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ABSTRACT: The integration of the Internet of Things (IoT) into healthcare systems improves patient care, boosts
operational efficiency, and contributes to cost-effective healthcare delivery. However, overcoming several associated
challenges, such as data security, interoperability, and ethical concerns, is crucial to realizing the full potential of IoT
in healthcare. Real-time anomaly detection plays a key role in protecting patient data and maintaining device integrity
amidst the additional security risks posed by interconnected systems. In this context, this paper presents a novel method
for healthcare data privacy analysis. The technique is based on the identification of anomalies in cloud-based Internet
of Things (IoT) networks, and it is optimized using explainable artificial intelligence. For anomaly detection, the Radial
Boltzmann Gaussian Temporal Fuzzy Network (RBGTFN) is used in the process of doing information privacy analysis
for healthcare data. Remora Colony Swarm Optimization is then used to carry out the optimization of the network. The
performance of the model in identifying anomalies across a variety of healthcare data is evaluated by an experimental
study. This evaluation suggested that the model measures the accuracy, precision, latency, Quality of Service (QoS), and
scalability of the model. A remarkable 95% precision, 93% latency, 89% quality of service, 98% detection accuracy, and
96% scalability were obtained by the suggested model, as shown by the subsequent findings.

KEYWORDS: Healthcare; data privacy analysis; anomaly detection; cloud IoT network; explainable artificial intelli-
gence; temporal fuzzy network

1 Introduction
Nowadays, the healthcare industry has shifted from a hospital-centric model to a patient-centric

approach, to empower individuals to control their health decisions for better management. Trending features
in cloud and edge networks along with advancements in AI, IoT, and big data, derive and facilitate this
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transformation. Precisely, digital health are equipped with smart sensors that can produce better business
insights with the help of real-time predictive models. Healthcare 4.0 focuses on a patient-centric approach
leveraging a sensor-based technology to provide continuous health monitoring to collect real-time data
followed by analysis using advanced tools. This empowers healthcare providers to offer more personalized
care, making informed decisions through precise and current insights into the patient’s health status.

While this industry has aligned patient care activities with the Healthcare 4.0 vision, it is developing new
standards [1]. Healthcare 5.0 integrates intelligent control systems, augmented and virtual reality with various
identifiable healthcare analytics and 3-D view models. Therefore, personalized analytics and comprehensive
healthcare would drive ingenious business proposals in the medical domain. Medical science technology
anticipates that millions of Internet of Things (IoT)-based sensors will be networked and interact over fifth-
generation (5G) network infrastructure to enable digital wellness, smart healthcare, enhanced healthcare
metrics in the context of Healthcare 5.0. Intelligent wearables are connected with mobile communication as
well as medical methods for convenient and inaccessible healthcare deliverance in a scenario made possible
by 5G, IoT, and AI [2]. Major methods such as IoT from the foundation for a number of emerging applications
in the fields of smart manufacturing, transportation systems, and health care. IoT uses various sensors to
collect data about people, things, and the environment. This data is regularly sent to the cloud server, enabling
application managers to take a variety of actions aimed at enhancing application performance. Based on
the gathered data, AI approaches can also be used to operate the apps. One of the main uses of IoT is
in healthcare, where patients wear devices to collect vital signs data [3,4]. Body measurements like blood
pressure, sugar level, heart rate, oxygen saturation, and so on are examples of this type of data. These crucial
measurements cannot be continuously collected and delivered to the cloud for processing without the use of
IoT. Consequently, IoT-enabled health care is a significant use case that has a profound effect on people’s lives.
Healthcare predictive modeling can be intricate, counterintuitive, and frequently difficult to understand.
Artificial intelligence can now function swiftly and well and is widely utilized in various fields. The influence
of machine learning algorithms’ evolving processes and optimization to tackle a variety of issues in the
healthcare industry, that enables AI usage in medical imaging as a central domain for research attention
transforms diagnostic procedures, for more accurate disease detection like cancer, neurological disorders,
and cardiovascular diseases [5]. Nevertheless, deep learning algorithm-based AI lacks transparency, leaving
doctors confused about the symptoms of a diagnosis. So, how to present strong proof of the answers is
a crucial query. However, a gap still exists between AI models and human understanding termed “black-
box” transparency. Significant research is ongoing to improve clinical reliance on the use of AI models. For
instance, in 2015, the US Defence Advanced Research Projects Agency (DARPA) created the explainable
AI (ExAI) concept. Subsequently, in 2021, a trust AI project demonstrated that the ExAI may be applied to
interdisciplinary application challenges in computer science, psychology, and statistics and may offer answers
that boost users’ trust [6]. A robust scheme is essential to improvise predictive methods for explainability
in the healthcare domains that may result in advanced patient care. In certain therapeutic settings, such
as radiology, AI cna facilitate doctors in optimal choice and may better overtake human intelligence. By
collaborating with healthcare professionals to develop relevant clinical questions, advanced AI algorithms
can reveal clinically important information hidden within large volumes of healthcare data. AI applications
are trained to predict particular results for a set of characteristics. This method helps to gain deep insights to
get significant attention to recent advances in deep learning. In DL, NN with multiple hidden layers examines
higher convoluted patterns to improve prognostic accuracy.

