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ABSTRACT: The accurate prediction and analysis of emergencies in Urban Rail Transit Systems (URTS) are essential
for the development of effective early warning and prevention mechanisms. This study presents an integrated perception
model designed to predict emergencies and analyze their causes based on historical unstructured emergency data.
To address issues related to data structuredness and missing values, we employed label encoding and an Elastic Net
Regularization-based Generative Adversarial Interpolation Network (ER-GAIN) for data structuring and imputation.
Additionally, to mitigate the impact of imbalanced data on the predictive performance of emergencies, we introduced
an Adaptive Boosting Ensemble Model (AdaBoost) to forecast the key features of emergencies, including event types
and levels. We also utilized Information Gain (IG) to analyze and rank the causes of various significant emergencies.
Experimental results indicate that, compared to baseline data imputation models, ER-GAIN improved the prediction
accuracy of key emergency features by 3.67% and 3.78%, respectively. Furthermore, AdaBoost enhanced the accuracy
by over 4.34% and 3.25% compared to baseline predictive models. Through causation analysis, we identified the critical
causes of train operation and fire incidents. The findings of this research will contribute to the establishment of
early warning and prevention mechanisms for emergencies in URTS, potentially leading to safer and more reliable
URTS operations.

KEYWORDS: Urban rail transit system; emergency prediction; generative adversarial imputation network; ensemble
learning; cause analysis

1 Introduction
Urban rail transit (URT) is the preferred mode of transportation for urban communities, and its safe and

stable operation is an essential reflection of the city’s level of safety management. The operation of the Urban
rail transit system (URTS) is in relatively enclosed spaces and often accumulates many passengers within a
short period. In such scenarios, emergencies can result in massive casualties and severe consequences [1–3].
Research on the perception methods for emergencies in URTS, in-depth exploration of hidden information
in historical emergency data. Forecasting potential events and analyzing associated causes serves as a crucial
approach to prevent incidents and enhance system security [4,5].

Urban Rail Transit Emergencies (URTE) data predominantly consist of unstructured narrative texts,
such as accident reports, eyewitness descriptions, investigation reports, news reports [6,7]. Current methods
for structuring text data include Label Encoding [8], One Hot Encoding [9], and Bag of Words models [10].
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Label encoding involves mapping text labels into numerical form, preserving the relationships between
sequences to the greatest extent possible.

The low incidence of emergency, incomplete reporting records, and data collection and sharing
constraints [11,12] have contributed to the sparse and incomplete characteristics of structured URTE data.
Currently, there are three types of interpolation methods for incomplete data [13,14]; the first one is based on
statistics and regression ideas, which includes mean value [15], regression model [16,17], principal component
analysis (PCA) [18], etc.; the second one is based on machine learning data completion methods, which
includes: K-Nearest Neighbor (KNN) [19,20], decision tree [21], Bayesian network [22], etc. However, these
methods are restricted in handling low-dimensional and simple datasets and face challenges with high-
dimensional and complex URTE data, potentially reducing the accuracy of perception models and limiting
comprehensive risk identification.

An increasing number of scholars are exploring deep learning methods for interpolating missing data
values, forming a third category of approaches. In 2018, Yoon et al. [23] introduced the GAIN network
model utilizing generative adversarial networks to fill missing data values. Based on the GAIN network,
Sun et al. [24] compared various complementation algorithms such as variational auto-encoder (VAE)
with unique heat coding using multiple datasets for different missing mechanisms, and the experiments
showed that GAIN performs better in all missing mechanisms. Bernardini et al. [25] proposed a conditional
generative adversarial network (ccGAN) data interpolation method in the medical clinical domain for real-
world electronic health record data containing multiple records with missing values. In summary, GAIN
surpasses traditional methods by accurately capturing the complex distribution of raw data. However,
overfitting is prone to occur during the training process.

