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ABSTRACT: Diabetic Retinopathy (DR) is a critical disorder that affects the retina due to the constant rise in diabetics
and remains the major cause of blindness across the world. Early detection and timely treatment are essential to
mitigate the effects of DR, such as retinal damage and vision impairment. Several conventional approaches have
been proposed to detect DR early and accurately, but they are limited by data imbalance, interpretability, overfitting,
convergence time, and other issues. To address these drawbacks and improve DR detection accurately, a distributed
Explainable Convolutional Neural network-enabled Light Gradient Boosting Machine (DE-ExLNN) is proposed in
this research. The model combines an explainable Convolutional Neural Network (CNN) and Light Gradient Boosting
Machine (LightGBM), achieving highly accurate outcomes in DR detection. LightGBM serves as the detection model,
and the inclusion of an explainable CNN addresses issues that conventional CNN classifiers could not resolve. A
custom dataset was created for this research, containing both fundus and OCTA images collected from a real-
time environment, providing more accurate results compared to standard conventional DR datasets. The custom
dataset demonstrates notable accuracy, sensitivity, specificity, and Matthews Correlation Coefficient (MCC) scores,
underscoring the effectiveness of this approach. Evaluations against other standard datasets achieved an accuracy of
93.94%, sensitivity of 93.90%, specificity of 93.99%, and MCC of 93.88% for fundus images. For OCTA images, the
results obtained an accuracy of 95.30%, sensitivity of 95.50%, specificity of 95.09%, and MCC of 95%. Results prove that
the combination of explainable CNN and LightGBM outperforms other methods. The inclusion of distributed learning
enhances the model’s efficiency by reducing time consumption and complexity while facilitating feature extraction.

KEYWORDS: Diabetic retinopathy; explainable convolutional neural network; light gradient boosting machine;
fundus image; custom dataset

1 Introduction
DR majorly appears in diabetic patients and is noted as a retinal vascular disorder marked by abnormal

growth in the blood vessels of the retina. Several researchers report that DR attains symptoms such as
hemorrhages, exudates, and microaneurysms [1]. Thin and weak blood veins cause hemorrhages, while the
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loss of proteins in tiny retinal veins causes exudates, appearing as pale-yellow patches in the eyes [2]. A sig-
nificant portion of diabetic patients worldwide are unaware of DR and its severity, leading to blindness, heart
attacks, kidney failure, and other complications [3,4]. There are two types of DR: non-proliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). Both types cause swelling, leakage in the
blood vessels, and vision impairment in mild, moderate, and severe forms of DR, respectively [2]. Early
detection is crucial to mitigate the long-term effects of DR. Manual detection of DR requires well-trained
experts to analyze the fundus images, which is a time-consuming process even when done digitally [5].
Given the increasing prevalence of diabetes worldwide, improper screening of DR can result in irreversible
damage [2].

Manual detection by ophthalmologists often leads to treatments involving eye lenses and surgeries,
which can be ineffective if DR is detected late. To address the limitations of manual detection [6], Computer-
aided diagnosis (CAD) has emerged as a promising solution [3]. Additionally, Artificial Intelligence (AI)
offers precise DR detection capabilities. Machine learning (ML) and deep learning (DL) techniques are
particularly effective in recording visual defects of the retina [7,8]. Specifically, Convolutional Neural
Networks (CNNs) are widely used to process images and time series data related to DR [9,10]. More
specifically, DL architectures offer outstanding performance in practical applications and address numerous
issues in Natural Language Processing (NLP) and Computer Vision (CV) [11]. For instance, in the CNN
model [12], one study accurately identified the locations of wound lesions, while another study used a DL
model to determine the [13] severity of these lesions [4]. Furthermore, Recurrent Neural Networks (RNNs)
have been utilized in DR detection research to extract significant features [14]. Numerous computer-aided
systems integrating advanced algorithms and telemedicine technologies are developed for early and highly
accurate performance in DR detection [8,15].

Though deep learning (DL) models have achieved significant outcomes, certain drawbacks persist.
Imbalanced dataset issues have affected accurate and reliable DR detection [16]. In real-world applications,
using imbalanced datasets to detect diseases and predict quality has led to accuracy variation in the majority
class and poor performance in the minority class [17]. This imbalance results in irregular classification rates
and bias towards the minority class. Additionally, models have faced challenges with smaller datasets, leading
to underfitting issues, while larger datasets have caused overfitting issues [18]. One study’s feature fusion
mechanism resulted in DR’s misclassification [4], leading to poor performance. Another model ignored
segmentation and feature extraction mechanisms, negatively impacting performance and outcomes [11]. This
highlights the need for autoencoders to achieve more significant results [2]. Furthermore, issues with data
imbalance and minority class classification remain problematic [17].

To overcome the above-mentioned limitations, this research proposes a distributed Explainable Con-
volutional Neural network-enabled Light Gradient Boosting Machine (DE-ExLNN) for accurately detecting
DR. The major contributions of this paper are as follows: First, a Distributed Explainable Deep Convolutional
Neural Network-enabled Light Gradient Boosting Machine (DE-ExLNN) model is utilized to detect diabetic
retinopathy (DR) accurately. Second, ResNet 101 is employed to extract features from OCTA images and
capture comprehensive patterns, while statistical features extract information from fundus images. The
DE-ExLNN model integrates an explainable CNN and a distributed learning mechanism into LightGBM
to identify DR. Third, effectively, LightGBM serves as the detection model, and including an explainable
CNN addresses issues that conventional CNN classifiers could not resolve. The model overcomes temporal
complexity problems and initiates parallel computing with the support of a distributed learning mechanism.
The explainable CNN handles convergence problems, resulting in effective detection.

The article’s description is organized as follows: Section 2 describes the conventional methods, Section 3
imposes the proposed methodology, Section 4 analyses the pattern of the data, Section 5 presents the results
and discussion, and Section 6 concludes the article.
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2 Literature Review
Conventional methods in DR detection offer several advantages but face challenges that prevent them

from becoming the standard approach. These models are described in this section.
Mustafa et al. [2] introduced a multi-stream Deep Neural Network combining ResNet-50 and

DenseNet-121 for extracting features in conjunction with an ensemble ML classifier to grade and classify
DR. Principal Component Analysis (PCA) was incorporated to handle high-dimensional feature vectors,
resulting in high outcomes in terms of reduced categories. However, the model worked with a minimum
amount of data, suggesting potential for improvement to achieve more accurate outcomes. However, the
model neglected segmentation techniques, which could potentially enhance the efficacy of the research.

Md. Nur-A-Alam et al. [4] presented a faster Region-based CNN (faster-RCNN) to achieve highly
accurate detection. Adaptive median filtering and feature extraction processes provided better noise removal
and more precise detection. However, the dataset used in their research was imbalanced, indicating the
potential need for additional mechanisms, such as GANs (Generative Adversarial Networks), to improve
performance. Moreover, the feature fusion mechanism led to misclassifications, suggesting that fine-tuning
could provide more accurate results with diverse images.

