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ABSTRACT: Data curation is vital for selecting effective demonstration examples in graph-to-text generation.
However, evaluating the quality of Knowledge Graphs (KGs) remains challenging. Prior research exhibits a narrow focus
on structural statistics, such as the shortest path length, while the correctness of graphs in representing the associated
text is rarely explored. To address this gap, we introduce a dual-perspective evaluation framework for KG-text data,
based on the computation of structural adequacy and semantic alignment. From a structural perspective, we propose the
Weighted Incremental Edge Method (WIEM) to quantify graph completeness by leveraging agreement between relation
models to predict possible edges between entities. WIEM targets to find increments from models on “unseen links”,
whose presence is inversely proportional to the structural adequacy of the original KG in representing the text. From a
semantic perspective, we evaluate how well a KG aligns with the text in capturing the intended meaning. To do so, we
instruct a large language model to convert KGs into natural language and measure the similarity between generated and
reference texts. Based on these computations, we apply a Top-K union method, integrating the structural and semantic
modules, to rank and select high-quality KGs. We evaluate our framework against various approaches for selecting
few-shot examples in graph-to-text generation. Experiments on the Association for Computational Linguistics Abstract
Graph Dataset (ACL-AGD) and Automatic Content Extraction 05 (ACE05) dataset demonstrate the effectiveness
of our approach in distinguishing KG-text data of different qualities, evidenced by the largest performance gap
between top- and bottom-ranked examples. We also find that the top examples selected through our dual-perspective
framework consistently yield better performance than those selected by traditional measures. These results highlight
the importance of data curation in improving graph-to-text generation.
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1 Introduction
Data quality is commonly defined through “fitness for use”, emphasizing a practical and user-driven per-

spective [1]. As a structured form of data, Knowledge Graphs (KGs) embed knowledge into representations
of nodes, edges, and graph topology [2], facilitating a wide range of applications such as question answering,
knowledge reasoning, and graph-to-text generation [3]. Current research offers various dimensions for
evaluating knowledge graph quality, including intrinsic, contextual, representation, and accessibility [4].
However, the problem is how we can select and assess truly appropriate dimensions for a specific downstream
task and how such a task-specific evaluation should be conducted. This paper investigates a task-oriented
evaluation framework specifically for the graph-to-text generation task.
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Graph-to-text generation is a task that transforms structured knowledge graphs into descriptive natural
language text [5]. This task imposes strict requirements on the quality of the input knowledge graph. Without
complete structure or semantic fit to the source, the generated text risks gaps or inaccuracies. For output
quality, the text must deliver coherence and consistency to reflect the source accurately. Coherence ensures
a logical flow and semantic connectivity throughout the text [6], while consistency guarantees unambiguous
content with sufficient and accurate information [7]. While considerable research has focused on improving
generation models, relatively little attention has been paid to the quality of the input knowledge graph.
On the input side, coherence and consistency manifest in the graph’s ability to exhibit strong connectivity,
relational completeness, and precise graphical representation. More specifically, this can be categorized
into two aspects: the graph’s intrinsic properties [4], including the connectivity and completeness of its
edges, which we refer to as structural adequacy, and its extrinsic semantic representation. Because humans
cannot directly interpret knowledge graphs, they must be transformed into a more accessible form and
then validated; this property we refer to as semantic alignment. Current studies rarely propose unified KG
evaluation approaches that address structural adequacy and semantic alignment, especially in generation
tasks. The problem lies in how to construct an evaluation framework to quantify structural adequacy and
semantic alignment effectively.

Graph connectivity describes the structural cohesion of a graph. In research on Graph Neural Networks
(GNNs) [8,9], the adjacency matrix, while entities and relations are represented through knowledge graph
embeddings [10]. In graph theory [11], it is quantified through measures such as density and clustering
coefficient. These statistical methods assess connectivity by focusing on the existential nature of edges.
However, in practice, A) in a knowledge graph, each node is linked to at least one other node to ensure
baseline connectivity, and B) given a fixed number of nodes, the number of edges in a knowledge graph
is inherently bounded. As a result, such methods are often insensitive to variations in the presence of
edges, making it challenging to capture subtle structural differences. This limitation shifts our focus to its
counterpart—unseen links, unseen connections that reveal structural gaps. Unseen links assume a graph
possesses baseline connectivity but reveal vulnerabilities when previously unrecognized relationships are
identified. The presence of multiple unseen links indicates reduced connectivity and insufficient structural
completeness, impairing the graph’s suitability to support high-quality text generation. Sensitivity to unseen
links is closely tied to the task of Knowledge Graph Completeness [12], which evaluates how well entities and
relationships represent the target content. However, completeness assessment requires a reference standard,
which is often unavailable in graph-text paired datasets due to the absence of a definitive “gold standard”.
Knowledge graph completion [13] aims to enhance the internal completeness of a knowledge graph by
inferring and adding missing entities or relations. To bridge this gap, we propose an Weighted Incremental
Edge Method (WIEM) based on unseen links, where a higher number of such links indicates a less cohesive
structure and a failure to represent the true nature of the knowledge graph.