The prediction of URTE is based on using models to learn the event’s characteristics and predict the
critical features of emergencies. There have been studies using traditional machine learning methods such
as Decision Trees [26], Support Vector Machines (SVM) [27,28], and logistic regression [29] to predict
emergencies, but such methods are only adapted to simple, balanced datasets. The distribution of emergency
data in terms of category and level often has an uneven problem [30], which leads to traditional machine
learning perception models tending to learn emergency features of a particular category and level. Prediction
models are prone to prediction errors in the case of limited samples.

Compared to traditional machine learning methods, Ensemble Learning (EL) methods, which aggregate
the results of multiple base classifiers, are gaining significant attention from researchers [31–33]. Meng
et al. [34] proposed an EL strategy for accident-type prediction and causation analysis in response to
unbalanced railway accident data. Wang et al. [35] used an EL approach with AdaBoost to predict critical
indicators such as PM2.5 in the metro environment. This approach aims to enhance air quality management
and help prevent cardiopulmonary diseases caused by passengers’ exposure to hazardous air. EL methods
offer a robust approach for various predictive tasks, especially in scenarios involving complex and imbalanced
datasets. However, right now, this method is hardly used in predicting emergencies in URTS.

The cause analysis of emergencies involves identifying the primary causes that lead to the occurrence of
such events, thereby facilitating a clear analysis of the processes underlying emergency situations. In recent
years, researchers have employed a variety of methodologies to explore the origins of emergencies. One such
approach is model-based, which includes System-Theoretic Accident Model and Processes (STAMP) [36]
and AcciMap [37]. These methodologies identify potential accident causes by analyzing the interactions
and feedback loops within a system. However, the complexity of URTS and the inherent uncertainty of
emergencies make modeling within actual URT environments exceedingly challenging. Consequently, data-
driven methods [38] have increasingly been utilized to uncover the deep relationships between emergency
characteristics and their causes, providing a more objective and quantifiable perspective for causes analysis.



Comput Mater Contin. 2025;84(2) 2497

Main contributions of this study are summarized as follows:

(1) Coding schemes for the types and levels of emergencies are built, and label coding is carried out to
achieve structured data processing.

(2) This study integrates elastic net regularization to refine the GAIN (ER-GAIN). By leveraging its
capability to learn the complex distribution of the original data, the model effectively interpolates
missing values within the dataset, thereby enhancing the integrity of emergency data.

(3) To address the imbalance in data related to URTE, we employed the AdaBoost ensemble learning
model to predict the key features of these emergencies.

(4) This paper utilizes the IG from data-driven strategies to analyze the causes of emergencies, thereby
identifying the key factors that contribute to the occurrence of such events.

The rest of the paper is structured as follows: Section 2 provides a detailed description of the
integrated perception model; Section 3 uses actual URTE data for experimental; Section 4 discusses the
results. Section 5 concludes and looks forward to the work in this paper.

2 Methodology
The framework of the URTE integrated perceptual model is shown in Fig. 1. It contains a total of four

parts: (1) Structuring of data, (2) Data interpolation based on ER-GAIN, and (3) Emergency prediction
method. (4) Cause analysis of emergency.
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2.1 Structured Method for Emergency Data
Unstructured data obtained from various sources, such as social media and incident reports, provide

narrative textual records of the processes and outcomes of URTE. However, Structured Data refers to data
stored and organized in a predefined format, whose structure and content follow clear rules and patterns,
facilitating efficient processing and analysis by computer programs. This paper employs a label encoding
method to process unstructured emergency data, developing a labeling scheme in terms of the cause, type,
and level of emergencies.

2.1.1 Causes of Emergencies
The causes or interactions of causes leading to URTE directly reflect system vulnerabilities and insuffi-

cient resilience. According to the theory of event causality [39], these emergencies can often be attributed to
four key factors: unsafe human behavior, unsafe material conditions, adverse environmental conditions, and
managerial deficiencies. Building on this theory, our study further refines the causes of URTE across four
dimensions: human, machine, environment, and management. By combining a literature review and expert
experience, we identified 19 specific causal factors, detailed in Table 1.