Farg et al. [19] incorporated DenseNet and a channel attention mechanism to attain highly accurate
outcomes. Despite encountering issues related to data imbalance, the model demonstrated low training time
and high inference speed, exploring the same batch size. The performance of various CBAMs and several
imbalanced techniques were evaluated to achieve superior outcomes, although challenges persisted regarding
data imbalance and minor classification.

Nazih et al. [3] utilized the vision transformer (ViT) to detect DR with fundus image inputs. Their
model effectively captured long-term dependencies and incorporated a transfer learning mechanism to train
a large-scale model even with small datasets. Data balancing mechanisms and hyperparameter optimizations
were included to achieve higher performance and more stable models. However, the model did not include
lesion segmentation, and the training was not tested against adversarial attacks, resulting in some uncertainty.
Future improvements could include lightweight models to achieve more efficient outcomes.

Naz et al. [17] suggested using a deep convolutional generative adversarial network (DCGAN) that
attained high accuracy outcomes. This model was applied to detection in screening programs, telemedicine,
remote monitoring, healthcare resource optimization, and more. Future research could enhance accuracy by
enlarging datasets to reduce overfitting issues and optimizing parameters. Additionally, incorporating data
augmentation mechanisms could further improve results.

Jagadesh et al. [18] introduced an improved contoured convolutional transformer (IC2T) and a Rock
Hyrax Swarm-based coordination attention mechanism for segmentation and classification. These models
achieved a high accuracy rate in detecting DR, but they only worked with fundus images and could be
expanded to include both fundus and OCTA images.

Ali et al. [20] introduced the IR-CNN model in their research on DR detection. Resnet50 and
Inceptionv3 served as the feature extraction models, followed by the classification with CNN, achieving
high-efficiency outcomes and classifying various levels of DR severity. The model required different data
augmentation techniques to address underfitting issues and expand the dataset.

Yang et al. [21] implemented the Inception-V4 architecture in conjunction with the dynamic Snow Leop-
ard Optimization (Inception-V4/DSLO) model to improve the efficiency of DR detection. Specifically, the
DSLO algorithm optimizes the feature selection process, thus resulting in enhanced diagnostic performance.
Further, the Inception-V4/DSLO model effectively analyzed digital images and assisted in identifying the
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early signs of DR, including optic nerve edema or leaking vessels. Further, the innovative model resulted in
high robustness in early DR detection, facilitating timely interventions and enhancing patient outcomes.

Melin et al. [22] developed the Particle Swarm Optimization (PSO) enabled CNN model for classifying
DR images. In the PSO-CNN model, the PSO algorithm optimally tuned the hyperparameters of the CNN
and assisted in reducing the classification error. The key parameters, including the number of convolutional
layers, filter size, number of neurons, batch size, and number of epochs, are optimized utilizing the PSO
algorithm, resulting in improved performance.

AlBalawi et al. [23] developed an IoT-Opthom-CAD model incorporating the Swin transformers and
the (LightGBM) method for classifying the retinal fundus images. More specifically, the Swin transformers
and LightGBM models assisted in finding diverse eye diseases from colored fundus images after using data
augmentation techniques. Further, the dynamic attention assisted in focusing on different parts of the image,
and the application Grad-CAM explained the decision-making process, improving the model’s transparency
and interpretability. However, the extensive data augmentation resulted in overfitting issues that limited
the performance of the model. Table 1 depicts the comparative study of the literature works analyzed in
the research.

Table 1: Comparative study of the literature works

S. No. Reference Algorithm Dataset Merits Limitation Achievements
1 Mustafa

et al. [2]
Ensemble
ML classi-

fication

EyePACS,
APTOS,

Messidor-2,
and DDR
datasets

Eliminated the
issue of high
dimensional-

ity feature
vector

utilizing the
PCA

algorithm.

Required
expanding the

datasets to
eliminate the
reduction in
accuracy and

resolve
unbalanced

data problem.

Achieved the
accuracy score

of 89.20%,
89%, and

76.81% over
EyePACS,

APTOS, and
DDR datasets,
respectively.

2 Md.
Nur-A-Alam

et al. [4]

Faster
RCNN

DiaretDB1,
Kaggle, and
DDR dataset

Effectively
reduced the

noise present
in images,

resulting in
better

performance.

Further
fine-tuning of
the model is
required to
shorten the

long training
time resulted.

Achieved
accuracy of
upto 95%.

3 Farg
et al. [19]

DenseNet
and Con-
volution

block
attention

APTOS
dataset

The model
eliminated the

burden of
space

complexity
and time

complexity.

Requiring the
dataset size to
achieve better
performance.

Achieved 82%
accuracy for

severity
grading.

(Continued)
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Table 1 (continued)

S. No. Reference Algorithm Dataset Merits Limitation Achievements
4 Nazih

et al. [3]
ViTs FGADR

dataset
The ViT

model offered
accurate and

timely
decisions.

The ViT
model did not
perform any

Lesion
segmentation
was found to

model
complexity.

The model
attained an F1
score of 0.825

and an
accuracy of

0.825.

5 Naz
et al. [17]

DCGAN DDR and
EyePACS

The model
created views
that balanced
the minority

the class issue
in the

imbalanced
data.

It required
augmenting

the dataset to
eliminate

overfitting and
requires

tuning the
parameters.

Achieved an
accuracy of
96.1% and

sensitivity of
92.3% for the
DDR dataset.

6 Jagadesh
et al. [18]

IC2T Messidor-2
and

DIARETDB0
dataset

Reduced the
computational

complexity.

The model
required

examining
different

hyperparame-
ters to

improve the
performance.

Attained an
average

accuracy of
96%.

7 Ali et al. [20] IR-CNN OCT fundus
images
dataset

The system
only requires

the fundus
image of the

patient as
input.

However, the
model needs
diverse data

augmentation
techniques to
enhance its

performance.

Required
more training

time.

8 Yang
et al. [21]

Inception-
V4/DSLO

Diabetic
Retinopathy

2015 Data
Colored
Resized
dataset

Facilitates
timely

interventions.

More
precisely, it

identified the
early signs of

DR.

Need a large
dataset for
achieving

better
performance.

9 Melin
et al. [22]

PSO-
CNN

APTOS 2019 Effectively
reduced the
classification

error.

Required
more training

time.

Achieved
95.3% of
accuracy.

(Continued)
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Table 1 (continued)

S. No. Reference Algorithm Dataset Merits Limitation Achievements
10 Balawiet al. [23] IoT-

Opthom-
CAD

MuReD,
BRSET, and
OIA-ODIR

Enhanced the
model’s

transparency
and inter-
pretability.

Encountered
with

overfitting
issues that

degraded the
performance.

