
echT PressScience

Doi:10.32604/cmc.2025.060185

ARTICLE

Leveraging the WFD2020 Dataset for Multi-Class Detection of Wheat Fungal
Diseases with YOLOv8 and Faster R-CNN

Shivani Sood1, Harjeet Singh2,*, Surbhi Bhatia Khan3,4,5,* and Ahlam Almusharraf 6

1School of Computer Applications, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, 144411, Punjab,
India
2Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
3School of Science, Engineering and Environment, University of Salford, The Crescent Salford, Greater Manchester, M5 4WT, UK
4Division of Research and Development, Lovely Professional University, Phagwara, 144411, Punjab, India
5Research and Innovation Cell, Rayat Bahra University, Mohali, 140301, Punjab, India
6Department of Management, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428,
Riyadh, 11671, Saudi Arabia
*Corresponding Authors: Harjeet Singh. Email: harjeet.singh@chitkara.edu.in; Surbhi Bhatia Khan. Email: s.khan138@ieee.org
Received: 26 October 2024; Accepted: 14 March 2025; Published: 03 July 2025

ABSTRACT: Wheat fungal infections pose a danger to the grain quality and crop productivity. Thus, prompt and
precise diagnosis is essential for efficient crop management. This study used the WFD2020 image dataset, which is
available to everyone, to look into how deep learning models could be used to find powdery mildew, leaf rust, and yellow
rust, which are three common fungal diseases in Punjab, India. We changed a few hyperparameters to test TensorFlow-
based models, such as SSD and Faster R-CNN with ResNet50, ResNet101, and ResNet152 as backbones. Faster R-CNN
with ResNet50 achieved a mean average precision (mAP) of 0.68 among these models. We then used the PyTorch-based
YOLOv8 model, which significantly outperformed the previous methods with an impressive mAP of 0.99. YOLOv8
proved to be a beneficial approach for the early-stage diagnosis of fungal diseases, especially when it comes to precisely
identifying diseased areas and various object sizes in images. Problems, such as class imbalance and possible model
overfitting, persisted despite these developments. The results show that YOLOv8 is a good automated disease diagnosis
tool that helps farmers quickly find and treat fungal infections using image-based systems.

KEYWORDS: Wheat crop; detection and classification; fungal disease; rust diseases; Faster R-CNN; deep learning;
computer vision; precision agriculture

1 Introduction
After rice and maize, wheat is the third most consumed grain in the world. It is an essential source

of protein and calories for all diets [1]. However, fungal infections reduce both yield and quality, posing
a serious threat to wheat production, resulting in large financial losses. These diseases can damage both
the visible and invisible portions of wheat plants, such as leaves, stems, and spikes, as well as invisible root
components, which are caused by pathogenic fungi and manifest as a variety of symptoms [2]. The most
common fungal infections worldwide are rust diseases such as leaf rust, yellow rust, and powdery mildew,
which pose a hazard to the wheat supply chain [3]. These diseases develop in areas with favorable climates,
such as Punjab, India, and in extreme cases, yellow rust alone has been known to reduce wheat production
by 20%−30%. Fungal diseases have economic consequences that go beyond yield loss. Food security and

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.060185
https://www.techscience.com/doi/10.32604/cmc.2025.060185
mailto:harjeet.singh@chitkara.edu.in
mailto:s.khan138@ieee.org


2752 Comput Mater Contin. 2025;84(2)

farmer income are affected by lowering market prices and grain quality. In the near future, there will likely be
nine billion people on the planet; therefore, the demand for wheat will be approximately 60% [4] which will
increase the demand for wheat and highlight the need for sustainable wheat crop management techniques.
Effective treatment of wheat fungal infections is especially important in developing countries, because yields
per hectare are generally lower than those in developed countries.

The early detection of fungal infections is necessary to minimize these losses. Farmers may carry out
focused treatments with accurate identification by optimized use of excessive fungicide sprays, thereby saving
money and the environment. However, identification of fungal diseases poses various challenges. Images of
wheat extracts sometimes have complex backgrounds, such as hands, soil, or foliage, which may minimize
disease identification. Furthermore, the growing phases of crop-related diseases make the classification more
difficult. Recent advances in artificial intelligence (AI), particularly deep learning, have provided promising
solutions for automated plant disease identification. There are various models of R-CNN which are most
rapidly used model for multi-class object detection and have also proven the advantageous in identifying
several diseases in a single image such as R-CNN, Faster R-CNN [5,6]. These models offer significant
gains over conventional image classification techniques that use Convolutional Neural Networks (CNNs) to
locate diseased areas [7–9]. The selection of the best architecture for domain-specific applications remains a
challenging task.

This study used multiclass object detection models to provide an automated system for identifying
and locating fungal diseases in wheat fields. First, Tensorflow-based, Faster R-CNN, and SSD models with
different variants of ResNet backbones were utilized. The study then examined the YOLOv8 model, which
was built on PyTorch and showed excellent performance in identifying both single and multiple disease
classifications. In addition to highlighting the comparative analysis of various models, this study offers
a novel method for precise fungal disease localization and categorization. The remainder of this paper
is organized as follows. An analysis of research on deep-learning-based object detection models for the
diagnosis of plant diseases is presented in Section 2. The experimental setup and dataset preparation are
described in detail in Section 3. The architecture and experimental performance of the Faster R-CNN and
YOLOv8 models are presented in Section 4. Finally, Section 5 concludes the study and provides suggestions
for further investigation.

2 Related Work
To classify and divide plant diseases, scientists have used well-known machine learning classifiers such

as Support Vector Machines (SVM) and k-means clustering. However, as deep learning has grown, numerous
researchers have become more interested in multiclass object recognition methods than in identifying plant
diseases. Over the past few decades, deep learning algorithms have made significant progress in solving
computer vision-related problems. This was primarily because a large number of datasets were available.
GPUs, or graphics processing units, are examples of high-computational power devices that are required
for processing large amounts of data. Using deep learning-based models, numerous researchers have shown
amazing results in the detection of plant diseases [10–14]. As such, the literature has been divided into
two main sections, these two methods for identifying wheat crop diseases are: (a) using machine learning
algorithms to classify the diseases, and (b) using deep learning algorithms to detect the diseases. The
following is a thorough analysis of studies on wheat crop disease detection.



Comput Mater Contin. 2025;84(2) 2753

2.1 Work Done on the Classification of Wheat Diseases Using Machine-Learning Approaches
Bravo et al. classified several types of rust infestation in wheat crops. The authors gathered a primary

dataset of images of diseased wheat leaves from two classes, yellow rust and healthy wheat in their investiga-
tion. They reported an accuracy of 96.00% using the Quadratic Discrimination method [15]. Subsequently,
Moshou et al. [16] used primary images of wheat leaf diseases, including both diseased and healthy leaves.
Using the multilayer perceptron technique, they attained a 99.00% accuracy rate in their intelligent disease
identification system. Similarly, the SVM classifier was used by Siricharoen et al. [17] to analyze raw datasets
of diseased wheat leaves, which were further divided into three classes: septoria, yellow rust, and healthy
wheat. For the datasets in controlled and uncontrolled environments, they obtained accuracy rates of 95%
and 79%, respectively. Shafi et al. [18] used a primary collection of images of wheat diseases that contained
three classes: susceptible, resistant, and healthy wheat. They first collected 2000 images, which were then
further processed to eliminate intricate backdrops and adjusted for various lighting conditions. They used
a dataset of 1640 images of wheat crop diseases. They applied CatBoost, employing the Gray-Level Co-
occurrence Matrix as a feature extraction method that could discriminate between different types of rust
infections with an accuracy of 92.30%. In [19], authors used deep convolutional neural network using hyper-
spectral images of three diseased classes. An accuracy rate of 85.00% had been reported to classify the wheat
leave diseases. In [20], the authors used VGG16 transfer learning model for distinguishing wheat diseases
with 1400 images with the recognition accuracy of 98.00%. In [21], the authors used the elliptical-maximum
metric learning to define the severity level to identify the wheat leaf diseases and reported the accuracy of
94.16%. The authors in [22] implemented the YOLOv8 model using 2569 images and they achieved 0.72 mAP
for detecting various plant disease species.

Table 1: Summarization of work done on the detection and classification of wheat crop diseases using machine learning
and deep learning-based approaches

References Year Total images Classes Methodology Results
[5] 2018 Over 300

images
3 R-CNN The average accuracy of

93.40% and F1-score of 0.95
has been obtained to detect

wheat spikes.
[6] 2022 979 images 2 WSRD-Net model

with Backbone ResNet
with feature pyramid

The wheat stripe rust
disease was detected with
the average precision of

0.61.
[7] 2019 Original

images: 16,652;
Augmented

images: 83,260

8 M-BCNN (Matric
based Convolutional

Neural Network)

An accuracy rate of 91.00%
achieved in recognizing

various diseases of wheat
crops.

[8] 2019 3637 images 3 ResNet150 model 96.00% classification
accuracy have been

reported to classify the
various diseases.

(Continued)



2754 Comput Mater Contin. 2025;84(2)

Table 1 (continued)

References Year Total images Classes Methodology Results
[9] 2020 8326 images 8 Differential

amplification
convolutional neural

network

Various diseases of wheat
crops are classified with

95.16% accuracy.

[15] 2003 120 spectral
images

2 Quadratic
discrimination

Classification accuracy of
96.00% have been achieved.

[16] 2004 120 images 2 Multi-layer
perceptrons

The intelligent disease
recognition system

reported an accuracy of
99.00%.

[17] 2015 150 images 3 SVM classifier The accuracy of 95% and
79% achieved under

controlled and
uncontrolled

environmental conditions,
respectively.

[18] 2023 2000 images 3 CatBoost using
Gray-level

Co-occurrence matrix
(feature extraction

technique)

An accuracy of 92.30%
obtained to distinguish the
various infection types of

rust diseases.

[19] 2019 10,000 blocks
from 5

hyper-spectral
images

3 Deep Convolutional
neural network

An accuracy rate of 85.00%
reported to classify the
wheat leave diseases.

[20] 2020 1400 images 2 VGG16 model 98.00% recognition
accuracy have been

attained for classifying
various wheat leaf diseases.

[21] 2021 360 images 6 Ostu’s algorithm,
elliptic metric learning

The maximum accuracy of
94.16% reported for

distinguishing the severity
level of stripe rust and

powdery mildew diseases.
[22] 2024 2569 30 YOLOv8 They achieved 0.72 mAP

for detecting the 13
different plant disease

species.
[23] 2021 12,160 images 10 Deep Convolutional

neural network
97.88% accuracy is achieved

to differentiate wheat in
recognizing diseases.