Table 1: Label coding scheme for the causation of URTE

Causative factors Specific causes Coded value

Human

Human error r1

0–1: Likelihood that the cause exists

Unsafe behavior of personnel r2
Weak security awareness among personnel r3

Low business level of employees r4
Poor emergency response capacity r5

Passenger’s destructive behavior r6

Machine

Power supply system failure r7
Station equipment failure r8

Train malfunction r9
Signal system failure r10

Tunnels and lines damaged r11
Security equipment is insufficient r12
Design and construction defects r13

Environment
Natural disasters and severe weather r14

Heavy traffic r15
Foreign object intrusion r16

Management
Untimely maintenance of equipment r17

Inadequate security precautions r18
Inadequate supervision of safety and quality r19
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2.1.2 Types of Emergencies
Event types refers to all types of emergencies that may occur during operations, which may have

a serious impact on passenger safety, operational order, and facilities and equipment. In this study, the
classification of URTE and their corresponding encoding values are detailed in Table 2.

Table 2: Label coding scheme for event type

Event types Description of the accident Coded value
Driving accident Derailment, rear end collision, collision, suspension, delay, etc. 1

Fire accident Equipment catching fire and human induced arson, etc. 2
Public safety accident Passenger disembarkation, overcrowding, violence, etc. 3

Terrorist attack Poison gas, bombs, etc. 4
Power outage accident Failure of external and internal power supply units, etc. 5

Flooding accidents Rainwater or other water into the underground, etc. 6
Natural disaster Earthquake, wind, lightning, etc. 7

Equipment failure Screen door failure, lift failure, etc. 8
Construction accident Construction section collapse, etc. 9

2.1.3 Levels of Emergencies
Event levels refers to the categorization and grading of emergencies based on factors such as their

severity, scope of impact, degree of harm, and emergency response needs [40], and the results are shown
in Table 3. If the event meets one of the classification conditions, it will be classified as such.

Table 3: Label coding scheme for levels of URTE

Event levels Demarcation conditions Coded
valueDuration of

interruptions
Personnel
casualties

Economic loss

Particularly
significant (I)

Interruption ≥ 36 h Deaths ≥ 30 or
serious injuries ≥

100

Direct economic
losses ≥ 100M yuan

1

Significant (II) 24 h ≤ Interruption
< 36 h

10 ≤ Deaths < 30 or
50 ≤ serious

injuries < 100

50M yuan ≤ Direct
economic losses <

100M yuan

2

Larger (III) 6 h ≤ Interruption
< 24 h

3 ≤ Deaths < 10 or
10 ≤ serious
injuries < 50

10M yuan ≤ Direct
economic losses <

50M yuan

3

General (IV) 2 h ≤ Interruption
< 6 h

Deaths < 3 or
serious injuries <

10

500,000 yuan ≤ Direct
economic losses <

10M yuan

4

Minor (V) Interruption ≤ 2 h No casualties Direct economic
losses < 500,000 yuan

5
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2.2 GAIN-Based Data Interpolation Method
The issue of data missingness in URTE is complex, encompassing both random and non-random factors.

GAIN is an unsupervised interpolation method, and the core idea is to use a generative adversarial network
to simulate and learn the underlying distribution of event data to estimate and interpolate missing data more
accurately. However, the traditional GAIN is prone to overfitting during the training process, which results
in poor generalization capabilities of the model. Therefore, we propose an improved data imputation method
that combines elastic network regularization (ER) and GAIN. The framework is shown in Fig. 2.

Figure 2: The framework of ER-GAIN

ER [41] is a machine learning method that combines L1 and L2 regularization techniques. It aims to
perform variable selection and control model complexity by constructing an optimized loss function, thereby
effectively preventing the model from overfitting. Specifically, L1 regularization (Lasso) encourages sparsity
in the model parameters, which aids in feature selection, while L2 regularization (Ridge) controls the growth
of model weights to prevent overfitting. The general form of the elastic net regularization loss function is
shown as Eq. (1).

LER = Lor i + λ1∑
n1

i=1 ∣θi ∣ + λ2∑
n2

i=1 (θi)2 (1)

where, Lor i represents the original loss function, such as mean square error or cross entropy loss. λ1 and
λ2 are regularization parameters that control the strength of L1 and L2 regularization, respectively. θi is the
weight parameter of the model.