Provided the
AUC (Area

Under Curve)
score of 0.95

and f1-score of
95.7

From the literature mentioned above, several challenges were encountered:
Data imbalance: The issue of data imbalance required clarification regarding appropriate methods to

achieve enhanced outcomes [2].
Data augmentation: The model necessitated data augmentation techniques to address issues related to

overfitting and convergence [17].
Limited input images: Many research efforts focused solely on fundus input images, indicating the

potential for expansion to include OCTA images to achieve more appropriate outcomes [18].
Pattern extraction and segmentation: Challenges persisted in effectively extracting patterns, providing

detailed structural depictions, and incorporating segmentation techniques [8].
Hence, as mentioned above, our paper addresses the challenges identified in the literature by introducing

a distributed Explainable Convolutional Neural Network-enabled Light Gradient Boosting Machine (DE-
ExLNN) model. This approach effectively mitigates data imbalance through a custom dataset that includes
both fundus and OCTA images, enhancing the robustness of the model. Additionally, by integrating
explainable CNN and LightGBM, our model improves interpretability and reduces overfitting and con-
vergence issues, which were prevalent in previous methods. The inclusion of distributed learning further
optimizes efficiency, addressing the identified limitations and significantly improving the accuracy of
Diabetic Retinopathy detection.

3 Data and Methodology
In this section, the data and the steps involved in the research of DR detection are explained as follows.

3.1 Detection of DR with Distributed Explainable Deep LightGBM-CNN
The main intention is to develop several ML and DL techniques for DR detection using both Secondary

and Primary datasets. The research compares both modalities, considering primary and secondary datasets,
to demonstrate the efficiency of the newly created custom dataset. Fundus images utilized in the research are
sourced from the custom fundus dataset, while OCTA images are sourced from the custom OCTA datasets.
The study primarily focuses on comparing primary and secondary datasets. Feature extraction is applied to
fundus images, extracting patterns using statistical features such as Mean, Median, and Standard Deviation.
Additionally, ResNet-101 is employed to extract significant features from OCTA images. These features are
then distributed into the Explainable LightGBM-CNN model for accurate DR detection. Test data from
various datasets are fed into the research model and compared with outcomes from the custom dataset to
demonstrate the latter’s efficiency in DR detection. The workflow of the research in DR detection is illustrated
in Fig. 1.
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Figure 1: Methodology of DR detection using DE-ExLNN
3.1.1 Input Image

The input fundus images for the research are obtained from the custom fundus dataset, whereas the
OCTA images are obtained from the custom OCTA datasets. The images from the FUNDUS dataset are
represented as,

A = {A1 , A2, ..., Ai , ..., AM} , (1)

where, Ai , indicates the input fundus image with the pixel intensities of (k, l) the dataset A, which contains
the total images AM . The OCTA input is declared as,

B = {B1 , B2, ..., B j , ..., BN} , (2)

where, B j, indicates the input OCTA image with the pixel intensities’ of (x,y) of the dataset B, which contains
the total images of BN .

3.1.2 Preprocessing of Input Image
Preprocessing of both fundus and OCTA images involves the use of a bilateral filter to remove noise and

achieve accurate detection of DR. Bilateral filtering functions as a non-linear, non-iterative, and local means
of filtering mechanism, computing both the geometric closeness and color similarities of image pixels [24].
In addition, bilateral filtering is the advancement of the Gaussian filter, which overcomes the noise reduction



2652 Comput Mater Contin. 2025;84(2)

issues at the edges having no smooth spatial variations. The estimated bilateral filtering of the assumed pixel
r is expressed as,

d f i l =
1
a ∑p∈Z

gc (∥r − p∥) gn (∣d (r) − d (p)∣) d (p) (3)

where, d f i l , is represented as the bilateral filtering outcome, a, is the normalization constant, which is
estimated as,

a = ∑
p∈Z

g (∥r − p∥) g (∣d (r) − d (p)∣) (4)

where, ∥r − p∥, is the Euclidean distance between r, and p and z show the spatial neighborhood of. The
geometric closeness from Eq. (3) is formulated as,

gc (∥r − p∥) = e
−

r−p2

2σ2
c (5)

Further, the color similarity function is evaluated as,

gn (∣d (r) − d (p)∣) = e
−
∣d(r)−d(p)∣2

2σ2
n (6)

where, σc , and σn , are the parameters that control the behavior of the bilateral filters. Further, the outcome of
bilateral filtering in fundus image input d f i l (A) is resized to feed into the augmentation process. Similarly,
d f i l (B), the outcome of the OCTA input image is cropped into four similar images before the resizing
process, and all the cropped images are resized for further processing.

3.1.3 Preprocessed Image Augmentation
The process of enlarging the dataset provided to apply several transformations to input fundus and

OCTA images is called data augmentation. This technique is commonly utilized in deep learning mechanisms
to address challenges arising from limited data. Specifically, in diabetic retinopathy (DR) detection, data
augmentation techniques play a crucial role in enhancing the model’s performance. As such, several data
augmentation techniques are incorporated, including:

a) Adjust Brightness: To address the most significant changes in the input image, the fundus and OCTA
images’ brightness are modified in the data augmentation process.

b) Translation: The process of identifying the objects irrespective of their locations in the image is known
as translation, where the images are shifted in all directions to mitigate the effect of positional bias [25].

c) Gaussian Blur: One of the most unique methods to minimize the noise occurrences in the image is
termed Gaussian Blur, which smoothens the image by figuring out the imperfections and irregularities
that occur in the image [26]. In addition, the Gaussian Blur is not completely dependent on the specific
noise, which remains the major advantage of utilizing it as one of the data augmentation mechanisms.
The Blur function with the Gaussian filter is initiated with the included variance value that finalizes the
degree of blurring.

d) Flip Image: The image’s flipping process can be performed horizontally and vertically, where horizontal
flipping is performed with a 90-degree rotation. However, the vertical flip is a bit tedious and thus
requires 180-degree rotation followed by the horizontal flip integration [27].
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e) Add Noise: The method that changes the original image’s pixel value through noise integration is
called noise addition [28]. In this process, artificial noise is added to the input images to show the
imperfections that occurred in the real-time scenario.

f) Contrast Adjustments: To show the differences in the lighting conditions of the observed data, image
contrast is modified in the data augmentation process.

g) Rotate: The images are rotated to achieve different orientations at certain angles, which enhances the
augmentation safety level and establishes the degree of rotation [29].

h) In this research, each data augmentation method generates seven other outputs with a single input
image. The outcome obtained after the data augmentation process in the fundus images is denoted
as A∗, which contains F, number of images that is seven times larger than M, and the OCTA images
are denoted as B∗, which contains E, number of images that is represented as, N × 4 × 7.

4 Pattern Extraction in Input Images
The patterns of the input images are extracted with Statistical features and ResNet 101 with the respective

input fundus and OCTA images. The extraction of the features is as follows.

