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ABSTRACT: As mobile edge computing continues to develop, the demand for resource-intensive applications is
steadily increasing, placing a significant strain on edge nodes. These nodes are normally subject to various constraints,
for instance, limited processing capability, a few energy sources, and erratic availability being some of the common
ones. Correspondingly, these problems require an effective task allocation algorithm to optimize the resources through
continued high system performance and dependability in dynamic environments. This paper proposes an improved
Particle Swarm Optimization technique, known as IPSO, for multi-objective optimization in edge computing to
overcome these issues. To this end, the IPSO algorithm tries to make a trade-off between two important objectives,
which are energy consumption minimization and task execution time reduction. Because of global optimal position
mutation and dynamic adjustment to inertia weight, the proposed optimization algorithm can effectively distribute
tasks among edge nodes. As a result, it reduces the execution time of tasks and energy consumption. In comparative
assessments carried out by IPSO with benchmark methods such as Energy-aware Double-fitness Particle Swarm
Optimization (EADPSO) and ICBA, IPSO provides better results than these algorithms. For the maximum task size,
when compared with the benchmark methods, IPSO reduces the execution time by 17.1% and energy consumption by
31.58%. These results allow the conclusion that IPSO is an efficient and scalable technique for task allocation at the edge
environment. It provides peak efficiency while handling scarce resources and variable workloads.

KEYWORDS: Keyword edge computing; energy consumption execution time particle swarm optimization; task
allocation

1 Introduction
Modern computing operates on a decentralized paradigm, aiming to decrease reliance on distant cloud

data centers to accelerate decision-making processes. Applications that require high bandwidth and low
latency, such as augmented reality, autonomous vehicles, and the Internet of Things (IoT) [1,2]. In such
scenarios, edge devices are often tasked with executing resource-intensive and delay-sensitive applications.
These applications are divided into smaller, manageable tasks that are subsequently offloaded to edge nodes
for execution via virtual machines or containers [3,4]. However, poor availability at edge nodes during
task distribution poses a significant issue. Poor selection of edge nodes can lead to system performance
degradation or even server crashes, which can significantly impact the overall reliability of the system [5].

The literature has addressed various task allocation issues in edge computing, but it hasn’t extensively
explored the continuous availability of edge nodes for task allocation [6]. This gap poses significant challenges
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to the reliable deployment of applications, preventing failures due to inconsistent node availability [7].
Edge computing refers to task allocations that involve distributing computational tasks across different edge
nodes with variables in memory, bandwidth, and processing power requirements [8]. For instance, tasks
requiring real-time execution should assign nodes with high processing power, while storage-intensive tasks
should assign nodes with abundant storage resources. Similarly, we need to allocate delay-sensitive tasks to
nodes closer to the data source to minimize delay. Therefore, we must perform task allocation thoughtfully,
considering multiple, often conflicting objectives such as processing capacity, energy consumption, and
execution time operating at different scales.

While edge computing provides significant benefits, it also encounters several critical challenges that
impact its efficiency and scalability, especially regarding task allocation and resource management. These
include energy consumption and execution time balance, adaptation to resource variability and dynamic
workloads, and scalability in large-scale systems [9].

One of the most critical challenges in edge computing is to strike an optimal balance between energy
consumption and execution time. Most tasks are computation-intensive, and their distribution to edge
nodes with limited energy resources may result in excessive energy consumption, which reduces the system’s
lifetime and increases operational costs [10]. On the other hand, applications that have strict latency
requirements necessitate fast execution of tasks, which may conflict with energy-saving policies [11]. The
current approaches do not balance these conflicting objectives well, often leading to suboptimal system
performance [12]. The environments of the edge are highly dynamic due to the fluctuating availability of
resources, varying task demands, and heterogeneous edge nodes with different computational capacities.
Static and semi-dynamic task allocation algorithms such as ICBA and AEDPSO cannot adapt to such changes
in real time. As a result, inflexibility has often led to overloaded nodes, underutilized resources, and degraded
performance, especially in resource-intensive applications [13].

As the number of tasks and edge nodes increases, existing algorithms face scalability issues, leading to
longer execution times and higher energy consumption [14]. The complexity of managing large task sets and
diverse resource types requires robust and scalable optimization frameworks, which many current methods
fail to provide.

Normalization plays a major role in balancing these objectives, ensuring each is scaled appropriately
within the optimization process [15,16]. Besides, edge computing environments are highly dynamic since
devices are constantly joining or leaving the network. This fluctuating resource availability, therefore, requires
flexible and adaptive task allocation algorithms that can make real-time adjustments. Furthermore, these
algorithms need to face multi-objective challenges regarding reduction of execution time, enhancement of
energy efficiency, ensuring data privacy, and a high level of QoS [17].

The metaheuristic approaches have recently attracted considerable interest in solving complex optimiza-
tion problems in edge computing due to their flexibility and adaptiveness [18,19]. In these techniques, PSO
has emerged as a powerful and simple technique, with much faster convergence and lower computational
complexity compared to other optimization algorithms such as GA and ACO. The latter usually suffer from
heavy computational loads. However, PSO may get entrapped into local optima at any instant, especially
when the diversity of the population reduces with successive generation, thereby preventing the algorithm
from exploring other globally optimal solutions. This matter is of primary importance when one tries to
minimize both energy consumption and task execution time [20,21] For enhancing the effectiveness of PSO,
three main issues must be emphasized: mutation strategy for the global optimal position, inertia weight
management and acceleration coefficients adjustment, which allow avoiding of the premature convergence
and increasing of the optimization accuracy Introduction of a mutation strategy for the global optimal
position facilitates balancing between local and global searches and allows finding the optimal solution with
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higher accuracy. Even with these improvements, PSO might have deficiencies regarding the diversity of the
swarm after a few iterations to get away from local optima. This is the only way to ensure diversity in the
population and thereby avoid the entrapment in the local optima and allow multi-objective minimization of
energy consumption and time of execution [22]. The normalization of the fitness function causes appropriate
scaling of both energy consumption and execution time so that no objective dominates the other in an
optimization process. In the recent past, there has been growing interest in Multi-Objective Problems
(MOPs) and thus seeks to provide a balance of trade-offs between conflicting objectives, especially when
objectives have different units and scales, such as energy consumption and execution time. Techniques such
as GOPMS and dynamic adjustment of acceleration coefficients are pivotal in solving these problems [23].