To measure semantic alignment, we leverage the advanced comprehension abilities of Large Language
Models (LLMs) to transform graphs into text. Previous work [14] has demonstrated that, with well-designed
prompts, LLMs can effectively perform zero-shot graph-to-text generation. If the graph accurately conveys
its intended semantics, the text generated by the LLM should closely align with the reference text. Similarly,
in evaluating structural adequacy, we also utilize LLMs by predicting relationships between nodes based on
the given text. However, to more reliably identify unseen links, we adopt the Princeton University Relation
Extraction (PURE) [15] system, which is trained for enhanced relation prediction. We combine the outputs
of the PURE model and the LLMs to form model consensus for computing the WIEM. To integrate both
structural and semantic perspectives, we apply a Top-K union method to select high-quality knowledge
graph samples.
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This paper presents scientific abstract generation as a concrete example task [9] that requires precise
lexical selection and high-level linguistic expression. Generating scientific abstracts imposes strict quality
requirements on the input KGs and significantly increases their complexity at the paragraph level. To assess
the generalizability of our approach beyond scientific writing, we additionally conduct experiments on the
ACE05 dataset, which consists of sentence-level examples from general-purpose text. Therefore, selecting
high-quality KGs for model training is complex and demanding. To validate whether the KGs identified by
the proposed evaluation framework is “good” or “bad” examples, we mainly employ in-context learning [16]
to validate how the selected support examples influence the quality of graph-to-text generation outcomes. In
summary, the contributions of this paper are as follows:

• We introduce a novel evaluation framework tailored for graph-to-text generation that assesses structural
adequacy and semantic alignment, addressing the gap left by traditional, task-oriented methods.

• We propose Weighted Incremental Edge Method (WIEM), which leverages the consensus between a
large language model and a relation extraction system to capture unseen links, providing a more sensitive
measure of graph completeness.

• Our experiments on the ACL-AGD and ACE05 dataset reveal the effectiveness of our structural and
semantic evaluations, showing that selecting high-quality knowledge graph samples via the proposed
dual-perspective approach consistently improves text generation performance in in-context learning
settings.

2 Related Work

2.1 Graph-to-Text Generation
Knowledge graphs (KGs) are beneficial for knowledge storage and comprehension, with widespread

applications in tasks such as question answering, retrieval-augmented generation, and text generation [3,17].
The acquisition of knowledge graphs has evolved from manual construction to automated methods, with
advancements in related technologies greatly reducing retrieval difficulty [2]. This progress has led to an
exponential growth of KG data across various domains. Establishing an evaluation system customized
to research needs has become essential, particularly for domain-specific KGs that require specialized
frameworks [4]. Improving the quality of KG data directly enhances the cognitive capabilities of the models.
However, there is currently a lack of research focused on the selection and evaluation of KGs specifically for
graph-to-text generation tasks. This study aims to address this gap by examining the output characteristics
of such tasks to identify the features of KGs that meet the requirements for high-quality data.

KGs are not inherently interpretable for humans and thus require transformation into a more accessible
format, with natural language text being the most fundamental representation. Current research on graph-to-
text generation can be broadly categorized into two approaches based on input format: structure-aware [8,9]
and serialized input [7,14]. The former typically employs GNNs to model and learn the relationships between
nodes and edges, effectively capturing the structural properties of the graph. The latter involves serializing
hierarchical data and utilizing the generative capabilities of LLMs. Although serialized input lacks structural
awareness, it significantly enhances the quality of the generated text [14]. However, due to the computational
complexity of GNNs in handling large and complex KGs, this paper adopts serialized KGs and LLMs for the
evaluation framework and experimental validation.

2.2 Knowledge Graph Quality Evaluation
Data quality is typically assessed based on its applicability, emphasizing which data are usable and

which are most effective, particularly in the context of specific tasks [18]. Existing research on KG quality



308 Comput Mater Contin. 2025;84(1)

evaluation can be divided into intrinsic and extrinsic [4]: the inherent properties of the knowledge graph
and its performance in specific tasks. This study aligns with these two aspects, focusing on structural and
semantic perspectives to provide an appropriate assessment.

From a structural perspective, this study focuses on the connectivity and completeness of the graph.
Based on the work of [11], we categorized the most frequently used connectivity measures listed and described
in Table 1 into two levels: node-level and global-level measures. However, these measures present several
problems. First, some are unsuitable for the graph-to-text generation task. For example, centralization [19]
is often measured by identifying the most connected node, but in text, frequently used basic terms such
as “method” usually dominate, which do not represent the core idea of a paragraph. Second, measures like
degree [20] and clustering coefficient [21] measure the number of connections. In KGs, nodes do not exist
in isolation, and the number of edges typically starts from a baseline value. Similarly, the Characteristic Path
Length [22] is influenced by the minimum average path length determined by node values. Measures with
such baseline dependencies are often insensitive to structural variations.

Table 1: Classification of connectivity measures

Measure Description
Node-level

Degree [19,20] Measures the number of connections of a single node.
Betweenness [19] Measures a node’s role as an intermediary in shortest paths.
Closeness [19] Measures the average shortest path length from a node to all other nodes.
Clustering
Coefficient [21]

Measures the proportion of actual connections to possible connections
among a node’s neighbors.

Disruption
Index [21]

Assesses the impact of removing a node on the overall network connectivity.

Centralization
(node-level) [19]

Indicates the degree to which a single node is central compared to other
nodes in the network.

Global-level

Characteristic Path
Length [22]

Measures the average shortest path length between all node pairs.

Density [20,23] Measures the ratio of actual edges to the maximum possible edges.
Centralization
(network-level) [19]

Measures the prominence of the most central node relative to others.

Weakly Connected
Component
Ratio [24]

Measures the structural fragmentation of a graph by computing the ratio
between the number of weakly connected components and the total number
of nodes.