(Continued)



Comput Mater Contin. 2025;84(2) 2755

Table 1 (continued)

References Year Total images Classes Methodology Results
[24] 2021 10,500 wheat

leaf images
6 Yellow Rust-Xception The accuracy of 91.00%

have been reported to
classify various diseases of

wheat crops.
[25] 2021 2772 images 2 Deep Residual Neural

Network (ResNet-18)
To classify the stripe rust

diseases from healthy
wheat leaves 95.00%

recognition accuracy is
achieved.

[26] 2021 300 images 2 Faster R-CNN The RetinaNet and Faster
R-CNN models reported an

accuracy of 82.00% and
72.00%, respectively.

2.2 Work Done on the Classification and Detection of Wheat Diseases Using Deep Learning-Based
Approaches
To estimate wheat crop production, Hasan et al. devised a method to recognize wheat spikes. The

main problem that they identified was the separation of diseases from field image data in the presence
of complicated backdrops, severe spike occlusions, and different illumination constraints. They used an
annotation tool to mark wheat spikes manually after gathering a range of images from the fields. They used
a region-based convolutional neural network (R-CNN) to identify and count wheat spikes. Consequently,
they were able to identify wheat spikes in the test images with up to 94% accuracy. Picon et al. concentrated
on the primary datasets of several wheat crop diseases. They classified different diseases of wheat crops
using a convolutional neural network-based architecture, namely the ResNet150 model, and reported an
accuracy of 96.00%. After that, Schirrmann et al. [25] distinguished between several wheat crop diseases
using the ResNet18 model. They achieved an accuracy rate of 95.00% when separating wheat plants free of
stripe rust infection from healthy plants. However, instead of concentrating on classification, researchers
have turned their attention to detection, trying to find the precise location of diseases in image data. To
precisely locate the disease, they used a variety of object detection-based methods, including the Faster
R-CNN and R-CNN. In addition, Li et al. used the Faster R-CNN and RetinaNet feature extractor with a
global heat dataset, which included images of wheat ears at various phases (such as the filling and maturity
stages). Using RetinaNet and Faster R-CNN, they achieved 82.00% and 72.00% accuracy, respectively [26].
Similarly, Liu et al. detected stripe rust infections captured in both oriental and horizontal ways using an
object detection-based algorithm. The average precision for identifying wheat stripe rust is 0.61. The work
done on categorizing and identifying wheat crop diseases using machine- and deep-learning-based methods
is summarized in Table 1.

3 Dataset Description
Currently, very few publicly available datasets of wheat disease images affect various disease patterns

in wheat crops. Those images depict the diverse patterns that have been collected using fixed cameras or
smartphones under field conditions. These images include additional information, such as weeds, soil, and
human hands touching the damaged leaves, and some diseased images also contain healthy plants. The



2756 Comput Mater Contin. 2025;84(2)

WFD2020 dataset focuses on fungal infections affecting wheat crop and has been utilized in the present
study. This dataset is accessible to the general public for research purposes at “http://wfd.sysbio.ru/” (accessed
on 13 March 2025) [27]. It comprises ten classes of fungal diseases that affect wheat crops. However, for
experimentation purposes, three disease classes (yellow rust, leaf rust, and powdery mildew) were used.
Examples of images showing fungal infections in wheat are given in Fig. 1; each image shows a single diseased
class. These two diseases are depicted in two distinct images are shown in Fig. 2. In real-world situations,
identification of various diseases is difficult. Therefore, there is a need to develop an automated system
that uses images to detect diseases and their locations. However, the development of such systems requires
thorough knowledge of hardware resources, technical support, and annotation tools.

Figure 1: Sample of images containing single disease

Figure 2: Image sample containing multi-diseases (i.e., leaf rust and powdery mildew)

http://wfd.sysbio.ru/


Comput Mater Contin. 2025;84(2) 2757

3.1 Dataset Annotation
For object recognition, each object in an image must have a ground truth label assigned to it. This label

contains the precise details of the shape and placement of the object inside the image [28]. Experts have
thoroughly verified bounding-box annotations to ensure the accuracy of disease identification. Automated
testing helps detect and rectify errors in datasets. Errors can have an impact on the model performance,
leading to erroneous detections or inadequate object localization. Accurately assigning class labels to
different objects can characterize and identify objects, which is the primary goal of image annotation.
Many tools are currently available for annotating images, including LabelImg, Labelme, VGG annotator,
and AI-based Computer vision annotation tools (CVAT). Among them, the Python-developed LabelImg
and AI-based CVAT tools are the most widely used tools to annotate images. Moreover, using these tools,
we can annotate our images into different formats: YOLO, PASCAL VOC, and CreateML, depending on
the type of object-detection model used. However, in this study, we used two different annotation formats:
the PASCAL VOC format that is, ∗.xml for executing the Tensorflow-based models, the annotations using
LabelImg, and the other is for the YOLOv8 object detection model which requires YOLO (∗.txt) formats
for object detection using AI-based CVAT tool. The most frequently used format is ∗.xml and ∗.txt, where
the object class was identified using bounding-box coordinate data. Bounding boxes use the x- and y-
coordinates to determine the location of the target object inside an image, with width, height, and depth
parameters to specify the dimensions of the object. Note that the image and its generated annotation file
have the same name. For instance, ten annotation files corresponding to the ten sampled images were
generated. These images and their annotations were then combined and sent to the model for further
processing and training. Table 2 shows the sample information, where there are 350 high-resolution images,
which are divided into four classes: multi-diseases (50 images), leaf rust (100 images), powdery mildew
(100 images), and yellow rust (100 images). To assure accuracy, professionals carefully annotated images taken
from various farm environments, capturing the unique visual characteristics of each disease. A deliberate
emphasis was placed on the lower frequency of multi-disease cases to test the model performance in
underrepresented diseases. Pre-processing techniques, such as normalization and scaling, guarantee data
quality while maintaining important characteristics. During the training and testing of the models, single
and co-occurring plant diseases were considered in real-life situations.

Table 2: Dataset description

Samples Number of images Annotated objects
Leaf rust 100 112

Powdery mildew 100 193
Yellow rust 100 120

Multi-diseases 50 328
Total 350 753

3.1.1 Annotation Description for Tensorflow-Based Models
To annotate the images, we used the LabelImg tool, which generally uses the ∗.xml formats. The images

and annotations utilized to train the model are listed in Table 2. A total of 350 images were used, and 753
annotated objects were generated and divided into three classes: powdery mildew, leaf rust, and yellow
rust. Thirty-four images were used during the testing process. Out of these 34 images, 24 contained only



2758 Comput Mater Contin. 2025;84(2)

information about one disease-, and 10 had multiple diseases. For the three diseased groups, 99 ground-
truth annotations were generated from the test images. For example, 46, 16, and 37 annotated objects were
generated for leaf rust, yellow rust, and powdery mildew, respectively. The annotations of the sampled
diseased images are given along with their associated annotated files, as shown in Figs. 3 and 4, respectively.

Figure 3: An illustration of annotation of multiple objects with in an image

Figure 4: Annotated file’s attributes

3.1.2 Annotation Description for Pytorch-Based Models
Further, to experiment with the YOLO model, we used the AI-based CVAT tool to annotate the same

dataset as mentioned above. It is an open-source image annotation tool written in JavaScript and Python.
Using this tool, we can annotate images in different formats according to the requirements of the object



Comput Mater Contin. 2025;84(2) 2759

detection models. A total of 350 images were used and 619 annotated objects related to the three given
classes were generated. Out of these 619 annotated objects, 192, 257, and 170 instances were generated through
distinct classes: yellow rust, powdery mildew, and leaf rust diseases, respectively.

4 Methodology
In this study, we used two deep learning model frameworks, one is TensorFlow and other one PyTorch-

based. Initially, we considered the two TensorFlow-based object detection models, i.e., Faster R-CNN and
SSD with different backbones and image sizes. Subsequently, we used the PyTorch-based YOLOv8 state-of-
the-art algorithm. Now, let us understand the basics of object-detection algorithms. Object detection is one
of the most popular computer vision methods for identifying objects in an image. Accurately locating an
object within an image frequently entails producing a higher number of region proposals from the input
images. The main objective of detection techniques is to determine and project an object’s location. An object
can be identified using four characteristics: enclosure, color, texture, and scale. More specifically, a bounding
box with a confidence score is usually the result of an object-detection model. The confidence score, which
lies between 0 and 1, indicates how confident the model is in order to correctly identify the object present
inside the bounding box. The detection process consists of two main tasks: the classification and location
of the target area. Here, localization focuses on accurately drawing the bounding box around an object, and
image identification identifies the presence of an object in an image. These bounding boxes are typically
determined by the x- and y-axis coordinate values. Broadly, we can classify various object detection models
into two categories, an overview of which is given in the following section.

a) Region proposal-based object detection models Region proposal-based object detection models are
commonly used to improve high-level features and predict bounding box coordinates. These models are
also known as two-stage detectors; in the first stage, they create the region of interest, and in the next
stage, they perform the classification task. The performance of these detector models depends on high-speed
hardware components such as GPUs and TPU-powdered machines. Additionally, the selection of object
detection models, such as R-CNN, Fast R-CNN, Faster R-CNN, etc., has a direct impact on the performance
of the model.

b) Regression and classification-based One-stage detectors directly map the bounding box coordinates
and input image pixels to forecast class probabilities. You Only Look Once (YOLO) and single-shot multibox
detectors (SSDs) are the two most popular one-stage detectors. This study explored variants of SSDs, Faster
R-CNN, and YOLOv8 models to detect various fungal infections in wheat.

Here is a brief discussion about these models:
(i) Single-shot detectors (SSDs): An SSD model detects objects in an image in a single shot. Using anchor

boxes of various sizes and aspect ratios, this single-stage detector predicts object instances that constitute the
classifier and regressor of the complete network. Each convolutional layer generates feature maps that are
then combined using a post-processing technique called greedy nonmax suppression, producing a range of
bounding boxes for class discrimination. These boxes were then employed to suppress duplicate detections.
The most prominent application of the SSD technique is to detect large-scale objects and deliver highly
accurate results with faster processing times than the faster R-CNN model. One-stage detectors typically
operate faster than two-stage detectors.