Several challenges may arise while interpreting the prediction outcomes and a functional explanation of
artificial intelligence applications. It is challenging to monitor Deep Learning due to the lack of transparency
in the decision-making stage and frequently described as an opaque model [7,8].
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This work provides the following significant contributions:
To suggest a unique technique for identifying anomalies in cloud IoT networks utilize explainable

artificial intelligence and integrate privacy analysis of healthcare data. Here, the radial Boltzmann Gaussian
temporal fuzzy network was used for anomaly detection in the healthcare data privacy invextigation. Next,
remora colony swarm optimization was used to assess network optimization.

2 Literature Review
Numerous medical diseases and applications use predictive modeling using sophisticated AI and ML

techniques. To optimize long-term outcomes for the patients with type 1 diabetes, work [9] suggested using
reinforcement learning to learn and suggest a sequential course of treatment that includes insulin and oral
antidiabetic medications. Author [10] suggested modeling the intricate relationships between diseases using
high-order networks. The suggested approach is utilized to replicate disease trajectories as well as forecast
disease states in type 2 diabetes. It outperforms first-order network, according to the results. Rathee et al. [11]
present a Zero Trust Blockchain Architecture designed for decentralized e-health Cyber-Physical Systems
(CPS) to enhance security, storage, and real-time patient monitoring. A dilated recurrent neural network
(DRNN) was proposed in study [12] to predict type 1 diabetes patients’ future blood glucose levels. To identify
diabetic retinopathy from retinal fundus images, work [13] built DL algorithms and discovered that they
achieved great sensitivity and specificity. Using an annotation tool, a panel of ophthalmologists rated the
photographs. Yaqoob et al. [14] looked at the safety concerns related to treating sepsis and used the deep
reinforcement learning approach to find the best course of action. To determine the optimal reward functions
out of a set of seemingly optimal treatment trajectories, the work proposed in [15] provides a Mini-Tree
(DIRL-MT) method using deep inverse reinforcement learning. The simultaneity of organ dysfunction was
identified by the author [16] using a network-based model, which helps forecasting sepsis as well as the
survival of those who experience it. A common metric for assessing the effectiveness of health services is
the hospital readmission rate. Enhancing communication and care coordination is the aim of the Hospital
Readmissions Reduction Program (HRRP) to lower preventable readmission rates. To predict the hospital
readmission of diabetic patients, work [17] presented a deep learning model that combines deep forest
and wavelet transform. Wei et al. [18] introduce SM-UNet, a deep learning model designed for real-time
medical image segmentation by integrating CNN and MLP architectures. A generalized taxonomy of ExAI
is presented by the authors in [19] based on present issues and potential future developments. The suggested
taxonomy combines the examined taxonomies, ExAI database methods, and decision tree methods to
determine which taxonomy is most appropriate for the intended uses. A cloud-based, DL multi-modal
method for ECG pattern detection using a 6G communication network is proposed by authors in [20].
Authors in [21] suggest an intrusion detection technique based on Sequential Online ELM. ELM is a NN
with strong generalisability and high training speed. An advancement of ELM networks, known as OS-ELM,
was created expressly to handle cloud services, incorporating multi-category detection into the process.
Sadly, this makes it more difficult to detect attacks such as privilege escalation and probing. Convolutional
neural networks (CNNs) were first designed to classify images; however, reference [22] proposed employing
CNNs as an in-router multi-category network attack classifier. The approach was validated using public data
from NSL-KDD and UNSW-NB15. Nevertheless, the suggested study does not address the IoT environment.
Tewari & Gupta [23] resent a secure and low-cost mutual authentication protocol for IoT-based healthcare
systems, ensuring strong location privacy. Inuwa & Das [24] proposed Vector Convolutional Deep Learning,
a CNN variation, to detect anomalies in IoT data. Two novel qualities, Correlated-Set Thresholding and
DT were introduced by [25]. They are based on ML and were developed specifically for the Raspberry Pi.
The approach is evaluated using the available Bot-IoT dataset, no conclusions are drawn regarding benign
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classification. Hossain et al. [26] introduced a new attribute selection technique. The new method uses
a wrapper strategy to choose relevant attributes for the machine learning approach and accurately filters
them using the AUC. The proposed strategy is validated using four distinct ML techniques and the Bot-
IoT dataset. Gupta et al. [27] examine the challenges of big data management in B2B-based healthcare
systems and explore its potential benefits, such as improved patient access, efficiency in data transmission,
and enhanced care quality. 98.8% classification accuracy has been achieved in the detection as well as
physiological data classification, like ECG, for heartbeat using a support vector machine (SVM) along with
discrete wavelet transform (DWT) [28]. Vector size is the work’s limitation in such cases. The shift-invariance
aspect of the DWT approach, which influences classification accuracy and performance, is absent from this
work. Encrypted approaches like watermarking have been investigated about other elements, such as the
security of industrial IoT-based healthcare, to prevent theft. This work does not emphasize the effective data
management strategy. In IoT-based healthcare, a significant volume of data gathered by body sensors needs to
be appropriately managed. Big data analytics approaches have been implemented in healthcare organizations
as a result. R-peak is identified from an ECG signal to detect arrhythmias in a related study. Techniques
from random forests and CNN have been used for categorization. Combining the frequency domain (FS2)
and temporal (FS1) data has increased classification accuracy of automatic arrhythmia identification [29].
DTCWT as well as random forest classifier were used for classification. In this work, the accurate labeling
of ECG data is crucial to the training process. To identify any irregularities in heartbeats, a hybrid deep
CNN method can identify as well as categorise various heartbeats using real-time ECG data. Three neural
network architectures have been trained using an ECG dataset for an entropy-based ECG categorization.
To improve computational efficiency, there are three types of architectures: CNN-based, SincNet-based, and
CNN-based with entropy induction. A method for increasing classification accuracy when there is a shortage
of training data is provided in reference [30]. They used a two-dimensional residual network (2D-ResNet)
in conjunction with the Stockwell transform (ST) approach.