Applying elastic net regularization to GAIN involves reconstructing the loss functions of both the gen-
erator and the discriminator. For the generator, the goal is to learn more generalized feature representations
while reducing the noise in the generated data. For the discriminator, the aim is to enhance its ability to
generalize, thereby improving its capacity to distinguish between real and generated data. The reconstructed
loss functions for both components are presented as Eqs. (2) and (3):

LER ,D = LD + λ1∑
n1

i=1 ∣θi ,D ∣ + λ2∑
n2

i=1 (θi ,D)2 (2)

LER ,G = LG + λ1∑
n1

i=1 ∣θi ,G ∣ + λ2∑
n2

i=1 (θi ,G)2 (3)
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where, LG and LD represent the original loss functions of the generator and discriminator in the GAIN
algorithm (Appendix A, Eqs. (A3) and (A4)). The terms θi ,G and θi ,D denote the weight parameters of the
ith unit of the generator and discriminator, respectively.

2.3 Emergency Prediction Method
Due to the inherent variability in the probability of occurrence of URTE, with certain equipment

failure events being more frequent than major disasters, this leads to a significant imbalance in the URTE
dataset with respect to event types and severity levels. In order to prevent this imbalance from affecting the
performance of the prediction model, Prediction of URTE using AdaBoost [42] (Fig. 3).
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Figure 3: Integrated prediction model for URTE

2.4 URTE Cause Analysis Method
The causal analysis of URTE aims to identify causes associated with emergency types. IG can serve as

an indicator to evaluate the importance of a cause. This indicator is derived by measuring the reduction
in uncertainty regarding the type of emergency given a specific cause. The calculation method is presented
as Eqs. (4)–(6):

Ig (S , r j) = H (S) −H (S∣r j) (4)

H (S) = −∑C
i=1 (pi log2 pi) (5)

H (S∣r j) = ∑
m
j=1

∣S j∣
∣S∣ H

(S j) (6)

where, H(S) represents the original entropy of the entire dataset, indicating the uncertainty of event types
in the absence of any feature. pi denotes the proportion of the ith type within the dataset, and C is the total
number of emergency types. H (S∣r j) is the conditional entropy for each cause, representing the uncertainty
of event types given that cause. S denotes the URTE dataset, while S j refers to a subset under the condition
of cause r j. The variable m specifies the number of causes, and ∣S∣ is the total size of the dataset.
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3 Experimental Analysis

3.1 URTE Dataset and Structuring
We manually collected text records from the Internet and URTS operational event reports, totaling 496

URTS event records worldwide from 1969 to 2021. After structuring the textual data using label coding, we
statistically analyzed the events for key features and missing data, as shown in Fig. 4.

Figure 4: Statistical results of emergencies data. (a) Key features; (b) Missing of the data

There is a highly uneven distribution of emergency data, with the most significant percentage of
emergencies of equipment failure types and minor grades, while the number of events of other types and
levels is low, and there is even a situation where no record exists. There are a large number of missing cases in
the structured emergency data, especially the percentage of missing causes such as tunnel and line damage
r11, insufficient safety equipment r12, foreign object invasion r16, etc., reaches more than 50%, and other causes
also have different percentages of missing. To ensure the accuracy of the model, it is necessary to complete
the missing data.

3.2 Interpolation of Structured Emergencies Data
This section employs the ER-GAIN proposed herein to impute missing values within structured emer-

gency data. The generator and discriminator are trained using the methodology outlined in Appendix A.
The training parameters were configured as follows: the training step size was set to 20,000, with λ1 and λ2
assigned the values of 0.05 and 0.5, respectively. The evolution of the loss for both models during the training
process is depicted in Fig. 5.