(ii) Faster R-CNN: The Faster R-CNN model, proposed by Ren et al. in 2015 [29], operates in two steps.
The first stage involves generating region proposals, while the second stage performs classification. In this
network architecture, region proposals are generated efficiently by RPNs (Region Proposal Networks) that
work together with the detection network to share full-image convolutional characteristics. These RPNs



2760 Comput Mater Contin. 2025;84(2)

can generate anchor boxes of various shapes, including square, long, wide, or large rectangular shapes.
In addition, three different sizes may be available for these anchor boxes: small, medium, and large. The
object recognition models in the current investigation were trained using pretrained TensorFlow object
recognition models. Specifically, SSDs and faster R-CNNs are the two most widely used object recognition
models [29,30]. A variety of pretrained object identification models are experimented with Table 3, which use
different backbone CNN-based models that were selected based on their speed and mean average precision
after training the model on the COCO dataset.

Table 3: Tensorflow object detection models considered for experimentation

Detector Image size Backbone Speed (ms) COCO mAP (in %)

One-stage detector (SSD)

640 × 640
ResNet50 46 34.30
ResNet101 57 35.60
ResNet152 80 35.40

1024 × 1024
ResNet50 87 38.30
ResNet101 104 39.50
ResNet152 111 39.60

Two-stage detector (Faster R-CNN)

640 × 640
ResNet50 53 29.30
ResNet101 55 31.80
ResNet152 64 32.40

1024 × 1024
ResNet50 65 31.00
ResNet101 72 37.10
ResNet152 85 37.60

800 × 1333
ResNet50 65 31.60
ResNet101 77 36.60
ResNet152 101 37.40

(iii) YOLOv8: The primary goal of current research is to detect objects in real-time with high accuracy,
which makes it appropriate for applications that demand efficiency and speed, including autonomous systems
and precision agriculture. The YOLOv8 model is the state-of-the-art algorithm used in various areas of
agriculture such as disease detection, weed detection, etc. [31–34]. Even in devices with low processing power,
deployment is guaranteed by their lightweight architecture, which includes innovations, such as enhanced
feature pyramids and adaptive anchor computations. However, Faster R-CNN region proposal networks
(RPNs), which focus on high accuracy and detailed object recognition, perform exceptionally well in tasks
that require precise localization and classification in challenging situations, such as aerial analysis or medical
imaging. When combined, these models meet a variety of needs; Faster R-CNN prioritizes accuracy and
managing difficult settings, whereas YOLOv8 prioritizes speed and deployment flexibility [35].

4.1 Wheat Disease Detection Using Faster R-CNN
To identify the various fungal diseases that impact wheat crops, it is necessary to set up a workspace,

specify the model, prepare the dataset, and set up a model architecture based on deep learning models. These
model parameters must be trained and adjusted to increase the efficiency of the model in detecting wheat
crop diseases. Table 4 lists the specifications of the hardware and software used to train the multi-objective
detection models. The GPU-equipped device used in this work is a GeForce RTX 2080 Ti with 62.5 GB



Comput Mater Contin. 2025;84(2) 2761

RAM, which is used to train the object detection models. Processing and training deep learning models
within a few minutes is the main benefit of employing GPU-enabled machines. However, instead of wasting
time on low-level GPUs, academics can concentrate on creating software applications and building neural
networks for training and utilizing high-level GPUs. In addition, installing appropriate CUDA and cuDNN
libraries necessitates an experimental procedure. The software can interact with particular GPU-enabled
devices through the CUDA API, whereas cuDNN is a common deep-learning library used to train object
identification models. In this study, version 8.5 of the cuDNN library and version 11.0 of the CUDA library
were used for the current GPU requirements.

Table 4: Hardware/Software configuration

Hardware/Software Configuration
RAM Memory 62.5 GB
Graphics card NVIDIA Corporation TU102 [GeForce RTX 2080 Ti]
Disk capacity 5.0 TB

Processor Intel R© Core i9-7900X CPU @ 3.30 GHz × 20
OS Name Ubuntu 20.04.4 LTS
OS type 64 bit

Tensorflow 2.9.0
Cuda version 11.0

CuDNN version 8.5.0

4.1.1 Model Architecture
Every object detection model (i.e., VGG16, ResNet50, ResNet101, etc.) aggregate features and function

as fundamental models. Several researchers have used the ResNet50 model as a feature extractor for
object detection [36]. Consequently, we used variant ResNet models as the basis for our investigation. The
resulting model referred to as WFDetectorNet, outperforms in identifying several fungal diseases infecting
the wheat crops. It is a Faster R-CNN model with a ResNet50 backbone built after fine-tuning various
hyperparameters. Fig. 5 shows the architectural structure of the Faster R-CNN model, which is intended to
recognize various fungal diseases in wheat crops. The images, annotations, and designated label class files
are merged into a single binary file at the beginning of the detection procedure. This model then uses the
ResNet50 model’s convolutional layers to produce a variety of region predictions. Region Proposal Networks
(RPNs) are small neural networks that used for predictions. These proposals were generated using RPNs
of various sizes and aspect ratios. To allow a range of aspect ratios and scale values, anchor boxes were
generated with numerous sizes. An input image is projected using a predefined collection of bounding boxes
with different scales and aspect ratios, known as anchor boxes. These anchor boxes are then used by the
object detection algorithm to forecast the location and size of objects inside the image. Selecting a set of base
anchor boxes with various aspect ratios and sizes is the first stage in generating anchor boxes at various scales.
Anchor boxes are usually described by two parameters, width and height, which determine the dimensions
of the anchor box, and a pair of (x, y) coordinates indicates the center of the anchor boxes. It is possible to
specify predefined sizes and aspect ratios for the base anchor boxes. Consider two base anchor boxes, one
of which is 128 × 64 in size and has an aspect ratio of 0.5, and the other is 64 × 128 in size and has an aspect
ratio of 2.0. These foundation anchor boxes can be built at different scales, using them as templates. Scaling
factors were used to scale the base anchor boxes and construct anchor boxes at various scales. Four scaling
factors were used to train the model: 0.50, 0.25, 2.0, and 1.0, respectively. The following procedure was used



2762 Comput Mater Contin. 2025;84(2)

to generate anchor boxes that were subsequently placed at different points throughout the image. The initial
base anchor box comprises 128 × 64 pixels, with an aspect ratio of 0.5. The scaling values were adjusted to
obtain anchor boxes of varying sizes: (32, 16), (128, 64), (64, 32), and (256, 128). Each scaled anchor box is
positioned differently throughout the image. For example, in a 16 × 16 grid, we arranged them in the middle
of each grid cell to create 256 anchor boxes for the base anchor box. The second base anchor box measured
64× 128 pixels and had an aspect ratio of 2.0. -For the second base anchor box, which has an aspect ratio of 2.0
and dimension of 64 × 128. The scaled anchor boxes must be placed at various points throughout the image.
For example, in a 16 × 16 grid arrangement, 256 anchor boxes were generated at the center of each grid cell to
create the base anchor box. This yielded 512 anchor boxes with the appropriate aspect ratios. The actual sizes
of the generated anchor boxes vary depending on the scaling factors, even if the base anchor box size is set
to 256 × 256. These generated bounding boxes are sent to the Region of Interests (ROIs) in the pooling layer.
This layer selects the most important features, which is similar to the CNN max-pooling layer. In addition, it
converts feature maps of non-uniform sizes into fixed-size feature maps. Subsequently, the fully connected
layers received these feature maps and the model began training. In addition, the training speed and test
duration of the model were accelerated using the ROIs pooling layer. Moreover, the bounding boxes and
class labels (softmax activation function) were predicted by the classifier and regressor simultaneously. The
computational cost increases; therefore, the model produces numerous bounding boxes or region proposals.
The bounding boxes were also eliminated by the non-maximum suppression (NMS) layer, which predicted
the highest prediction confidence score.

Figure 5: Model architecture Faster R-CNN for detector fungal disease of wheat crops

4.1.2 Training the Model
As previously mentioned in Table 3, the model for diagnosing fungal infections in wheat crops is trained

using object detection models, particularly Faster R-CNN and SSDs. The TensorFlow object detection API
was used to create a TFRecords file, which prepared the dataset for training. One benefit of binary-format files
is that they use less disc space. The following procedures are involved in creating the TFRecords file. (a) All
image files were annotated, thus generating an individual XML file for each image file. (b) Converting every



Comput Mater Contin. 2025;84(2) 2763

∗.XML file to a ∗.CSV file. (c) A label map file is created in which a distinct ID is allocated to each object class.
Subsequently, these three files–images, annotations, and label maps–were combined to create a TFRecords
file. During the generation of this binary file, the object detection model was customized using a model
configuration file. A detailed description of the configuration files and default values for the object-detection
model training is provided below.

• Num_classes: The total number of objects that can be identified is referred to as the number of classes.
The default value of this parameter on the COCO dataset is 80 classes, which can be changed depending
on the number of objects in a given problem.

• feature extractor: A feature extractor is similar to a CNN model that can extract relevant characteristics
from annotated objects. VGG16, ResNet, InceptionNet, and other backbone models are the most
frequently used models for object detection.

• Scales: The configuration file’s scale parameter changes based on the object’s size. The default scale values
are 0.25, 0.5, 1.0, and 2.0, which use a base anchor box to create four anchor boxes of varying sizes. The
following formula shows how to retrieve the output anchor boxes: Output anchor boxes = [scale∗(size of
base anchor box)]

• Aspect_ratios: The aspect ratio is the width-to-height ratio between the anchor boxes. The default values
of the aspect ratio were 0.5, 1.0, and 2.0, indicating optimal aspect ratio values. For example, for facial
recognition its value will be 1.0; choosing 0.5 or 2.0 would be unreal because no face-in-face detection
problem has a width that is half of its height or twice its width. Selecting the correct aspect ratio is a very
important parameter in object detection. Therefore, selecting the appropriate value of the aspect ratio
significantly reduce the amount of time required to train the model. The format of the output anchor
boxes is as follows. Output anchor box = (width × (aspect ratio) ∗ height)

• Height/width stride: Anchor boxes are created using height and width strides, always staying true to
their nominal values, which are placed in the middle of the bounding boxes.

• Batch_size: The number of samples in the neural network used for training in an epoch was determined
by the batch size. Both image dimensions and hardware have significant effects on this value. Also, larger
larger batch sizes require powerful GPU computer systems.

• Num_steps: The total number of epochs multiplied by the ratio of the size of the training dataset to the
batch size was used to obtain the number of steps.

• Data_augmentation_options: Deep learning models require large amounts of data, which are necessary
for a dataset that can be increased using augmentation techniques. Augmentation in object detection
models can be performed better by adjusting the saturation, hue, and contrast properties.

• Learning_rate: The learning rate modifies the network weights by adjusting the step size during training,
thereby accelerating and stabilizing the network. A lower learning rate frequently results in better model
performance, even if it slows down the learning process. During testing, the default value of the learning
rate changed from 0.01 to 0.02.