This study proposes an alternative metric to address these limitations by considering the number
of unseen edges. This approach differs from conventional statistical methods by incorporating an under-
standing of the reference text and its graph. A larger number of unseen edges suggests that the original
knowledge graph misses more semantic relations, indicating incomplete coverage of the text’s meaning. This
incremental perspective is more sensitive to variations and provides a nuanced evaluation of the graph’s
structural adequacy.
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The semantic representation of a KG cannot be directly interpreted, making it necessary to convert KGs
into textual form, as in graph-to-text generation tasks. We use an LLM to achieve this, leveraging its powerful
understanding capabilities through zero-shot learning. The evaluation focuses on the similarity between
the generated text and the reference text. In graph-to-text generation tasks, semantic similarity metrics
have gained increasing attention due to their ability to capture meaning beyond surface-level overlap. These
metrics, such as BERTScore [25] and BLEURT [26], leverage contextualized embeddings from pretrained
language models to assess semantic alignment between the generated and reference texts, offering a more
reliable evaluation of fluency, relevance, and informativeness.

3 Methodology

3.1 Overview of the Framework
We propose an evaluation framework tailored to assess the quality of KGs in the graph-to-text

generation task. The framework supports data curation through two core dimensions concerning graph
structure and its alignment to the associated text. In particular, structural adequacy measures whether a
graph contains sufficient and coherent relational structure, and while semantic alignment evaluates the
extent to which the graph aligns with the intended meaning of the target text.

As illustrated in Fig. 1, the evaluation begins with an input knowledge graph G and proceeds through
two parallel but complementary modules. The structural evaluation module identifies unseen edges that are
semantically justified. To do so, we intersect relational predictions from an LLM and a relation extraction
model (PURE). These differences are quantified using Weighted Incremental Edge Method (WIEM), a
metric that uses consensus-based weighting driven by model agreement on the likelihood of relational
links. In parallel, the semantic evaluation module employs an LLM to generate a textual description of the
graph, which is then compared with the reference sentence using BLEURT. BLEURT is a reference-based
metric that uses a fine-tuned language model to assess the semantic similarity between texts, achieving high
correlation with human evaluation. This dual-perspective approach enables a fine-grained and interpretable
evaluation of graph quality, offering actionable guidance for KG selection and sampling in the downstream
generation task.

Figure 1: Overview of the dual-perspective evaluation framework
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3.2 Structural Adequacy
From a cognitive perspective, a well-structured knowledge graph should exhibit explicit connectivity

and align with human expectations regarding implicit semantic relationships. Humans often interpret
meaning not solely through direct links but also via latent associations such as co-occurrence, causality,
and abstraction. However, due to the limitations of current KG construction models, many of these implicit
relations are not encoded, resulting in sparse graphs. The absence of such latent edges undermines the
structural completeness of the graph concerning its intended semantics. In practical KG-to-text settings,
graphs rarely come with complete annotation. Without a gold standard, we propose using model-generated
consensus relations, e.g., from LLMs and relation extractors, as a form of soft ground truth. This approxima-
tion enables the estimation of latent structure gaps without human annotation. By synthesizing predictions
from high-capacity models, we simulate a form of weak supervision to uncover potential unseen edges.

Given a set of identified entities N and the corresponding reference text T, we employ two different
models (PURE and an LLM) to infer potential relational edges (as shown in Fig. 1). PURE is a relation
extraction system composed of independent entities and relation encoders. that identifies entities in text
and predicts relations between entity nodes. Since the entity set N is already provided in our setting, we
fine-tune only the relation extraction module of PURE on the SciERC dataset [27], which shares domain
similarity with our target scientific texts. The LLM model is Llama3, which is prompted using both N and
T to perform open-ended relational inference. By comparing the predicted edges from these models with
those present in the original graph G, we compute edge increments. These inferred edges are then aggregated
and weighted using our proposed WIEM to quantify the structural adequacy of the augmented graph G′.
The formal definition is provided in the following sections.

3.2.1 Incremental Edge Method
Assuming e represents the number of edges and n is the number of nodes in a graph G, the minimum

number of edges required to ensure each node is connected to at least one other node is given by: emin = ⌈ n
2 ⌉

the maximum number of edges corresponds to a fully connected graph: emax = n(n−1)
2 .

Let i denote the increment value of unseen edges, referring to the ones present in the new graph G ′ that
were not present in the original graph G, as illustrated by the yellow and blue links in graph G ′ of Fig. 1. Our
analysis focuses on newly inferred edges; we do not consider the reverse scenario where existing edges in G
are absent from G ′, such as the red mark shown in Fig. 1. We further define the edge increment ratio as:

0 ≤ i
e
≤ emax − e

e
,∀e ∈ [n

2
, n(n − 1)

2
] (1)

Compared to directly using the absolute increment i, the ratio i
e is less affected by the overall graph size.

If emin represents a sparse graph where e is small, an increment i can have a significant impact on the graph
structure, and i

e appropriately increases the weight of the increment. Conversely, if emax represents a dense
graph where e is large, the impact of a single edge increment becomes relatively minor, and i

e balances this
discrepancy. Thus, i

e adapts to the characteristics of both sparse and dense graphs, avoiding the imbalance
that arises from using either the absolute increment i or the absolute number of edges e alone.

To enhance interpretability, we adjusted the metric so that higher values indicate better structural
adequacy. By applying an inverse proportional transformation to i

e , the incremental edge method is defined
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as:

IEM = 1
1 + i

e
= e

e + i
(2)

The range of the IEM is (0, 1]. A higher IEM value indicates a graph with better structural adequacy,
while a lower value suggests poorer structural quality.

3.2.2 Weighted IEM
While the original IEM assumes that all inferred edges contribute equally to structural incompleteness,

this may not reflect the varying reliability of different predictions. In our framework, each inferred edges
originates from either the LLM, PURE, or both. Because neither model provides probabilistic confidence
scores, we adopt a consensus-based weighting method. Specifically, we define the weighted increment as:

iw = ∣Eboth∣ + α ∣Eonly∣ (3)

where Eboth denotes the set of inferred edges predicted by both models and Eonly denotes edges predicted
by only one of the two models. The parameter α ∈ [0, 1] controls the relative trust placed in partially agreed
edges. We empirically determine α = 0.75 through grid search on a test set. A value that is too high may
overtrust speculative model predictions and overlook the variance between models, introducing noisy edges.
In contrast, a low value may exclude valid relations that only one model predicts. We update the formulation
as shown in Eq. (4).