The loss of the generator gradually tends to stabilize during the training process, while the loss of
the discriminator still has large fluctuations at the late stage of training. This characteristic shows that the
complementary model has good missing data interpolation ability, so the discriminator cannot distinguish
the generated data from the actual data well.
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Figure 5: Variation of generator and discriminator losses during the training process

3.3 Emergencies Prediction and Result Analysis
3.3.1 Tuning of Hyperparameters of Predictive Models

The number of weak classifiers and the learning rate significantly affect the prediction performance of
AdaBoost. To make the optimal prediction performance of AdaBoost, it is necessary to adjust the number
of weak classifiers and the learning rate of the model before training and to find a set of optimal values for
the model hyperparameters.

The hyperparameter tuning scheme of grid search is utilized to find the optimal number of weak
classifiers and model learning rate in a violently exhaustive manner. In the grid search process, the efficiency
of the computational process is fully considered, and the training step size is set to be uniformly 30, the
number of weak classifiers ranges from 1 to 30, and the model learning rate ranges from 0.1 to 1. The
computational process of the optimal hyperparameter grid search is shown in Fig. 6.

Figure 6: Grid search process for optimal hyperparameters of the prediction model

As the number of weak classifiers increases, the accuracy of event perception shows an upward trend.
When the number of weak classifiers reaches a number, the accuracy of the prediction instead shows a
decreasing trend. Too small a learning rate will result in the model not being adequately trained, while too
large a learning rate will result in the model not being able to converge, which in turn affects the accuracy
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of the model. According to the grid search results, the highest model accuracy (88.18%) was achieved by
choosing 18 for the number of weak classifiers and 0.6 for the learning rate.

3.3.2 Indicators for Model Assessment
To effectively evaluate the performance of the predictive model and other benchmark models, Accuracy,

F1-score, Precision, Recall, and AUC (Area Under Curve) are selected to evaluate the model comprehensively,
these evaluation indicators are shown in Table 4.

Table 4: Calculation formula and representation of each assessment indicator

Indicators Formulas Significance

Accuracy Accuracyi =
Ci

∑
j=1

Ni j

N
(

TPi j + TNi j

TPi j + TNi j + FPi j + FNi j
) The model’s ability to perceive positive

and negative samples

Precision Precisioni =
Ci

∑
j=1

Ni j

N
(

TPi j

TPi j + FPi j
) The model’s ability to perceive positive

samples

Recall rate Recalli =
Ci

∑
j=1

Ni j

N
(

TPi j

TPi j + FNi j
) The ability of the model to check for

positive samples

F1-score F1 − scorei =
2 × Precisioni × Recalli

Precisioni + Recalli
The overall performance of the model

AUC AUCi =
Ci

∑
j=1

Ni j

N
(∫

1
0 ROCi j ( f ) d f ) The performance of the model at

different thresholds

3.3.3 Comparative Analysis of Experimental Results
The above hyperparameter scheme are used to train the Adaboost. The dataset is divided into the

training and test set according to the ratio of 8:2. The prediction results is shown in Fig. 7.

Figure 7: Prediction results. (a) Event types; (b) Event levels
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The confusion matrix derived from the predictive outcomes reveals that the model exhibits greater
accuracy in predicting event types and levels with larger sample sizes, achieving an accuracy rate of over 85%
in most cases. However, for events such as natural disasters and terrorist attacks, which are characterized
by a scarcity of samples, the model’s training is insufficient, thereby adversely affecting the accuracy of its
predictions for these types of incidents. Different thresholds are set to plot the ROC curves of the perceptual
model in terms of both event types and event levels, and the results are shown in Fig. 8.

Figure 8: Prediction ROC curve. (a) Event types; (b) Event levels

From the figure, in the prediction of event types, the AUC of the two types of equipment failure and
power outage are more than 0.9, and the AUC of other types are above 0.7; in the perception of event level,
the AUC of level V is more than 0.9, and the AUC of other types are above 0.75. It proves that the perception
model was effectively trained, and the model validation by adding the test set still has a good perception
effect, which proves that the model has been balanced.

After verifying the performance of the data-completion model and the prediction model, the commonly
used machine learning algorithms are selected as the benchmark perceptual model, and a comprehensive
comparative analysis is conducted with different data-completion datasets to verify the superiority of the
perceptual model in this paper. The benchmark models include Naive Bayes Classification (NBC) [43],
SVM [27], and Artificial Neural Networks (ANN) [44], and the data completion methods include MICE,
KNN, and ER-GAIN. The comparative results of the performance of the different models in the prediction
of event types and levels are shown in Tables 5 and 6.

