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ABSTRACT: Cluster-based models have numerous application scenarios in vehicular ad-hoc networks (VANETs) and
can greatly help improve the communication performance of VANETs. However, the frequent movement of vehicles
can often lead to changes in the network topology, thereby reducing cluster stability in urban scenarios. To address this
issue, we propose a clustering model based on the density peak clustering (DPC) method and sparrow search algorithm
(SSA), named SDPC. First, the model constructs a fitness function based on the parameters obtained from the DPC
method and deploys the SSA for iterative optimization to select cluster heads (CHs). Then, the vehicles that have not
been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and
link-reliability parameter. Finally, cluster maintenance strategies are considered to tackle the changes in the clusters’
organizational structure. To verify the performance of the model, we conducted a simulation on a real-world scenario
for multiple metrics related to clusters’ stability. The results show that compared with the APROVE and the GAPC,
SDPC showed clear performance advantages, indicating that SDPC can effectively ensure VANETs’ cluster stability in
urban scenarios.
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1 Introduction
In recent years, with the development of communication technology, research interest in intelligent

transportation systems has gradually increased. As an important component of intelligent transportation
systems, vehicular ad-hoc networks (VANETs) have become a topic of interest [1–3]. However, owing to
the annual increment in the number of vehicles and the development of autonomous driving technology,
the amount of information that needs to be transmitted in VANETs has increased rapidly, augmenting the
network’s burden significantly [4,5]. To address this issue, many researchers have introduced clustering
strategies. That is, vehicles in the network are divided into multiple clusters, each with a cluster head (CH) and
the remaining nodes as cluster members (CMs). CMs only communicate with the CH, which is responsible
for managing CMs and conducting intra-cluster and inter-cluster communication [6]. This strategy helps
reduce the network burden and improve the success rate of information transmission in the network.
Based on such advantages, clustering strategies have numerous application scenarios in VANETs [7],
including target tracking [8], road-traffic management [9], routing [10], misbehavior detection [11], and
authentication [12].
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However, the network topology of VANETs changes frequently owing to the high mobility of vehicles
in an urban scenario, thus affecting cluster stability and clustering strategies’ performance. Therefore, when
designing clustering strategies, it is important to focus on cluster stability and related metrics. In the
meantime, clustering strategies that combine clustering methods from machine learning and intelligent
optimization methods have exhibited good performance [13–15], and some studies have applied such
strategies to VANETs [16,17]. Therefore, we proposed a clustering method called SDPC, based on the density
peak clustering (DPC) method and the sparrow search algorithm (SSA), and evaluated the performance of
the method based on multiple metrics related to clusters’ stability. The principle of the DPC method is simple,
and it does not require pre-specification of the number of clusters. Moreover, the SSA has strong optimization
capabilities and fast convergence speed. The SDPC combines the advantages of these two methods. In the
CH selection phase, the DPC method is used to obtain key parameters and construct a fitness function
first, and then the SSA is used to search iteratively to find vehicles with optimal positions as CHs. In the
cluster formation phase, a parameter is introduced related to link reliability based on considering the distance
parameter, enabling non-CH vehicles to be assigned to appropriate clusters. Finally, cluster-maintenance
strategies are considered to tackle situations where CHs or members leave their clusters and new vehicles
join clusters.

The main contributions of this paper are as follows:
(1) We propose a clustering algorithm that integrates the DPC with the SSA. During the CH selection

phase, a fitness function is constructed based on DPC parameters, and SSA is employed for iterative
optimization to identify optimal cluster head nodes.

(2) A link reliability parameter REL is introduced in the cluster formation phase to address scenarios
where non-cluster-head nodes receive multiple requests from cluster heads.

(3) To mitigate instability caused by changes in cluster heads or member nodes, a cluster maintenance
strategy is incorporated.

(4) Comparative experiments and the ablation study are conducted to validate the proposed algorithm’s
performance in ensuring clustering stability in VANETs.

The rest of this paper is organized as follows. Section 2 offers a literature review, mainly introducing
some work related to this study. The theoretical basis of this study is clarified in Section 3. Section 4 provides
a detailed description of the model proposed in this study. Section 5 introduces the simulation environment
and performance evaluation metrics used to evaluate the model proposed in this study and analyzes the
simulation results. Finally, Section 6 provides a summary of the entire study and introduces future research
directions briefly.

2 Literature Review
For the numerous clustering models in the VANET environment, models based on fuzzy logic and those

based on intelligent optimization methods are two important components.