This work focuses on the emerging pressure that edge nodes face when the exponential development of
data from massive edge devices and fast-growing user requests is growing explosively. When multitasking is
performed on edge devices, execution time can be further reduced, but mostly at the increased cost of energy
consumption. Offloading computation to edge nodes, on the other hand, reduces energy consumption but
may lead to longer execution times, especially during peak load periods. Since the edge nodes are much
closer to the users, a well-balanced strategy will be required for the optimization of energy use and execution
time regarding overall performance.

In this regard, this work proposed a new task allocation approach in edge computing that integrates
normalization techniques within the Improved Particle Swarm Optimization algorithm. Normalization
serves to ensure that the usually conflicting objectives of energy consumption and task execution time get a
fair deal and are not dominated by either during the optimization process. By normalizing both objectives to
the same scale, the IPSO algorithm will further provide more efficient and balanced task allocations across
available edge nodes. The incorporation of flexible weighting coefficients is one salient feature of the approach
undertaken herein, enabling dynamic adaptation of the system to priorities in real time. It gives more weight,
for example, to reducing energy consumption when energy efficiency is at a premium. Where the algorithm
needs faster task execution, it could always give higher priority to the minimization of execution time. This
flexibility makes IPSO particularly effective for dynamic environments such as smart manufacturing, smart
homes, and smart transportation, where the ability to optimize both energy efficiency and execution speed
becomes highly critical to maintaining high performance.

To the best of our knowledge, this is the first study to apply IPSO with normalization techniques to
optimize execution time and energy consumption in an edge computing environment. This addresses the
dual challenges major step forward in the area and further offers a more holistic and adaptable solution to
modern edge computing systems’ complex task allocation problems.

The main contributions of this study are as follows:

I. The various existing research on task allocation and the challenges coupled to energy consumption
and execution time are modeled as multi-objective optimization problems in edge computing envi-
ronments.

II. We developed an Improved Particle Swarm Optimization technique for edge computing multi-
objective optimization. The suggested IPSO algorithm achieves a suitable trade-off between two goals:
reducing energy usage and job execution time.

III. Comprehensive experimental comparisons were performed with the existing algorithms like ICBA
and AEDPSO. Energy consumption decreases by 31.58%, and task execution time is reduced by 17.1%
in the largest task size, which confirms the fact that IPSO is indeed scalable and effective in optimizing
task allocation in edge computing.
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This paper is structured as follows: Section 1 introduces the topic and provides an overview of the
study. Section 2 reviews the relevant literature. The system model is presented in Section 3, as the problem
description. Section 4 offers a detailed explanation of the proposed methods, while Section 5 outlines the
experimental design. The results and discussion are provided in Section 6, and finally, Section 7 concludes
the work, summarizing key findings and future directions.

2 Related Works
This research [24] presents a cluster-based Wireless Sensor Network (WSN) concept and a task model

for edge computing. The variety of the model makes it more useful in practice because different tasks call
for different kinds of resources, and different sensors offer different kinds of resources. The study uses a
hybrid strategy that combines Genetic Algorithm (GA) and Ant Colony Optimization (ACO) to handle work
allocation. The algorithm’s main goals are to accomplish load balancing and energy conservation, which will
ultimately increase the network’s longevity. The experiments’ outcomes show how well the algorithm works to
optimize energy consumption while distributing the burden throughout the network. This study [25] focuses
on optimizing transmission power allocation and task offloading scheduling in Mobile Edge Computing
(MEC) systems that incorporate numerous independent jobs. Reducing the gadgets’ energy consumption
and execution delay is the goal. An alternating minimization-based low-complexity sub-optimal algorithm
is suggested to reduce the weighted sum of execution delay and energy consumption in order to accomplish
this. Given the transmit power allotment, flow shop scheduling theory is used to establish the task offloading
scheduling or the order in which tasks are offloaded. Furthermore, for a given task offloading sequence, the
optimal transmit power allocation is determined using convex optimization techniques. This research [26]
examines how decisions about task offloading and resource allocation in a two-user Mobile Edge Computing
(MEC) network are affected by inter-user task interdependence. The objective is to reduce the wireless
devices’ (WDs’) weighted total energy consumption and task execution time. We created effective algorithms
to optimize job offloading and resource allocation to do this. Moreover, we proved that a “one-climb”
strategy governs the best offloading choices. We used this knowledge to develop a lower-complexity Gibbs
sampling technique that helps determine the optimal offloading options. The suggested method considerably
exceeds established benchmarks, according to simulation results, highlighting the need to take inter-user
task interdependence into account in MEC systems. In this paper [23], the authors look at the simultaneous
optimization of computing frequency allocation, communication rates, and task assignment for a multi-
helper Mobile Edge Computing (MEC) system that is D2D enabled and assumes binary task offloading.
While taking into account the energy and computing constraints of each user and helper, the goal is to
minimize the overall computation latency under a TDMA communication protocol. Reference [27] examines
the best-combined energy and task allocation issue for a wirelessly powered MEC system for a single user
that experiences dynamic task arrivals over time. Within a finite time, horizon with many slots, the objective
is to minimize the transmission energy consumption at the energy transmitter (ET) while respecting energy
and task causality and task completion restrictions at the user. Using convex optimization methods, we
obtained well-organized optimal offline solutions for both static and time-varying channel circumstances,
presuming prior knowledge of task state information (TSI) and non-causal channel state information (CSI).
The objective of this study is to reduce the amount of brown energy used by tackling the issues of workload
distribution, virtual machine migration, and energy scheduling. The work suggests an optimal model for
discrete time-slot scheduling that takes user demand fluctuation and green energy supply into account.
It is demonstrated that the problem is NP-hard, and a relaxation-based heuristic solution is created to
handle the uncertainty in the supply of green energy and the dynamic nature of consumer demand [28].
An approach to task allocation for cooperative edge computing is presented in this author [29] Initially,