From the comparison results in the above table, after adopting the data complemented by the ER-GAIN,
the performance of each model for the event types and levels is improved. From the comparison results in
the above table, after adopting the data complemented by the ER-GAIN, the performance of each model
for the event types and levels is improved. The model proposed in this study compared to other models under
the same conditions, and it has improved in multiple indicators such as accuracy, precision, recall, F1 score,
and AUC. For predicting event types, it has increased by 2.36%, 3.05%, 2.36%, 2.67%, and 1.96%, respectively;
The prediction of event levels has increased by 2.7%, 1.53%, 2.7%, 2.0%, and 2.54%, respectively. This proves
the effectiveness of ER-GAIN for incomplete emergency data, which improves the validity and completeness
of the data. In addition, the AdaBoost has a higher percentage of improvement in the perceptual performance
of the data complemented using the ER-GAIN compared to the other benchmark models.
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Table 5: Prediction performance comparison of different models in event types

Perception model Interpolation model Evaluating indicator

Accuracy Precision Recall F1-Score AUC

NBC [43] None 0.7489 0.7524 0.7489 0.7533 0.7488
ER-GAIN 0.7665 0.7647 0.7665 0.7594 0.7558

SVM [27] None 0.7642 0.7547 0.7642 0.7716 0.7581
ER-GAIN 0.7741 0.7615 0.7741 0.7664 0.7767

ANN [44] None 0.7817 0.7891 0.7817 0.7864 0.7881
ER-GAIN 0.7849 0.7861 0.7849 0.7805 0.7932

AdaBoost [42]

None 0.7916 0.7907 0.7916 0.8011 0.7989
KNN 0.8047 0.7968 0.8047 0.8004 0.8141
MICE 0.7942 0.7903 0.7942 0.7912 0.8171

ER-GAIN (proposed) 0.8283 0.8273 0.8283 0.8278 0.8367

Table 6: Prediction performance comparison of different models in event levels

Prediction model Completion model Evaluating indicator

Accuracy Precision Recall F1-Score AUC

NBC [43] None 0.8108 0.8163 0.8108 0.8164 0.7869
ER-GAIN 0.8291 0.8299 0.8291 0.8288 0.798

SVM [27] None 0.8314 0.8418 0.8314 0.8371 0.8169
ER-GAIN 0.8476 0.8486 0.8476 0.8494 0.8243

ANN [44] None 0.827 0.837 0.827 0.8336 0.8301
ER-GAIN 0.8463 0.85 0.8463 0.8583 0.845

AdaBoost [42]

None 0.841 0.8473 0.841 0.8414 0.816
KNN 0.8518 0.8661 0.8518 0.8601 0.8397
MICE 0.8496 0.8571 0.8496 0.855 0.8316

ER-GAIN (proposed) 0.8788 0.8814 0.8788 0.8801 0.8704

3.3.4 Real Scene Testing
Two scenarios (Table 7) are set up to test the trained emergencies perception model to predict the

features of emergencies that may occur in that scenario.

Table 7: Causation of two real scenarios

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19

Scene 1 1 0 0 0 0 0 0 0.5 1 0.3 0 0 0 0 0 0 0 0 0
Scene 2 0 0 0 0 0 0 1 0.5 0 0 0 0 0 0 0 0 1 0 1

The prediction results for these two scenarios are shown in Fig. 9.
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Figure 9: Prediction results for two scenarios. (a) Event type of Scenario 1; (b) Event type of Scenario 2; (c) Event level
of Scenario 1; (d) Event level of Scenario 2

A Level II/III Driving/Equipment failure accident is most likely to occur in Scenario 1, and a Level IV/IV
Fire/Power failure accident is most likely to occur in Scenario 2. This prediction result is highly compatible
with the historical case data and widely recognized by experts in the field. Leveraging the predictive outcomes
enables practitioners to conduct thorough accident analysis and implement corresponding remedial mea-
sures. For example, by utilizing geographical information such as latitude and longitude, they can identify
accident-prone stations or areas. Consequently, more human resources and funding can be allocated to these
locations. This allows for enhanced early warning systems, improved risk management strategies, and more
effective maintenance of operating trains and tracks. As demonstrated by Singapore’s Intelligent Transport
System (ITS) [45], which utilizes real-time traffic information and data analytics to predict traffic events and
improve public transportation, such an approach can significantly enhance the safety and efficiency of urban
rail transit systems.