At this point, the default parameters were used in a small number of experiments. Table 5 contains a
description of the predefined parameters that were experimented with to determine baseline models.

Table 5: List of default parameters

Parameter name Value
Scales [0.25, 0.5, 1.0, 2.0]

Aspect ratios [0.5, 1.0, 2.0]
Learning rate 0.1

(Continued)



2764 Comput Mater Contin. 2025;84(2)

Table 5 (continued)

Parameter name Value
Batch size 2
Total steps 25,000

IoU 0.5

4.1.3 Performance Evaluation Metrics
In deep learning, mean Average Precision (mAP) metrics are widely used to evaluate the efficiency of the

detector algorithms. Typically, the performance of a detector model is assessed using only one metric. Adding
average precision values? The average precision is the area under the precision-recall curve, and the mean
accuracy percentage (mAP) may be calculated. The Intersection over Union (IoU) threshold value quantifies
the degree of overlap between two bounding boxes, and is used to compute the average precision. IoU values
can also show how similar the two bounding boxes are to each other. The IoU values lie between 0 and 1,
where 1 denotes a perfect match between the predicted and ground-truth bounding boxes and 0 denotes no
overlap. A comparison between the ground-truth values and predicted bounding boxes is presented in Fig. 6,
which shows the execution of the intersection over the union operation. A bounding box can be used to
annotate different objects that appear in an image to determine the ground truth value. For the majority of
the evaluation tasks, the IoU is set to a threshold value of 0.5, which is considered the appropriate value. The
IoU number can be used to assess the output. For example, mAP @ 0.5 is taken into account if the value of
IoU is 0.5. In addition, True Positive (TP), False Positive (FP), and False Negative (FN) terminologies were
used to represent recall and precision.

(i) TP: When IoU ≥ 0.5, the ground-truth object is discovered with the appropriate class label.
(ii) FP: When IoU is less than 0.5, the ground-truth item is recognized with the inaccurate class.
(iii) FN: No evidence of the object’s ground truth.

Figure 6: An illustration of Intersection over Union (IoU)



Comput Mater Contin. 2025;84(2) 2765

The precision of the object detection model is the percentage at which the appropriate objects in the
image are accurately detected. It can also be applied to ascertain the quantity of genuinely favorable results,
which can be stated as follows:

Precision = TP
TP + FP

≅
TP

Total predictions
(1)

On the other hand, recall, which is expressed as follows, shows the success rate at which the model was
able to recognize real positive cases, represented as:

Recal l = TP
TP + FN

=≅
TP

Total ground − truths
(2)

This is simply the area under the precision-recall curve. Over time, the meaning of “AP” has changed.
The final metric is the mean average precision of the test data, which can be obtained by averaging the
precision for each class. Each class is denoted by k and its mAP is computed across various IoU thresholds,
as given below:

mAP = 1
n

k=n
∑
k=1

APk (3)

Tables 6 and 7 present the average precision results obtained from various object detection models,
including SSD (a one-stage detector) and Faster R-CNN (a two-stage detector), for identifying powdery
mildew, yellow rust, and leaf rust diseases on wheat crops. A comparison of the mAP results for detecting
several fungal infections of the wheat crop using SSD models is shown in Table 6. For 640 × 640 and
1024 × 1024 image sizes, we analyze SSD model changes using backbone models (ResNet50, ResNet101, and
ResNet152). The SSD model with ResNet50 backbone, which was trained on 640 × 640 images, showed the
lowest mAP of 0.23 among all of these models. Conversely, the mAP findings of the Faster R-CNN model
with distinct backbone models (ResNet50, ResNet101, and ResNet152) across many image sizes (640 × 640,
1024× 1024, and 800× 1333) are presented in Table 7. The model having the highest mAP of 0.62 was obtained
using the Faster R-CNN model, which was trained on images with a size of 800 × 1333 using the ResNet50
backbone. These evaluations show that the model produces reasonable results when identifying items with
different sizes. Thus, the Faster R-CNN model with 800 × 1333 image size and ResNet50 backbone emerges
as a fundamental model with promising results for wheat fungal disease detection. These findings are based
on evaluation results from some object detector models-, and provide possible directions for additional
development to improve overall performance.

Table 6: Mean average precision of different sizes of SSDs detector models

Model type→ SSD (640 × 640) SSD (1024 × 1024)

Backbone model→ ResNet50 ResNet101 ResNet152 ResNet50 ResNet101 ResNet152

Classes ↓ Average precision Average precision
Leaf rust 0.15 0.07 0.11 0.13 0.12 0.09
Powdery
mildew

0.17 0.03 0.10 0.08 0.01 0.03

Yellow
rust

0.38 0.11 0.38 0.29 0.34 0.19

(Continued)



2766 Comput Mater Contin. 2025;84(2)

Table 6 (continued)

Model type→ SSD (640 × 640) SSD (1024 × 1024)

Backbone model→ ResNet50 ResNet101 ResNet152 ResNet50 ResNet101 ResNet152

Classes ↓ Average precision Average precision
mAP 0.23 0.07 0.19 0.15 0.18 0.10

Table 7: Mean average precision of different sizes of Faster R-CNN models

Model type→ Faster R-CNN (640 × 640) Faster R-CNN (1024 × 1024) Faster R-CNN (800 × 1333)

Backbone model→ ResNet50 ResNet101 ResNet152 ResNet50 ResNet101 ResNet152 ResNet50 ResNet101 ResNet152

Classes ↓ Average precision Average precision Average precision
Leaf rust 0.48 0.06 0 0.19 0.04 0.04 0.44 0.48 0.30
Powdery
mildew

0.56 0.02 0 0.40 0.02 0.01 0.61 0.55 0.43

Yellow rust 0.57 0.14 0 0.40 0 0.12 0.80 0.80 0.76
mAP 0.53 0.07 0 0.33 0.02 0.05 0.62 0.61 0.50

4.1.4 Fine-Tuning the Model
The base model, Faster R-CNN with ResNet50 backbone, was fine-tuned after it was first trained on an

800 × 1333 image size. Several hyperparameters, including the batch size, learning rate, scale, aspect ratios,
and total number of steps, have adjusted during the training process. In Table 8, a summary of the tests with
various fine-tuning settings is presented. The basic model in Experiment 1 was trained using fixed values for
the following parameters: aspect ratio = [0.5, 1.0, 2.0], scale = [0.25, 0.5, 1.0, 2.0], learning rate = 0.1, batch
size = 2, and total number of steps = 25,000. The mAP value for this model is 0.62. In Experiment 2, the scale
values were changed from [0.25, 0.5, 1.0, 2.0] to [0.625, 0.125, and 0.25] while maintaining the same values
for the other variables. The results revealed no discernible differences even with this adjustment, which was
made to detect diseased items of different sizes. The model is then trained with scales = [0.025, 0.5, 1.0] in
Experiment 3, keeping the values for the other parameters constant. However, the mAP results do not show
any appreciable variations. Consequently, we reset the scale values to their starting points, which are [0.25,
0.5, 1.0, 2.0], and we carried out further research to ascertain the proper aspect ratio values. In Experiment 4,
a significant increase in mAP from 0.60 to 0.65 was noted when changing the aspect ratios from [0.5, 1.0,
2.0] to [0.5, 2.0]. Subsequently, we adjusted the learning rate and performed several tests. The learning rate
was changed for experiments 5, 6, and 7 from 0.1, 0.001, 0.001, 0.003, and 0.003 to 0.0001, respectively, to
determine the best learning rate. The mAP results decreased significantly. In Experiment 8, we reset the
learning rate to 0.1 and increased the total number of steps from 25,000 to 40,000. With an mAP of 0.67,
the model demonstrated a discernible increase in learning rate. Furthermore, the total number of steps was
increased to 50,000 and 60,000 in Experiments 9 and 10, respectively. However, throughout these studies,
the mAP levels varied which ranged from a relatively low value of 0.47 for experiment 9 to a comparatively
high mAP of 0.67 for experiment 10. We then experimented with 11 with incremental steps = 60000, aspect
ratio = [0.5, 2.0], learning rate = 0.1, and updated scales = [0.625, 0.125, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0] to improve
the prediction of proper bounding boxes corresponding to each ground-truth bounding box. Eventually,
the mAP value was reduced from 0.67 to 0.60 while updating the scaling value. This implies that [0.25, 0.5,
1.0, 2.0] is the ideal scale values for predicting wheat crop diseases are 0.25, 0.5, 1.0, and 2.0. Furthermore,
scales = [0.25, 0.5, 1.0, 2.0], aspect ratios = [0.5, 2.0], learning rate = 0.1, and batch size = 2 were used in



Comput Mater Contin. 2025;84(2) 2767

Experiment 12. After 25,000 steps, the model achieved a good mAP of 0.65. The batch size was increased
from two to three in the last experiment, Experiment 13, while maintaining the other parameters unchanged.
As a result, the mAP significantly increased from 0.65 to 0.68. Subsequently, we were unable to train the
model on a higher batch size because of restrictions in the GPU specifications and then stopped the training.

Table 8: Model evaluation at different fine-tuning parameters

Experiment
no.

Fine-tuning parameters Average precision

Scales Aspect ratio Learning
rate

Batch
size

Total
steps

Leaf
rust

Powdery
mildew

Yellow
rust

mAP

1 [0.25,0.5,1.0,2.0] [0.5,1.0,2.0] 0.01 2 25,000 0.44 0.61 0.80 0.62
2 [0.625,0.125,0.25] – – – – 0.41 0.60 0.78 0.60
3 [0.025,0.5,1.0] – – – – 0.38 0.58 0.79 0.58
4 [0.25,0.5,1.0,2.0] [0.5,2.0] – – – 0.48 0.68 0.78 0.65
5 – – 0.001 – – 0.29 0.56 0.67 0.51
6 – – 0.003 – – 0.35 0.51 0.66 0.51
7 – – 0.0001 – – 0.15 0.20 0.60 0.32
8 – – 0.01 – 40,000 0.52 0.70 0.81 0.67
9 – – – – 50,000 0.18 0.37 0.69 0.41
10 – – – – 60,000 0.52 0.70 0.81 0.67
11 [0.0625,0.125,0.25,

0.5,0.75,1.0,1.5,2.0]
– – – – 0.41 0.62 0.77 0.60

12 [0.25,0.5,1.0,2.0] – – – 25,000 0.50 0.67 0.79 0.65
13 [0.25,0.5,1.0,2.0] [0.5,2.0] 0.01 3 25,000 0.51 0.73 0.80 0.68

5

4.1.5 Results and Discussion
After fine-tuning the model, the 800 × 1333 image-sized Faster R-CNN model with ResNet50 is trained

to obtain a maximum mAP score of 0.68, making it the best-performing model for detecting fungal diseases
in wheat crops, as discussed in the previous section. Further testing was performed using various fine-tuned
parameters in the configuration file. The results of the object detection model are shown using TensorBoard
as a visualization tool. Furthermore, we identified three categories of fungal infections impacting wheat
crops: yellow rust, leaf rust, and powdery mildew. The identification results for yellow rust and leaf rust are
shown in Figs. 7 and 8, respectively. In these instances, bounding boxes were predicted with an accuracy
of 100%. The accuracy of identifying the correct class label decreases noticeably when an image containing
numerous diseases that remain adequate. The results of disease is detection that occurs on different regions
of images for the diseased plants are displayed in Figs. 9–11. Interestingly, the boundaries between different
disease classifications in an image are sometimes extremely small and multiple diseases can coexist in the
same region in certain cases. It is necessary to keep in mind that a Faster R-CNN routinely outperforms
other models for the detection of infected objects, both for tiny and large-scale objects. Furthermore, for
locations where ground-truth labels were not assigned to infected plants, this model predicted bounding
boxes with higher confidence scores. Therefore, some manual observations were considered to provide a
deeper understanding of the different detection outcomes.