Comput Mater Contin. 2025;84(2) 2993

it presents a task allocation model that relies on two edge nodes working together. The objective of this
model is to minimize the average job completion time while meeting business requirements. Moreover,
a technique called TCA-IPSO two-edge-node cooperative task allocation employing an improved particle
swarm optimization is put forth. This algorithm efficiently addresses the problem of job allocation schemes
in cooperative situations, which frequently tend to become trapped in local optima. It improves on the basic
particle swarm optimization by using crossover and mutation strategies from genetic algorithms. In [30],
the study focuses on scenarios where a mobile device handles multiple tasks or an application comprises
various subtasks, the paper aims to tackle the challenge of task allocation in multi-task environments within
MEC systems, striving to minimize total energy consumption while considering cases where a mobile device
may manage one or more tasks simultaneously. However, this assumption may not align with real-world
situations where a mobile device often has numerous tasks queued for execution. In [31], the paper examines
the problem of minimizing total energy consumption in energy harvesting (EH)-enabled Mobile Edge
Computing (MEC) networks by jointly optimizing the task offloading ratio and resource allocation. The
analysis considers the task uplink transmission time, MEC computation time, and the time required for
downloading computation results, addressing these factors simultaneously. However, the proposed method
is its reliance on idealized assumptions about energy harvesting and network stability, which may not
fully account for the dynamic and unpredictable nature of real-world MEC environments. In [32], the
study proposes a heuristic method to address the resource allocation subproblem and an approximation
algorithm for the offloading decision subproblem. The proposed approximation algorithm is demonstrated
to be a polynomial-time approximation scheme, effectively balancing the trade-off between optimality and
computational complexity. However, the study does not address energy consumption, a critical factor in the
context of edge computing. In [33], the paper introduces several algorithms tailored for various scenarios. In
cases where historical data is unavailable, a multi-round allocation algorithm utilizing Exponential Moving
Average (EMA) prediction is proposed. Experimental results validate the effectiveness and importance of
employing multiple rounds of transmission in such situations. However, the proposed method overlooks
energy consumption, a critical factor in edge computing environments. In [34], the paper presents an online
resource allocation approach inspired by offline optimization. It first formulates the energy minimization
problem as a convex optimization under ideal conditions with known Time-State Information (TSI) and
Channel-State Information (CSI), solving it using the Lagrange duality method. Leveraging these insights, a
sliding-window-based online method is proposed for real-world scenarios. The results highlight significant
improvements in energy efficiency for wireless-powered MEC systems. However, the proposed mechanism
incurs significant overhead, which may impact its efficiency and scalability in practical applications.

Previous studies have shown that the classical techniques for task allocation in edge computing are
resolved by artificial or optimal approaches, both of which perform well. These methods are extremely
complex, though, and as a result, resource computation and energy usage go up. In an edge computing
context, where the least amount of energy and execution time is needed, this could not be beneficial.
However, some studies have used the popular meta-heuristic method of ACO and GA. By producing a
realistic, high-quality answer that is often less complex than the ideal solution, the meta-heuristic technique
ensures energy utilization. However, because they need more parameters to provide the same results, the GA
and ACO utilize more energy than other meta-heuristic approaches. There is an increase in computation time
and energy consumption because this component does not meet the service standards required to process
Internet of Things applications in an edge computing environment. From this perspective, choosing a suitable
approach to meet the platform’s needs is essential. Therefore, when compared to other metaheuristics, the
IPSO method requires the fewest parameters and produces reasonable results, making it the optimal option
for workload allocation in edge computing. The MOP (IPSO) algorithm is used in this study because it has
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fewer parameters, which helps it achieve two of its main objectives: a shorter execution time and less energy
consumption. Therefore, it’s critical to increase response times and manage a greater volume of tasks from
IoT devices. According to the previously mentioned information, this study meets the need for reducing the
energy and execution time.
Limitations of Existing Algorithms in Multi-Objective Optimization for Edge Computing

Although some existing algorithms such as the Improved Chaotic Bat Algorithm (ICBA) and Adaptive
Evolutionary Dual Particle Swarm Optimization (AEDPSO) have been quite promising in tending to a few
difficulties in task allocation at edge computing, they suffer critical limitations when dealing with multi-
objective optimization problems. Among these, being prone to a local optimum with an early convergence
rate is a major deficiency. This problem arises due to insufficient mechanisms that ensure diversity in the
population, which is very necessary for the effective exploration of the solution space [35]. This lack usually
results in their failure to provide globally optimal solutions for problems that involve complex domains.

Another limitation involves the use of pre-defined trade-offs among competing objectives, such as
energy consumption vs. execution time, considered as strict dependence that leads to suboptimal task
allocation when priorities change operationally and thus dynamically according to conditions arising at
runtime in edge computing [36]. For instance, in those conditions where energy efficiency is crucial in
peak workloads or low latency in delay-sensitive tasks, ICBA and AEDPSO cannot provide the flexibility to
change according to those. Thus, these algorithms very often generate imbalanced and inefficient solutions
in different scenarios.

Besides, the computational complexity of these algorithms serves as another barrier to their practical
implementation. Iterative updates in ICBA, together with chaotic map calculations, bring many overheads
and are not suitable for resource-constrained environments. Similarly, AEDPSO employs heavy load
processing due to its two-update mechanism and thus serves as a barrier toward real-time applications.
This high complexity reduces efficiency and limits scalability in larger, more diverse edge computing
environments. The second aspect that ICBA and AEDPSO lag on is dynamic adaptability. Inherently, changes
involve alterations to the availability of resources and modifications in task requests within dynamic edge
computing environments. However, these algorithms do not have a means of adapting in real-time to such
changes. Therefore, they tend to fail when on-the-fly adaptation is a prerequisite for successful performance,
rendering them less reliable for real-world use cases [37]. In addition, there is poor scalability of the
algorithms in practice since they tend to have inferior performance with increased task sets or different
resource configurations.

Finally, both ICBA and AEDPSO have deficiencies in handling multi-objective problems whose objec-
tives are of different units and scales. In situations where energy consumption and execution time are to
be optimized together, the lack of strong normalization techniques often leads to an improper preference
for one objective over the other. It then leads to imbalance and suboptimal solutions for task allocation and
resource utilization.

3 System Model
Fig. 1 shows the proposed system model designed for efficient task allocation in the edge computing

environment. The proposed framework is based on a PSO-based task allocation approach to optimize the
resource utilization at the edge of the network. Diverse devices, including smartphones, laptops, and IoT
devices, interact with users, generating computation-intensive tasks that nearby edge nodes process. These
offload tasks to edge nodes, leveraging proximity to edge resources to minimize both execution time and
energy consumption. Once generated, these tasks enter the task queues on user devices, where they undergo
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sorting based on resource requirements, priority, or urgency. This structure hence makes the allocation
process capable of handling diversified loads. The PSO task allocation module forms the heart of the system
and optimizes task distribution across edge nodes by continuously assessing available resources. It selects the
most appropriate edge node for each task, ensuring reduced energy consumption and execution time. The
PSO algorithm dynamically adapts to changes in the surroundings, for instance, resource and task variations
for optimal utilization of the available resources at any instant. Every edge node of this system has its own
set of computational resources and processing powers. This process executes the assigned task at a node in a
manner that reduces energy consumption; hence, keeping the execution time as low as possible. The system
will perform each task at the highest speed it can; therefore, this system will be appropriate for use cases
that demand both energy efficiency and rapid execution of tasks. Further improvements involve a system
of real-time feedback within the system to monitor the performance of edge nodes. This will ensure that
the PSO task allocation module provides real-time adjustments to the allocation strategy in response to
changes in system conditions, such as surges in task volumes or shifts in resource availability. It can keep
the system highly efficient by dynamically fine-tuning task distribution according to the inherent variability
of edge computing environments. This combination of real-time feedback and adaptive PSO task allocation
ensures that, even under dynamic conditions, the system consistently performs well, optimizes resource
usage, minimizes energy consumption, and maintains low execution times. The adaptiveness of the system
brings much effectiveness in handling the complexities of real-world edge computing, wherein both the
demand for tasks and resource availability may fluctuate without any approximation.

