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ABSTRACT: This study proposes an advanced vision-based technology for detecting glass products and identifying
defects in a smart glass factory production environment. Leveraging artificial intelligence (AI) and computer vision,
the research aims to automate glass detection processes and maximize production efficiency. The primary focus is on
developing a precise glass detection and quality management system tailored to smart manufacturing environments.
The proposed system utilizes the various YOLO (You Only Look Once) models for glass detection, comparing their
performance to identify the most effective architecture. Input images are preprocessed using a Gaussian Mixture Model
(GMM) to remove background noise present in factory environments. This approach minimizes distractions caused
by varying backgrounds and enables accurate glass identification and defect detection. Traditional manual inspection
methods often require skilled labor, are time-intensive, and may lack consistency. In contrast, the proposed vision-
based system ensures high accuracy and reliability through non-contact inspection. The performance of the system was
evaluated using video data collected from an actual glass factory. This assessment verified the accuracy, reliability, and
practicality of the system, demonstrating its effectiveness in real-world production scenarios. Beyond automating glass
detection and defect identification, the proposed system integrates into manufacturing environments to support data-
driven decision-making. This enables real-time monitoring, defect prediction, and improved production efficiency.
Moreover, this research is expected to serve as a model for enhancing quality control and productivity across various
manufacturing industries, driving innovation in smart manufacturing.
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1 Introduction
Smart manufacturing, a core concept in modern industries, maximizes the manufacturing pro-

cess efficiency and realizes customer-tailored production by integrating information and communication
technology with automation technology. In particular, the introduction of real-time data analysis and
decision-support systems is essential for manufacturers to maintain competitiveness and achieve sustainable
growth [1–4]. Recent advancements in artificial intelligence, particularly deep learning technology, have
accelerated the automation of manufacturing processes. Moreover, quality inspection systems have evolved
into more precise and efficient methods utilizing deep-learning-based computer vision technologies. How-
ever, despite these technological advancements, several manufacturers rely on traditional manual quality
inspection methods, which depend on the subjective judgment of workers, leading to inconsistent inspection
results, a higher likelihood of errors, and ultimately, reduced productivity [5,6].
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Generally, tempered glass, which is an essential material across industries, produced in factories varies
in size and specifications according to order and is placed arbitrarily on production lines, making uniform
measurements difficult [7–10]. In traditional manual methods, workers must measure the size of the glass
directly, limiting the production speed. To address this issue, herein we propose a vision recognition-based
glass detection method capable of automatically identifying the position of glass. Automated glass detection
is essential to improve the accuracy of quality control and production efficiency [11–14]. This study aimed to
develop an automated quality inspection system to resolve these challenges.

Many deep learning models have been proposed for glass detection [15–18], such as GDNet [15] and
GlassNet [16]. However, their performance declines in industrial environments with complex backgrounds
and lighting, as they are mainly trained on general scenes. This limitation is compounded by the scarcity of
glass-specific images in public datasets and domain differences, which further reduce detection accuracy in
manufacturing settings.

To overcome these issues, this study proposes a video transformation module that utilizes various image
processing techniques to remove complex backgrounds from glass manufacturing processes and emphasize
the features of glass. This approach demonstrates the effective detection of transparent objects even in
challenging environments in which existing deep-learning-based object detection models face difficulties.
Images that emphasize only the glass regions help deep-learning-based detection models learn more robustly
and achieve high-performance glass detection. This study applies a hybrid approach combining traditional
computer vision techniques, such as the Affine transform [19–21] and Gaussian Mixture Model (GMM)
[22–24], with deep learning technologies, such as YOLO [25–28], to propose an adaptive glass detection
method suited for complex environments. This study contributes to enhancing the efficiency of qual-
ity inspection systems in smart manufacturing environments by improving traditional manual quality
inspection methods and enabling non-contact quality inspections based on vision recognition.

The structure of this paper is as follows. Section 2 analyzes the current challenges faced by small- and
medium-sized glass factories in Korea and examines the features and limitations of existing glass detection
algorithms. Section 3 describes the proposed glass-detection algorithm for smart factories. Section 4 presents
the experimental results and discussion. Finally, Section 5 concludes the study.