4.1 Pattern Extraction of Fundus Image
The fundus image from the dataset undergoes pattern extraction using the statistical feature extraction

method. Statistical features utilized for pattern extraction include Mean, Standard Deviation, and Median.
Instead of extracting feature vectors, patterns are collected. The input fundus image is treated as the image
of the pattern to obtain these patterns, as illustrated in Fig. 2.

Figure 2: 3 × 3 grid structure of the augmented fundus image

Through the obtained grid image formation, the 3 × 3 neighborhood pixels [30] are evaluated to
identify the mean, median, and standard deviation. The estimation of the average of the pixel values in 3 × 3
neighborhood pixels is named the image mean. The pattern obtained through the image mean is denoted as,
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m = 1
F

F
∑
s=1

A∗s (7)

where, A∗s , is the input taken from the augmented fundus images [31]. The Median is the measure that
represents the center value of the inputs when arranged either in ascending or descending order. The median
value of the pixels arranged is represented as, f. The standard deviation of the augmented image input is
measured as the variation of the random variable from the expected mean, which is represented as,

σ =

�
��	 1

F

F
∑
s=1
(A∗s −m)2, (8)

where, σ , denotes the standard deviation. The obtained statistical features are concatenated as, Pf un =
[m∣∣ f ∣∣σ].

4.2 Pattern Extraction of OCTA Image
Pattern extraction of OCTA images is conducted using ResNet 101. Generally, ResNet 101 comprises

101 convolutional layers and other layers [32]. The stacks of ResNet 101 consist of a convolutional layer
followed by ReLU (Rectified Linear Unit) as the activation function and conclude with batch normalization.
Utilizing deep layers assists in extracting the most significant features from OCTA images, ranging from
extremely complex to basic. The architecture of ResNet 101, as illustrated in Fig. 3, consists of four basic
blocks, each containing 33 residual blocks in series. Furthermore, the model achieves improved feature
extraction, maximizing the spatial resolution of the image. The output of ResNet 101 is represented as,

PR = Nl (B∗t ) + B∗t (9)

where, B∗t , indicates the input from augmented OCTA images, and denotes the nonlinear weights of the layer.
The utilization of ResNet 101 as the feature extraction mechanism resolves the issues that occur due to the
overfitting that, in turn, decreases the model’s performance to detect accurate DR. Further, it minimizes the
complexity and time taken by enhancing the gradient flow [33]. Thus, the feature map obtained from ResNet
101 is denoted as, pR , has the dimension of [B∗t , 230, 230, 3].

Figure 3: ResNet 101 architecture

The outcomes of the pattern extraction section concerning the fundus and the OCTA images are
represented as Pf un , and PR , are provided as the input to the DE-ExLNN, in which the inputs are trained
individually as the parallel models.
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4.3 Detection of DR with Distributed Explainable CNN-Enabled LightGBM
The model used for DR detection is the DE-ExLNN, which aims to provide the most accurate results.

The Explainable CNN serves as the base model, followed by LightGBM, to ensure DR detection. To explore
the model further, the explainable CNN is initially employed, combining the concept of Explainable AI with
CNN due to the drawbacks of standard CNN classifiers. Standard CNN classifiers are prone to overfitting
and misclassification issues [34]. However, the model couldn’t achieve its potential with the limited dataset
available. Hence, an Explainable AI mechanism is integrated with CNN to address these limitations and
offer significant outcomes in DR detection. Initially, either a fundus or OCTA feature-extracted image
pattern is inputted into the explainable CNN, generating Gradient-weighted Class Activation Mapping (Grad
CAM++) and fully grad images. Grad CAM++ and the fully Grad process produce Grad CAM and fully
grad images, along with guided propagation [35]. Considering Grad CAM++, the saliency map is estimated
as follows:

L = relu (∑W . (J)) , (10)

where, L represents the saliency map generated for grad CAM++, W represents the weights, and J indicates
the input image, which may be either Pf un , or PR . In parallel, the saliency map of the full grad [36] is generated
and is represented as,

K =Wf l J + bi f l , (11)

where, Wf l , indicates the weights for fully grad, bi f l , denotes the biases for fully grad, with the input J,
indicating the input image, which may be either Pf un , or PR . Finally, the guided propagation of the grad
CAM++ and fully grad is concatenated as,

Ex = 1
2
[L + K] , (12)

which is elaborated as follows,

Ex = 1
2
[relu (∑W . (J) +Wf l J + bi f l)] . (13)

The fused outcome of Grad CAM++ and fully grad is fed into CNN to extract the most absolute features.
The CNN architecture comprises four stacks of convolution that contain the convolutional layer incorporated
with ReLU as the activation function and batch normalization followed by the Pooling function by max
pooling. In addition, the proposed model works with a distributed learning mechanism that minimizes the
training time and builds intricate models. The distributed model is concatenated and obtains the dimension
of [Ex , 10, 10, 256]. Further, the concatenated outcome is flattened to obtain the dimension of [Ex , 25600].
The flattened outcome is fed into the LightGBM model to detect the DR accurately. LightGBM is one of
the gradient boosting mechanisms (GBM) that utilizes the Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB) mechanisms [37]. The information gain is estimated with the rest of the
data after excluding significant data instances. Though working with small datasets is efficient, working with
larger data gradients is crucial. To address this limitation, EFB is introduced, where the features of the larger
datasets are bundled. The speed of GBM pretended the model to be LightGBM, which has the advantages of
working with larger datasets, helping in parallel learning and efficient training with minimal memory usage.
The major contribution that makes the LightGBM more significant than other tree-boosting algorithms is
that the model can minimize the loss as it is the leaf-wise algorithm. The multi-class LightGBM classification
involves the objective function incorporating the multi-log loss function, facilitating the model in handling
the classification of more than two labels. Light GBM classification intends to classify the obtained features
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into different classes of the DR and eliminate the overfitting of the model. Further, the objective function of
the LightGBM model for regression training to generate a composite model for multi-label classification is
expressed as follows,

Y = − 1
K

K
∑
i=1

M
∑
j=1

vi j log (vi j) + α ∣υ∣ + δ ∥υ∥2
2 + ηT , (14)

where, K represents the number of trained samples, indicates the number of classes, represents the one-hot
encoded vector indicating the true label of the i th image and jth class, and indicates the predicted probability
of the i th image and jth class. Further α indicates the Lasso (L1) and δ denotes the Ridge (L2) regularization
parameters. Finally, LightGBM detected the DR accurately and classified the outcome as DR, No DR, and
Mild DR regarding the fundus and OCTA image testing. The architecture of the research model is depicted
in Fig. 4.

Figure 4: The architecture of the DE-EXLNN model
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Pseudocode for the proposed Distributed Explainable CNN-enabled Light GBM using Fundus image
is depicted in Algorithm 1 of Table 2.