Figure 1: Task allocation process

The figure illustrates the overall architecture of the task allocation process in an edge computing
environment. It consists of multiple layers: (i) User Devices Layer, where mobile devices such as smartphones,
IoT devices, and sensors generate computational tasks; (ii) Edge Layer, which includes multiple edge nodes
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responsible for executing offloaded tasks using virtual machines (VMs) or containers; and (iii) Optimization
Module, which employs the Improved Particle Swarm Optimization (IPSO) algorithm to allocate tasks effi-
ciently. The IPSO-based task allocation mechanism dynamically evaluates available resources, considering
factors such as computational capacity, energy consumption, and network bandwidth, to optimize execution
time and energy consumption. The system also integrates a real-time feedback loop to continuously monitor
resource availability and workload distribution, ensuring optimal task allocation

3.1 Problem Description
In such scenarios, edge nodes handle massive amounts of data from IoT devices for efficient pro-

cessing. An efficient task allocation strategy is thus highly important for a multi-user, multi-server edge
computing environment to perform optimally. In such resource-limited and dynamic environments, it is
very challenging to minimize energy consumption on the one hand and reduce overall task execution time.

The system consists of a set of tasks T = (t1, t2, . . . , tn) and edge nodes R = (r1, r2, . . . , rm). Each task ti
is characterized by its computational demand (Ci in CPU cycles) and input data size (Di MB). Task Size refers
to the number of tasks in each workload batch, where each task has a predefined computational demand
measured in millions of CPU cycles (MC). Each edge nodes r j is defined by its processing capacity (Pj in
CPU cycles) per second and energy consumption rate (E j , in joules per second).

3.2 Energy Consumption Model
The total energy consumption of the system is calculated as the sum of the energy consumed by all edge

nodes while processing the assigned tasks. For each task ti assigned to edge node r j, the energy consumption
Ei j is given by:

Ei j = Pj × Ti j (1)

where Pj represents the power consumption rate of the edge node r j, measured in watts (w), representing
the energy consumed by the node per unit during task execution. And Ti j is the execution time of tsk ti on
edge node r j, calculated as the time required to process the task based on the node’s computational capacity
and the task’s computational demand.

Ti j =
Ci

Pj
(2)

Etotal =
n
∑
i=1

m
∑
i=0

xi j × Pj ×
Ci

Pj
(3)

where xi j is a binary variable indicating whether the task ti is assigned to a node r j(xi j = 1 if assigned, xi j = 0
otherwise).

Delay Model. The delay for each task includes both transmission delay Ttransi t , i j and execution delay
Ti j, it can be calculated by the following formula.

Ttransi t , i j =
Di

B j
(4)

where Di represents the amount of data required by the task ti to be processed. typically measured in
megabytes (MB) and includes all input data that must be transmitted to the edge node before computation
can begin. B j denotes the communication bandwidth capacity available at the edge node r j , measured in
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megabits per second (Mbps). Bandwidth determines the speed at which input data is transmitted to the
edge node.

Execution Delay. Reflects the total time required to complete a task after it is offloaded to an edge node.
It consists of two key components: the transmission delay Ttrnsmit , i j which accounts for the time to transfer
the task’s input data to the edge node, and the processing delay Ti j, which represents the time taken by the
node to execute the task. Minimizing execution delay is critical in edge computing, particularly for latency-
sensitive applications, as it directly impacts the system’s performance and the user experience. Efficient task
allocation strategies must balance these delays while considering the computational and network resources
available by the following formula.

Ttotal , i = Ttrnsmit , i j + Ti j (5)

Ttotal =
n
∑
i=1

m
∑
j=1

xi j × (
Di

B j
+ Ci

Pj
) (6)

The system-wide delay Ttotal represents the aggregate delay experienced by all tasks in the system. It
is calculated as the sum of the delays for each task ti assigned to each edge node r j. The delay for each task
consists of two components: transmission delay (Di

B j
), which accounts for the time to transfer the task’s input

data to the edge node, and execution delay (Ci
Pi
) , which represents the time required to process the task on

the assigned edge node.

3.3 Balancing Energy Consumption and Execution Time in Task Allocation as Multi-Objective Problem
(MOP)
The proposed Improved Particle Swarm Optimization (IPSO) algorithm optimizes task allocation

in edge computing environments by employing a multi-objective fitness function that minimizes both
energy consumption and execution time. This is achieved through the normalization of these objectives,
ensuring neither dominates the optimization process the goal of a Multi-Objective Problem (MOP) is
to simultaneously optimize multiple conflicting objectives. Task allocation in edge computing, involves
finding a balance between minimizing energy consumption and execution time. In general, an MOP can be
represented by m decision variables and n objectives as follows:

Minimize y = f (x) = f1 (x) , . . . , fn(x) where x = (x1 , . . . , xm) ∈ X is an m-dimensional decision vec-
tor, X represents the search space, and y = (y1 , . . . , ym) ∈ Y is the objective space. Generally, no single
solution is ideal for all objectives simultaneously. Instead, the solution space consists of multiple potential
outcomes, each optimal for one or more objectives.

3.4 Normalization in Multi-Objective Optimization
Normalization in multi-objective optimization is essential when one has to deal with several objectives

in different units and scales, such as energy consumption and execution time. This ensures that all objectives
contribute equally to the optimization process and that no objective dominates another due to magnitude.
We normally normalize each objective, fi(x) is typically done by scaling the objective values to a common
range, such as (0, 1). For instance, we determine the normalized execution time T(norm) and normalized
energy consumption Enorm are calculated as follows:

T(norm) =
T(total) − T(min)

T(max) − T(min)
(7)
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E(norm) =
Etotal − E(min)

Emax − E(min)
(8)

where E(norm) and T(norm) represent normalized energy consumption and execution time, respectively,
T(total) and E(total) are the total execution time and energy consumption for a given solution, T(min) and
T(max) are the minimum and maximum execution times observed in the current population. E(min) and
E(max) are the minimum and maximum energy consumption values observed. This normalization scales
both objectives, allowing us to combine them in the fitness function using the weighted sums method or any
other multi-objective optimization technique. We combined the normalized objectives using the weighted
sum technique into one fitness function.