2 Related Work

2.1 Measurement Issues in Small-Scale Glass Manufacturing
Glass-manufacturing factories typically operate on a made-to-order basis, resulting in inconsistent sizes

and specifications of the produced glass, as shown in Fig. 1a, and the arrangement of the glass is also variable.
Currently, in small- and medium-sized glass-manufacturing factories in Korea, workers manually measure
the number and size of glasses produced, as illustrated in Fig. 1b.

Figure 1: Measurements in small-scale glass manufacturing
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This manual measurement method can compromise the consistency and accuracy of the measurements.
Furthermore, because the size and arrangement of glass vary depending on the capacity and characteristics
of the production equipment, the manufacturing process becomes more complex, making it challenging to
perform consistent real-time measurements. Consequently, manual procedures for individually measuring
and adjusting glass are commonly applied. These procedures not only slow down production processes, but
also impose limitations on efficiently utilizing the maximum production capacity of equipment, ultimately
leading to a decrease in overall productivity.

Glass manufactured on production equipment is placed at various positions on the conveyor belts based
on its size and order specifications. The glass then moves along the conveyor belt, and workers manually
measure its size for inspection purposes. This manual method relies heavily on the experience of skilled
workers, which can reduce the accuracy and reproducibility of the measurement results. To address these
issues, this study proposes a computer vision-based glass detection method. The proposed automated system
can recognize and accurately detect glass in real time, thereby improving the production efficiency. Although
the size of the glass is not measured directly, glass detection is utilized as a preprocessing step for size
measurement to enhance the reliability of quality inspection systems.

2.2 Glass Detection
Current glass detection methodologies have evolved into two main approaches: detection- and

segmentation-based methods. Detection-based methods estimate the locations of glass objects by generating
bounding boxes, whereas segmentation-based methods detect glass objects using pixel-level classification.
A representative study [29] on detection-based methods utilized a Regions with Convolutional Neural
Network (R-CNN) architecture pre-trained on the beaker class of ImageNet and applied transfer learning
to the PASCAL VOC dataset. This approach demonstrated the potential of deep-learning-based methods
for detecting transparent objects. However, owing to limited performance, its practical application faces
significant challenges. Moreover, research specifically focusing on detection-based approaches for glass
detection remains insufficient.

Recently, prominent glass detection models have adopted segmentation-based approaches. The Glass
Detection Network (GDNet) [15] employs Large-field Contextual Feature Integration to integrate contextual
information to detect glass at various scales. In addition, it provides a Glass Detection Dataset that includes
annotated data for various common glass objects and their locations. Similarly, GlassNet [16] uses a Rich
Context Aggregation Module to aggregate rich contextual information at different scales and a Reflection-
based Refinement Module to leverage reflection characteristics for the semantic segmentation of glass. In
addition, a Glass Segmentation Dataset provides glass images, annotations, and reflection images that show
reflections on the glass surface.

However, existing models trained on domain-specific datasets have shown significantly low per-
formance in tempered glass-manufacturing environments. Moreover, GDNet and GlassNet have several
limitations in their training and fine-tuning processes. To begin with, neither model provides a training
code by default, requiring researchers to either reimplement the models themselves or adopt alternative
approaches, which poses a significant challenge. In particular, GlassNet requires additional reflection data
during the training process, which makes it difficult to achieve efficient training without constructing an
appropriate dataset. These limitations hinder the fine-tuning of the model performance and further restrict
the applicability of existing models in specialized conditions, such as tempered glass manufacturing environ-
ments. Fig. 2 illustrates the detection results of conventional glass detection models in such environments.
GDNet mistakenly detects nonglass regions outside the conveyor as glass, whereas GlassNet fails to recognize
the presence of glass. When the conveyor region is cropped and inputted, GDNet identifies most of the
conveyor surface as glass, whereas GlassNet selectively detects the roller structure of the conveyor.
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Figure 2: Detection results of GDNet and GlassNet using original and cropped input images, illustrating misclassifi-
cation in a glass manufacturing environment