WIEM = e
e + iw

= e
e + ∣Eboth∣ + α ∣Eonly∣

(4)

The design of WIEM enables a flexible trade-off between precision and recall in structural completeness
estimation while preserving the interpretability and scale invariance of the original IEM.

Toy Example: To illustrate how WIEM handles newly inferred edges, consider a toy graph G
with four nodes {A, B, C, D} and edges {(A, B), (B, C)}. Suppose pure predicts two additional edges
{(A, C), (C , D)}, while the LLM predicts three edges {(A, C), (B, D), (C , D)}. We then obtain Eboth =
{(A, C), (C , D)} and Eonly = {(B, D)}. If α = 0.75, the weighted increment becomes iw = ∣Eboth∣ + α ⋅
∣Eonly∣ = 2 + 0.75 × 1 = 2.75. Substituting e = 2 into the WIEM formulation WIEM = e

e+iw
= 2

2+2.75 ≈ 0.42.
This relatively low value indicates that the original graphG lacks significant structural completeness
compared to the newly inferred edges.

3.3 Semantic Alignment
To evaluate the semantic alignment of a KG, we measure how well it conveys the intended meaning of its

corresponding reference text. Rather than evaluating the structure of KGs alone, we leverage a graph-to-text
generation setup, using an LLM to generate text from KGs. The core assumption is that if a graph contains
sufficient and accurate information, the LLM should be able to produce a text that is semantically aligned
with the human-authored reference. It is important to note that the LLM here is not the evaluation target but
a proxy inference tool. This constitutes a reverse inference process.

For semantic comparison, we employ BLEURT, a reference-based evaluation metric that leverages a
pretrained language model fine-tuned on human-annotated ratings. BLEURT is designed to capture subtle
semantic differences between the generated and reference texts, and has been shown to correlate strongly
with human judgment on fluency, adequacy, and meaning preservation. BLEURT captures both surface
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and deep semantic differences, including subtle omissions, hallucinations, or distortions. Compared with
surface-level metrics such as BLEU or ROUGE, BLEURT offers a better reflection of semantic consistency
in open-generation tasks.

While using LLMs to generate textual descriptions from KGs offers an effective proxy for semantic
evaluation, a known risk is their tendency to hallucinate by introducing facts that are not grounded in the
input KG. Such hallucinations can artificially inflate BLEURT scores if the generated text aligns with the
reference through external knowledge rather than faithful KG representation. To mitigate this risk, we adopt
several strategies. First, we fix the generation temperature to a low value (0.2) and apply nucleus sampling
with a conservative top-p of 0.8, reducing randomness and encouraging the model to focus on the given
KG triples. Second, we employ a strict and explicit prompting format (Fig. 2, right) that clearly instructs
the model to base the output solely on the provided knowledge graph, without introducing any external
assumptions. Finally, by standardizing the prompt template and decoding parameters across all evaluations,
we ensure that any hallucinated content, if present, remains minimal and uniformly distributed, preserving
fair comparisons between different KG samples.

Figure 2: Prompts used in the structural and semantic evaluation modules. The left prompt guides relation inference
from reference text and entities. The right prompt generates text from KG triples for semantic comparison

3.4 Top-K Union Selection Method
To determine the overall quality of a knowledge graph, we adopt a Top-K union method that combines

both structural and semantic evaluations. This method avoids relying on hard thresholding by selecting
the Top-K of graphs from each individual ranking, one based on WIEM and the other on BLEURT, and
considering their union as “Good” samples.
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4 Experiments

4.1 Experimental Settings
To evaluate our framework, we compare it to various data curation approaches in the knowledge graph-

to-text generation task. Given a set of KG-text pairs, each method is applied to select a subset of examples,
which are then used as in-context demonstrations to prompt LLMs to generate text from a test graph.
Dataset

Experiments are conducted on the ACL Abstract Graph Dataset (ACL-AGD)1 [28], consisting of 46,282
KG-text pairs. Each pair includes a scientific abstract in the Natural Language Processing (NLP) domain and
its corresponding graph, with data collected from the ACL Anthology across publications from 1965 to May
2024. We randomly sample 1000 KG–text pairs from the ACL-AGD corpus as a test set for graph-to-text
generation. We sample 10,000 instances from the remaining pairs as a candidate pool, to represent the overall
distribution while ensuring efficient evaluation across all selection approaches. Each approach then selects
the top and bottom 300 pairs from 10,000 candidates based on their ranking measures.

To further validate the generalizability of our proposed method, we additionally employ the ACE05
dataset2 , which covers a wide range of sources, including broadcast conversations, broadcast news, and
newsgroups. In contrast to ACL-AGD, which operates at the paragraph level, ACE05 focuses on sentence-
level KG. We follow the preprocessing style of DyGIE3 to construct the input graphs. PURE [15] provides
pretrained entity and relation models on ACE05, we directly utilize the released model parameters. As
these models have already been trained on the ACE05 training set, we are unable to perform KG selection
on the training portion. Therefore, we restrict our selection and evaluation to the test set, which contains
approximately 2050 instances.

Implementation details
For KG-to-text generation, we use the LLaMA3-8B4 [29] model under the Ollama framework on two

Nvidia RTX A6000 GPUs. We set the temperature to 0.2, apply nucleus sampling with top_p of 0.9, and limit
the output to 150 tokens. The model is instructed using a prompt template as shown in Fig. 2. We expect the
model to generate an abstract-style paragraph for a given KG input, conditional on verbalized instructions
on the task and the triplet structure of graphs. For each test instance, a few (one or two) in-context examples
are randomly drawn from either the top-300 or bottom-300 set as in-context examples incorporated into the
input prompt.