3.5 Fitness Function
The fitness function ensures that the solution reaches a compromise between these conflicting objectives

of minimizing energy consumption and execution time through the assessment of the position of a particle
during optimization. To balance these two factors, the fitness function implements the weighted sum
approach, which merges these two objectives into a single computable result. Normalization needs to be done
so that all the objectives will have an equal contribution to the fitness value since energy consumption and
execution time are measured in different units and can have widely differing scales. The calculation of the
normalized fitness function is as follows:

F = a1 ⋅ E(norm) + a2 ⋅ T(norm) (9)

The balance between energy consumption and execution time strongly depends on the weighting
factors a1 and a2 The latter can be modified over time based on the pursued goals from the system in
that instant. For example, if the system is required to be more energy efficient, more weight should be
attributed to a1, whereas overweight is to be put on a2 if speed of execution is more critical. The fitness
function allows flexibility in the optimization process by dynamically changing priorities according to the
real-time condition. Moreover, in an edge computing environment, there is often a necessity where both these
factors are critical. Hence, equal importance can be given by setting a1 = a2 = 0.5, for energy consumption
and execution time, respectively. However, it can share those weights to adapt to various operational
requirements and render the system very effective for responses against dynamic edge computing conditions.
It means that the approach towards task allocation will be optimized with respect to prevailing conditions
and variation in task volume, resource availability, and system performance requirements for efficient
adaptive task management. Tasks are allocated to edge nodes dynamically, considering resource availability,
processing capacity, and network bandwidth. The algorithm also integrates the Global Optimal Position
Mutation Strategy (GOPMS) to enhance solution diversity and avoid premature convergence, ensuring a
more effective exploration of the solution space. These features enable IPSO to adapt to the dynamic and
heterogeneous nature of edge environments, achieving a balanced optimization of energy consumption and
execution time.

4 Improved Particle Swarm Optimization (IPSO)
Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart, is inspired by the behaviour

of social systems observed in animals [38]. It is a population-based evolutionary algorithm, commonly
referred to as a swarm, where each swarm comprises, multiple particles representing potential solutions. Each
particle retains local knowledge of its best solution and shares information about the global best solution
identified by the entire swarm. In PSO, the search space is divided into D dimensions, and the algorithm
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employs a velocity vector for each particle to navigate the search space. Unlike other evolutionary algorithms,
PSO does not use selection operators, which can result in increased computational time. The movement of
particles within the search space depends on their direction and velocity, guiding them toward potential
solutions. However, a significant drawback of PSO is its tendency to become trapped in local optima [22].
To address this limitation, the Improved Particle Swarm Optimization (IPSO) algorithm has been proposed.

4.1 Enhancements to Standard PSO
The standard PSO is one of the well-known optimization algorithms due to its simplicity and speed

of convergence. However, it faces serious challenges when applied to multi-objective optimization in edge
computing, such as premature convergence to local optima, poor adaptability to dynamic environments, and
difficulty in balancing conflicting objectives such as energy consumption and execution time [39]. Here in
this proposed improved PSO algorithm, several improvements are introduced for enhancement in robustness
and efficiency when applied for optimization concerning multi-parameters. Among such improvements, the
incorporation of GOPMS stands supreme. The rationale behind GOPMS usage would be the issue of the
inability to avoid standard PSOs reaching prematurely to converge divergence as facilitated by this treatment.
GOPMS mutates the global best position iteratively by dimensionality in the solution space [40]. This does
not allow particles to rest in a local optimum, and the particles continuously explore the search space,
hence enhancing the capability of convergence to global solutions in complex multi-objective problems [41].
Dynamic adjustment of the inertia weight is another critical improvement in IPSO. While standard PSO
normally uses a fixed or linearly decreasing inertia weight, in IPSO it is changed dynamically depending
on the development of the iteration. A larger inertia weight during the early stages of optimization allows
for exploration, enabling the swarm to search out a wider solution space. As the iterations of optimization
proceed, the inertia weight is reduced to allow the algorithm to focus on exploitation and refinement toward
the best solutions. This adaptive approach has thus far demonstrated a good balance between exploration
and exploitation in improving the convergence performance of the algorithm. In addressing the conflicting
objectives of energy consumption and execution time, IPSO applies normalization techniques that scale
these objectives to lie within a common range. This prevents one objective from dominating the others
because of its scale or unit differences. It does this by ensuring that both objectives contribute equitably
to the fitness function in achieving a well-balanced trade-off, which is very important in dynamic and
resource-constrained edge computing environments. Another enhancement involves an adaptive tuning of
acceleration coefficients, which govern the influence of personal and global best positions on the movement
of particles. Unlike standard PSO, which implements fixed values for these coefficients, IPSO dynamically
adjusts them throughout the optimization phase. In that case, in the early iteration, a larger value of a
cognitive component induces particles to explore around their optimum, while a larger social component
in the later iterations focuses the particles onto the global best position to enable an accurate convergence,
keeping diversity at the solution space.

Finally, IPSO embeds real-time feedback mechanisms to adapt dynamically to the ever-changing con-
ditions of edge computing environments. These mechanisms monitor task arrival rates, resource availability,
and workload fluctuations, enabling the algorithm to update its task allocation strategies in real time. This
adaptability ensures efficient resource utilization and responsiveness to dynamic workloads, making IPSO
highly suitable for edge computing scenarios.

We consider everyone as a particle flying in the D-dimensional search space, lacking both volume and
weight and moving at a specific velocity. We dynamically update each particle’s velocity based on its personal
experience and the cumulative experience of the swarm. Let M be the population size of the swarm. In a
D-dimensional search space, we can define the position and velocity of the ith particle as follows:
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X i = (x i
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nd and V i = (vi

1 , vi
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nd), respectively.
Let Pbest = (pbest i

1 , pbest i
2, . . . , pbest i

nd ) denotes its personal best position, and Gbest =
(gbest1 , gbest2, . . . , gbestnd) the global best position achieved by the entire swarm is denoted as:

The updated velocities and positions for each particle in the next iteration are calculated using the
following two equations:

v(k)
ind = v(k+1)

ind + c1 ⋅ rand1 ⋅ (pbest i
nd − x(k+1)

ind ) + c2 ⋅ rand2 ⋅ (gbestnd − x(k+1)
ind ) (10)

x(k)
ind = x(k+1)

ind + v(k)
ind (11)

where 1 and 2 are constants referred to as acceleration coefficients, and 1 and 2 are two randomly generated,
equally distributed values from the interval [0, 1].