2768 Comput Mater Contin. 2025;84(2)

4.1.6 Model Evaluation
Two manual observations were used to evaluate the model. Furthermore, to evaluate the accuracy of the

model, Observation 1 compares the predicted and ground-truth bounding boxes. Observation 2 examined
the detection results using different levels of confidence.

Figure 7: Single disease, i.e., yellow rust detection

Figure 8: Detection of leaf rust disease



Comput Mater Contin. 2025;84(2) 2769

Figure 9: Multi-diseases detection of yellow rust and powdery mildew diseases

Figure 10: Detection result of leaf rust, and powdery mildew on single leaf

Figure 11: Multi-disease detection of leaf rust and powdery mildew disease on single leaf



2770 Comput Mater Contin. 2025;84(2)

Observation 1: Accuracy evaluation
The actual and predicted bounding boxes were compared to obtain accuracy scores. The Faster R-CNN

(ResNet50) model, which was trained on images with a size of 800 × 1333 and a receptive field, produced
appreciable results. In this observation, only bounding boxes with a specified ground truth were considered,
and those without a ground truth were ignored for comparative analysis. To determine the accuracy of the
model for the test images, Table 9 lists the variances between the actual and predicted anchor boxes. All the
images were examined to identify various diseases.

A single disease may be observed in some of these images, whereas numerous disease symptoms can be
observed in others. For example, in the case of leaf rust disease, the model correctly identified five of eight
bounding boxes; however, a few images showed similar symptoms for both leaf rust and powdery mildew. In
contrast, for powdery mildew, the model correctly predicted three of the four boundary boxes. This means
that the model can predict real bounding boxes with an accuracy of 85.85%.

Table 9: Model accuracy assessment by comparing ground-truth and predicted bounding boxes

Image # Leaf rust Powdery mildew Yellow rust

Actual
Bboxes

Predicted
Bboxes

Actual
Bboxes

Predicted
Bboxes

Actual
Bboxes

Predicted
Bboxes

Image 1 – – – – 1 1
Image 2 1 1 – – 1 1
Image 3 1 1 – – – –
Image 4 – – 4 4 – –
Image 5 4 4 2 2 – –
Image 6 – – 3 2 – –
Image 7 1 1 1 1 – –
Image 8 3 3 1 1 – –
Image 9 8 5 4 3 – –
Image 10 1 1 2 2 – –
Image 11 2 2 2 0 – –
Image 12 2 2 1 1 1 1
Image 13 1 1 – – 1 1
Image 14 – – 3 3 4 2
Image 15 – – 2 2 1 1

. . . . . . .

. . . . . . .

. . . . . . .
Image_nk 1 1 – – 1 1

Total count 46 41 37 31 16 13

Observation 2: Model evaluation from the confidence score
Confidence scores were used to evaluate model performance. The IoU value was used to compute the

confidence score prediction. Here, the model predicts bounding boxes with a confidence score higher than
50%, and ignores the remaining bounding boxes with a confidence score lower than 50%. The intersection



Comput Mater Contin. 2025;84(2) 2771

over union (IoU) threshold is set to 0.5 for predicting the bounding boxes. Random images are used to detect
different diseases, as listed in Table 10 along with the corresponding confidence scores. The model correctly
predicted the class label, with a maximum confidence value of 70%. Nevertheless, in certain cases, the model
continues to expect a proper class label, even when the confidence level drops below 70%. However, in some
instances, the model predicted the class label inaccurately with a lower confidence score; one such example
was misclassified as leaf rust with a confidence score of 54%. Therefore, choosing an IoU threshold value of
0.5 is the best option for identifying various fungal infections in wheat crops.

Table 10: Illustration of disease classes detection with their confidence score

Images # Class label # Bboxes List of confidence scores for each
Bboxes

Image 1 Yellow rust 3 [52%, 98%, 99%]
Image 2 Powdery mildew 6 [70%, 80%, 66%, 100%, 100%, 100%]
Image 3 Leaf rust 5 [97%, 99%, 100%, 99%, 54%]

Powdery mildew 4 [83%, 66%, 94%, 61%]
Image 4 Leaf rust 2 [84%, 62%]

Powdery mildew 3 [84%, 100%, 55%]
Image 5 Leaf rust 3 [93%, 99%, 61%]
Image 6 Leaf rust 6 [94%, 52%, 54% (Wrong prediction),

92%, 97%, 91%]
Image 7 Powdery mildew 5 [99%, 61%, 70%, 53%, 68%]

4.2 Wheat Disease Detection Using YOLOv8
YOLOv8, designed by Ultralytics, is an advanced technique that combines instance segmentation,

image classification, and object recognition to identify crop diseases instantly. YOLOv8, which builds on the
popular YOLO series, particularly YOLOv5, significantly improves the accuracy and efficiency of computer
vision tasks. Projects that take advantage of an intuitive Python package and command-line interface
backed by a strong professional community have illustrated its adaptability [37,38]. YOLOv8 provides
several architectural enhancements compared with YOLOv5 by emphasizing its accuracy, efficiency, and
adaptability. Substituting a reduced, reparameterized backbone for the CSPDarknet53 backbone improves
speed and feature extraction. The PANet neck was transformed into an Enhanced Path Aggregation Network
(EPAN) with dynamic routing and spatial attention to further enhance the feature fusion. The bounding
box prediction was simplified and the computational overhead was decreased by YOLOv8’s anchor-free
architecture. Its adjustable decoupling head and dynamic loss function maximize the performance of certain
tasks. Additionally, by adding support for segmentation and keypoint detection tasks, YOLOv8 expands
its capabilities beyond object detection [39,40]. To improve the efficiency and accuracy, YOLOv8 uses
an anchor-free detection technique that directly predicts the object centers. The model’s use of mosaic
augmentation during training further demonstrated its adherence to innovation. By exposing the model to
various situations, this method promotes a thorough learning [41]. In mosaic augmentation, four distinct
images are arranged in a 2 × 2 grid to form a single mosaic image. A single image was created by randomly
cropping and scaling portions of each image. Mosaic augmentation combines numerous images into various
training samples, thereby improving small-object representation, context understanding, data efficiency,
and model generalization. The YOLOv8 model was a perfect fit for our research project because of its
substantial architectural improvements, which included a superior feature pyramid network, adaptive anchor



2772 Comput Mater Contin. 2025;84(2)

calculation, and an advanced loss function. These enhancements significantly accelerate the inference times
and increase the detection accuracy, making it well suited to our research. The increased accuracy and
efficiency of YOLOv8 were crucial for our investigation, which required high-speed processing and accurate
detection in situations that changed quickly.

4.2.1 Model Architecture
YOLO is a state-of-the-art object detection technique that is widely accepted in computer vision

owing to its speed of detection. YOLOv8, the most recent version of the architecture of the model, is
given in Fig. 12, the YOLO architecture was initially presented in the C programming language, and its
repository, DarkNet, was continuously maintained by its developer, Joseph Redmond, while pursuing his
doctorate at the University of Washington. The YOLOv3 version of PyTorch, developed by Glenn Joffker,
indicated the beginning of an amazing advancement in object identification. He created the YOLOv3
PyTorch repository to replicate YOLOv3 from DarkNet, but it soon exceeded these goals. Consequently, his
business, ultralytics, released YOLOv5, which increased the popularity and accessibility of the model among
developers. Different models started to appear as the excitement increased. Scaled YOLOv4 and YOLOv7 are
notable branches of the YOLOv5 repository. Furthermore, independent models such as YOLOx and YOLOv6
demonstrate the creative capacity of the community. Ultralytics confirms its role in advancing AI-driven
solutions by continuing to maintain the YOLOv5 repository, which is an essential resource for the object
detection community.

YOLOv8, one of the most recent YOLO (You Only Look Once) models, represents a breakthrough
in object identification. YOLOv8, which Ultralytics has been working on over the last six months, offers
significant architectural improvements. For efficient object detection, the YOLO core integrates features
through a neck and analyzes image pixels at different resolutions by using a backbone of convolutional
layers. By predicting the centers of objects directly, YOLOv8’s anchor-free architecture overcomes the
problems with anchor boxes that plagued earlier iterations. Traditional models concentrate on class loss
and the loss of objectness. By streamlining the detection process, this anchor-free method increases the
efficiency and accuracy. With these enhancements, YOLOv8 represents a groundbreaking solution for object
detection. Fig. 13 shows some glimpses during the model-training process.

4.2.2 Training the Model
Table 11 lists the training results of the YOLOv8 model for the different epochs. In addition, Google

Collab Pro was used to train the model. A total of 355 images, comprising 50 images of mixed diseases
and 100 images for each class–leaf rust, yellow rust, and powdery mildew–were used to train the YOLOv8
model. Seven distinct epoch settings (200, 400, 600, 700, 800, 1000, and 1200 epochs) were used to train
the models. Mean average precision (mAP), training time, and inference speed per image (measured in
milliseconds) were used to assess model performance. A performance study of the YOLOv8 model over a
range of epochs showed that as the number of training epochs increased, the mean average precision (mAP)
consistently improved. With additional training epochs, the mAP of the model increased from 0.502 at 200
epochs to 0.926 at 1200 epochs, indicating an improved capacity to learn intricate patterns. The 200–400
epoch range (0.502–0.753) saw the largest gains in mAP, suggesting a quick learning phase in the early stages
of training. However, after 600 epochs, the pace of progress decreased, and moderate advances were observed
between 700 and 1000 epochs. Unexpectedly, only a small mAP improvement (from 0.907 to 0.926) was
obtained when the number of epochs increased from 1000 to 1200, indicating a reduction in gains with
additional training.