2.1 Models Based on Fuzzy Logic
Researchers [18] introduced a fuzzy-logic-based CH selection method (CHSA), which selects CHs by

evaluating multiple parameters related to user preferences, network conditions, and application require-
ments, thereby improving the performance of VANETs. In [19], the researchers proposed a fuzzy-based
cluster-management system (FBCMS) for vehicle clustering in VANETs to enhance connectivity and
safety among vehicles, and they compared two fuzzy system models: FBCMS1 and FBCMS2. Moreover,
scholars [20] described a new k-hop fuzzy-logic-based distributed clustering strategy, considering the safety
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distance between vehicles as an important criterion for selecting CHs, which improves cluster stability
in VANETs by reducing the overhead of re-clustering and extending the clusters’ lifetime. Others [21]
introduced a multi-criteria decision-making strategy that uses fuzzy logic to evaluate candidate nodes and
employs game theory to simulate spectrum price competition, effectively supporting various applications.
The authors of another study [22] proposed a safety-oriented fuzzy-logic-based clustering strategy (SOFClus-
ter), which generates relatively stable cluster structures by considering the mobility parameters of vehicles
and emphasizes the importance of considering safe vehicle distances in the CH selection process. In [23],
the authors suggested a fuzzy-logic-and-reinforcement-learning-based V2V routing method (FLHQRP) and
proposed a new heuristic function to guide the forwarding process of CHs to improve the efficiency of data
transmission in VANETs.

2.2 Models Based on Intelligent Optimization Methods
The authors of [24] proposed a probability-based whale optimization algorithm (p-WOA) for cluster

formation in vehicle communication. This method considers multiple parameters, such as communication
range, number of nodes, and speed, and in-corporates probability into the fitness function to reduce
randomness. Scholars also [25] introduced a moth flame optimization (MFO)–based clustering method
called AMONET, aimed at achieving reliable and efficient communication. The results of an experiment
show that AMONET was more efficient in generating clusters compared with other known models and
that it could cover the entire network and generate the minimum number of clusters. In [26], the authors
introduced an ant colony optimization (ACO)–based VANET clustering method called CACONET, which
enhances communication by optimizing clustering and demonstrated CACONET’s significant advantage in
clustering efficiency compared with baseline technologies such as MOPSO and CLPSO. Researchers also [27]
described a particle swarm optimization (PSO)–based multi-hop clustering method, which can select the
best route, find stable CHs, and remove malicious nodes from the network. Others [28] and [29] focused
on the Harris Hawk Optimization (HHO) method. In [28], the authors suggested an HHO method–based
clustering-optimization technique, considering factors such as communication range, number of nodes,
velocity, and direction to create and evaluate ideal CHs. The authors demonstrated the superiority of the
proposed model in terms of the number of clusters and other aspects by comparing it with other models. The
model proposed in [29] is a HHO method–based VANET clustering method (HHOCNET), which creates
a clustering strategy capable of adapting to dynamic network environments by simulating the cooperative
hunting strategy of Harris Hawk. The authors demonstrated the advantages of HHOCNET in optimizing
multi-objective clustering problems by comparing it with existing methods.

3 Theoretical Basis
This section mainly introduces the theoretical basis of the proposed strategy in this study. First, the

process and advantages of the DPC method are illustrated. Then, the principle of the SSA is described.

3.1 Density Peak Clustering Method
The DPC method was proposed by Alex Rodriguez and Alessandro Laio in [30]. It is an unsupervised

clustering method that can discover density peak points in data automatically and cluster the data based
on these peak points. Its principle is relatively simple but effective. The method is based on two basic
assumptions: the local density of the cluster center is greater than the local density of its surrounding
neighbors, and the cluster center should be farther away from points with greater density. The method defines
two important variables: the local density ρ and the minimum distance δ from a node to a node with greater
local density. In addition, it generates a decision graph with ρ as the horizontal axis and δ as the vertical axis
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based on the two assumptions mentioned above. Then, in the decision graph, all nodes with higher ρ and
δ values are selected as cluster centers, and the remaining nodes are assigned to the cluster of the nearest
cluster center. The method mainly includes the following three stages:

3.1.1 Calculating Density and Distance
For the local density ρ i of the sample point i, the following two calculation models are used:
Model one:

ρ i =
n
∑

j=1, j≠i
χ (di j − dc), (1)

where

χ (x) =
⎧⎪⎪⎨⎪⎪⎩

1, x < 0,
0, x ≥ 0.

Model two:

ρ i =
n
∑

j=1, j≠i
exp
⎡⎢⎢⎢⎢⎣
−(

di j

dc
)

2⎤⎥⎥⎥⎥⎦
, (2)

where di j represents the Euclidean distance between data points i and j, and dc is the cut-off distance, usually
taking 1%–2% of the total number of data points as the setting value of it. The equation for the distance δi
from a node i to a node with greater density is as follows:

δ i = min
j∶ρ j>ρ i
(di j) . (3)

If a node’s density is the maximum, then δ i =max j (di j).

3.1.2 Generating the Decision Graph and Selecting Cluster Centers
Based on the ρ and δ values obtained for each data point in the previous step, a decision graph with ρ as

the horizontal axis and δ as the vertical axis can be drawn. The DPC method selects nodes with higher ρ and
δ values among all nodes as cluster centers based on the decision graph. Fig. 1 illustrates an example of the
DPC method selecting cluster centers based on the decision graph. Fig. 1a illustrates the distribution of data
nodes, and Fig. 1b shows the decision graph drawn based on Fig. 1a. From Fig. 1b, it can be seen that nodes
1 and 10 are in the upper-right corner of the decision graph, indicating that these two nodes have higher ρ
and δ values among all nodes, so nodes 1 and 10 are selected as cluster centers.