In addition, we conducted an in-depth analysis of various cases in which deep learning-based defect
detection technologies have been applied in industrial settings. In particular, we examined how deep
learning and computer vision techniques have been utilized across a range of industries, including defect
detection in glass panels, textiles and packaging, waste classification, smartphone cover glass, and glass
bottles. Although these studies do not address exactly the same problem as our work, they are closely
related to our main keywords, such as “deep learning,” “defect detection,” “industrial application,” “glass,” and
“embedded systems.” Therefore, by analyzing these previous studies, this paper provides a broad perspective
on the industrial applicability and limitations of deep learning-based defect detection technologies, as well as
important technical considerations for real-world implementation. The strengths and weaknesses of various
algorithms under investigation in this paper are summarized in Table 1. To address these limitations, this
study makes the following key contributions:

1. Development of a glass detection algorithm tailored for smart glass factory environments.
2. A robust hybrid approach combining classical techniques with modern deep learning using the

YOLO series.
3. Use of lightweight models optimized for real-time deployment in industrial settings, with comparative

performance evaluation based on data collected from actual glass manufacturing environments.
4. Proposal of a Video Transformation Module that accelerates YOLO inference speed for practical video-

based applications.

Table 1: Comparison of deep learning applications in industrial defect detection

Author Summary Pros Cons
Pan Z et al.,

2021 [30]
Proposed Mask R-CNN-based

deep learning model and
microscope camera scanning
system for automatic scratch

detection on architectural glass
panels

• Pixel-level precision
• Robust to

background noise
• Automated and efficient

• Requires custom
equipment (coaxial
lighting, Anyty
3R-CLSTMO1S
microscope camera)

• Speed improvement
needed due to scanning
with 2-axis sliding rail

(Continued)
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Table 1 (continued)

Author Summary Pros Cons
Ngo HQT,
2023 [31]

Designed and validated a
CNN-based vision system for

real-time surface defect
inspection in textile and

packaging industries

• Real-time
automatic inspection

• Low-cost
open-source solution

• Requires custom
equipment (servo motor,
chain, lighting, etc.)

• Sensitive to
environment, complex
setup increases
initial burden

Majchrowska
S, et al.,

2022 [32]

Proposed new benchmark
(detect-waste, classify-waste)

integrating various public waste
datasets and a two-stage deep

learning framework

• Two-stage
(detection/classification)
structure addresses data
imbal-
ance/incompleteness

• Semi-supervised
learning improves
classifier with
unlabeled data

• Detection performance
drops by environment,
size, class

• Moderate accuracy (70%
detection, 75%
classification)

Ghasemi Y,
et al.,

2022 [33]

Reviewed deep learning object
detection in AR over the past

decade, comparing server/local
device computing

• Demonstrated AR object
detection accuracy and
real-time potential

• Compared performance
across
compute environments

• Real-time limits on
low-end AR devices

• Lack of data diversity
hinders
real-world deployment

Park J, et al.,
2020 [34]

Proposed ensemble deep
learning model (4-DarkNet)

trained on images under various
lighting for automatic defect
detection/classification on

smartphone cover glass

• Uses diverse lighting
data and
ensemble weights

• Lightweight for
real-time industrial use

• Strongly affected by
data quality

• Images acquired under
multiple lighting
directions/methods
(dark/bright field) using
a line scan camera

Claypo N,
et al.,

2023 [35]

Proposed a system combining
CNN-LSTM and instance-based

classification for glass bottle
defect classification

• High accuracy (98%) on
rotating dataset

• Efficient with small data
via transfer learning

• Complex CNN-LSTM
design and training

• Requires dedicated
rotary inspection device
for dataset
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3 Deep Learning-Based Glass Detection Approach
This study proposes a deep-learning-based algorithm for the effective detection of glass in smart glass

manufacturing processes. Fig. 3 illustrates the overall structure of the proposed system.

Figure 3: Model architecture

The proposed glass detection framework operates by first performing image transformation for glass
detection in the Video Transformation module when the input video data are received, followed by the
detection of glass using the Detection Model. Initially, the Video Transformation module performs image
transformation to effectively isolate glass regions in the complex environment of the glass production
processes. For this purpose, optimized image processing techniques such as Affine transformation [19–21]
and the GMM [22–24] are applied to emphasize the glass regions. Subsequently, the transformed images are
input into various YOLO-based detection models [25–28], in which glass is detected, and the performances
are compared and analyzed. This step-by-step approach improves the accuracy of glass detection in smart
glass manufacturing processes.