3 Proposed Healthcare Data Privacy Analysis Based Anomaly Detection in Cloud IoT Network
ExAI is a branch of AI that strives to ensure the decisions made by AI systems are expliciate and aligned

with human reasoning. The main priority in this context is building an AI system that ensures transparent and
clear results, a factor that becomes particularly important in healthcare. Knowing the logic behind decisions
is essential for impacting patient care and building trust effectively. ExAI helps to supply an apprehensible
description to provide simplified knowledge for all the stakeholders like patients, doctors, etc. Its main
strategy is to identify multiple methods for designing a collection of models that will help future innovators
to minimize the trade off between system performance and its explainability.

As the healthcare database expands, it opens up several possibilities for AI solutions. Errors in medical
procedures pose a significant challenge in this field due to the reliance on numerous medical devices, and
various algorithms have been deployed to recognize and resolve these errors like erratic readings, deviant
health conditions, etc. However, these methods fail to address the reason for considering it an anomaly. AI-
based anomaly detection improves patient outcomes by identifying of several issues at an early stage and
facilitates fast intercession along with controlling bogus anomaly alarms.

The suggested Anomaly Detection (AD) paradigm based on a cloud IoT network is shown in Fig. 1.
To implement the proposed model for anomaly detection and privacy preservation, we used three datasets,
the DARPA dataset [31], the CAIDAS dataset [32], and the DEFCON [33] dataset in the healthcare sector.
Wearable glucose meters and smartwatches are only two examples of smart IoT devices that collect data, and
each of the N participants has their own locally stored dataset. The dataset’s samples are labeled to distinguish
between “normal” and “abnormal” findings. After each participant trains a local model, the federated cloud
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server receives the model weights. Consequently, the weights from each participant’s local model are sent to
this server. It then compiles these weights according to specific criteria (such as the user’s age or the name of
their ailment) and returns the results to the participants as a global weight.

Figure 1: Proposed healthcare data privacy analysis based anomaly detection in cloud IoT network

The system works as follows: it is made up of edge devices, gateways, a cloud database with users, and
a remote IoT platform. For decentralized optimization, a collection of IoT devices initially communicates
with the gateway. Transmission frequencies are iteratively determined throughout the optimization process
considering the system resource limitations defined at the gateway. Transmitting data streams from devices
to a cloud database by determining optimal transmission frequency via gateway as well as IoT platform
after transmission frequencies have converged and been allotted locally. Using particular cloud-based
applications, users can visualize data flows. We took into account the following description of the problem
mathematically (1) and Table 1 presents the abbreviations used in the paper:

max
x1 x2 . . .xN

N
∑
i=1

hi (xt)

such that
N

∑
t=1

xt ≤ c,
N

∑
t=1

ai xt ≤ d , xt ≥ 0 (1)

where ai indicates the amount to be transmitted by device ‘i’, in a specific period, c presents the highest
writing frequency (MWF) to the database, ‘d’ refers to available storage capacity in a specific period, the
utility function hi(xi) presents flow writing frequency as xi for i th device. Here, d and c both are finite
resources where set having N different devices want to solve optimization problems cooperatively in order
to determine their optimal xi . The best possible solution for every given device in the network depends on a
combination of various system-level factors (N, c, and d) and user-defined information (hi and ai). This work
develops and offers an innovative anomaly detection model termed Radial Boltzmann Gaussian temporal
fuzzy network (RBGTFN) in Section 4 to secure healthcare data. In the next phase, the Swordfish algorithm
is applied to optimize the network performance in Section 5. The simulation analysis and results comparison
are present in Sections 6 and 7, showcasing primary outcomes and implications of the study.
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Table 1: Abbreviation table