Table 2: Algorithm of distributed explainable CNN-enabled light GBM for fundus

Algorithm 1: Distributed explainable CNN-enabled LightGBM
1. Procedure preprocessing and ROI (Fundus Image)
2. Return preprocessed output (Bilateral _ Filtering (Fundus Image))
3. Procedure feature extraction (Augmented Images)
4. Return statistical _ features.
5. Procedure image _ augmentation (Preprocessed Output)
6. Return augmented _ image
7. Procedure train _ test _ split (Statistical _ Feature, Label)
8. Return train data, train label, test data, test label
9. Procedure distributed explainable light GBM-CNN (Train data, Train label)
10. Return model
11. Procedure testing (Model, Test Data)
12. Return output

The Pseudo code for the proposed Distributed Explainable CNN-enabled LightGBM for OCTAimage
is depicted in Algorithm 2 of Table 3.

Table 3: Distributed explainable CNN-enabled lightGBM for OCTA

Algorithm 2: Distributed explainable CNN-enabled lightGBM
1. Procedure preprocessing and ROI (OCTA Image)
2. Return preprocessed output (Bilateral _ filtering (OCTA image))
3. Procedure feature extraction (Augmented _ images)
4. Return ResNet 101 _ features
5. Procedure image _ augmentation (Preprocessed output)
6. Return augmented _ image
7. Procedure train _ test _ split (ResNet 101 _ feature, Label)
8. Return Train data, Train label, Test data, Test label
9. Procedure distributed explainable light GBM-CNN (Train data, Train label)
10. Return model
11. Procedure testing (Model, Test Data)
12. Return output

5 Results and Discussion
The results of the DE-ExLNN model are explained in this section.
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5.1 Experimental Setup
The experiment uses Python software in the system with Windows 11 configuration and 32 GB RAM.

The hyperparameters of Light GBM are the number of leaves 31, the metric as multi-log loss, the learning
rate is 0.05, the feature fraction is 0.9, and the number of boosting rounds is 1000. Also, the hyperparameters
of the DE-ExLNN model used in the research are included in Table 4.

Table 4: Hyperparameters of the DE-ExLNN model

Hyperparameters Values
Batch size 32

Learning rate 0.0001
Drop out rate 0.25

Loss MSE (Mean Squared Error)
Activation function Softmax

Optimizer ADAM (Adaptive Moment Estimation)

5.2 Dataset Description
The overall utilized datasets in the research are DiaretDb1, Messidor, STARE, OCTA-500, and cus-

tom datasets.
A: DiaretDb1 Dataset: The diaretDb1 dataset contains 89 fundus images, where 84 are mild DR and 4

represent the normal image. The dataset’s images were collected using the 50-degree fields-of-view digital
fundus camera with various settings [38].

B: Messidor Dataset: In total, 1200 fundus images exist collected with 45-degree fields of view from three
departments of ophthalmologists. Among the images, 800 have pupil dilation, and 400 are without pupil
dilation. The total images are divided based on the three sectors of ophthalmologists, where each set has 100
images zipped in the TIFF format carrying 100 images [39].

C: STARE Dataset: The STARE dataset is a dataset for retinal vessel segmentation. It contains 20 equal-
sized (700 × 605) color fundus images. For each image, two groups of annotations are provided [40].

D: OCTA 500 Dataset: The dataset contains 500 OCTA images captured in two fields of view, which
consist of six types of projections, seven types of segmentation, four types of text labels, and so on [41].

E: Custom Dataset: The custom dataset is collected from real-time hospital environments [42]. This
dataset consists of 268 OCTA images with dimensions 1596 × 990 and 320 Fundus images with dimensions
3680 × 3288 collected at Natasha Eye Care and Research Institute in Pune [43], Maharashtra, India. The
Symbiosis Institutional Ethics Committee for Biomedical and Health Research authorized the project under
approval code SIU/IEC/583. Images were captured using a nonmydriatic Optical Coherence Tomography
Angiography (OCTA) device, specifically the Optovue Avanti Edition machine as per the protocol, and
Fundus images using an Eidon machine. OCTA scan requires approximately 5 min if the patient is co-
operative. A Fundus scan requires 1–2 min if the patient is cooperative. Two ophthalmologists then annotated
the images. ETDRS scale is used to classify images. A signed consent form was given by every patient.
Researchers and doctors can use this dataset to develop automated diagnostic tools for early detection of
diabetic retinopathy (DR).
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5.3 Experimental Analysis
The image outcomes of the research, comparing the fundus input and the OCTA input for both the

existing standard datasets and the custom dataset, are respectively depicted and compared in Fig. 5.

Existing datasets in DR detection

Datasets/Methods Input Statistical feature
extraction

Explainable fused
outcome

DiaretDb1 Dataset

Messidor Dataset

STARE Dataset

Datasets/
Methods

Input ResNet 101 feature
extraction

Explainable fused
outcome

OCTA 500 Dataset

The custom dataset in DR detection

Custom-Fundus
Dataset

Methods/ Dataset Custom OCTA dataset

Figure 5: (Continued)
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Figure 5: Image outcomes of existing datasets and custom datasets

5.3.1 Comparative Evaluation with DiaretDb1 Dataset
The evaluation of the DE-ExLNN model yielded significant results compared to conventional methods.

Regarding accuracy, the model achieved 89.52% with the DiaretDb1 dataset, showing improvements of
5.53%, 2.12%, 1.64%, 1.53%, 1.34%, 1.26%, 1.18%, 0.52%, 0.47%, and 0.34% over DCGAN, Faster RCNN,
Inception-V4/DSLO, PSO-CNN, IoT-Opthom-CAD, CNN-LSTM, CBAM-Dense Net, IC2T, ViT, and PCA-
DNN, respectively. In terms of sensitivity, the model reached 89.52%, marking an average improvement of
4.04% over DCGAN, 3.09% over Faster RCNN, 3.07% over Inception-V4/DSLO, 3.02% over PSO-CNN,
2.59% over IoT-Opthom-CAD, 2.29% over CNN-LSTM, 2.16% over CBAM-DenseNet, 0.90% over IC2T,
0.82% over ViT, 0.58% over PCA-DNN, respectively. Moreover, the specificity of the DE-ExLNN model
for DR detection reached 89.52%, indicating the highest improvement of 7.01% over DCGAN, 1.15% over
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Faster RCNN, 0.97% over Inception-V4/DSLO, 0.96% over PSO-CNN, 0.89% over IoT-Opthom-CAD,
0.24% over CNN-LSTM, 0.20% over CBAM-DenseNet, 0.14% over IC2T, 0.12% over ViT, 0.10% over a
minimal improvement of PCA-DNN. Furthermore, the model achieved a Matthews Correlation Coefficient
of 88.46%, showcasing the highest improvement of 9.69% over DCGAN, 3.96% over Faster RCNN, 3.87%
over Inception-V4/DSLO, 3.70% over PSO-CNN, 3.44% over IoT-Opthom-CAD, 3.43% over CNN-LSTM,
3.21% over CBAM-DenseNet, 3.10% over IC2T, 2.08% over ViT, 2.02% over PCA-DNN, respectively. The
comparative outcomes for the DiaretDb1 dataset are illustrated in Fig. 6.