Metrics
We measure the quality of the generated text by comparing it against reference texts using both

formal and semantic similarity metrics. For formal similarity, we use ROUGE-L [30], as implemented in
HuggingFace’s evaluate library, to measure the longest common subsequence between texts. For semantic
similarity, we adopt BLEURT (BLEURT-20-D6) [26], a pretrained metric fine-tuned on human judgments
to capture subtle semantic differences. All experiments are conducted under a fixed random seed to
ensure consistency.

1The ACL-AGD corpus is publicly available at http://lepage-lab.ips.waseda.ac.jp/projects/scientific-writing-aid (accessed on 28 April 2025).
2https://catalog.ldc.upenn.edu/LDC2006T06 (accessed on 28 April 2025).
3https://github.com/luanyi/DyGIE/tree/master/preprocessing (accessed on 28 April 2025).
4https://ollama.com/library/llama3:8b (accessed on 28 April 2025).

http://lepage-lab.ips.waseda.ac.jp/projects/scientific-writing-aid
https://catalog.ldc.upenn.edu/LDC2006T06
https://github.com/luanyi/DyGIE/tree/master/preprocessing
https://ollama.com/library/llama3:8b
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Baselines
Our baselines include the node-level measures Degree, Closeness, the global-level measures Density,

Clustering Coefficient (ClustC) and Weakly Connected Component Ratio (wccR). In addition, we evaluate
WIEM, Random, Direct LLM, and the proposed method, providing a comprehensive set of structural and
semantic measures for comparing KG quality in graph-to-text scenarios:

• Degree [19]: This counts the edges tied to one node in a knowledge graph. A higher degree indicates
denser information distribution and a lower degree reflects reduced semantic connectivity among
entities.

• Closeness [19]: It measures a node’s average shortest path distance to all other nodes. Shorter distances
indicate higher centrality and imply stronger interconnections, reducing scattered information.

• Density [23]: The ratio of a graph’s actual edges to the maximum possible edges. A higher density
indicates a structure closer to a fully connected graph, while a lower value means a sparsity graph.

• Clustering Coefficient (ClustC) [21]: It measures how many connections exist among a node’s neigh-
bors compared to all possible connections. A higher value shows a tightly knit, cohesive knowledge
graph, while a lower value indicates a sparser, less connected structure.

• Weakly Connected Component Ratio (wccR) [24]: It quantifies graph fragmentation as the ratio of
weakly connected components to total nodes, where higher values indicate many small disconnected
subgraphs, and lower values reflect stronger overall connectivity.

• WIEM: It focuses on potential unseen edges relative to a reference text. Unlike the statistics methods,
which rely on an existing graph, WIEM is more sensitive to whether the KG adequately covers its
source semantics.

• Random: Randomly selects samples without structural or semantic filtering as a baseline to compare
against “unsorted” selection.

• Direct LLM: This ranks KGs based on texts generated by an LLM using BLEURT, evaluating how
selection driven by text similarity affects generation quality. The proposed method combines WIEM and
Direct LLM, a joint approach that considers both structure and semantics.

4.2 Main Results
Table 2 presents the performance comparison under a 1-shot in-context generation setting on the

ACL-AGD, where different KG selection methods are evaluated based on their impact on downstream
text generation quality. Traditional structure-based methods exhibit varied effectiveness. Closeness shows
almost no improvement, with negligible differences between top and bottom selected samples. In contrast,
Degree and Density show moderate positive gains. The top-selected samples by Degree outperform the
bottom-selected group by 1.58 in ROUGE-L and 2.54 in BLEURT, while Density shows gains of 0.96
and 2.06, respectively. ClustC, which measures the tendency of nodes to form local clusters, yields only
marginal improvements of 0.27 in ROUGE-L and 0.31 in BLEURT, indicating limited impact on generation
quality. wccR, which reflects the degree of graph fragmentation, achieves slightly higher gains of 0.25 in
ROUGE-L and 1.57 in BLEURT, suggesting that graphs with fewer disconnected components tend to support
more coherent and semantically aligned text. Our proposed WIEM, which identifies unseen relations
through model consensus, consistently delivers stronger improvements, with gains of 1.55 in ROUGE-L
and 2.81 in BLEURT. Compared to Closeness, ClustC, and wccR, WIEM is more sensitive to structural
incompleteness and proves more effective in identifying higher-quality graphs for generation tasks.

Compared to structural methods, methods incorporating semantic alignment exhibit stronger perfor-
mance in distinguishing KG-text data of varying quality. The Direct LLM method achieves the second-best
results, with a Difference of +3.85 in ROUGE-L and +2.81 in BLEURT. Our proposed method outperforms
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all baselines, achieving +5.33 in ROUGE-L and +3.21 in BLEURT. It turns out that blending connectivity and
semantic coverage gives us the best shot at selecting high-quality KGs.

Table 2: Effect of knowledge graph selection on 1-shot prompted text generation over the ACL-AGD. Bold numbers
indicate the best result in each column

Selection method ROUGE-L BLEURT

Top ↑ Bottom ↓ Difference Top ↑ Bottom ↓ Difference
Degree [19] 26.38 24.80 +1.58 43.06 40.52 +2.54

Closeness [19] 23.90 24.03 −0.13 41.46 41.56 −0.10
Density [23] 25.64 24.68 +0.96 42.94 40.88 +2.06
ClustC [21] 24.92 24.65 +0.27 41.87 41.56 +0.31
wccR [24] 25.14 24.89 +0.25 42.77 41.20 +1.57
Random 23.68 24.19 −0.51 41.65 41.37 +0.28
WIEM 26.16 24.61 +1.55 43.59 40.78 +2.81

Direct LLM 29.45 25.60 +3.85 43.92 41.11 +2.81
Ours 29.49 24.16 +5.33 44.12 40.91 +3.21

On a curious note, we observe that bottom-ranked examples do not reduce generation quality. Their
performance is often comparable to randomly selected graphs, suggesting that large language models exhibit
robustness and can compensate for noisy graph inputs.