3.1.3 Clustering Process
After the cluster centers are determined, the DPC method assigns the remaining nodes to the cluster of

the nearest cluster center, and the final clustering results can be obtained after the assignment is completed.
The DPC method has many advantages, including its simple principle and ease of implementation.

Moreover, it does not require a predetermined number of clusters, offering great flexibility, and it can discover
clusters of any shape.
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Figure 1: An example of selecting cluster centers

3.2 Sparrow Search Algorithm
The sparrow search algorithm is a swarm intelligence optimization method proposed by Xue et al.

in [31], inspired by the foraging and anti-predation behaviors of sparrows. The method refers to biological
behaviors, dividing sparrows into two types: producers and scroungers. Producers are responsible for finding
food and providing information on foraging areas for the population, while scroungers use the food found by
producers. Meanwhile, a certain proportion of individuals in the population are selected for reconnaissance
and forewarning. If danger is detected, the sparrows abandon the food, prioritizing safety.

Assuming the number of sparrows in the population is n, the entire sparrow population can be
represented as follows:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d
⋮ ⋮ ⋮ ⋮

xn ,1 xn ,2 . . . xn ,d

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where d represents the number of dimensions of the variable to be optimized. Then, the fitness value of all
sparrows in the population can be represented as follows:

FX =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f ([x1,1 x1,2 . . . x1,d])
f ([x2,1 x2,2 . . . x2,d])
⋮ ⋮ ⋮ ⋮

f ([xn ,1 xn ,2 . . . xn ,d])

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where each row of FX represents the fitness value of the individual in the population.
In the SSA, producers with better fitness values prioritize obtaining food during the search process. In

addition, because producers are responsible for finding food for the entire sparrow population and providing
the foraging direction for all scroungers, producers can obtain a larger search range for foraging than
scroungers. In each iteration process, the position update equation for producers is as follows:

Xt+1
i , j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xt
i , j ⋅ exp( −i

α⋅i termax
), R2 < ST ,

Xt
i , j + Q × L, R2 ≥ ST ,

(6)
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where t represents the current number of iterations, and itermax is a constant, representing the maximum
number of iterations. Xt

i , j represents the position of the ith sparrow in the jth dimension at the tth iteration. α
∈ [0, 1] is a random number. R2 ∈ [0, 1] and ST ∈ [0.5, v] represent the forewarning value and safety threshold,
respectively. Q is a random number obeying a normal distribution. L is a 1 × d matrix, all elements of which
are 1. When R2 < ST , it means that there are no predators around the foraging environment, meaning that
producers can search widely. When R2 ≥ ST , it indicates that some sparrows in the population have detected
predators and have issued an alarm to other sparrows in the population, meaning that all sparrows need to
fly to other safe places to forage quickly.

Scroungers are individuals besides producers. Scroungers use producers to obtain food so that
scroungers have lower fitness values. Moreover, scroungers always follow the producer with the highest
fitness value to obtain food, and they even compete with producers for food. The position update equation
for scroungers is as follows:

Xt+1
i , j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q ⋅ exp
⎛
⎝

Xt
worst − Xt

i , j

i2
⎞
⎠

, i > n
2

,

Xt+1
P + ∣Xt

i , j − Xt+1
P ∣ ⋅ A+ ⋅ L, otherwise ,

(7)

where XP is the optimal position currently occupied by the producers, and Xworst represents the current
global worst position. A represents a 1× d matrix, each element of which is randomly assigned a value of 1 or
−1, A+ = AT (AAT)−1. When i > n

2 , it indicates that the fitness value of the ith scrounger is low, and owing
to not obtaining food, it is in a hungry state and needs to fly to other places to forage. When i ≤ n

2 , the ith
scrounger forages near the current optimal position.

When danger is perceived, the sparrow population exhibits anti-predation behavior. In the method, it is
assumed that sparrows that perceive danger account for 10%–20% of the population. These sparrows’ initial
positions are randomly generated within the population, and their position update equation is as follows:

Xt+1
i , j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt
best + β ⋅ ∣Xt

i , j − Xt
best ∣ , fi > fg ,

Xt
i , j + K ⋅

⎛
⎜
⎝

∣Xt
i , j − Xt

worst ∣
( fi − fw) + ε

⎞
⎟
⎠

, fi = fg ,
(8)

where Xbest is the current global optimal position. β serves as a step-size control parameter and is a random
number obeying the standard normal distribution. K∈ [−1, 1] is a random number, with its positive or negative
sign reflecting the direction of the sparrow’s movement. fi is the current sparrow individual’s fitness value.
fg and fw are the current global best and worst fitness values, respectively. ε is the smallest constant to avoid
division by zero. When fi > fg , it means that the sparrow is at the edge of the population and is prone to
be attacked by predators. When fi = fg , it indicates that the sparrow in the middle of the population has
perceived danger and needs to approach other sparrows to avoid being attacked by predators. The flow chart
of the SSA is illustrated in Fig. 2.
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Figure 2: Flow chart of the SSA

4 Proposed Model
In this part, a new clustering method that combines the DPC method and SSA is proposed for the

urban–road scenario. This section describes the scenario model of the method briefly and then details the
execution process of the method.