3.4 URTE Cause Analysis
This section employs the IG method to analyze the key causes of URTE. As shown in Fig. 6, the primary

types of Level I and II catastrophic URTE are traffic accidents and fires. The URTE dataset was filtered for
these two types, and the IG method was utilized to calculate the importance of each cause. The results are
illustrated in Fig. 10.

Figure 10: Ranking of the importance of the causes of driving and fire accidents. (a) Driving; (b) Fire

The results indicate that significant driving and fire accidents primarily arise from a combination of
Human and Machine factors. In driving accidents, Machine factors are relatively more prominent, whereas
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in fires, human factors have a greater influence. Unsafe human behaviors, human errors, and power system
failures are the most critical factors contributing to these accidents. By conducting an in-depth analysis
and implementing effective management of these key factors, we can significantly reduce the occurrence of
significant driving and fire accidents, thereby safeguarding lives and property.

4 Discussion

4.1 Model Limitations
The data structuring component of our model is intricately tailored to the unique characteristics of the

URTS, leveraging the expertise of domain-specific professionals. URTS operates with a distinctive mode,
featuring specialized equipment architecture and a specific logic for data generation. This unique setup allows
our data structuring approach to precisely extract and integrate the nuanced features of data pertinent to
URTS. However, this very specificity poses a challenge when considering the model’s application beyond
the URTS domain. The data structuring methodology, rooted in the experience of experts familiar with
the intricacies of urban rail transit, is not readily transferable to other fields. This is primarily due to the
substantial disparities in data sources, formats, and the embedded business logic that vary significantly across
different domains.

To extend the model’s applicability, we can achieve this by the following methods. Firstly, the framework
that will be the subject of this research can be modularized and divided into domain-specific rules and
directly generalizable algorithms. This modularity allows us to redefine the domain-specific rules. Secondly,
for other domains with different data formats, such as GPS data in transport or sensor data in industrial
systems. Flexible data preprocessing methods can be developed to enable the conversion of metadata to stan-
dardized data. Finally, by collaborating with relevant experts, domain-specific knowledge can be integrated
and data coding schemes can be modified to enable the migration of this research to other domains.

4.2 Data Limitations
This study has certain limitations in terms of data. When constructing the interannual analysis

framework, although the initial integration of rail transit data between 1969 and 2021 was achieved through
standardized processing, it did fail to fully incorporate the characteristics of the evolution of the urban rail
transit system over time in terms of technological standards, operation modes, etc. due to the differences in
statistical calibers and the absence of key indicators in the early historical data. To address the limitations
of the data in this regard, we can develop data preprocessing methods based on backward calibration
techniques. In the case of passenger flow data, for example, by establishing a baseline equivalence between
historical manual statistical passenger flow data and modern automated statistical passenger flow data, and
using the overlapping validation period (1995–2005) in which the two data types co-exist to determine the
conversion factor, we can then achieve the alignment of the different standard data.

5 Conclusion
URTS confronts significant operational risks due to the abrupt and unpredictable nature of URTE. The

inherent characteristics of these emergencies result in URTE data that are often unstructured, incomplete,
and imbalanced. This study, therefore, presents an integrated incident perception model that encompasses
data structuring, completion, emergency prediction, and causal analysis. Initially, a tagging encoding scheme
was developed through literature synthesis and expert consultation, thereby structuring the unstructured
textual URTE data. Subsequently, to address the incompleteness in URTE data and prevent biases in subse-
quent models, an improved GAIN method with elastic network regularization was proposed, achieving the
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completion of incomplete data. Furthermore, to counteract the negative impact of class and grade imbalances
in URTS data on model predictions, an EL approach was employed to construct an incident prediction
model, enriching the decision boundaries of the perception model and enhancing its predictive performance.