The PSO approach performs substantially better when the inertia weight (w) varies linearly over
generations, as demonstrated by [42]. This is a result of the algorithm’s standard version’s poor handling of
optimization issues. Mathematical ideas are represented by Eqs. (10) and (11).

v(k)
ind = w ⋅ v(k+1)

ind + c1 ⋅ rand1 ⋅ (pbestind − x(k+1)
ind + c2 ⋅ rand2 ⋅ (gbestnd − x(k+1)

ind ) (12)

where w is the inertia weight that controls the influence of the particle’s previous velocity on its current
velocity.

4.2 Inertia Weight (w)
The inertia weight controls the balance between exploration and exploitation in the PSO algorithm.

Dynamically varying inertia weights enable IPSO to explore a more extensive solution space during early
iterations while refinement is done with the same focus in later iterations. Thus, dynamic inertia ensures that
IPSO avoids convergence to local optima and will identify the most optimal solutions within the defined
boundaries and objective function values.

The inertia weight w is dynamically adjusted according to the following equation:

w = wmax − (
iter

itermax
) ⋅ (wmax −wmin) (13)

where wmax and wmin are the maximum and minimum values of the inertia weight, respectively, iter is the
current iteration number and itermax is the maximum number of iterations. Typically, wmax is set to 0.9, and
wmin is set to 0.4. These values help balance exploration and exploitation during the optimization process.
Compared to the traditional approach, this enhanced algorithm demonstrates significantly improved perfor-
mance due to its ability to dynamically adjust the inertia weight. This technique helps the particles maintain
diversity and avoid premature convergence to local optima.

4.3 Mutation Strategy of Global Optimal Position (GOPMS)
The PSO approach draws all particles to the global optimal position by using it as an attractor during

the evolutionary process. This is where all the particles will eventually converge. Therefore, if particles are
unable to efficiently update the ideal global location and instead become caught in the local optimal zone,
the particle swarm will materialize early. To address this problem, this work employs the GOPMS mutation
approach, which stands for global optimal position. The GOPMS operator iteratively alters the value of each
dimension by generating random numbers with a uniform distribution, while the other dimensions remain
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fixed. If the suitability of the new position is higher than that of the previous one, it drops the old one and
keeps the new one [43]. The GOPMS algorithm is presented in Algorithm 1.

Algorithm 1: GOPMS
Input: Current global best solution (Gbest), search space boundaries, and number of mutation iterations
Output: Updated global best solution (Gbest),
1 Begin
2 For each dimension d in Gbest

For each mutation iterk
Mutate the dth dimension of Gbest

MutateGbest = Random value within the search space of dimension d
If the fitness of mutateGbest is better than the fitness Gbest:

Gbest =MutateGbest
End for

3 End For
4 Return updated Gbest

4.4 Acceleration Coefficients
The algorithm IPSO introduces a new parameter automation method to enhance its capability for

optimization. A new mutation strategy for the global optimal position combines with the adaptive application
of acceleration coefficients, denoted as (c1 and c2). Fig. 2 emphasizes how important the roles these
coefficients have in particle movement dynamics are and how they affect the process of optimization. The
trade-off between exploration-searching new solutions and the exploitation-fine-tuning of the best-found
solutions underlies any successful task allocation scheme in edge computing. Acceleration coefficients define
the step to take by the particle based on the personal best experience (best individual experience) and social
best solution. The role of these coefficients is as follows:

Figure 2: Coefficient of acceleration
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Cognitive Coefficient c1 Exploration Component. The cognitive coefficient c1 determines the potential
of a particle to explore independently by using its best personal solution. A higher value of c1 in the early
iterations promotes exploration, enabling the particles to investigate a wider range of possible solutions and
escape local optima. However, excessive exploration slows down convergence, leading to unstable search
behavior and suboptimal performance.

Social Coefficient c2 Exploitation Component. The social coefficient c2 determines the strength of a
particle’s attraction to the best solution found so far by the swarm. The higher c2 in later iterations enhances
convergence, directing particles toward the most optimal solution. If c2 is, the stronger the convergence, and
the more the particles will be guided toward the optimal solution, which may be achieved in later iterations.
If set too high too early, the algorithm might converge prematurely, hence losing diversity for an effective
global search.

Dynamic Adjustment of (c1 and c2) in IPSO. Unlike standard PSO, where c1 and c2 remain static, IPSO
dynamically adjusts these coefficients to ensure an optimal balance between exploration and exploitation:

• Early search phase: a higher c1 encourages diverse exploration, preventing premature convergence.
• Later search phase: a higher c2 shift the focus toward convergence, refining the best solutions.

This adaptive mechanism prevents premature convergence and enhances the ability of the algorithm to
optimize execution time and energy consumption in edge computing task allocation. By dynamically tuning
the acceleration coefficients, IPSO achieves improved efficiency in task distribution, making it highly suitable
for dynamic and resource-constrained environments.

Fig. 2: influence of the cognitive coefficient c1 and social coefficient c2 on particle movement strategy
in IPSO. The best dependency of the cognitive coefficient c1 introduces independent search space, whereas
the social coefficient c2 allows for convergence to the optimum global solution. It dynamically adjusts these
coefficients: in early iterations, higher c1 increases exploration to avoid early convergence, while higher c2 in
later iterations favor convergence toward the optimal solutions. Dynamic adaptation in this manner enables
IPSO to balance exploration and exploitation effectively for better performance in task allocation within edge
computing environments. The IPSO algorithm is presented in Algorithm 2.

Algorithm 2: IPSO algorithms
Input: Task set T = {ti , t2, . . . , tn}, a set of edge nodes R = {r1 , r2, . . . , rm}
Output: Optimized task-to-node mapping, (xi j). (Etotal) and (Ttotal)
1. Initialize particle positions (Xi) and velocities (Vi)
2. Set inertia weight (w), acceleration coefficients (c1 , c2), and normalization parameters.
3. Define max iterations (itermax), set iteration counter to 0.
4. For each particle i, Normalize energy (Enorm) and execution time (Tnorm)
5. Calculate fitness: F = a1 ⋅ E(norm) + a2 ⋅ T(norm)
6. Update Personal Best (Pbest):
7. If current fitness Fi, is better than Pbesti, update Pbesti.
8. Set Gbest as the position of the particle with the best fitness.
9. Apply GOPMS, mutate dimensions Gbest of and update if the mutation improves fitness
10. Update v(k)

ind = w ⋅ v(k+1)
ind + c1 ⋅ rand1 ⋅ (pbestind − x(k+1)

ind + c2 ⋅ rand2 ⋅ (gbestnd − x(k+1)
ind )

11. Update x(k)
ind = x(k+1)

ind + v(k)
ind

12. Ensure each task ti is assigned to exactly one edge node by Eq. (2)
(Continued)
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Algorithm 2 (continued)
13. Ensure the total computational demand of tasks assigned to each edge node does not exceed

its capacity Pj capacity constraint by Eq. (3)
14. Adjust inertia weight (w) dynamically
15. Terminate if max iterations or other criteria are met; otherwise, repeat Steps 4–14.