Fig. 3 compares generation quality under 0-shot, 1-shot, and 2-shot settings, using support examples
selected from the top-selected KGs of each method. The 0-shot setting refers to direct generation on the
test set without any support examples (BLEURT = 41.45, ROUGE-L = 23.96). Closeness exhibits minimal
and unstable improvements across shot settings, highlighting its ineffectiveness in identifying generation-
relevant graph features. Similarly, ClustC and wccR show marginal performance gains, suggesting that
clustering tendency and weak connectivity alone are insufficient for selecting high-impact support graphs.
Degree and Density demonstrate more consistent improvements, though their relatively shallow gains
reflect limited depth in semantic or structural guidance. WIEM and Direct LLM both yield strong 1-
shot performance and show only minor variation in the 2-shot setting, indicating that the added value
of additional support examples plateaus when selection is already high-quality. Our proposed method
consistently achieves the best results across all settings, with BLEURT reaching 44.73 and ROUGE-L reaching
29.51 in the 2-shot case. These results confirm the effectiveness of our dual-perspective evaluation framework
in amplifying the utility of selected graphs for in-context generation.

Table 3 presents the experimental results of our 1-shot prompted generation setting conducted on the
ACE05 dataset. Compared with Table 2, which is based on paragraph-level knowledge graphs from ACL-
AGD, the sentence-level nature of ACE05 leads to generally higher ROUGE-L and BLEURT scores across
all methods, owing to the reduced complexity and smaller size of the input graphs. Consequently, the
performance gaps between top- and bottom-ranked KGs become narrower. Despite this, our proposed
method still achieves the best overall performance, with the largest gains in both ROUGE-L (+2.20) and
BLEURT (+2.01). Notably, WIEM also shows strong effectiveness under this setting, ranking second with
a ROUGE-L gain of +2.01 and a BLEURT gain of +1.65, significantly outperforming random selection
and traditional graph connectivity baselines such as Degree and Closeness. These results demonstrate that
our method remains effective even when applied to a completely different dataset with distinct domain
characteristics and graph granularity.
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Figure 3: Performance comparison of 1-shot and 2-shot prompting on BLEURT and ROUGE-L, with supporting
examples sourced from top-selected graphs

Table 3: Effect of knowledge graph selection on 1-shot prompted text generation over the ACE05. Bold numbers indicate
the best result in each column

Selection method ROUGE-L BLEURT

Top ↑ Bottom ↓ Difference Top ↑ Bottom ↓ Difference
Degree [19] 64.12 63.47 +0.65 56.11 55.50 +0.61

Closeness [19] 63.16 63.79 −0.63 55.61 54.94 +0.67
Density [23] 64.40 63.58 +0.82 56.01 55.46 +0.55
ClustC [21] 63.66 63.80 −0.14 55.49 55.78 −0.29
wccR [24] 65.10 64.03 +1.07 56.03 55.30 +0.73
Random 63.90 63.48 +0.42 55.23 55.77 −0.54
WIEM 65.18 63.17 +2.01 56.43 54.78 +1.65

Direct LLM 64.89 63.72 +1.17 56.12 55.13 +0.99
Ours 65.43 63.23 +2.20 56.80 54.79 +2.01

4.3 Validating Module Effectiveness via Random Edge Perturbation
We assess how structural adequacy (measured by WIEM) and semantic alignment (measured by

BLEURT) respond to varying levels of random perturbation applied to knowledge graphs from the ACL-
AGD dataset. Specifically, we conduct random edge removal and edge addition at five levels: 10%, 20%,
30%, 40%, and 50%. The original setting refers to the unaltered test set as the baseline for comparison. The
motivation is to test the sensitivity of our evaluation framework. By simulating edge-level corruption or
redundancy, we can observe how structural disruptions in the knowledge graph affect its ability to support
high-quality text generation.
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As shown in Fig. 4, random edge removal causes a substantial decline in both WIEM and BLEURT. As
the perturbation level increases, WIEM decreases evidently, indicating that more edges are being inferred
to compensate for unseen edges. BLEURT also drops, reflecting the loss of important content connections
that weaken the alignment between the generated and reference texts. Random edge addition results
in much more stable trends: WIEM gradually increases as redundant edges slightly enhance perceived
graph connectivity, and BLEURT remains consistent, pointing to these extra edges introducing only minor
semantic noise. These results validate that our evaluation framework is effective in distinguishing data quality
in KG-to-text generation. Retaining essential relational content ensures logical organization and meaning
preservation in graph-to-text generation.

Figure 4: Impact of random edge perturbation on WIEM and BLEURT

Fig. 5 illustrates the positive correlation between WIEM and BLEURT. As BLEURT increases, the
WIEM also rises, suggesting that complete graphs align better with meaning. This correlation confirms the
value of our evaluation framework, showing how structure ties closely to a graph’s meaning.