To substantiate the efficacy of this study, the proposed integrated perception model underwent rigorous
experimental analysis, with various machine learning methods serving as benchmark models for compar-
ison. The results demonstrate that the ER-GAIN data completion method not only optimizes statistical
metrics but also enhances the predictive performance across all models. Moreover, the AdaBoost model
based on the EL outperforms other benchmark models in predicting emergencies. These findings validate
the effectiveness of both the data completion method and the emergency prediction model. A causal analysis
was conducted on the two most severe types of accidents: train operations and fires. By IG index, key
causes for these accidents were identified, and their causal coupling mechanisms were revealed. This study
provides a scientific foundation for the development of targeted safety prevention measures, the refinement
of emergency management strategies, and the enhancement of the overall safety performance of URTS.

Future work will focus on several key areas to further enhance the safety and efficiency of URTS. Firstly,
expanding the dataset to include diverse scenarios and emerging risk factors will improve model robustness
and adaptability. Additionally, integrating real-time data feeds into the incident prediction model could
facilitate proactive management and quicker response times.
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Appendix A
The GAIN interpolation process for burst incomplete data is as follows:

(1) Suppose X is the original data matrix, where some of the data (for example xi j) are missing values.
Define M as a binary mask matrix of the same size as X, which is used to indicate whether a certain
data is missing or not: if xi j is missing data, then mi j = 0; otherwise, mi j = 1; meanwhile, define Z
as a random noise matrix of the same size as X, which is used to assist the generator in generating
interpolated data; and blurring the binary mask matrix M to generate the cueing matrix H. Specifically,
a 1 (which indicates that the data is intact) in M has a certain probability is set to 0.5, while a 0 in M
(indicating that the data is missing) likewise has a certain probability of being set to 0.5.

https://doi.org/10.6084/m9.figshare.27021613.v1.
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(2) The Generator tries to estimate the values of the missing data based on the original data matrix X, the
mask matrix M, and the random noise matrix Z and outputs the complete data matrix X̂ as shown in
the following equation:

X̂ = G (X , Z , M) (A1)

G stands for the generator function, which is a fully connected multilayer feed-forward neural network
used to learn the distribution of the original data and generate missing values. The generator’s hidden
layer usually uses the ReLU (Rectified Linear Unit) activation function, and its output layer usually
uses the Softmax activation function.

(3) The discriminator receives the output X̂ of the generator, and the cue matrix H as input and tries to
determine whether each value in the data matrix is actual data or filler data generated by the generator
and calculates the probability that each value is actual data as shown in the following equation:

Pobs = D (X̂ , H) (A2)

D stands for the discriminator function, a fully connected multilayer feedforward neural network
that distinguishes actual data from generator-generated artificial data. The hidden layer of the dis-
criminator usually uses the ReLU activation function, and its output layer usually uses the Sigmoid
activation function.

(4) In GAIN, two loss functions train the Generator and Discriminator, respectively. In this case, the loss
functions for the Discriminator and Generator are LD and LG , respectively, as shown in the following
equation:

LD = −E [M ⋅ ln (D (X̂ , H)) + (1 −M) ⋅ ln (1 − D (X̂ , H))] (A3)

LG = −E [(1 −M) ⋅ ln (D (X̂ , H))] (A4)

The objective function of GAIN is:

min
G

max
D

V (D, G) = E [M ⋅ ln (D (X̂ , H)) + (1 −M) ⋅ ln (1 − D (X̂ , H))] (A5)

(5) In the training process of GAIN, the objective function contains the mathematical expectation E.
The objective of G is to minimize the function, while the objective of D is to maximize the function.
Through adversarial training, the two models gradually reach a Nash equilibrium, at which point the D
cannot accurately identify whether the input data is real data or artificially interpolated data generated
by the G.
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