4.5 Complexity Analysis of the IPSO Algorithm
The computational complexity of the proposed Improved Particle Swarm Optimization (IPSO) algo-

rithm is determined by analyzing the individual steps and components of the algorithm. The overall
complexity depends on factors such as the number of particles (np), the number of tasks (nt), the number
of edge nodes (nr), and the maximum number of iterations (itermax). The algorithm ensures that each task
is assigned to exactly one edge node, and the total computational demand of tasks assigned to a node does
not exceed its capacity. The overall Complexity is: O(itermax × np × nt × nr).

5 Experimental Setup
In this part, we test our proposed IPSO algorithm against the ICBA, an earlier task allocation technique,

and the AEDPSO methods from [44,45]. In the edge computing environment, our evaluation focuses on
two key metrics: task execution time and energy consumption. Mobile devices generate diverse applications,
each consisting of multiple functions that demand efficient management of edge resources.

The setup involves four edge nodes, each connected to multiple mobile devices. The simulation considers
four task sets with total workloads of 40, 80, 120, and 160, respectively. To introduce unpredictability, task
lengths are generated randomly. In our experiments, Task Size represents the total number of tasks in a
workload batch. Each task has a computational requirement measured in millions of CPU cycles (MC),
which determines execution time and energy consumption. The varying task sizes (40, 80, 120, 160) allow us
to analyze the performance of the proposed algorithm under different workload conditions. The hardware
configuration includes a high-performance system equipped with an Intel Core i7 processor (3.8 GHz, 8
cores), 16 GB of RAM, and an NVIDIA GTX 1080 GPU, enabling robust parallel processing. MEC servers
and mobile devices are emulated using virtual machines designed to simulate typical mobile processor
capabilities. The software environment is based on Ubuntu 20.04 LTS, utilizing Python 3.8 along with
essential libraries for optimization and performance analysis. The algorithm is tested using both synthetic
and real-world datasets. Synthetic datasets generate task offloading requests with varying parameters such
as task size and computational requirements, while real-world datasets provide realistic task flow patterns.
Evaluation scenarios are designed to reflect diverse operational conditions, including variations in network
bandwidth, latency, and MEC server loads. Table 1 outlines the key parameters used in our simulations,
providing an overview of the experimental setup.

Table 1: Parameters and their description

Parameters Descriptions
Xi Position of particle i in the search space
Vi Velocity of particle i
w Inertia weight, controls exploration and exploitation

c1 , c2 Acceleration coefficients for personal and global best influences

(Continued)
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Table 1 (continued)

Parameters Descriptions
iter Current iteration number

itermx Maximum number of iterations
Enorm Normalized energy consumption
Enorm Normalized execution time
a1 , a2 Weighting coefficients for energy and time objectives

F Fitness value of a particle
Pbesti Best position found by particle i so far
Gbesti Best position found by the entire swarm

rand1 , rand2 Random numbers uniformly distributed in [0, 1]
ti Task i
r j Edge node j
Pj Processing capacity of edge node j

v(k)
ind velocity of the k-th particle for dimension ind

x(k)
ind Position of the k-th particle for dimension ind

6 Results Discussion

6.1 Performance of IPSO with an Increased Number of Tasks
The proposed Improved Particle Swarm Optimization algorithm is analyzed in terms of performance

with varying task sizes to check scalability and efficiency in optimizing energy consumption and execution
time. The trends that are evident show that the proposed IPSO is robust and scalable to handle the increase
in workload for edge computing.

6.2 Trends in Energy Consumption
While increasing the size of tasks increases the overall energy consumption in the system due to higher

computational demand, IPSO shows a clear ability to dampen this increase by effectively distributing tasks
among edge nodes with the lowest energy consumption rates. For example, for smaller task sizes-say, 40 tasks
energy savings of IPSO over ICBA and AEDPSO are moderate but significant. Thus, with larger task sizes
increasing, such as 160 tasks, energy savings become extensive: in particular, the energy saving achieved by
IPSO amounts to 31.58% compared to the baseline methods. It shows the scalability of IPSO when optimizing
energy consumption even for workloads that become increasingly resource-intensive.

6.3 Trends in Execution Time
The execution time of tasks is another critical metric that scales with the number of tasks in the system.

IPSO effectively minimizes execution time through its dynamic optimization mechanisms, ensuring that
tasks are allocated to the most suitable edge nodes based on their computational capacity and proximity. At
smaller task sizes, IPSO already outperforms ICBA and AEDPSO, reducing execution time by approximately
17.1% for 160 tasks. This trend demonstrates IPSO’s ability to handle larger workloads efficiently while
maintaining low latency, which is critical for delay-sensitive applications in edge computing.
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6.4 Interpretation of Results
The observed trends in energy consumption and execution time indicate that IPSO’s enhancements,

including dynamic inertia weight adjustment and the Global Optimal Position Mutation Strategy GOPMS,
play a pivotal role in maintaining performance as task sizes increase. These features enable IPSO to achieve a
balanced trade-off between energy efficiency and execution speed, addressing the core challenges of multi-
objective optimization in edge computing.

6.5 Impact of Task Size Variability on Energy Consumption and Execution Time
Large variability in task size significantly influences energy consumption and execution time since a

bigger task requires more computational resources and time for processing. In such cases, the proposed
IPSO algorithm copes with this variability through dynamic mapping of tasks to edge nodes that possess
adequate computation and bandwidth. For example, larger tasks can be mapped onto nodes that possess
high processing capability, reducing execution delay and thus preventing inefficient energy utilization arising
from resource overloads. Normalizing energy consumption and execution time inside the fitness function
balances both objectives so that IPSO can keep system performance according to the changes in the task
size. As discussed in experimental results, IPSO adapts well in contrast to the baseline algorithms, ICBA
and AEDPSO, which performed well in optimizing both energy consumption and execution time on
diverse workloads.