Figure 5: Correlation between WIEM and BLEURT

4.4 Computational Requirements
All experiments were conducted on a workstation configured with an Intel i9-10980XE CPU, 128 GB

of RAM, and two NVIDIA RTX A6000 GPUs (each with 48 GB of memory). As shown in Table 4, we
report the per-graph inference time, average memory usage, and average GPU memory usage for key
baseline methods and major components of our framework. The evaluation is divided into two categories:
traditional statistical computations and LLM-based components. The statistical baselines (ClustC and wccR)
have minimal inference time (under 0.24 s per graph) and negligible memory usage without relying on
GPU resources. In contrast, our framework includes components such as LLM Prompting, which performs
both graph reasoning and text generation using the LLaMA3-8B model, with reported values reflecting their
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shared usage. PURE and WIEM involve lightweight model inference and structural scoring, respectively,
contributing moderate overhead. The Total (Combined) row summarizes the end-to-end computation time
and memory usage per graph across the full pipeline. Traditional statistical baselines exhibit minimal
computational cost, whereas LLM-based components, especially the prompting stage, introduce substantial
GPU and memory demands. Despite this increase, the overall framework maintains reasonable inference
time and resource usage, indicating its practicality for large-scale deployment.

Table 4: Per-graph inference time and memory usage for baselines and core components of our framework

Method Times (s) Avg memory (GB) Avg GPU memory (GB)
ClustC [21] 0.146 0.019 –
wccR [24] 0.238 0.021 –

PURE 0.323 0.474 3.432
LLM Prompting 1.241 1.768 25.285

WIEM 0.185 0.038 –
Total (Combined) 3.144 3.741 42.797

Our framework incurs higher computational overhead due to the integration of model-based reasoning
and text generation. To improve efficiency, we parallelize WIEM scoring and BLEURT evaluation by pro-
cessing multiple graphs concurrently where system resources allow. However, LLM Prompting is performed
individually for each graph, as the generation process depends on graph-specific prompts and cannot be
batched without altering output quality. This partial parallelization helps reduce latency for structural and
semantic scoring, although generation remains sequential. Future work may explore more efficient decoding
techniques or lightweight model distillation to further accelerate the prompting stage.

4.5 Exploration of Alternative Ranking Methods
To further assess the robustness of our Top-K union selection method, we compare it with two

alternative fusion methods: (i) a weighted sum of normalized WIEM and BLEURT ranks, and (ii) the
intersection of top-K graphs from each ranking. For Weighted Sum Rank, each graph receives a combined
score: Scorei = α ⋅ rankWIEM(i) + (1 − α) ⋅ rankBLEURT, where α = 0.5, reflecting equal contribution from
structural and semantic perspectives. Graphs are then selected according to their combined scores. In the
intersection approach, only graphs that simultaneously appear in both WIEM and BLEURT top-K rankings
are selected.

Using each selected graph set, we conduct one-shot graph-to-text generation and evaluate the outputs
using BLEURT and ROUGE-L. As shown in Table 5, the Top-K union method achieves the highest BLEURT
(44.12) and ROUGE-L (29.49) scores, confirming its robustness. Compared to the intersection method,
which slightly improves BLEURT (43.95) at the cost of reduced sample size and diversity, Top-K union
maintains broader coverage and avoids over-pruning. Although Weighted Sum Rank also retains 300 graphs,
its performance is less stable (BLEURT = 43.46 ± 0.28), likely due to its sensitivity to the α parameter. These
findings demonstrate that Top-K union effectively balances structural and semantic perspectives without
sacrificing diversity or stability, making it a reliable fusion strategy for high-quality generation.
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Table 5: Comparison of different fusion methods based on sample size and generation quality

Fusion method Sample size BLEURT ROUGE-L
Weighted Sum Rank =300 43.46 ± 0.28 29.10 ± 0.20
Top-K Intersection ≤300 43.95 ± 0.16 29.22 ± 0.13

Top-K Union ✓ ≈300 44.12 ± 0.21 29.49 ± 0.22

4.6 Ablation Studies
4.6.1 Effects of Model Agreement on Edge Weighting

Fig. 6 (left part) illustrates the distribution of WIEM scores under three settings: PURE, which uses only
relation extraction results from the PURE model; LLM, which uses only inferred edges from an LLM; and
PURE + LLM, which combines predictions from both models to compute WIEM. For the single model, we
just calculate IEM.

Figure 6: Comparisons of WIEM outcomes under single-model (PURE or LLM) vs. consensus approaches (left) and
model performance in graph-to-text generation using one-shot prompts with examples selected under various α settings
(right)

WIEM scores tend to be higher and more tightly clustered in the PURE setting, pointing to restrained
but solid predictions. The LLM setup has a lower median WIEM but swings wider in variance, showing that
LLMs might dig up more potential edges, though their predictions can waver. The combined PURE + LLM
setting strikes a balance between the two, capturing a broader range of edges while avoiding noise, achieving
a favorable trade-off in both mean score and stability.

4.6.2 Ablation on α Settings
The right part of Fig. 6 shows how BLEURT scores and their standard deviations change as the

parameter α increases from 0.0 to 1.0. We perform the graph-to-text generation task using the top-300
knowledge graphs selected under each α value. For each setting, we report the average BLEURT score over
5 independent runs, where the model generates text using one-shot prompting with a different support
example sampled from the top-300 set in each run. Here, α controls the relative weight assigned to edges
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predicted by only one model vs. those confirmed by both. An α value of 0 discounts single-model predictions,
prioritizing consensus, while α = 1 treats all predicted edges equally, potentially increasing edge richness at
the cost of noise.

The results reveal that performance peaks when α lies in the mid-range, particularly at 0.75, while
boundary values (i.e., α = 0.0 or 1.0) lead to lower BLEURT scores or increased variability. This observation
highlights the need to balance unique predictions and consensus edges: a low α may miss informative edges
flagged by a single model, harming completeness, whereas a high α may admit noisy or irrelevant edges,
compromising graph quality.