Comput Mater Contin. 2025;84(2) 2773

Figure 12: Basic architecture of YOLOv8 [41]



2774 Comput Mater Contin. 2025;84(2)

Figure 13: Training glimpses on different batches

Table 11: Mean average precision of YOLOV8 models on different epochs

200 Epochs

Class Box(P) R mAP50 mAP50-95
All 0.85 0.63 0.73 0.50
YR 0.86 0.69 0.78 0.56
PM 0.78 0.60 0.74 0.44
LR 0.89 0.59 0.69 0.50

400 Epochs

Class Box(P) R mAP50 mAP50-95

All 0.93 0.87 0.93 0.75

(Continued)



Comput Mater Contin. 2025;84(2) 2775

Table 11 (continued)
YR 0.94 0.90 0.97 0.79
PM 0.93 0.90 0.95 0.74
LR 0.94 0.80 0.87 0.73

600 Epochs

Class Box(P) R mAP50 mAP50-95

All 0.97 0.93 0.98 0.85
YR 0.97 0.96 0.99 0.87
PM 0.96 0.96 0.99 0.85
LR 0.99 0.87 0.94 0.81

800 Epochs

Class Box(P) R mAP50 mAP50-95

All 0.98 0.95 0.98 0.88
YR 0.98 0.99 0.99 0.91
PM 0.97 0.97 0.99 0.88
LR 1.00 0.89 0.97 0.85

1000 Epochs

Class Box(P) R mAP50 mAP50-95

All 0.98 0.96 0.99 0.90
YR 0.97 0.99 0.99 0.93
PM 0.97 0.98 0.99 0.90
LR 0.99 0.92 0.97 0.88

1200 Epochs

Class Box(P) R mAP50 mAP50-95

All 0.98 0.98 0.99 0.93
YR 0.97 0.99 0.99 0.94
PM 0.96 0.98 0.99 0.93
LR 0.99 0.94 0.98 0.90

The training time increased with the number of epochs, from 1.861 h for 200 epochs to 9.471 h for 1000
epochs. However, at 1200 epochs, the training time surprisingly dropped to 2.422 h; the reason might be
that the model may have undergone optimization during its convergence process. With values between 0.2
and 0.3 ms per image, the inference speed remained constant across all epoch settings, demonstrating that
extended training did not affect the model’s capacity to detect objects in real time. According to these results,
training for a larger number of epochs improves accuracy; however, performance gains over 1000 epochs
are negligible, and training for 1200 epochs requires less time, which may be the best compromise between
computational efficiency and accuracy.

Training Time and Speed Analysis: With the notable exception of a drop at 1200 epochs, where
the training time was significantly reduced at 2.422 h compared to 9.471 h for 1000 epochs, the training
times generally increased with additional epochs. This implies that the training process was optimized at



2776 Comput Mater Contin. 2025;84(2)

higher epochs, regardless of the hardware efficiency or early convergence. Moreover, for every image, the
inference speed varied between 0.2 and 0.3 ms, staying comparatively constant across all epoch settings. This
consistency indicates that the prediction speed did not decrease as model accuracy and complexity increased.
Interestingly, the training time decreased significantly to 2.422 h, even though the mAP improved at 1200
epochs. Hardware or model optimization, such as early stopping or a faster rate of convergence, could be the
cause of this odd behavior. Despite this, the performance and efficiency of the 1200-epoch model were the
best, indicating that it might be the ideal configuration.

Model Accuracy vs. Epochs: At 200 epochs, the mAP value was 0.502; at 1200 epochs, it improved
significantly to 0.926. The mAP improved from 0.845 to 0.907 between 600 and 1000 epochs and between
200 and 400 epochs, and it rose from 0.502 to 0.753. These are the two most notable advances in the field. The
improvements were less significant, with the mAP increasing from 0.907 to 0.926 during the 1000 and 1200
epochs. This implies that while longer training sessions can result in improved performance, the benefits
decrease as the number of epochs increases beyond 1000. All epochs exhibited a constant inference speed,
which is essential for real-time detection. The model operated with remarkable efficiency, averaging between
0.2 and 0.3 ms per image. This indicates that even as the number of training epochs and mAP increases,
the YOLOv8 model maintains its speed. Fig. 14 shows the code snippet used to train the model on the best-
trained parameters.

Figure 14: Code snippet of training the YOLOv8 model

Optimal Epoch Selection: Training for 600−800 epochs would probably provide an optimal com-
promise between training time (5.580–7.002 h) and performance (mAP ∼ 0.845–0.881) for the majority of
applications. However, training for 1000 epochs (mAP = 0.907) or 1200 epochs (mAP = 0.926) could make
sense for crucial jobs in which maximal accuracy is required. With the maximum mean average precision
(mAP) attained at 1200 epochs, the YOLOv8 model showed consistent performance gains across all epoch
settings. The constant inference speed of the model, along with the significant reduction in the training time



Comput Mater Contin. 2025;84(2) 2777

at 1200 epochs, indicates that this is the most efficient setting overall. However, 600–800 epochs offer a fair
compromise between near-optimal accuracy and reduced processing demands for applications where the
training time is more important. Early Stopping: When the accuracy reaches equilibrium at higher epochs,
implementing early stopping criteria may help to further optimize the training time. Generalization: The
ability of the model to adapt to previously unidentified cases may be enhanced by growing the dataset or
employing data augmentation strategies. Hardware Optimization: Given the dramatic drop in training times
at 1200 epochs, it is possible to investigate additional hardware optimizations or adaptive training techniques
to reduce the training times for each epoch.

4.2.3 Results and Discussion
Furthermore, to estimate the performance of the YOLOv8 model, we used several performance

measures, such as the confusion matrix and PR curve.
Confusion Matrix: This is a square matrix that provides a clear view of the correctly predicted samples

from the incorrectly predicted samples for each class. Fig. 15 shows a comparison of the confusion matrix
results for the three most frequent epochs: 800, 1000, and 1200. The model consistently performs well for
Yellow rust and Powdery mildew, with Yellow rust improving from 0.99 to 1.00 and Powdery mildew staying
stable at 0.99 throughout, according to the confusion matrix results throughout 800, 1000, and 1200 epochs.
Compared to other materials, leaf rust shows greater fluctuation, with an initial value of 0.95 decreasing to
0.94 at 1000 epochs, and then improving to 0.96 by 1200 epochs. This shows that yellow rust and powdery
mildew were successfully classified by the model at an early stage; however, leaf rust requires additional
training to perform at its best, most likely because of the complexity of its features. With some potential for
a small improvement in leaf rust, the model demonstrated a good classification accuracy for all three classes
by the end of 1200 epochs.

Figure 15: (Continued)



2778 Comput Mater Contin. 2025;84(2)

Figure 15: Confusion matrix results on different epochs

Precision-Recall Curve: The model’s increasing performance with more training is shown by the
precision-recall results for the 800, 1000, and 1200 epochs of yellow rust, powdery mildew, and leaf rust
classifications, as depicted in Fig. 16. The precision-recall values for yellow rust were consistently high,
beginning at 0.993 at 800 epochs and slightly increasing to 0.994 at 1200 epochs. This suggests that the model
can correctly categorize the disease even in its early stages. Similarly, powdery mildew showed consistently
high performance; during the epochs, precision-recall values increased from 0.992 to 0.994, indicating
how easily the model could discriminate this class. Leaf rust, on the other hand, started with a lower
precision-recall value of 0.968 at 800 epochs but then dramatically improved to 0.983 by 1200 epochs. This
shows that leaf rust is more complex than other diseases, either because of overlapping traits or imbalances
between classes. Consequently, the model required more training to properly classify leaf rust. The consistent
enhancement over the epochs indicates that the model is gradually gaining proficiency in managing leaf rot.
Along with this epoch-to-epoch growth, the mean average precision (mAP) began at 0.984 at 800 epochs,
increased to 0.987 at 1000 epochs, and reached 0.990 at 1200 epochs. This indicates a steady improvement
in the capacity of the model to strike a balance between recall and precision throughout the training for all
classes, particularly the more difficult leaf rust disease class. These findings indicate that although the model
performs exceptionally well in the early stages of powdery mildew and yellow rust, more training greatly
improves the model’s ability to classify leaf rust and the overall performance. Hence, for 1200 epochs, the
YOLOv8 model performed well. Therefore, we analyzed the loss graph comparison by fixing the results for
1200 epochs. In object detection, a loss graph is useful for analyzing the learning process, detecting overfitting
and underfitting problems, and determining whether a model has reached convergence. The convergence
point was defined as the moment at which the training and validation losses decreased significantly. This
indicates that additional training may not result in any improvement because the model has learned as much
as possible using its current configuration. Fig. 17 shows the training and validation loss graph results, where
we can clearly see that a smooth curve has been obtained for both the training and validation data. However,
a smoother curve has obtained for the validation data.



Comput Mater Contin. 2025;84(2) 2779

Figure 16: Precision recall curve results on various epochs

Figure 17: Training and validation loss graph comparison



2780 Comput Mater Contin. 2025;84(2)

Further, Figs. 18–20 show the detection results of the YOLOv8 model for all classes, i.e., yellow rust,
powdery mildew, and leaf rust diseases for 1200 epochs. Object detection models are used to detect plant
diseases such as yellow rust, powdery mildew, and leaf rust. The prediction accuracy of the model is indicated
by confidence scores, bounding boxes around the infected areas, and class labels that identify a specific
disease. For example, a bounding box may enclose a leaf area that exhibits symptoms of leaf rust or yellow
rust. A class label, such as “yellow rust,” “powdery mildew,” or “leaf rust,” is issued to each bounding box based
on the particular traits that the model finds. For instance, yellow-orange pustules may indicate the presence
of powdery mildew, which appears as a white powdery substance on the leaf surface, and reddish-brown
patches may indicate the presence of leaf rust. The algorithm yields a confidence score that indicates the
degree of certainty that the diagnosed disease is leaf rust, powdery mildew, or yellow rust in addition to the
class designation. The model is quite definite in its classification if it has a high confidence level (e.g., 0.90%
or 90%), whereas a lower value indicates less confidence. For instance, if a detected area has a bounding
box labeled “yellow rust” and an 85% confidence level, the model may have 85% confidence that yellow rust
affects the leaf section inside the box. Similarly, the model is slightly less convinced but still believes that
the detected region includes powdery mildew if another box is labeled “powdery mildew” with a confidence
score of 0.75.