4.1 Scenario Description
The scenario considered in this study is an urban traffic scenario, as depicted in Fig. 3. Vehicles on the

road can communicate with other vehicles or road side units (RSUs) within their communication range
through V2V or V2I models, transmitting their own information, including their ID, location, velocity, and
direction of motion, which are used in the clustering process. Besides, the following assumptions are made
for the scenario: vehicles on the road all use dedicated short-range communication (DSRC) to transmit
information, with a communication range of R. All vehicles are equipped with a global positioning system
(GPS) to obtain their own status information, including location and velocity, which is stored in their own
dedicated cache. They send HELLO packets periodically to exchange this information with other vehicles or
RSUs within their communication range. In addition, all vehicles have a neighbor table to store information
about nearby vehicles. If a HELLO packet from a neighbor vehicle is not received within a certain period of
time, the information about that vehicle will be deleted from the neighbor table.



3714 Comput Mater Contin. 2025;84(2)

Figure 3: Traffic scenario model

4.2 Proposed Model
In VANETs, the dynamic changes in the velocity and position of vehicles pose a significant challenge

to the clustering process and cluster stability. To address this challenge, the proposed model considers the
following three aspects.

First, the selection of CHs influences the attribution of CMs in the subsequent cluster formation process,
and each CH is responsible for inter-cluster communication and intra-cluster management, which affects
cluster stability directly. Thus, the selection of CHs is particularly important and is the first aspect considered
in this study.

Second, during the cluster formation process, previously developed models often only focus on the
distance parameter and rarely consider the link reliability between the CH and CMs. If the link between
the CH and CMs does not have sufficient reliability, reliable information transmission between the CH and
CMs cannot be guaranteed, affecting cluster stability. Therefore, based on the distance parameter, we further
introduce the link reliability parameter.

Finally, in urban scenarios, the frequent changes in the moving direction of vehicles can disrupt clusters’
organizational structure. Hence, we also consider cluster updating and maintenance in such cases.

4.2.1 CH Selection
The model proposed in this study applies the DPC method to calculate the density parameter ρ and the

distance parameter δ for all vehicles and constructs a fitness function based on these two parameters. Then,
the SSA is used for searching iteratively. At the end of the iterative search process, the vehicles with optimal
positions are selected as CHs.

It can be seen from Section 3 that before calculating the parameter ρ, it is also necessary to determine a
key parameter: the cut-off distance dc . The value of dc has a great impact on the clustering results, so it needs
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to be selected carefully. In [32], the author proposed a model to calculate the parameter dc to optimize the
clustering results. The main steps are as follows:

First, calculate the Gaussian distance between each pair of nodes, with the following equation:

Distance = 1 − exp
⎡⎢⎢⎢⎢⎣
−
⎛
⎝

di j
2

2
⎞
⎠

⎤⎥⎥⎥⎥⎦
, (9)

where di j is the Euclidean distance between node i and node j.
Next, select the maximum and minimum Gaussian distances, represented by Distancemax and

Distancemin , respectively.
Finally, take the average of the two as the value of the cut-off distance, with the equation as follows:

dc =
Distancemax + Distancemin

2
. (10)

However, the model mentioned in [32] is not used for CH selection in VANETs and does not consider the
relevant parameters of vehicles. In the urban traffic environment set in this study, to ensure cluster stability
as much as possible, the model ensures that the vehicle selected as the CH is close to other vehicles in the
cluster in terms of position, velocity, and direction of motion. The model in [33] introduces these parameters
of vehicles and has achieved good results. Thus, we modify the model in [32] based on it, and the modified
model is as follows.

Introduce a new parameter Qi j to determine the value of the cut-off distance, with the equation as
follows:

Qi j = 1 − exp [−(
Di j

2

2
)] , (11)

where the parameter Di j needs to be calculated using the following equation:

Di j =
1

Vi j + 0.1
× 1

Si j + 0.1
× Ni

N
, (12)

where Vi j represents the standard deviation of the velocity between the node i and its neighbor node j, and
the calculation is given in Eq. (13). Si j represents the average Euclidean distance between the node i and its
neighbor node j, and the calculation is given in Eq. (14). Ni represents the total number of neighbor nodes
of node i, and N is the total number of nodes in the network.