Figure 6: Comparative evaluation of the DiaretDb1 dataset

5.3.2 Comparative Evaluation with Messidor Dataset
Evaluating the DE-ExLNN model against conventional methods using the Messidor dataset

revealed certain improvements. In terms of accuracy, the DE-ExLNN achieved 92.66%, which is 2.61%
higher than DCGAN, 1.45% higher than Faster RCNN, 1.34% higher than Inception-V4/DSLO, 1.14% higher
than PSO-CNN, 0.99% higher than IoT-Opthom-CAD, 0.86% higher than CNN-LSTM, 0.58% higher than
CBAM-DenseNet, 0.51% higher than IC2T, 0.42% higher than ViT, 0.40% higher than PCA-DNN. Regarding
sensitivity, the model obtained 92.48%, representing an average improvement of 1.65% by DCGAN, 0.91% by
Faster RCNN, 0.68% by Inception-V4/DSLO, 0.56% by PSO-CNN, 0.52% by IoT-Opthom-CAD, 0.42% by
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CNN-LSTM, 0.28% by CBAM-DenseNet, 0.28% by IC2T, 0.26% by ViT, 0.25% by PCA-DNN, respectively.
Moreover, the specificity of the DE-ExLNN model for DR detection reached 92.83%, indicating the highest
improvement of 3.56% over DCGAN, 1.19% over Faster RCNN, 1.88% over Inception-V4/DSLO, 1.67%
over PSO-CNN, 1.40% over IoT-Opthom-CAD, 1.30% over CNN-LSTM, 0.87% over CBAM-DenseNet,
0.73% over IC2T, 0.58% over ViT, and the smallest improvement of 0.54% over PCA-DNN. Furthermore,
considering the Matthews Correlation Coefficient, the model attained 92.17%, showcasing the highest
improvement of 6.07% over DCGAN, 4.77% over Faster RCNN, 4.48% over Inception-V4/DSLO, 2.82%
over PSO-CNN, 2.47% over IoT-Opthom-CAD, 2.39% over CNN-LSTM, 0.80% over CBAM-DenseNet,
0.70% over IC2T, 0.44% over ViT, and the lowest improvement of 0.25% over PCA-DNN. The comparative
outcomes for the Messidor dataset are illustrated in Fig. 7.

Figure 7: Comparative evaluation of Messidor dataset

5.3.3 Comparative Evaluation with STARE Dataset
The evaluation of the DE-ExLNN model against conventional methods using the STARE dataset

revealed certain improvements. In terms of accuracy, the DE-ExLNN achieved 90.74%, which is 3.72%
higher than DCGAN, 2.06% higher than Faster RCNN, 1.93% higher than Inception-V4/DSLO, 1.66%
higher than PSO-CNN, 1.50% higher than IoT-Opthom-CAD, 1.50% higher than CNN-LSTM, 1.02%
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higher than CBAM-DenseNet, 0.69% higher than IC2T, 0.62% higher than ViT, and 0.56% higher than
PCA-DNN. Regarding sensitivity, the model obtained 90.90%, representing an average improvement of
4.06% by DCGAN, 1.00% by Faster RCNN, 0.96% by Inception-V4/DSLO, 0.95% by PSO-CNN, 0.84%
by IoT-Opthom-CAD, 0.78% by CNN-LSTM, 0.33% by CBAM-DenseNet, 0.25% by IC2T, 0.22% by ViT,
0.11% by PCA-DNN, respectively. Moreover, the specificity of the DE-ExLNN model for DR detection
reached 90.58%, indicating the highest improvement of 3.37% over DCGAN, 3.12% over Faster RCNN,
3.04% over Inception-V4/DSLO, 2.85% over PSO-CNN, 2.31% over IoT-Opthom-CAD, 2.22% over CNN-
LSTM, 1.71% over CBAM-DenseNet, 1.12% over IC2T, 1.03% over ViT, and the smallest improvement of
1.02% over PCA-DNN. Furthermore, considering the Matthews Correlation Coefficient, the model attained
88.74%, showcasing the highest improvement of 6.46% over DCGAN, 3.42% over Faster RCNN, 3.20% over
Inception-V4/DSLO, 2.74% over PSO-CNN, 2.21% over IoT-Opthom-CAD, 1.95% over CNN-LSTM, 0.50%
over CBAM-DenseNet, 0.41% over IC2T, 0.39% over ViT, 0.18% over PCA-DNN. The comparative outcomes
for the STARE dataset are illustrated in Fig. 8.

Figure 8: Comparative evaluation of STARE dataset

5.3.4 Comparative Evaluation with OCTA 500 Dataset
The comparative evaluation of the DE-ExLNN model against conventional methods using the OCTA

500 dataset revealed certain improvements. In terms of accuracy, the DE-ExLNN achieved 93.59%, which
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is 3.23% higher than DCGAN, 1.11% higher than Faster RCNN, 1.05% higher than Inception-V4/DSLO,
1.03% higher than PSO-CNN, 0.96% higher than IoT-Opthom-CAD, 0.91% higher than CNN-LSTM, 0.64%
higher than CBAM-DenseNet, 0.59% higher than IC2T, 0.58% higher than ViT, 0.49% higher than PCA-
DNN. Regarding sensitivity, the model obtained 93.63%, representing an average improvement of 4.47%
over DCGAN, 0.72% over Faster RCNN, 0.71% over Inception-V4/DSLO, 0.61% over PSO-CNN, 0.60%
over IoT-Opthom-CAD, 0.58% over CNN-LSTM, 0.28% over CBAM-DenseNet, 0.24% over IC2T, 0.23%
over ViT, and 0.06% over PCA-DNN. Moreover, the specificity of the DE-ExLNN model for DR detection
reached 93.55%, indicating the highest improvement of 1.98% over DCGAN, 1.49% over Faster RCNN, 1.48%
over Inception-V4/DSLO, 1.44% over PSO-CNN, 1.36% over IoT-Opthom-CAD, 1.25% over CNN-LSTM,
1.01% over CBAM-DenseNet, 0.94% over IC2T, 0.92% over ViT, and 0.92% over PCA-DNN. Furthermore,
considering the Matthews Correlation Coefficient, the model attained 93.35%, showcasing the highest
improvement of 3.09% over DCGAN, 0.93% over Faster RCNN, 0.74% over Inception-V4/DSLO, 0.64%
over PSO-CNN, 0.63% over IoT-Opthom-CAD, 0.53% over CNN-LSTM, 0.44% over CBAM-DenseNet,
0.18% over IC2T, 0.16% over ViT, and 0.12% over PCA-DNN. More specifically, the proposed approach
exploited the DE-ExLNN model, incorporating the explainable CNN and a distributed learning mechanism
into LightGBM, allowing the model to dynamically focus on significant input image regions, eliminating
the temporal complexity problems and resulting in better performance. The comparative outcomes for the
OCTA 500 dataset are illustrated in Fig. 9.