To further support the selection of α = 0.75, we compute 95% confidence intervals based on the five
BLEURT scores per α setting. The results show that α = 0.75 yields the highest mean BLEURT (44.8), with
a confidence interval of [44.49, 45.11], clearly outperforming the extremes and remaining competitive with
neighboring values like 0.25 and 0.5. This suggests that our framework is robust to moderate shifts in α, and
that α = 0.75 achieves an effective trade-off between informativeness and noise control. Therefore, the choice
of α is empirically grounded in both performance trends and statistical confidence.

4.6.3 Effect of Selected K on Generation Performance
Fig. 7 illustrates the one-shot generation performance across different values of K, representing the

number of selected knowledge graphs. A smaller K yields a candidate pool with a higher proportion of top-
ranked, high-quality graphs, resulting in purer and more reliable support examples. This setup often leads
to higher generation precision. However, a smaller pool also limits the diversity of support examples, which
may reduce the generalizability of the model to unseen structures. As K increases, the candidate pool covers
a wider range of graph patterns, but it also introduces greater uncertainty in quality. Low-quality graphs may
be included, leading to noisier support examples and a degradation in generation performance. This trend
is evident in both BLEURT and ROUGE-L scores, which decline when K exceeds 300. To strike a balance
between generalization capability and generation quality, we select K = 300 as an optimal trade-off, achieving
consistently strong performance without compromising stability.

Figure 7: Generation performance under varying selected pool sizes K

4.7 Case Study
We present four knowledge graphs from the top 300 ranked candidates. To avoid cherry-picking, we

apply a fixed random seed to uniformly sample four graphs from this subset. This approach ensures fair
and unbiased selection, while also highlighting the robustness of our evaluation framework in consistently
surfacing high-quality graphs without manual intervention. As shown in Fig. 8, these knowledge graphs
demonstrate strong structural connectivity. Even with a few stray links, the structure stays packed with
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connections. These chains typically encode specialized or context-specific information rather than indicating
fragmented or incomplete knowledge. We skipped the bottom examples since most have barely any links or
just standalone ones.

We also observed a close alignment between graph connectivity and semantic richness. Upon qualitative
inspection of the sampled graphs, we found that densely connected nodes tend to correspond to key
domain-specific concepts (e.g., “dataset”, “Twitter”) that carry the core semantic load of the reference text.
These central entities are typically embedded in well-formed relational chains, enabling the generation of
fluent and informative text. In contrast, isolated or weakly connected nodes often represent peripheral
information, contributing less to the overall meaning. While this alignment is not quantified in this section,
it is consistently observed across the sampled examples, providing observational support that structural
completeness often correlates with richer semantic coverage in the graph-to-text generation setting.

Figure 8: Four randomly sampled knowledge graphs from the top-300 ranked set

4.8 Human Evaluation
To verify that our proposed ranking method truly reflects human preferences, we conducted a focused

human study. We first partitioned the automatically ranked list into the top-300 and bottom-300. From each
partition, we randomly sampled ten graphs, resulting in a balanced set of 20 KG-text pairs. Each pair was
scored on a 1–5 Likert scale based on two questions: Q1 Graph Quality: “Is the KG structurally complete and
error-free?” Q2 Text Fidelity: “Does the generated text faithfully describe the knowledge graph’s contents?”
For each question, we averaged the annotators’ scores per item, computed the group means, and applied an
independent two-sample t-test between the top and bottom groups.
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Table 6 shows that graphs in the top-ranked tranche receive markedly higher human judgments than
those in the bottom tranche for both structural soundness and textual faithfulness. The differences are
statistically significant p < 0.0001 in both structural quality and textual fidelity. These results confirm that our
automatic dual-perspective framework aligns closely with human perceptions of knowledge-graph quality
and generation fidelity, providing empirical support for its reliability in downstream selection scenarios.

Table 6: Human evaluation of sampled top and bottom ranked KG-text pairs

Metric Top-300 sample (n = 10) Bottom-300 sample (n = 10) t-Value p-Value
Graph quality 4.32 ± 0.21 2.11 ± 0.18 7.99 p < 0.0001
Text fidelity 4.07 ± 0.26 1.95 ± 0.13 7.29 p < 0.0001

5 Conclusion
High-quality knowledge graphs underpin effective and reliable graph-to-text generation. Despite this,

research in this area remains scarce. Earlier methods leaned heavily on broad quality measures, often missing
what generation tasks demand. This study addresses this gap by pointing out that existing methods frequently
overlook structural and semantic characteristics essential for producing high-quality text. We propose an
evaluation framework for graph-to-text generation, which assesses knowledge graphs from structural and
semantic perspectives. We introduce the WIEM for structural evaluation, which quantifies completeness
based on the agreement between an LLM and a relation extraction model. We convert KGs into natural
language for semantic evaluation and measure the similarity between the generated and reference texts to
assess whether the graph preserves the intended meaning. These two modules are jointly applied using a
Top-K union method, allowing us to identify knowledge graphs best suited for generation. Experiments
on a scientific abstract dataset and the general-domain knowledge graph dataset ACE05 demonstrate
that incorporating the selected KGs as support examples in in-context learning consistently enhances
generation quality. Further evaluations, including random edge perturbation tests, confirm the robustness
and consistency of our framework under different conditions.

Although it works well, the framework depends on models and data built for the scientific domain.
Applying it to other domains may require adjustments to the models. Future work will explore broader
domain adaptation and investigate whether the approach remains effective across different text generation
models. Additionally, we will investigate more constrained decoding strategies, such as constrained beam
search or entity-aware decoding, to further suppress external hallucinations and enhance the semantic
evaluation’s fidelity to the input knowledge graph.
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