Abbreviation Full form
xi Decision variable for device i
c Maximum writing frequency (MWF) to the database
d Available storage capacity in a specific period

hi(x) Utility function of device i
ai Amount of data to be transmitted by device i

Z(θ) Partition function in the probability distribution
E(x) Energy function in Deep Boltzmann Machine (DBM)
P(x) Probability distribution function

W Weight matrix in neural network models
b Bias term in neural network models
σ Activation function

Δh(1)i Weight update term for first hidden layer in DBM
Δh(2)i Weight update term for second hidden layer in DBM

D Food separation distance in Remora Colony Swarm Optimization
a Random number for position update in Remora algorithm
b Coefficient for controlling position update in Remora algorithm

τi j Pheromone level between city i and city j in ACO
ηi j Heuristic value in Ant Colony Optimization (ACO)
ρ Pheromone evaporation rate in ACO
Q Constant in ACO for pheromone update
Lk Tour length in ACO for kth ant
vi Velocity of particle i in PSO
xi Position of particle i in PSO
w Inertia weight in PSO

c1 , c2 Acceleration coefficients in PSO
rand1, rand2 Random numbers in PSO

λ1 , λ2 Lagrange multipliers
g1(x), g2(x) Constraint functions in the optimization problem

4 Radial Boltzmann Gaussian Temporal Fuzzy Network (RBGTFN) in Anomaly Detection
Due to the duplication, polymorphism, and incompleteness in health big data, the conventional

supervised learning technique must perform feature selection and preprocessing before training the classifier.
The process of analyzing data from the viewpoint of observation space is known as manifold analysis. To
reduce the impact of specific isolated points on the AP algorithm, the data set is clustered according to the
concept of neighborhood and the threshold of the gap between classes. The clusters with fewer samples in
the class are then deleted. The following illustrates the RBF network design and training strategy created
for the categorization of bipolar disorder. Within this approach, we have created two classes: BD for bipolar
disorders, and CN for control patients. The structure consists of three layers: an input layer, a linear output
layer, hidden layer including a non-linear RBF activation function. Eq. (2) displays the sth node’s activity,



Comput Mater Contin. 2025;84(2) 3899

s(p), which stands for the Euclidean norm.

as(p) = ∥p − p̂s ∥=

�
��	 M

∑
m=1

(pm − p̂s ,m)2 (2)

where the input vector is denoted by pT = [p1, p2, . . . , pM], and the center of the sth node is represented by
pn T s = h pn T s,1, pn, T s,2, . . . pn T s, M i. A radial symmetric function was applied to the node output.
Moreover, a Gaussian function may be used:

y(v) = e
z
εi where the node’s width is represented by w 2 s. A set of well-known inputs as well as outputs

presented as (pk; fk) where (k = 1, 2, . . . , K) were utilized to train NN. The neural network in the suggested
system was trained in two stages: 1. Hidden layer’s parameters, cs(p), were first computed; 2. The hidden
layer’s parameters are derived from junction weights connecting the hidden layer and to the output. Input
space’s FP, where several fuzzy sets were described for every input variable, was employed by the suggested
approach. For its input pj (j = 1, 2, . . . , M), the novel RBF approach applied a uniform split of discourse
universe into cj fuzzy sets F 1 j, F 1 j, . . . , F cj j with functions of form as follows by Eq. (3).

Fs
j (p j) =

⎧⎪⎪⎨⎪⎪⎩
1 −

∣a j−vs
j ∣

F j
if p ∈ [vs

j − Is
j , vs

j + Is
j] (s = 1, . . . , c j)

0 otherwise
(3)

where Is
j is half of the corresponding width and vs

j is vital, and the membership value of the unit is set. For
every input variable, the correspondence degrees at each given location in context to approaches 1. After
exanimating the k − 1 input vectors, S diffuse subspaces are created, where 1 ≤ S ≤ k − 1. After inserting the kth

input vector, p(k), Euclidean relative distances zls (p(k)) (s = 1, . . . , S) between p(k) and each fuzzy subspace
S generated by Eq. (4) are determined.

zl s
j r(p(k)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[∑M
j−1(v p

j −p j(k)]
2
]

1/2

[∑M
j=1(F j)2]

1/2 if [∑M
j=1 (vs

j − p j(k))
2

1 otherwise
(4)

Examine the combined probability distribution of the energy function E for the DBM that comprises
two hidden layers, h(1), h(2), and one visible layer. Below is the probability distribution by Eq. (5).