Vi j =

�
   !∑

Ni
j=1 (∣vi ∣ − ∣v j∣ cos θi j)

2

Ni + 1
, (13)

Si j =
∑Ni

j=1

√
(xi − x j)

2 + (yi − y j)
2

Ni + 1
, (14)

where ∣vi ∣ and ∣v j∣ represent the absolute velocity of node i and its neighbor node j, respectively, and cos θi j
represents the cosine value of the included angle between the moving direction of node i and node j.
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Hence, similar to Eq. (10), the new equation for calculating the cut-off distance can be obtained as
follows:

dc =
Qmax + Qmin

2
. (15)

After obtaining the cut-off distance, we can calculate the parameter ρ. As mentioned in Section 3, two
models for calculating the parameter ρ in the DPC method exist. In this study, the second model is adopted,
and certain modification is made based on this model. The variable Qi j introduced in the calculation of dc
is used to replace di j in Eq. (2), and the equation of parameter ρ is obtained as follows:

ρ i =
n
∑

j=1, j≠i
exp [−(

Qi j

dc
)

2

] . (16)

Similarly, when calculating parameter δ, the same modification is made, and the distance from a node
i to a node with higher density is calculated as follows:

δ i = min
j∶ρ j>ρ i
(Qi j) . (17)

If a node has the maximum density, then δ i =max j (Qi j).
After attaining the calculation models for parameters ρ and δ, we can construct the fitness function as

follows:

F (i) = 1
ρ i × δ i

. (18)

The smaller the fitness value of a node, the better its position, and the greater the possibility of being
selected as a CH. In addition, we set a convergence condition for the SSA to ensure the performance of the
method. During the search process, if the calculated fitness value satisfies Eq. (19), it indicates that the SSA
has reached the convergence condition. This means the current vehicle has the optimal position, so it can
be selected as a CH. Before the SSA reaches the maximum number of iterations, if the absolute value of the
difference between the fitness value of a vehicle and the fitness value when the method converges is less than
or equal to ε, then the vehicle is also considered to have the optimal position and can be selected as a CH:

∣F (i)n − F (i)n−1∣ ≤ ε, n ≥ 2, (19)

where ε is the convergence parameter, and n represents the number of iterations.

4.2.2 Cluster Formation
After completing the CH selection, the next step is to assign the remaining vehicles to appropriate

CHs to construct several clusters, and each CH manages its own cluster. Conventional models mostly only
consider the distance parameter, and the distance between vehicles does not fully reflect the reliability of
the link between vehicles. Link reliability is an important parameter for evaluating system performance and
stability [34], so we also introduce the link reliability parameter REL.

After the network is initialized, as described in Section 4.1, vehicles in the network send HELLO packets
to vehicles and RSU within their transmission range periodically to exchange their information. The data
format of the HELLO packet is displayed in Fig. 4.
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Preamble Broadcast Time Node ID Position Velocity Direction Check Code

Figure 4: Format of HELLO packet

The information is used in various stages of the clustering process. During the cluster formation stage,
the information is used to calculate the link reliability parameter REL. After the CH selection process ends,
each vehicle selected as a CH sends a REQUEST packet to vehicles within its transmission range, which
includes the CH vehicle’s ID, location, velocity, and other information. The format of the REQUEST packet
is illustrated in Fig. 5.

Preamble Broadcast Time CH ID Position Velocity Direction Check Code

Figure 5: Format of REQUEST packet

For the non-CH vehicles, if they receive only one REQUEST packet, they send a JOIN packet to the
sender, which includes their own location and velocity information. The format of the JOIN packet is depicted
in Fig. 6.

Preamble Broadcast Time CH ID Node ID Position Velocity Direction Check Code

Figure 6: Format of JOIN packet

If a non-CH node j receives multiple REQUEST packets, the node will calculate the link reliability
REL between itself and all senders. Ultimately, it chooses to join the cluster whose CH has the highest link
reliability with it and sends a JOIN packet to the corresponding CH. The equation for REL is as follows:

REL ( j, CHi) = Er f
⎛
⎝

2R
t − μΔv
σΔv
√

2
⎞
⎠
− Er f
⎛
⎝

2R
t + Tp − μΔv

σΔv
√

2
⎞
⎠

, when Tp > 0, (20)

where Er f is the Gaussian error function, defined as follows:

Er f (x) = 2√
π ∫

x

0
e−t2

dt. (21)

R is the communication range of vehicles. μ and σ represent the average value and standard deviation
of velocity, respectively. Δv is the absolute value of the difference in velocity between two vehicle nodes. Tp
represents the predicted time during which the link between two vehicles remains available. When the two
vehicles are moving in the same direction, the equation of Tp is as given in Eq. (22). When the two vehicles
are moving in different directions, the equation is as given in Eq. (23).

Tp =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2R − L j ,CHi

∣Vj − VCHi ∣
, i f VCHi > Vj ,

R − L j ,CHi

∣Vj − VCHi ∣
, i f VCHi < Vj ,

(22)
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Tp =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R + L j ,CHi

∣Vj + VCHi ∣
, i f two vehicl es move toward each other,

R − L j ,CHi

∣Vj + VCHi ∣
, i f two vehicl es move away f rom each other,

(23)

where L represents the Euclidean distance between the non-CH vehicle j and the CH vehicle CHi . Vj and
VCHi represent the velocity.

The flowcharts of the CH selection and cluster formation stages are shown in Fig. 7.

Figure 7: (a) Flowchart of the CH selection stage; (b) Flowchart of the cluster formation stage

4.2.3 Cluster Maintenance
In an urban traffic environment, frequent changes in the position and velocity of vehicles can lead

to changes in the cluster structure, which affects cluster stability. To address this issue, we propose
corresponding cluster-maintenance measures for possible situations in the urban traffic scenario.