Figure 18: Detection results on validation batch 1



Comput Mater Contin. 2025;84(2) 2781

Figure 19: Detection results on validation batch 2

Figure 20: Detection results on validation batch 3



2782 Comput Mater Contin. 2025;84(2)

4.3 Comparative Study on Faster R-CNN and YOLOv8 Model
The TensorFlow Faster R-CNN object identification model may not provide the same mean average pre-

cision (mAP) as the YOLOv8 model for several reasons. The mean average precision of the YOLOv8 model
is higher than that of TensorFlow R-CNN because of its sophisticated training methodology, anchor-free
design, end-to-end learning, enhanced feature extraction, and efficient post-processing. These characteristics
lead to improved object localization and classification, faster model convergence, and improved generaliza-
tion for small and diverse objects. Although Faster R-CNN is more accurate in certain scenarios, its mAP is
lower in some cases because it is generally slower and less efficient when handling particular object scales
and complexities. YOLOv8 incorporates advanced techniques, such as deeper layers, stronger loss functions,
and enhanced feature fusion algorithms (such as PANet and CSPDarknet) to achieve more generalization.
Owing to these enhancements, YOLOv8 can now recognize objects more accurately over a wider variety
of scales and settings, improving its performance for small and crowded items. Faster R-CNN usually has
trouble recognizing small objects and complex backdrops because it relies on area recommendations, which
may not capture small or partially veiled items accurately. The enhanced performance of YOLOv8 is a result
of the following factors:

End-to-End Learning in YOLOv8: YOLOv8 is a single-stage, end-to-end solution. Instantly, anticipating
bounding boxes and class probabilities from the input image improves the overall detection pipeline.
Conversely, the faster R-CNN uses a two-stage detector. It generates region proposals using a Region Proposal
Network (RPN) and then classifies these areas.

Anchor-Free Design in YOLOv8: YOLOv8’s anchor-free architecture eliminates the requirement for
anchor boxes by anticipating object centers and bounding boxes. This makes object localization easier. This
increases the object localization accuracy and reduces errors, particularly for objects that do not fit tightly
within the designated anchor forms. However, disparities between anchor boxes and actual objects may result
from the use of anchor-based detection by a faster R-CNN, especially when objects have significant scale
or aspect ratio fluctuations. This may result in a decrease in the mAP, particularly in datasets that include a
variety of object sizes.

Advanced Post-Processing Techniques: YOLOv8 uses two advanced post-processing techniques to
improve precision by reducing false positives and reinforcing the model’s tolerance to changing input sizes:
non-maximum suppression (NMS) and multiscale training. Even with the addition of NMS, Faster R-CNN’s
two-stage method sometimes yields less-than-optimal region recommendations, lowering the mAP and
compromising the overall accuracy, particularly if the area proposals miss important objects.

Improved Feature Extraction and Architecture in YOLOv8: YOLOv8 can gather more comprehensive
features across sizes owing to its enhanced feature pyramids and more intricate backbone architecture
(such as CSPDarknet). A higher mAP is the result of improved item recognition and categorization ability.
Even though it is more powerful, the Faster R-CNN architecture might not gain from the same degree of
architectural optimization, and its feature extraction network might not be as effective as the core of YOLOv8
in extracting multi-scale features.

Loss Function and Training Strategy: The advanced loss function of YOLOv8 achieves a balance between
objectness, classification, and bounding box regression losses. This ensured that the model was calibrated
precisely, highlighting the accuracy of object detection and decreasing the overlap between the anticipated
boxes. A faster R-CNN uses different losses to classify objects and produce region proposals. When these
losses are split apart, the total mAP may be reduced, which may lead to erroneous classifications or less ideal
placement of the bounding box.



Comput Mater Contin. 2025;84(2) 2783

Data Augmentation and Regularization: Improved data augmentation techniques (including threshold,
random scaling, and mosaic augmentation) are frequently incorporated into YOLOv8 training, which
improves the mAP and aids in the adaptation of the model to new data. Data augmentation is possible
with TensorFlow Faster R-CNN; however, by default, it may not be applied as an aggressive or diverse
augmentation technique, which could result in a lower mAP and worse generalization performance.

Hardware Utilization and Optimization: YOLOv8’s design incorporates batch normalization and other
performance-enhancing changes to enable it to operate more quickly and effectively on contemporary
technologies, such as GPUs and specialized edge devices. Despite its versatility, TensorFlow Faster R-CNNs
may result in less-than-ideal weight updates and delayed training, which could negatively impact model
performance at the final mAP.

Computer-vision-based deep-learning models have recently made significant progress in plant disease
identification. Many pretrained object identification models that require less time and effort to train are
available, making them ideal for addressing domain-specific problems in industries such as healthcare
and agriculture. This reduces the training time and the computational cost. Tables 12 and 13 present a
comparison of the results obtained with the proposed method and other models along with state-of-the-art
techniques, respectively. With YOLOv8, Faster R-CNN, and the proposed framework tested under identical
circumstances, the comparison demonstrates the effectiveness of various object detection algorithms. The
performance measures of YOLOv8 (0.67) and Faster R-CNN (0.63 and 0.61), as reported in other studies,
show competitive but unsatisfactory accuracy in difficult situations. However, our model showed a significant
gain, attaining a YOLOv8 performance measure of 0.99, highlighting its ability to use significant optimiza-
tions and architectural improvements to provide better detection accuracy. This enhancement highlights
how well our strategy addresses the shortcomings of the current models. A comparative analysis revealed
that the proposed the TensorFlow-based fine-tuning model, Faster R-CNN with ResNet50 backbone model,
produced higher mean average precision findings than the state-of-the-art models. On the other hand, the
Pytorch-based YOLOv8 the model revealed the maximum mean average precision of 0.99 for detecting and
classifying multiple wheat fungal diseases. The YOLOV8 model is the best choice over other state-of-the-
art algorithms for detecting agricultural diseases. The findings of this study contribute significantly to the
existing body of knowledge by providing new insights into the agriculture field. The system was tested under
diverse real-world scenarios to validate its practicality and reliability.

Table 12: Comparison of results with various object detection models with backbone ResNet50

Model Image size Accuracy mAP
YOLOv8 640 × 640 NA 0.99

Fine-tuned Faster R-CNN 800 × 1333 85.85% 0.68
Faster R-CNN 800 × 1333 85.00% 0.62
Faster R-CNN 640 × 640 80.00% 0.53
Faster R-CNN 1024 × 1024 65.00% 0.33

SSD 640 × 640 46.00% 0.23
SSD 1024 × 1024 33.00% 0.15



2784 Comput Mater Contin. 2025;84(2)

Table 13: Comparison of results based on number of classes and methodology for detecting various agriculture diseases

References No. of classes Methodology mAP
Proposed work 3 YOLOv8 0.99

[6] 2 Faster R-CNN 0.61
[42] 2 YOLOv8 0.67
[43] 5 Faster R-CNN 0.63

5 Conclusions and Future Directions
With a focus on leaf rust, yellow rust, and powdery mildew, this study used one- and two-stage object

detection models to identify and classify fungal infections in wheat. Starting with TensorFlow-based models,
the WFD2020 dataset–which is available at “http://wfd.sysbio.ru/”–was used to modify the model parameters
to improve detection accuracy. The Faster R-CNN-based model with the backbone ResNet50 yielded the
greatest mAP results at 0.68. In addition, the accuracy of the model was confirmed by manual observations,
yielding a high confidence score for bounding box predictions. The optimized Faster R-CNN model, with
an accuracy rate of 85.85%, was obtained from manual observations. Following this, the PyTorch-based
YOLOv8 model achieved a remarkable mAP of 0.99 for each of the three disease classes during model
training. However, these issues remain in certain circumstances, particularly when there is uneven light
distribution and little distinction between various disease categories. Without addressing the shortcomings
of the study, including its small dataset size, lack of diversity in disease classifications, and inconsistent
mAP values, the conclusions minimized the study’s contributions. To overcome these limitations, future
research options include expanding the dataset to include additional images captured under various lighting
conditions. Additionally, quantifying the number of pathogenic spores in wheat crops could enhance the
assessment of infection severity. In addition, the potential use of web or mobile applications seems to be an
intriguing approach for on-site fungal disease detection in wheat fields. Farmers may be able to prevent the
spread of diseases and safeguard agricultural output using such technology, which would provide them with
real-time knowledge and enable them to act quickly.

Acknowledgement: This research is supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2025R432), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding Statement: This research is supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2025R432), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author Contributions: Shivani Sood: Conceptualization, Methodology, Software, Investigation, Writing—original
draft preparation. Harjeet Singh: Conceptualization, Investigation, Writing—review and editing. Surbhi Bhatia Khan:
Conceptualization, Investigation, Writing—review and editing. Ahlam Almusharraf: Conceptualization, Investiga-
tion, Writing—review and editing, Supervision. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: Dataset used in this study can be download from “http://wfd.sysbio.ru/”.

Ethics Approval: Data confidentiality and anonymity were maintained throughout the research process.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

http://wfd.sysbio.ru/
http://wfd.sysbio.ru/


Comput Mater Contin. 2025;84(2) 2785

References
1. Curtis BC, Rajaram S, Gómez Macpherson H. Bread wheat: improvement and production. Rome, Italy: Food and

Agriculture Organization of the United Nations; 2002.
2. Azimi N, Sofalian O, Davari M, Asghari A, Zare N. Statistical and machine learning-based fhb detection in durum

wheat. Plant Breed Biotech. 2020;8(3):265–80. doi:10.9787/pbb.2020.8.3.265.
3. Roelfs AP, Singh RP, Saari E. Rust diseases of wheat: concepts and methods of disease management. Mexico:

Cimmyt; 1992. [cited 2025 Jan 20]. Available from: https://rusttracker.cimmyt.org/wp-content/uploads/2011/11/
rustdiseases.pdf.

4. Panhwar QA, Ali A, Naher UA, Memon MY. Fertilizer management strategies for enhancing nutrient use efficiency
and sustainable wheat production. In: Organic farming. UK: Woodhead Publishing; 2019. p. 17–39.

5. Hasan MM, Chopin JP, Laga H, Miklavcic SJ. Detection and analysis of wheat spikes using convolutional neural
networks. Plant Methods. 2018;14(1):1–13. doi:10.1186/s13007-019-0405-0.

6. Liu H, Jiao L, Wang R, Xie C, Du J, Chen H, et al. WSRD-Net: a convolutional neural network-based arbitrary-
oriented wheat stripe rust detection method. Front Plant Sci. 2022;13:876069. doi:10.3389/fpls.2022.876069.