P (V , h(1), h(2)) = 1
Z(θ) ex p − E (V , h(1), h(2); θ)

P (V , h(1), h(2)) = −V T W(1)h(1) − V T W(2)h(2) + b (5)

By contrasting with alternative generative models, DBM offers a bipartition structure for the catego-
rization of spectral-spatial images. Each neighboring layer uses the Bernoulli parameter to determine the
DBM condition distribution, causing each unit’s distribution to be active. Most classification in deep learning
models involves an autoencoder for feature extraction. It includes encoders as well as decoders in its structure
and matrix multiplication is applied in both. The normalizing function is the encoder’s gradient function.
Following the correction of weights and biases in the autoencoder, the network’s training is carried out
by Eq. (6).

h(n) = a (b(n) + V T W(n))
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h(n) = σ (b(n)i + h(n−1)T W(n)) where n = 1, 2, 3, . . . , m (6)

Examine the following example of training an HSI datacube that has two hidden layers by Eq. (7).

P (Vi = n; h(1), h(2)) = αWi h(1) + αWi h(2) (7)

Below is the mean-field value by Eq. (8).

P(x) = ∑
h=1,2

Q (h(1), h(2)) log
⎛
⎝

h(1), h(2)

P (h(1), h(2))
⎞
⎠

(8)

where the following is the Gibbs energy by Eq. (9).

E(x) = 1
Z(D) ex p(−P(x)) (9)

Eqs. (10) and (11) provide the weight change and are used to calculate the new weight value. Every layer
uses the bias b = 0.

Δh(1)i = α ∑
i

Vi W(1) (10)

Δh(2)i = α ∑
i

Vi W(2) (11)

The DBM’s suggested bipartition structure enables Gibbs sampling, which updates a single variable at a
time, contrasting CNN. Accurate classification of images in spatial-spectral variations is thus made possible.
Two update blocks can be created from one image patch using Gibbs sampling. It requires n = L + 1 maximum
possible limits for each image patch in the l layer. There are two hidden processing layers. Therefore, each
layer was sampled independently and concurrently. First, we investigate the scenario when g(⋅) and l(i)(⋅)
follow Gaussian Processes as a realistic illustration of the framework (1). Please take note that this formulation
only serves to connect our framework to current multi-task general practitioners that each patient uses a
unique GP. By the end of this subsection, it should be evident that when the number of patients increases,
this direction of individualization will need nearly unmanageable computations. In particular, the two halves
are shown as follows by Eq. (12).

g (xt) ∼ GP (0, kg(x1, x1‘)) , l(i)(x2) ∼ GP (0, kp(x1, x1‘)) (12)

where kg(⋅, ⋅) and k(i)(⋅, ⋅) are appropriate covariance functions, such as the squared exponential kernel
(RBF), and we assume that both GPs have a zero mean for simplicity. Knowledge sharing takes place using
the global GP covariance function kg(⋅, ⋅). Assuming further that g(⋅) and l(i)(⋅) are independent for every
patient, we can construct the overall covariance function as follows by Eq. (13).

k̇ (x(i)
t , x( j)

i′ ) = kg (x(i)
t , x( j)

i′ ) + δi j ⋅ k(i) (x(i)
t , x( j)

t′ ) (13)

where the Kronecker delta function, denoted by δij, is as follows: δij = 1 for the same patient if i = j, and 0
otherwise. It’s interesting to note that for all function variables f(1), ⋅ ⋅ ⋅ , and f(P), personalized GPs from this
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construction really reduce to a single GP with the covariance function ∼k(⋅, ⋅) by Eq. (14).

⎡⎢⎢⎢⎢⎢⎣

f(1)

⋮
f(P)

⎤⎥⎥⎥⎥⎥⎦
∼ G P

⎛
⎜
⎝

0,
⎡⎢⎢⎢⎢⎢⎣

K g
14 + K(1) ⋅ ⋅ ⋅ K g

1P
⋮ ⋱ ⋮

K g
P1 ⋅ ⋅ ⋅ K g

PP + K(P)

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

(14)

To be more precise, we consider l(i) to be GP and g(⋅) to be a deep network as follows by Eq. (15).

g (xt) = μ (xt) , l(i) (xt) ∼ G P (0, k(i) (xt , xt′)) (15)

Both the individual function l(i)(⋅) and the shared function g(⋅) have desired qualities of their own.
X = {x1, x2, ⋅ ⋅ ⋅ , xn} indicates vector set of n elements and X indicates a random vector. A feature vector with
k dimensions, or each xh, is taken from the patient data that was submitted. There is statistical independence
among those vectors. Given the model λ, the probability distribution of the set X can be written as Eq. (16).

log p(X/λ) =
n

∑
h=1

log p (xh/λ) (16)

Due to the fact that these vectors’ distributions are unknown. Thus, a combination of Gaussian
probability distributions, that is calculated as weighted sum of l component densities using the Eq. (17).