CH Replacement. When the CH vehicle leaves its original cluster, the CH selection process needs to be
executed among the remaining vehicles to select a new CH. The new CH vehicle takes on the responsibility
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of managing the members within the cluster and communicating between clusters. The remaining vehicles
join the cluster of the new CH vehicle by default and send a JOIN packet to the CH vehicle.

CM Replacement. When a CM vehicle leaves its original cluster or a new vehicle wants to join a cluster,
the CH vehicle sends a REQUEST packet to vehicles within its transmission range periodically. Vehicles that
have not left their original cluster reply with a JOIN packet, and vehicles that have left do not reply. If a
reply from a certain CM vehicle is not received within a certain period of time, the CH vehicle deletes the
information of that CM vehicle from the neighbor table. New vehicles also receive a REQUEST packet, and
the process for joining a cluster is the same as the cluster formation process mentioned above.

4.2.4 Algorithm Description
Based on the previous description, the specific steps of SDPC are given in Algorithm 1.

Algorithm 1: SDPC Algorithm
Input: Vehicle nodes set {Mi} and ε
Output: Clusters set {Ci}
1 Initialize the network and sparrow population
2 for i in {Mi}
3 Use Eqs. (13) and (14) to calculate Vi j and Si j, respectively
4. Use Eq. (12) to calculate Di j
5. Use Eq. (11) to calculate Qi j
6. end for
7. Use Eq. (15) to calculate the cut-off distance dc
8. for i in {Mi}
9. Use Eq. (16) to calculate ρ i
10. end for
11. for i in {Mi}
12. Use Eq. (17) to calculate δ i
13. end for
14. Construct the fitness function
15. Use the sparrow population to perform iterative search until the termination condition is met
16. Select vehicles with optimal positions as CHs, obtaining the CH vehicle set {Xi} and the
non-CH vehicle set {Yj}
17. for j in {Yj}
18. if a vehicle receives a REQUEST data packet
19. Reply to the sender with a JOIN packet, joining the corresponding cluster
20. else if a vehicle receives multiple REQUEST data packets
21. if the vehicle is moving in the same direction as the sender
22. Use Eq. (22) to calculate Tp
23. else
24. Use Eq. (23) to calculate Tp
25. end if
26. Use Eq. (20) to calculate link reliability REL
27. Reply to the sender with the highest V2V link reliability with a JOIN data packet, joining
the corresponding cluster

(Continued)
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Algorithm 1 (continued)
28. end if
29. end for

5 Simulation and Performance
Intending to evaluate the performance of the model proposed in this study, we conducted simula-

tion experiments.
First, we compared it with models from two other references. The two models compared are GAPC [35]

and APROVE [36], both of which are clustering models based on affinity propagation. The difference lies
in the former’s introduction of communication-related parameters and weight mechanisms to improve
cluster stability. The reason for choosing these two models for comparison is that affinity propagation-based
clustering models do not need to specify the number of clusters, and both models can be deployed in urban
traffic environments, similar to the model proposed in this study.

Subsequently, to validate the adaptability of SDPC in various dynamic environments, we adjusted the
maximum vehicle velocity based on the previous experiment and tested its performance.

Then, we compared SDPC with two classical clustering algorithms, K-means and DBSCAN. K-means is
a partition-based clustering algorithm that groups data points into a predefined number of clusters. DBSCAN
is a density-based clustering algorithm that identifies clusters based on data point density.

Finally, we conducted an ablation study. Since SDPC primarily integrates DPC and SSA, we first replaced
SSA with PSO to construct a method combining DPC and PSO. Afterward, based on [37], we developed a
method integrating DBSCAN and SSA. We then compared SDPC with these two constructed methods to
validate its performance.

This section mainly introduces the simulation environment and some performance-evaluation metrics
and analyzes the simulation results.

5.1 Simulation Environment
The simulation experiments in this study were conducted in an environment integrated with the

network-simulation software OMNeT++, vehicle network-simulation framework Veins [38], and traffic
simulator SUMO [39]. The simulation scenario was generated based on the real traffic network of Berlin,
Germany, as depicted in Fig. 8, and the relevant parameters are given in Table 1.

5.2 Performance Evaluation Metrics
To measure the effect of the clustering method and the obtained clusters’ stability as accurately as

possible, we evaluated the performance of the method from the following six aspects.
Number of CHs. The number of CHs represents the number of CH vehicles selected after the clustering

method is executed. Since only one vehicle in a cluster is the CH, the number of CHs is also equal to the
number of clusters. If the number of clusters formed is relatively small and the fluctuation range of the
number of clusters is small as the total number of vehicles in the network increases, it exhibits a better
clustering effect.