Figure 9: (Continued)
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Figure 9: Comparative evaluation of OCTA 500 dataset

5.3.5 Comparative Evaluation with Custom Dataset
The custom dataset comprises both fundus and OCTA images collected from real-time environments.

The evaluation of the DE-ExLNN model against conventional methods showed certain improvements. In
terms of accuracy for fundus images, the DE-ExLNN achieved 93.94%, which is 2.09% higher than DCGAN,
1.73% higher than Faster RCNN, 1.45% higher than Inception-V4/DSLO, 1.43% higher than PSO-CNN, 1.35%
higher than IoT-Opthom-CAD, 1.28% higher than CNN-LSTM, 0.91% higher than CBAM-DenseNet, 0.66%
higher than IC2T, 0.45% higher than ViT, and 0.34% higher than PCA-DNN. Regarding sensitivity, the
model obtained 93.90%, representing an average improvement of 3.18% over DCGAN, 2.48% over Faster
RCNN, 1.98% over Inception-V4/DSLO, 1.94% over PSO-CNN, 1.82% over IoT-Opthom-CAD, 1.62% over
CNN-LSTM, 0.93% over CBAM-DenseNet, 0.56% over IC2T, 0.27% over ViT, and 0.05% over PCA-DNN.
Moreover, the specificity of the DE-ExLNN model for DR detection reached 93.99%, indicating the highest
improvement of 1.00% over DCGAN, 0.98% over Faster RCNN, 0.97% over Inception-V4/DSLO, 0.96% over
PSO-CNN, 0.95% over IoT-Opthom-CAD, 0.94% over CNN-LSTM, 0.89% over CBAM-DenseNet, 0.76%
over IC2T, 0.64% over ViT, and 0.63% over PCA-DNN. Furthermore, considering the Matthews Correlation
Coefficient, the model attained 93.88%, showcasing the highest improvement of 3.60% against DCGAN,
2.78% against Faster RCNN, 2.59% against Inception-V4/DSLO, 2.31% against PSO-CNN, 1.95% against IoT-
Opthom-CAD, 1.90% against CNN-LSTM, 1.71% against CBAM-DenseNet, 1.65% against IC2T, 1.61% against
ViT, and 1.47% against PCA-DNN. The comparative outcomes of the custom fundus dataset are illustrated
in Fig. 10.
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Figure 10: Comparative evaluation of custom-fundus dataset

In terms of accuracy for OCTA images in the custom dataset, the DE-ExLNN achieved 95.30%, which
is 2.19% higher than DCGAN, 1.08% higher than Faster RCNN, 1.07% higher than Inception-V4/DSLO,
1.06% higher than PSO-CNN, 1.04% higher than IoT-Opthom-CAD, 1.04% higher than CNN-LSTM, 0.92%
higher than CBAM-DenseNet, 0.64% higher than IC2T, 0.36% higher than ViT, and 0.21% higher than
PCA-DNN. Regarding sensitivity, the model obtained 95.50%, indicating an average improvement of 3.34%
over DCGAN, 1.20% over Faster RCNN, 1.20% over Inception-V4/DSLO, 1.18% over PSO-CNN, 1.17% over
IoT-Opthom-CAD, 1.16% over CNN-LSTM, 0.96% over CBAM-DenseNet, 0.76% over IC2T, 0.44% over
ViT, and 0.33% over PCA-DNN. Moreover, the specificity of the DE-ExLNN model for DR detection in the
custom dataset reached 95.09%, showing the highest improvement of 1.04% over DCGAN, 0.95% over Faster
RCNN, 0.94% over Inception-V4/DSLO, 0.91% over PSO-CNN, 0.91% over IoT-Opthom-CAD, 0.91% over
CNN-LSTM, 0.88% over CBAM-DenseNet, 0.52% over IC2T, 0.27% over ViT, and 0.09% over PCA-DNN.
Furthermore, for the Matthews Correlation Coefficient concerning OCTA images in the custom dataset, the
developed model attained 95.00%, which is 4.38% higher than DCGAN, 1.75% higher than Faster RCNN,
1.73% higher than Inception-V4/DSLO, 1.52% higher than PSO-CNN, 1.51% higher than IoT-Opthom-CAD,
1.28% higher than CNN-LSTM, 0.74% higher than CBAM-DenseNet, 0.73% higher than IC2T, 0.73% higher
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than ViT, and 0.73% higher than PCA-DNN. The comparative outcomes of the OCTA 500 dataset are
illustrated in Fig. 11.

Figure 11: Comparative evaluation of custom-OCTA dataset

Although the DE-ExLNN achieved high results across all utilized datasets, the custom dataset collected
from real environments exhibited the most efficient outcomes, as shown in Table 5. Furthermore, the results
from all datasets were compared with existing methods such as DCGAN, Faster RCNN, CNN-LSTM,
CBAM-DenseNet, and PCA-DNN. In terms of comparative methods, the proposed DE-ExLNN yielded
the most efficient outcomes across all existing as well as custom datasets. Existing methods faced certain
challenges such as DCGAN was prone to overfitting, especially with complex data trees, and remained
unstable due to data changes and noise. Faster RCNN could be computationally expensive and might
not perform well on imbalanced datasets, reducing interpretability compared to individual DCGANs.
CNN-LSTM assumed independence between features and was sensitive to irrelevant features, leading to
poor performance. PCA-DNN requires large amounts of labeled data, making the model computationally
expensive and difficult to interpret due to its deep architecture. These drawbacks are addressed by the
proposed DE-ExLNN. Moreover, the custom dataset, comprising both fundus and OCTA images, had more
samples after data augmentation, thereby enhancing the efficacy of the research.
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5.4 Statistical Analysis
The statistical analysis is carried out in terms of Best, Mean, and Variance to evaluate the results’

robustness using the metrics of accuracy, sensitivity, and specificity. Here, the results of the proposed DE-
ExLNN are compared with the existing methods DCGAN, Faster RCNN, Inception-V4/DSLO, PSO-CNN,
IoT-Opthom-CAD, CNN-LSTM, CBAM-DenseNet, IC2T, ViT, and PCA-DNN. Tables 6 and 7 include the
statistical analysis of the proposed model compared with the existing methods.