p (xh/λ) =
l

∑
i=1

wi N (xh , μi , Σ i) (17)

As λ = {wi , μi , ∑i}, where wi denotes the mixture weight and N(xi , μi , ∑i) represents the density of the
k-th Gaussian component with mean vector μi and covariance matrix ∑i , λ serves as the prototype composed
of a set of model parameters. For the random vector X or the extracted feature vectors, the probability
distribution is given by Eq. (18).

p(X/λ) =
n

∑
e h=1

l
∑
i=1

wi
ex p {− 1

2 (xh − μi)−1 ∑i (xh − μi)

(2Π)k/2 ∣∑i ∣
1
2

(18)

0 ≤ xh ≤ ∞ and 1 ≤ i ≤ n in this case The component (xh − μi) is now transposed as (xh − μi)/, while
the inverse of (∑ i) is ∑ i − 1. In contrast, the doctor cluster {C1, C2, ⋅ ⋅ ⋅ , Cm−1} is represented by the
typical GMM model {G1, G2, . . . , Gm−1}, i.e., the Gi model, which describes Ci cluster. Let G* represent the
Gaussian Mixture Model (GMM) for each patient whose data was entered via the Android app. L( λ

X ) ≈ p( X
λ )

is the probability function that stock parameter vector as well as data vector. Initialization will work for
components like the convolutional and fuzzy neural networks. The weights between each layer are found at
the bottom. We will then prepare the classification function as well as the hybridization. Every node’s bias
(b) is set to zero. Following this, the weight between the layers is initialized according to the rule, and it is
provided as Eq. (19).

Un [− 1√
m(l−1)

, 1√
m(l−1)

] (19)

ml−1 is the (l − 1)th level, and Un is the even dispersal. ml−1 determines number of nodules on final
levels of fuzzy as well as convolutional features for the hybridization level.
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5 Remora Colony Swarm Optimization (RCSO)
The global search is carried out by the ROA using the SFO approach, which is based on the elite

technique employed in the swordfish algorithm. The following is an expression for the position updat-
ing Formula (20):

Vi (t + 1) = Xbest (t) − (rand × ( Xbest (t) + Xrand (t)
2

) − Xrand (t)) (20)

And Vi(t+1) indicates the position of ith remora’s candidate. The best position as of right now is Xbest(t).
Remora’s random position is denoted by Xrand(t). Iteration number t is what we’re talking about. A random
number between 0 and 1 is called a rand. Furthermore, remora can to switch hosts based on its experiences
by Eq. (21):

V ′i (t + 1) = Vi(t + 1) + randn × (Vi(t + 1) − Xi(t)) (21)

And Vi
′(t + 1), indicates the position of ith remora’s candidate. Its prior location is represented using

Xi(t). Also, ‘randn’ is used to generate an accurately distributed random number. The WOA bubble-net assault
technique is utilized. These are the updated position updating formulas with modifications by Eq. (22):

Vi(t + 1) = D × ea × cos(2πa) + Xbest (t)
D = ∣Xbest (t) − Xi(t)∣
a = rand × (b − 1) + 1

b = − (1 + t
T

) (22)

where D indicates food separation from the remora. It is evident from Eq. (22) that an is a random number
between −2 and 1. Additionally, b drops linearly from −1 to −2. Ants use their avarice to choose which towns
to visit according to the number and distance of pheromones between them. The shortest path is considered
to be the optimal answer in this iterative procedure. Eq. (23) is used to select the city j that an ant in city i
will travel to in iteration t.

Pk
i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[τi j(t)]α[ηi j]β

∑0,[τi j(t)]α[ηi j]β , if j is allowed city

0, otherwise
(23)

Eq. (24) uses ij and (1/dij) to represent the number of pheromones and distance respectively between
i and j cities, j to illustrate the cities that may be travelled by kth ant. Ants in the typical ACO updates
pheromones on their trail to a food source before making a probabilistic decision based on transition
probability. The transition probability for kth ant at time step t from City i to City j in the TSP problem is
written as follows:

PROBk
i j(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[τi j(t)]α ⋅[ηi j]β

∑
j∈l k

i
[τi j(t)]α ⋅[ηi j]β if j ∈ Ik

i

0 otherwise
(24)

The pheromone trails are updated once each ant has finished a tour by first decreasing them at a
consistent rate of evaporation and then enabling every ant to drop pheromone over the arcs belonging to its
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tour, shown in Eq. (25):

τi j = (1 − ρ) ⋅ τi j +
M

∑
k=1

Δτk
i j (25)

where ρ is the rate at which the pheromone trail evaporates (0 << 1) and M is the total number of ants. ρ value
allows the algorithm to “forget” past incorrect decisions and prevent the pheromone trails from building
up infinitely. The corresponding pheromone strength on arcs that are not chosen by the ants decreases
exponentially with many iterations. The amount of trial substance placed on edge (i, j) by kth ant, expressed
as a quantity per unit of length Δτk

i j, is described as follows by Eq. (26):