Comput Mater Contin. 2025;84(2) 3721

Figure 8: Simulation scenario

Table 1: Simulation parameters

Parameter Value
Simulation area 1000 m × 1000 m
Simulation time 300 s
MAC protocol 802.11 p

Transmission range of node 260 m
Transmission rate 60 Mbps
Number of roads 2

Maximum velocity 50 km/h
Number of vehicles 40, 60, 80, 100, 120, 160, 180, 200

Number of Isolated Vehicles. This metric represents the number of vehicle nodes that are not assigned
to any cluster after the clustering process. A clustering method with a good effect should have a relatively
small number of isolated nodes after execution.

Clustering Efficiency. Clustering efficiency is the proportion of vehicles that fully participate in the entire
clustering process to the total number of vehicles in the network. It is calculated by dividing the number of
vehicles involved in the clustering process by the total number of vehicles. Corresponding to the previous
metric, a better clustering method should have higher clustering efficiency.
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Average Duration of CHs. This metric represents the average value of the time that all CH vehicles in
the network maintain a normal working state. It is derived by dividing the sum of the duration that all cluster
head vehicles maintain their cluster head status in the network by the total number of cluster head vehicles.
When a CH vehicle leaves its cluster, it leaves the normal working state, and the CH working-state time
elapses. The longer the duration of a CH, the stronger the cluster stability.

Average Duration of CMs. This metric represents the average duration that vehicles in the network act as
CMs. It is obtained by dividing the cumulative duration during which all cluster member vehicles retain their
cluster membership status across the network by the total count of cluster member vehicles. Corresponding
to the previous metric, CMs may also leave their clusters. A stable cluster should have a longer duration for
its members.

Change Rate of CH. This metric is the number of times the state of CH vehicles changes in unit time
during the clustering process. It is calculated as the total number of times cluster head vehicles alter their
state divided by the simulation time duration. The fewer the changes in the CH vehicle, the stabler the cluster.

5.3 Simulation Result Analysis
First, we compared the performance of SDPC with APROVE and GAPC on the six performance

evaluation metrics mentioned above. The trend of the number of CHs obtained by the three methods as the
total number of vehicles in the network increases is illustrated in Fig. 9a. From the figure, it can be seen that
as the total number of vehicles in the network increased, the number of CHs obtained by the three methods
all increased. However, the fluctuation of the number of CHs obtained by APROVE was significantly greater
than the other two methods. GAPC achieved fewer CHs when the total number of vehicles was small, but
when the total number of vehicles exceeded 100, SDPC achieved a 5.1% higher number of CHs. This reveals
that SDPC could maintain stability in the number of clusters while forming fewer clusters and also performed
better than the other two methods.

Figure 9: (a) Number of CHs vs. number of vehicles; (b) Number of isolated vehicles vs. number of vehicles

Fig. 9b depicts the trend of the number of isolated vehicles in the network as the total number of vehicles
increased. The results show that when the total number of vehicles in the network was small, the number of
isolated vehicles obtained by the three methods was similar. As the total number of vehicles in the network
increased, the number of isolated vehicles obtained by APROVE and GAPC significantly increased, while
the change in the number of isolated vehicles obtained by SDPC was smaller. This indicates that a large
number of vehicles were not assigned to clusters during the execution of the former two methods, and that
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the execution effect of the two methods was unsatisfactory, but that the execution effect of SDPC was better
than these two methods.

According to Fig. 10a, compared with APROVE and GAPC, SDPC had higher clustering efficiency.
The clustering efficiency of SDPC was maintained between 60% and 70%, while the clustering efficiency of
the other two methods was below 60%. This indicates that a majority of vehicle nodes participated in the
entire clustering process during the execution of SDPC, and that it had a better performance in terms of
method coverage.

Figure 10: (a) Clustering efficiency vs. number of vehicles; (b) Average duration of CHs vs. number of vehicles

Fig. 10b describes the change in the average duration of CHs obtained by the three methods under
different total numbers of vehicles. It can be seen from the figure that under different total numbers of
vehicles, compared with the other two methods, the average duration of CHs in SDPC was longer, with an
average duration of more than 75 s. The CH is the core of a cluster, and the duration of the CH has a great
impact on the entire cluster’s stability. Therefore, the selection of CH vehicles in SDPC was more appropriate,
which helped improve the formed clusters’ stability.

Fig. 11a depicts that the average duration of CMs obtained by SDPC was longer than that obtained by
APROVE and GAPC. In urban environments, owing to changes in vehicles’ moving direction, CMs often
leave their clusters. However, the model proposed in this study introduces link-reliability parameters during
the cluster-formation process, and the links between CMs and CHs can maintain high reliability, indicating
that CMs will not leave their clusters easily. Combined with the good performance of SDPC in the average
duration of CHs mentioned above, it can be seen that SDPC could effectively improve cluster stability.

Fig. 11b depicts that APROVE had a significantly higher CH change rate, revealing that the cluster
stability formed by this method was low. In addition, the CH change rates of GAPC and SDPC were lower,
and the fluctuations caused by the increase in the total number of vehicles in the network were smaller. When
the total number of vehicles in the network was around 100, SDPC demonstrated a 22.2% lower change rate
of CHs compared to GAPC. This means that even when there were more vehicles in the network, the clusters
formed by SDPC would maintain high stability.