Table 6: Statistical analysis of custom dataset [FUNDUS]

Methods/Metrics DCGAN Faster
RCNN

Inception-
V4/DSLO

PSO-
CNN

IoT-
Opthom-

CAD

CNN-
LSTM

CBAM-
Dense

Net

IC2T ViT PCA-
DNN

DE-
ExLNN

Best

Accuracy 91.99 92.32 92.58 92.60 92.68 92.74 93.09 93.33 93.52 93.63 93.94
Sensitivity 90.92 91.57 92.04 92.08 92.19 92.38 93.03 93.38 93.65 93.86 93.90
Specificity 93.05 93.07 93.08 93.09 93.10 93.10 93.15 93.28 93.39 93.39 93.99

MCC 90.51 91.28 91.45 91.72 92.05 92.10 92.28 92.33 92.37 92.50 93.88

Mean

Accuracy 87.98 89.03 89.32 89.79 90.04 90.25 91.48 91.65 91.81 92.22 93.25
Sensitivity 88.09 88.09 88.09 88.09 88.09 88.09 88.09 88.09 88.09 88.09 88.09
Specificity 87.87 89.23 89.63 89.94 90.37 90.51 91.68 91.87 92.00 92.58 93.68

MCC
(%)

88.29 89.23 89.29 89.37 89.48 89.56 90.41 90.74 91.08 91.33 92.11

Variance

Accuracy 4.68 4.96 4.47 4.03 3.60 3.26 1.27 3.12 3.09 0.74 0.18
Sensitivity 3.58 3.84 4.11 3.45 3.19 3.45 2.97 3.11 3.13 2.61 0.76
Specificity 6.71 6.43 6.59 5.61 5.01 5.13 3.36 3.21 3.12 0.58 0.06

MCC 2.06 2.44 2.50 2.69 2.82 2.85 1.26 0.79 0.50 0.46 0.73

Table 7: Statistical analysis of custom dataset [OCTA]

Methods/Metrics DCGAN Faster
RCNN

Inception-
V4/DSLO

PSO-
CNN

IoT-
Opthom-

CAD

CNN-
LSTM

CBAM-
Dense

Net

IC2T ViT PCA-
DNN

DE-
ExLNN

Best

Accuracy 93.21 94.27 94.27 94.28 94.30 94.31 94.41 94.69 94.96 95.09 95.30
Sensitivity 92.31 94.35 94.35 94.38 94.38 94.39 94.58 94.78 95.08 95.18 95.50
Specificity 94.11 94.19 94.19 94.22 94.23 94.23 94.25 94.60 94.83 95.00 95.09

MCC 90.84 93.33 93.36 93.55 93.57 93.78 94.29 94.30 94.30 94.31 95.00

Mean

Accuracy 87.86 89.58 89.84 90.29 90.72 90.99 91.99 92.19 92.52 93.16 94.22
Sensitivity 88.08 89.61 89.91 90.35 90.52 91.03 91.78 91.95 92.42 93.32 94.05
Specificity 87.64 89.55 89.67 90.25 90.86 90.96 92.20 92.42 92.62 92.99 94.40

MCC
(%)

87.88 89.40 89.63 90.06 90.38 90.62 91.12 91.50 92.14 92.37 93.62

Variance

Accuracy 9.08 9.55 8.45 6.26 5.47 4.95 3.48 4.05 3.29 1.73 0.32
Sensitivity 8.38 11.00 9.95 8.34 7.90 6.57 4.50 4.12 3.03 0.95 0.55
Specificity 11.11 9.46 9.23 6.32 4.22 4.10 4.18 4.40 3.91 3.82 0.58

MCC 5.94 6.59 6.50 6.83 6.10 5.87 5.92 4.21 2.33 1.65 2.35

5.5 Computational Complexity
The computational time comparison between the proposed DE-ExLNN model and the other existing

methodologies is conducted across multiple iterations to showcase the efficacy of the DE-ExLNN model.
The results highlight the recommended strategy’s computational efficacy because it consistently requires a
significant reduction in time compared to other approaches. At iteration 100, the DE-ExLNN model has the
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lowest computation time of 20.60 s when compared to the existing approaches. Table 8 presents information
about the computational complexity analysis of the methods and is depicted graphically in Fig. 12.

Table 8: Computational complexity analysis

Methods Computational time (s)
DCGAN 20.85

Faster RCNN 20.76
Inception-V4/DSLO 20.76

PSO-CNN 20.79
IoT-Opthom-CAD 20.79

CNN-LSTM 20.80
CBAM-DenseNet 20.81

IC2T 20.83
ViT 20.84

PCA-DNN 20.84
DE-ExLNN 20.60

Figure 12: Computational complexity analysis

5.6 Ablation Study
In the ablation study, the performance of diabetic retinopathy detection by eliminating the components

is evaluated to investigate the robustness and performance of the proposed DE-ExLNN model. The perfor-
mance of the model with and without noise using the custom dataset is evaluated to explicate the robustness
of the DE-ExLNN model. Fig. 13 depicts the robustness of the proposed DE-ExLNN model with Fundus
and OCTA images in terms of accuracy by eliminating and including noise. For Fundus images without
noise, the DE-ExLNN model achieves a high accuracy of 93.94%. Meanwhile, the proposed model obtained
an accuracy of 90.76% which is reduced from the maximum accuracy obtained with noise. Similarly, for
OCTA images without noise, the DE-ExLNN model achieves a high accuracy of 95.35%. Meanwhile, the
proposed model obtained an accuracy of 93.97% which is reduced from the maximum accuracy obtained
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with noise. Moreover, the ablation study highlights the robustness of the proposed DE-ExLNN model with
and without noise.

Figure 13: Ablation study

6 Conclusion and Future Work
In conclusion, this research demonstrates the high proficiency of the DE-ExLNN model in detecting

Diabetic Retinopathy (DR). Through the integration of the explainable CNN and Light GBM, the limitations
of standard CNN classifiers, particularly in terms of time complexity and convergence issues, are effectively
addressed. The inclusion of distributed learning further enhances the model’s efficiency by reducing time
consumption and complexity while facilitating feature extraction. The model overcomes temporal com-
plexity problems and initiates parallel computing with the support of a distributed learning mechanism.
The explainable CNN handles convergence problems, resulting in effective detection. Utilizing fundus
and OCTA images separately, accurate outcomes are achieved across various datasets. Comparison with
existing standard datasets reveals improved performance, particularly in detecting DR, No DR, and Mild DR
categories. Evaluations against other standard datasets achieved 93.94% accuracy, 93.90% sensitivity, 93.99%
specificity, and a Mathews Correlation Coefficient of 93.88% for fundus images. For OCTA images, the results
were 95.26% accuracy, 95.5% sensitivity, 95.09% specificity, and a Mathews Coefficient Correlation of 95,
underscoring the effectiveness of the approach.

In the future, augmenting the custom dataset with more images and incorporating hybrid learning and
bio-inspired algorithms will be proposed to enhance DR detection efficacy further. Also, the proposed model
can be evaluated with other datasets, including the diversity in terms of patient demographics, image quality,
and clinical conditions. Moreover, the clinical adoption of the proposed model utilizing the explainability
aspect, though integrated via Grad-CAM++ can be analyzed to enhance the efficiency of the proposed
model. By training specific models for distinct stages and ensembling the outcomes, increased accuracy is
anticipated, especially in early-stage disease detection. Additionally, focusing on improving the detection
of mild disease and transitioning to more challenging multi-grade disease detection will be pivotal for
advancing future research in this field.
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