Δτk
i j = {

Q
Lk

if ant k uses edge (i , j) in its tour
0 otherwise

(26)

where Q is a preset constant and Lk represents tour length. PSO the algorithm runs iteration by iteration,
comparing the solutions generated in each iteration against the global best of the swarm and the self-local
best. The following equations are utilized to evaluate the new position of the particle given its velocity (V),
number (N), and vector (X) of particles by Eq. (27):

vi(t + 1) = w ⋅ vi(t) + c1 ⋅ rand 1 ⋅ (pbset i(t) − xi(t)) + c2 ⋅ rand2 ⋅ (gbest i(t) − xi(t))

xi(t + 1) = xi(t) + vi(t + 1)(i = 1 ⋅ ⋅ ⋅ N) (27)

In the interval [0, 1], two random numbers are evenly distributed, and rand1 and rand2 reflect the relative
influence of the social and cognitive components (learning elements) based on these determinations. The
inertia weight, or w, parameter regulates how much the velocities from before affect the current one. We now
recast the original optimization issue (28) in the following way to adhere to mathematical conventions:

min
x1 ,x2 ⋅ ⋅ ⋅ xN

N
∑
t=1

ft (xt) ,

s. t.
N

∑
i=1

xi ≤ c,
N

∑
i=1

ai xi ≤ d , xt ≥ 0 (28)

where the function f i(xi) = −hi(xi) is convex. The following is how (3)’s Lagrange equation is displayed
in Eq. (29):

L (x , λ1 , λ2) =
N

∑
t=1

fi (xt) + λ1 g1(x) + λ2 g2(x) (29)

and for optimality, the KKT criteria demand that the following hold true by Eq. (30):

∂L
∂xt

= ∂ f1 (x1)
∂xt

+ λ1
∂g1(x)

∂xt
+ λ2

∂g2(x)
∂xt

= 0

λ1 , λ2 ≥ 0,
λ1 g1(x), λ2 g2(x) = 0 (30)
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where ∂ is operation of partial derivative, λ1. λ2 are Lagrange coefficients for g1(x) = ∑N
i=1 xi − c and g2(x) =

∑N
i=1 ai xi − d which represents constraint in issue with Eq. (31):

dg1(x)
∂xt

= 1

∂g2(x)
∂xt

= at (31)

Due to system limitations, the optimal converged solution will fall into any of the subsequent scenarios.

6 Simulation Analysis
Experimental setup-Version 3.1 was used to examine and monitor the situation, and the configuration

was done using virtual machines-based open-source broker software packages. Oracle Virtual Box (Oracle,
2018) housed in Windows 10 PC having three virtual machines and Intel Core i7-5820K, 64 GB RAM,
3.30 GHz, 6 physical CPUs, and 12vCPU for installing broker setup. Each virtual computer contains 8 GB
RAM, 15 GB hard drive, and a single CPU.

Dataset description Deep learning-based intrusion detection systems require access to a dataset to assess
intrusions. Properly produced data is crucial and difficult to train the model because it includes labeled
regular and abnormal communication along with extra factors like IP address. Furthermore, for security
concerns, few network packet-based analytic datasets are released publicly. Freely available datasets described
in this section are commonly used. The Defence Advanced Research Project Agency (DARPA) produced
the dataset in 1998. The test data for network-based assaults spanning two weeks is included along with
network traffic and audit records spanning seven weeks. However, a drawback of the DARPA dataset is its
lack of real network activity. The KDD CUP (Knowledge Discovery and Data Mining) dataset originated
with the original DARPA dataset, which disclosed approximately 5 million suspicious behavior evaluations
of network traffic within seven weeks.

Versions DEFCON-8 and DEFCON-10 of the DEFCON Dataset were suggested in 2000 and 2002,
respectively. One version of DEFCON-8 contains attacks based on buffer overflows and port scanning, while
another version includes attacks related to the FTP protocol, malformed packets, port scanning, and sweeps.
The difference between regular and real-time traffic during the CTF (Capture the Flag) tournament, which
results in IDS evaluation limits the size of this dataset. Three distinct datasets are covered under the Centre
of Applied Internet Data Analysis’s (CAIDAs) dataset: RSDoS Attack Metadata (2018-09), CAIDA DDOS,
and CAIDA Internet traces (2016).