Building on the aforementioned experiment, we adjusted the maximum vehicle velocity to 40 km/h and
60 km/h, respectively. Under these conditions, the performance of SDPC, APROVE, and GAPC was tested
in terms of the average duration of CHs and CMs. The experimental results are illustrated in Figs. 12 and 13.
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Figure 11: (a) Average duration of CMs vs. number of vehicles; (b) Change rate of CHs vs. number of vehicles

Figure 12: (a) Average duration of CHs vs. number of vehicles (40 km/h); (b) Average duration of CMs vs. number of
vehicles (40 km/h)

Figure 13: (a) Average duration of CHs vs. number of vehicles (60 km/h); (b) Average duration of CMs vs. number of
vehicles (60 km/h)

Fig. 12 demonstrates the performance of the three methods when the maximum vehicle speed in the
network is 40 km/h. Compared to experimental results with a maximum vehicle speed of 50 km/h, the
performance of all three algorithms shows about 3% improvement at most due to the reduced vehicle
mobility. As shown in Fig. 12a, as the number of vehicles increases, the average duration of CHs obtained
by SDPC consistently remains longer than those achieved by APROVE and GAPC, demonstrating clear
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superiority in this metric. From Fig. 12b, when the number of vehicles is below 180, SDPC also outperforms
APROVE and GAPC in the average duration of CMs. However, when the number of vehicles reaches 180
or more, the average durations of CMs across all three algorithms become comparable, though SDPC still
maintains its advantage.

Fig. 13 presents the performance of the three methods when the maximum vehicle speed increases to
60 km/h. Compared to the 50 km/h scenario, all algorithms exhibit a performance degradation of up to
approximately 4%. The trends of relevant metrics with increasing vehicle density remain broadly similar to
those observed at 40 and 50 km/h. Both Fig. 13a,b confirms that SDPC significantly outperforms APROVE
and GAPC in terms of both CH and CM average durations.

Subsequently, we compared SDPC with two classical clustering algorithms, K-means and DBSCAN, in
terms of CH and CM durations. Experimental results are shown in Fig. 14. As vehicle density increases, the
average durations of CHs and CMs obtained by K-means and DBSCAN continuously decline, while SDPC
consistently demonstrates superior performance with significant advantages across both metrics.

Figure 14: (a) Average duration of CHs vs. number of vehicles (50 km/h); (b) Average duration of CMs vs. number of
vehicles (50 km/h)

Finally, the ablation study was conducted by designing two variants for comparison with SDPC: one
combining DBSCAN with SSA, and another integrating DPC with PSO. Results in Fig. 15 reveal that while the
SSA-optimized DBSCAN achieves improvements in CH/CM durations compared to standalone DBSCAN,
it still lags significantly behind SDPC. Meanwhile, the PSO-optimized DPC produces results closer to SDPC,
as DPC inherently requires fewer parameters than DBSCAN for clustering. However, SSA’s advantages in
faster convergence and higher optimization precision ultimately ensure SDPC’s overall superiority.

In summary, SDPC could control the cluster scale while ensuring that most vehicles in the network
participated in the entire clustering process so that there were not too many clusters in the network.
Moreover, it could ensure that the formed clusters had high stability; that is, CHs and CMs had a long
duration and did not leave their clusters easily. Compared with APROVE and GAPC, the overall performance
of SDPC was better than APROVE; it was also superior to GAPC in most metrics. In contrast to classical
algorithms like K-means and DBSCAN, SDPC exhibits substantial advantages. The ablation study further
validates that SDPC achieves robust and commendable performance.
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Figure 15: (a) Average duration of CHs vs. number of vehicles (50 km/h); (b) Average duration of CMs vs. number of
vehicles (50 km/h)

6 Conclusions
In VANETs, clustering strategies’ introduction has exhibited promising effects in reducing the com-

munication load, improving packet-delivery rates, and enhancing routing efficiency. However, in urban
scenarios, cluster stability is challenging owing to frequent changes in vehicles’ velocity, position, and
direction of motion. To address this challenge, we proposed a clustering method named SDPC, which
combines the DPC method with SSA, making the selection of CHs more accurate and reasonable. In the
cluster-formation process, not only is the distance parameter considered, but the link-reliability parameter
is also introduced. The cluster maintenance process is considered to tackle changes in network topology.
Comparative experiments reveal that SDPC significantly outperforms APROVE and GAPC and exhibits
notable advantages over classical algorithms like K-means and DBSCAN. The ablation study further confirms
that SDPC demonstrates strong capabilities in forming stable clusters.

In future work, to address the limitations of current CH selection mechanisms, we propose three
concrete research directions:

(1) Implementing reinforcement learning (RL) frameworks to enable dynamic CH election through
reward mechanisms (e.g., using Q-learning to optimize energy-delay tradeoffs).

(2) Developing hybrid metaheuristics combining genetic algorithms with simulated annealing to handle
multi-objective optimization in large-scale networks.

(3) Integrating federated learning approaches to preserve node privacy during CH coordination.
In addition, specific application scenarios for the method can be sought, such as routing and task

offloading in VANETs.
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