7. Lin Z, Mu S, Huang F, Mateen KA, Wang M, Gao W, et al. A unified matrix-based convolutional neural network
for fine-grained image classification of wheat leaf diseases. IEEE Access. 2019;7:11570–90. doi:10.1109/access.2019.
2891739.

8. Picon A, Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes A. Deep convolutional neural networks
for mobile capture device-based crop disease classification in the wild. Comput Electr Agricult. 2019;161:280–90.
doi:10.1016/j.compag.2018.04.002.

9. Dong M, Mu S, Shi A, Mu W, Sun W. Novel method for identifying wheat leaf disease images based on differential
amplification convolutional neural network. Int J AgricultBiolog Eng. 2020;13(4):205–10. doi:10.25165/j.ijabe.
20201304.4826.

10. Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Front Plant Sci.
2016;7:215232. doi:10.3389/fpls.2016.01419.

11. Liu B, Zhang Y, He D, Li Y. Identification of apple leaf diseases based on deep convolutional neural networks.
Symmetry. 2017;10(1):11 doi: 10.3389/fpls.2021.723294.

12. Ferentinos KP. Deep learning models for plant disease detection and diagnosis. Comput Electr Agricult.
2018;145(6):311–8. doi:10.1016/j.compag.2018.01.009.

13. Kaur S, Pandey S, Goel S. Plants disease identification and classification through leaf images: a survey. Arch
Computat Meth Eng. 2019;26(2):507–30. doi:10.1007/s11831-018-9255-6.

14. Sood S, Singh H. An implementation and analysis of deep learning models for the detection of wheat rust disease.
In: 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS); 2020 Dec 3; IEEE. p. 341–7.

15. Bravo C, Moshou D, West J, McCartney A, Ramon H. Early disease detection in wheat fields using spectral
reflectance. Biosyst Eng. 2003;84(2):137–45. doi:10.1016/s1537-5110(02)00269-6.

16. Moshou D, Bravo C, West J, Wahlen S, McCartney A, Ramon H. Automatic detection of ‘yellow rust’ in wheat
using reflectance measurements and neural networks. Comput Electr Agricult. 2004;44(3):173–88. doi:10.1016/j.
compag.2004.04.003.

17. Siricharoen P, Scotney B, Morrow P, Parr G. Automated wheat disease classification under controlled and
uncontrolled image acquisition. In: Image Analysis and Recognition: 12th International Conference, ICIAR 2015;
2015 Jul 22–24. Niagara Falls, ON, Canada: Springer; 2015. p. 456–64.

18. Shafi U, Mumtaz R, Qureshi MDM, Mahmood Z, Tanveer SK, Haq IU, et al. Embedded AI for wheat yellow rust
infection type classification. IEEE Access. 2023;11:23726–38. doi:10.1109/access.2023.3254430.

19. Zhang X, Han L, Dong Y, Shi Y, Huang W, Han L, et al. A deep learning-based approach for automated yellow
rust disease detection from high-resolution hyperspectral UAV images. Remote Sens. 2019;11(13):1554. doi:10.3390/
rs11131554.

20. Jahan N, Flores P, Liu Z, Friskop A, Mathew JJ, Zhang Z. Detecting and distinguishing wheat diseases using
image processing and machine learning algorithms. In: 2020 ASABE Annual International Virtual Meeting; 2020;

https://doi.org/10.9787/pbb.2020.8.3.265
https://rusttracker.cimmyt.org/wp-content/uploads/2011/11/rustdiseases.pdf
https://rusttracker.cimmyt.org/wp-content/uploads/2011/11/rustdiseases.pdf
https://doi.org/10.1186/s13007-019-0405-0
https://doi.org/10.3389/fpls.2022.876069
https://doi.org/10.1109/access.2019.2891739
https://doi.org/10.1109/access.2019.2891739
https://doi.org/10.1016/j.compag.2018.04.002
https://doi.org/10.25165/j.ijabe.20201304.4826
https://doi.org/10.25165/j.ijabe.20201304.4826
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.3389/fpls.2021.723294
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.1007/s11831-018-9255-6
https://doi.org/10.1016/s1537-5110(02)00269-6
https://doi.org/10.1016/j.compag.2004.04.003
https://doi.org/10.1016/j.compag.2004.04.003
https://doi.org/10.1109/access.2023.3254430
https://doi.org/10.3390/rs11131554
https://doi.org/10.3390/rs11131554


2786 Comput Mater Contin. 2025;84(2)

St. Joseph, Michigan: American Society of Agricultural and Biological Engineers. [cited 2025 Jan 20]. Available
from: www.asabe.org.

21. Bao W, Zhao J, Hu G, Zhang D, Huang L, Liang D. Identification of wheat leaf diseases and their severity based
on elliptical-maximum margin criterion metric learning. Sustain Comput: Inform Syst. 2021;30(1):100526. doi:10.
1016/j.suscom.2021.100526.

22. Chin PW, Ng KW, Palanichamy N. Plant disease detection and classification using deep learning methods: a
comparison study. J Inform Web Eng. 2024;3(1):155–68. doi:10.33093/jiwe.2024.3.1.10.

23. Goyal L, Sharma CM, Singh A, Singh PK. Leaf and spike wheat disease detection & classification using an improved
deep convolutional architecture. Inform Med Unlocked. 2021;25:100642. doi:10.1016/j.imu.2021.100642.

24. Hayit T, Erbay H, Varçın F, Hayit F, Akci N. Determination of the severity level of yellow rust disease in wheat by
using convolutional neural networks. J Plant Pathol. 2021;103(3):923–34. doi:10.1007/s42161-021-00886-2.

25. Schirrmann M, Landwehr N, Giebel A, Garz A, Dammer KH. Early detection of stripe rust in winter wheat using
deep residual neural networks. Front Plant Sci. 2021;12:469689. doi:10.3389/fpls.2021.469689.

26. Li J, Li C, Fei S, Ma C, Chen W, Ding F, et al. Wheat ear recognition based on RetinaNet and transfer learning.
Sensors. 2021;21(14):4845. doi:10.3390/s21144845.

27. Genaev MA, Skolotneva ES, Gultyaeva EI, Orlova EA, Bechtold NP, Afonnikov DA. Image-based wheat fungi
diseases identification by deep learning. Plants. 2021;10(8):1500. doi:10.3390/plants10081500.

28. Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation.
Int J Comput Vis. 2008;77(1–3):157–73. doi:10.1007/s11263-007-0090-8.

29. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks.
Adv Neural Inf Process Syst. 2015;28(6):1137–49. doi:10.1109/tpami.2016.2577031.

30. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. SSD: single shot multibox detector. In: Computer
Vision-ECCV 2016: 14th European Conference; 2016 Oct 11–14; Amsterdam, The Netherlands: Springer; 2016.
p. 21–37.

31. Yaseen M. What is yolov9: an in-depth exploration of the internal features of the next-generation object detector.
arXiv:2409.07813. 2024.

32. Varghese R, Sambath M. Yolov8: a novel object detection algorithm with enhanced performance and robustness.
In: 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);
2024 Apr; IEEE. p. 1–6.

33. Kumar P, Kumar V. Exploring the frontier of object detection: a deep dive into yolov8 and the coco dataset. In:
2023 IEEE International Conference on Computer Vision and Machine Intelligence (CVMI); 2023 Dec 10; IEEE.
p. 1–6.

34. Kumar Y, Kumar P. Comparative study of YOLOv8 and YOLO-NAS for agriculture application. In: 2024 11th
International Conference on Signal Processing and Integrated Networks (SPIN); 2024 Mar 21; IEEE. p. 72–7.

35. Chen R, Lu H, Wang Y, Tian Q, Zhou C, Wang A, et al. High-throughput UAV-based rice panicle detection and
genetic mapping of heading-date-related traits. Front Plant Sci. 2024;15:1327507. doi:10.3389/fpls.2024.1327507.

36. Li Z, Peng C, Yu G, Zhang X, Deng Y, Sun J. DetNet: a backbone network for object detection. arXiv:1804.06215.
2018.

37. Xiao B, Nguyen M, Yan WQ. Fruit ripeness identification using YOLOv8 model. Multim Tools Applicat.
2024;83(9):28039–56. doi:10.1007/s11042-023-16570-9.

38. Qadri SA, Huang NF, Wani TM, Bhat SA. Plant disease detection and segmentation using end-to-end yolov8:
a comprehensive approach. In: 2023 IEEE 13th International Conference on Control System, Computing and
Engineering (ICCSCE); 2023 Aug 25; IEEE. p. 155–60.

39. Thuan D. Evolution of Yolo algorithm and Yolov5: the State-of-the-Art object detention algorithm; 2021 [cited 2025
Jan 20]. Available from: https://www.theseus.fi/handle/10024/452552.

40. Sapkota R, Qureshi R, Flores-Calero M, Badgujar C, Nepal U, Poulose A, et al. Yolov10 to its genesis: a decadal and
comprehensive review of the you only look once series. 2024 Jun 12 [cited 2025 Jan 20]. Available from: https://
papers.ssrn.com/sol3/papers.cfm?abstract_id=4874098.

www.asabe.org
https://doi.org/10.1016/j.suscom.2021.100526
https://doi.org/10.1016/j.suscom.2021.100526
https://doi.org/10.33093/jiwe.2024.3.1.10
https://doi.org/10.1016/j.imu.2021.100642
https://doi.org/10.1007/s42161-021-00886-2
https://doi.org/10.3389/fpls.2021.469689
https://doi.org/10.3390/s21144845
https://doi.org/10.3390/plants10081500
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.3389/fpls.2024.1327507
https://doi.org/10.1007/s11042-023-16570-9
https://www.theseus.fi/handle/10024/452552
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4874098
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4874098


Comput Mater Contin. 2025;84(2) 2787

41. Talaat FM, ZainEldin H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput
Applicat. 2023;35(28):20939–54. doi:10.1007/s00521-023-08809-1.

42. Zhu R, Hao F, Ma D. Research on polygon pest-infected leaf region detection based on YOLOv8. Agriculture.
2023;13(12):2253. doi:10.3390/agriculture13122253.

43. Gong X, Zhang S. A high-precision detection method of apple leaf diseases using improved faster R-CNN.
Agriculture. 2023;13(2):240. doi:10.3390/agriculture13020240.

https://doi.org/10.1007/s00521-023-08809-1
https://doi.org/10.3390/agriculture13122253
https://doi.org/10.3390/agriculture13020240

	Leveraging the WFD2020 Dataset for Multi-Class Detection of Wheat Fungal Diseases with YOLOv8 and Faster R-CNN
	1 Introduction
	2 Related Work
	3 Dataset Description
	4 Methodology
	5 Conclusions and Future Directions
	References