7 Comparative Analysis
The hidden Markov models (HMMs) and an LR- multilayer perceptron (MLP) based classifier are

used as a comparative experimental result with the proposed Explainable AI (ExAI) fuzzy network-based
technique RBGTFN blended approach RCSO with all three datasets in Tables 2–4 helps to explain its
false detection:

Tables 2–4 present a Cross-comparison of smart grid security using a variety of datasets. The datasets
analyzed are MIMIC-IV, DEFCON, and CAIDAS datasets in terms of detection accuracy, QOS, precision,
latency, and scalability.
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Table 2: Comparative analysis of DARPA dataset

Technique Detection accuracy QOS Precision Latency Scalability
HMM 82 80 73 70 79

LR-MLP 87 84 80 79 85
RBGTFN_RCSO 94 89 90 87 91

Table 3: Comparative analysis of DEFCON dataset

Technique Detection accuracy QOS Precision Latency Scalability
HMM 74 77 78 80 76

LR-MLP 82 79 82 87 78
RBGTFN_RCSO 92 87 94 96 90

Table 4: Comparative analysis of the CAIDAS dataset

Technique Detection accuracy QOS Precision Latency Scalability
HMM 82 79 74 78 81

LR-MLP 90 83 80 84 85
RBGTFN_RCSO 98 89 95 93 96

Fig. 2a–c shows an analysis of the existing parameters of HMM in the DARPA dataset. For the DARPA
dataset existing HMM precision is 73%, latency 70%, QOS 80%, detection accuracy 82%, and scalability 79%.
precision 78%, latency 80%, QOS 77%, detection accuracy 74%, scalability 76% for DEFCON; existing HMM
attained precision of 74%, latency of 78%, QOS of 79%, detection accuracy of 82%, and scalability of 81% for
the CAIDAS dataset.

Figure 2: (Continued)
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Figure 2: Analysis of existing parameters of HMM for (a) MIMIC-IV, (b) DEFCON, (c) CAIDAS dataset

Fig. 3a–c indicates the analysis of existing parameters of LR-MLP that are currently in use in the DARPA
dataset. Current LR-MLP achieved precision 80%, latency 85%, QOS 84%, detection accuracy 87%, and
scalability 85% on the DARPA dataset. For DEFCON, existing LR-MLP precision 82%, latency 87%, QOS
79%, detection accuracy 82%, scalability 78%; precision 80%, latency 84%, QOS 83%, detection accuracy
90%, scalability 85% for the CAIDAS dataset.

Figure 3: Analysis of existing parameters of LR-MLP for (a) MIMIC-IV, (b) DEFCON, (c) CAIDAS dataset

The analysis of existing parameters of RBGTFN_RCSO in DARPA dataset is displayed in
Fig. 4a–c. RBGTFN_RCSO 90% precision, 87% latency, 89% QOS, 94% detection accuracy, and
91% scalability for the DARPA dataset. For the DEFCON, precision was 94%, latency was 96%, QOS was
87%, detection accuracy was 92%, scalability was 90%. For CAIDAS dataset, precision was 95%, latency was
93%, QOS was 89%, detection accuracy was 98%, and scalability was 96%.
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Figure 4: Analysis of existing parameters of RBGTFN_RCSO for (a) MIMIC-IV, (b) DEFCON, (c) CAIDAS dataset

8 Discussion
In the proposed data security technique, a random hash value and signature pattern of the data matrix

are used to generate a random key for the input data stream. As a result, it facilitates quicker and less time-
consuming data encryption and decryption. Keep in mind that anomalies can occur on any device, and we
base our evaluation of the anomaly detection on the abnormalities that have happened on device number
one. This takes into account a plausible situation in an actual Internet of Things network, in which a small
number of devices in our method, for example, are outperformed the ones that were published. Because of
the initial imbalance in the dataset, the models produced have low recall values. The enhanced recall values
can be attributed to the data samples being evenly distributed throughout the various categorization jobs.
These tables demonstrate how much better the suggested solution is than the current schemes in terms of
accuracy in anomaly detection, system throughput and scheme efficiency. It is not necessary to classify this
communivation because it has already been identified as intrusive and can be stopped without repercussions.
Traffic identified as harmful at the first level may be routed to the cloud for a more thorough investigation,
which would relieve demand on edge resources, thanks to the second level’s customizable reaction time.
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9 Conclusion
This study proposes a novel method for anomaly detection in cloud-based IoT networks utilizing

explainable artificial intelligence and privacy analysis of healthcare data. A Radial Boltzmann Gaussian
temporal fuzzy network has been used in anomaly detection to assess the privacy of healthcare data in this
case. Remora colony swarm optimization was then used to examine network optimization. The suggested AI-
based security mechanism offers several important benefits, including less computational complexity, a quick
and easy process, low time consumption, precise attack detection, and optimal performance results. During
performance analysis, suggested AI-based security method outcomes are verified as well as contrasted using
a variety of assessment metrics with feature learning, classification, and data security models. The acquired
results indicate that the suggested technique performs better than other techniques. Attackers may modify
the transmission frequency of IoT edge devices and transmit data streams at an irregular cadence. Given the
variety of manipulations available to alter transmission frequency, the rule-based method illustrates internal
workings during an anomaly event but is not able to accurately identify anomalies in real-world settings.
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