Fig. 3 shows the energy Consumption Results for the energy consumption of the different number of
tasks by the three algorithms shown in Table 2: ICBA, AEDPSO, and IPSO. The proposed IPSO algorithm
exhibits the best performance in terms of energy consumption. Energy consumption decreases significantly
with the increase of task size. For instance, when the task is 160, the proposed IPSO consumes only 5.2 units
of energy consumption, whereas ICBA and AEDPSO consume 7.6 and 5.5 units, respectively. It achieves
this reduction in energy consumption through the optimized task allocation strategy of IPSO, which tries
to distribute the tasks among edge nodes with maximum efficiency and minimum superfluous energy
consumption. Normalization and dynamic adaptation in the approach also make IPSO capable of handling
variable task loads without compromising energy efficiency. Therefore, it is a highly suitable solution for an
energy-constrained environment like mobile edge computing. By contrast, IPSO is scalable and practical
for actual edge computing applications since it can be adapted to achieve energy efficiency for tasks of
various sizes.

Figure 3: Compare the suggested IPOS algorithm’s energy consumption
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Table 2: Energy consumption results for different numbers of tasks

Algorithms Number of tasks

40 80 120 160
ICBA 3.97 6.21 6.83 7.6

AEDPSO 3.26 4.58 4.89 5.5
IPSO 2.13 2.93 3.61 5.2

Fig. 4 presents the execution time it is obvious from the execution time results shown in Table 3 that
in terms of reducing the execution time, IPSO always outperforms ICBA and AEDPSO. For example, at a
task of 160, the execution time by IPSO was 34.98 s, while those by AEDPSO and ICBA were 40.29 and
42.2 s, respectively. This can be explained by the improved balance between exploration and exploitation in
IPSO. Adopting GOPMS and adaptive inertia weight enables IPSO to make an appropriate task allocation to
the most suitable edge nodes, optimizing resource utilization and hence minimizing higher execution time.
This is particularly critical in edge computing, whereby applications in autonomous systems and smart cities
demand low latency times and fast task execution. The fact that IPSO has been able to perform a reduction
of execution time for all task sizes only strengthens this idea of how effective it is in managing the varied
workload demand from modern edge computing systems.

Figure 4: Compares the suggested IPOS algorithm’s execution time

Table 3: Execution time results for different numbers of tasks

Algorithms Number of task

40 80 120 160
ICBA 22.31 29.9 33.4 42.2

AEDPSO 20.91 28.81 32.94 40.29
IPSO 17.11 25.01 27.58 34.98

Fig. 5 evaluates the performance of the proposed IPSO allocation algorithm compared to traditional
methods for a fixed set of 40 tasks executed on varying numbers of virtual machines (VMs). The number
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of VMs was progressively increased from 10 to 40 in increments of 4, and the corresponding execution
times were recorded. The results, depicted in Fig. 5, show a significant reduction in execution time as the
number of VMs increased, regardless of the algorithm employed. This improvement is due to the additional
VM resources in the edge environment enabling more efficient parallel processing, thereby accelerating task
completion. The findings highlight that the proposed IPSO algorithm achieved the shortest execution times.
For example, with 40 VMs, the IPSO algorithm completed all 40 tasks in 35.0 s, whereas the EA algorithm
required 45.5 s, reflecting a time increase of more than 10 s. Other traditional algorithms took at least 10%
longer to complete the tasks compared to IPSO. This superior performance is attributed to the iterative
optimization of task allocation using the GOPMS method, which is seamlessly integrated into the IPSO
approach. This integration not only minimized completion times but also enhanced energy efficiency.

Figure 5: Number of VMs against execution time

Fig. 6 presents the analysis of task groups ranging from 40 to 160 tasks. The results highlight that
the IPSO algorithm delivers substantial energy savings compared to the EA-DFPSO algorithm, achieving
reductions of 22.5% for 40 tasks, 5.2% for 80 tasks, 15.2% for 120 tasks, and 9.1% for 160 tasks.

Figure 6: Energy saving for IPSO with EA-DFPSO

Fig. 7 illustrates the performance comparison between the proposed IPSO algorithm and the Improved
Chaotic Bat Algorithm (ICBA) when allocating four sets of tasks, ranging from 40 to 160 tasks. The
IPSO algorithm demonstrated significantly better energy efficiency compared to ICBA, achieving energy



3008 Comput Mater Contin. 2025;84(2)

conservation rates of 18.20% for 40 tasks, 17.20% for 80 tasks, 16.90% for 120 tasks, and 17.50% for 160 tasks.
While the ICBA provides a relatively balanced task allocation by creating nearly equal execution slots for all
tasks, this characteristic can lead to delays in completing longer-running tasks, highlighting a limitation in
its allocation strategy.

Figure 7: Energy saving for IPSO with ICBA

6.6 Overall
The results clearly show that IPSO outperforms others in balancing energy consumption and execution

time, two important factors involved in edge computing. During this process, IPSO utilizes a multi-objective
optimization framework where both objectives bear equal weights to ensure that energy efficiency does
not suffer at the cost of task execution time and vice versa. This makes it a strong solution when both
objectives bear equal importance, such as edge devices-based applications where energy consumption is
highly relevant but at the same time, tasks are to be performed with minimal time consumption. Additionally,
IPSO maintains a stable balance between energy consumption and execution time as task sizes increase. This
is achieved through its adaptive parameter adjustment, which enhances resource utilization and prevents the
overloading of specific edge nodes. Additionally, the Global Optimal Position Mutation Strategy GOPMS
ensures diversity in the solution space, allowing IPSO to find near-optimal solutions under varying task loads.

7 Conclusion
The paper proposes an Improved Particle Swarm Optimization algorithm (IPSO) that can solve two very

important challenges of task allocation in an edge computing environment: low resources, unpredictable
workloads, and energy efficiency. The proposed IPSO algorithm effectively balances the two conflicting
objectives: minimization of energy consumption and reduction of the execution time of the tasks critical
in ensuring efficiency and reliability within edge computing systems. By incorporating the salient features
of global optimum position mutation and dynamic inertia weight adaptation, the proposed method out-
performed the other conventional algorithms, AEDPSO and ICBA. Experimental results disclose that for
maximum task size, the proposed method IPSO reduced energy consumption by 31.58% and task execution
time by 17.1%, confirming its capability to handle resource-intensive applications in edge computing. These
results underline the scalability and performance of IPSO in handling the dynamic nature at the edge due to
fluctuating resource availability and variable workload demand.
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Other objectives than energy consumption and execution time will be considered in future work.
Including task prioritization, latency constraints, and data privacy requirements, for example, into this
algorithm would make it more versatile for an edge computing scenario such as real-time processing in
healthcare or autonomous systems.
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