the comparison results are summarized in Table 8. The number of best (NoB) results
obtained by each algorithm out of 28 functions and the overall performance ranking are also presented.

Table 8: Comparison results of CMX-SHADE with the ten well-known variants

Algorithm Win/30-D Tie/30-D Lose/30-D NoB/30-D Win/50-D Tie/50-D Lose/50-D NoB/50-D Ranking
jDE 17 7 4 7 18 5 5 6 6.41

SaDE 25 2 1 2 22 5 1 2 8.86
EPSDE 22 4 2 5 24 2 2 3 9.08
JADE 18 9 1 7 19 8 1 5 5.82
CoDE 19 6 3 4 19 4 5 2 6.29

CoBiDE 18 7 3 5 18 4 6 6 5.87
SHADE 12 16 0 7 13 14 1 6 4.88
MPEDE 13 7 8 9 15 8 5 4 5.13

IDE 16 6 6 8 15 7 6 7 4.58
sinDE 16 5 7 6 14 8 6 5 5.59

CMX-SHADE – – – 13 – – – 14 3.50

Table 8 shows that CMX-SHADE significantly outperforms the other ten DEs in 30-D and 50-D
functions, resulting in a much smaller performance ranking of 3.50. Tables 9 and 10 summarize the multi-
problem Wilcoxon’s test of CMX-SHADE and SHADE against other algorithms, respectively. From Table 9,
it is seen that CMX-SHADE performs significantly better than all the ten compared algorithms with
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p-value < 0.05. Unlike Table 10, SHADE is not significantly better in 4 cases (CoBiDE, MPEDE, IDE and
sinDE). Thus, it can be concluded that CMX significantly enhances SHADE.

Table 9: Comparison of CMX-SHADE with ten competitive DE variants on the 30-Dimensional and 50-Dimensional
CEC2013 Benchmark set according to multi-problem Wilcoxon’s test

CMX-SHADE vs. R+ R− p-value
jDE 1271.0 325.0 0.000112

SaDE 1444.0 152.0 <0.000001
EPSDE 1500.5 95.5 <0.000001
JADE 1335.5 260.5 0.000011
CoDE 1342.0 198.0 0.000002

CoBiDE 1244.0 296.0 0.00007
SHADE 1297.5 298.5 0.000045
MPEDE 1048.5 491.5 0.019407

IDE 1026.5 513.5 0.031296
sinDE 1039.0 501.0 0.023944

Table 10: Comparison of SHADE with other nine competitive DE variants on the 30-Dimensional and 50-Dimensional
CEC2013 Benchmark set according to multi-problem Wilcoxon’s test

SHADE vs. R+ R− p-value
jDE 1184.0 356.0 0.000515

SaDE 1423.0 173.0 <0.000001
EPSDE 1497.5 98.5 <0.000001
JADE 1137.5 458.5 0.005547
CoDE 1097.0 443.0 0.00607

CoBiDE 971.5 624.5 0.15
MPEDE 786.5 753.5 >0.2

IDE 685.0 911.0 >0.2
sinDE 758.0 782.0 >0.2

jDE 1184.0 356.0 0.000515

4.8 Incorporation into DEs with Linear Population Size Reduction
To verify CMX’s flexibility, it is further incorporated into two state-of-the-art DEs, namely L-

SHADE [41] and L-SHADE_cnEpSin [42], with linear population size reduction. The Q value is set to 64 for
optimal performance.

From Tables 11 and S12, CMX-L-SHADE wins in 14 (=8 + 6) and loses in 4 (=3 + 1) cases. CMX-L-
SHADE_cnEpSin is significantly better in 15 (=8 + 7) cases and worse in 4 (=2 + 2) cases. This is further
confirmed using a multi-problem comparison, as shown in Table 12. The two CMX variants significantly
outperform the baselines with p-value < 0.05.

Table S13 compares CMX-L-SHADE_cnEpSin with other competitive evolutionary algorithms (EAs)
and swarm-intelligence-based algorithms (SIs), including the continuous non-revisiting genetic algorithm
(cNrGA) [57], the dynamic multi-swarm differential learning particle swarm optimizer (DMSDL-PSO) [58]
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and the restart CMA evolution strategy with increasing population size (IPOP-CMA-ES) [59]. From Table
S13, CMX-L-SHADE-cnEpSin outperforms cNrGA, DMSDL-PSO and IPOP-CMA-ES in 52 (=27 + 25), 38
(=20+ 18) and 30 (=13+ 17) cases and underperform in 3 (=1+ 2), 8 (=3+ 5) and 9 (=5+ 4) cases, respectively.
From Table S16, according to the multi-problem Wilcoxon’s test, CMX-L-SHADE-cnEpSin is significantly
better in all three cases.

Table 11: Comparison results of CMX-L-SHADE and CMX-L-SHADE_CNEPSIN with Baseline DEs

Algorithm Win/30-D Tie/30-D Lose/30-D Win/50-D Tie/50-D Lose/50-D
CMX-L-SHADE vs.

L-SHADE
8 17 3 6 21 1

CMX-L-
SHADE_cnEpSin vs.
L-SHADE_cnEpSin

8 18 2 7 19 2

Table 12: Comparison of CMX-L-SHADE_CNEPSIN, CMX-L-SHADE with the Baseline DEs on the 30-Dimensional
and 50-Dimensional CEC2013 Benchmark set according to multi-problem Wilcoxon’s test

R+ R− p-value
CMX-L-SHADE vs. L-SHADE 1126.0 414.0 0.002732

CMX-L-SHADE_cnEpSin vs. L-SHADE_cnEpSin 1140.5 399.5 0.001881

5 Conclusion
This paper proposes an elitism centroid-based operations (CMX) framework to deal with the stagnation

of classic DE algorithms and advanced DE variants. Once stagnation is detected, the proposed centroid-based
mutation and crossover operations help the DE algorithm escape the situation. The proposed CMX method
has been incorporated into several classic, well-known and state-of-the-art DE algorithms. Experimental
studies on the benchmark functions show the proposed method’s effectiveness and superiority over two
recently proposed frameworks. The CMX-SHADE variant, which is improved by the CMX framework,
significantly outperforms several well-known DE algorithms. It is also found that CMX has flexibility with
DE variants with varying population sizes, namely the L-SHADE and L-SHADE_cnEpSin algorithms. From
benchmark results, the CMX-L-SHADE_cnEpSin algorithm demonstrates the best performance.

The effect of parameter Q has also been investigated. Studies show that an overly small or overly large
Q setting is inappropriate. Although different algorithms’ optimal settings vary, Q values between 32 and
128 generally perform well. Further investigation into how to adaptively adjust this parameter for different
problems or even in different evolution processes of a single problem is an interesting topic.

Future work will refine CMX through enhanced adaptive mechanisms with dynamic parameter tuning
and hybrid stagnation metrics using diversity analytics. Validation will extend to other optimization
problems, combinatorial optimization, and complex multimodal problems, with theoretical convergence
analysis in non-convex environments.
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