3.1 Video Transformation for Glass Detection
The images obtained from the glass manufacturing process include scenes of glass moving along a

conveyor. These images depict multiple rollers rotating to move glass. However, because of the transparent
nature of glass, as shown in Fig. 1, the conveyor rollers beneath the glass are visible through it, and reflections
from factory lighting make it difficult to clearly distinguish between the glass and the background. To
effectively detect glass in such complex environments, we designed a Video Transformation module, which
aims to improve the accuracy and reliability of glass detection by combining techniques, such as GMM-based
background removal, HSV transformation, contour detection [36–38], and Affine transformation.

In this study, the GMM was used to learn and remove backgrounds where no glass was present.
GMM is a probabilistic method that models data by combining multiple Gaussian distributions, and is used
for clustering, density estimation, and data distribution analysis through unsupervised learning [39]. In
essence, GMM enables the identification of underlying groupings and patterns within data without requiring
labeled examples, making it a versatile tool for exploratory data analysis. After applying GMM to learn
background images without glass, it was used to isolate the glass regions effectively. Fig. 4a shows the results
of background removal using the GMM. The experimental results demonstrate that most of the background
is effectively removed, except for some noise and roller areas.
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(a) GMM background subtraction (b) HSV transformation

(c) AND operation result (d) Contour processing result

Figure 4: Image transformation and processing results

To enhance the accuracy of glass detection, HSV color-space transformation was applied. The HSV color
space consists of the hue, saturation, and value (brightness). In this study, brightness thresholds were adjusted
to detect glassy regions. However, reflections from lighting can cause excessive brightness on the glass surface
or cause parts of the conveyor rollers to be misidentified as glass. To address this issue, the detected glass
regions from the HSV transformation were combined with the results of the GMM-based background
removal using an AND operation to achieve a more stable detection performance. Fig. 4b shows the inverted
image after applying the HSV transformation. Fig. 4c illustrates the results of combining GMM-based
background removal with HSV transformation techniques. The experimental results show that glass regions
are accurately detected; however, there are instances in which non-glass regions are incorrectly identified as
glass. This suggests that it is challenging to achieve perfect glass detection using a single technique.

Even after combining the GMM with the HSV transformation, some noise may remain; therefore,
a contour detection algorithm [36–38] was applied to further refine the extraction of glass regions. The
contour detection algorithm operates by analyzing the color differences between pixels in binary images
or by grouping connected pixels to form contours. The application of this algorithm effectively removed
background noise while clearly emphasizing the boundaries of the glass regions. Fig. 4d shows the results
obtained after applying the contour detection algorithm, confirming that the glass regions are detected
more distinctly.

Finally, Affine transformation [19–21] was applied to normalize the positions and shapes of the detected
glass regions. Images obtained from the glass manufacturing process often appear tilted, depending on
the camera angle. Applying Affine transformation ensures a consistent viewpoint regardless of the camera
angle and reduces shape distortions caused by conveyor positioning, transforming all the detected glass
into rectangular shapes. For example, without Affine transformation, glass near the edges of conveyors may
appear stretched similar to parallelograms or trapezoids at central positions. However, Affine transformation
preserves the true shape of the glass and allows deep-learning-based object detection models to predict the
bounding boxes more accurately. Fig. 5 shows the results after applying Affine transformation.
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Figure 5: Affine transformation result

3.2 Detection Model
Tempered glass detection experiments were conducted using various YOLO series models

(YOLOv8 [27], YOLOv9 [25], YOLOv10 [26], YOLO11 [27]) by applying bounding box annotations directly
to images processed through a Video Transformation module. Among the tested models, YOLO11 demon-
strated the best performance and was selected as the primary focus of the structural characteristics of
YOLOv8 and YOLO11.

YOLOv8, released by Ultralytics in January 2023, improves upon YOLOv5 [40] by offering higher accu-
racy and faster speed. This is achieved through the integration of three key modules: Convolution with Batch
Normalization and Swish (CBS), CSP Bottleneck with two convolutions-Fast (C2F), and Spatial Pyramid
Pooling-Fast (SPPF). The CBS module performs basic feature extraction using standard convolution, batch
normalization, and SiLU activation [41]. The C2F module enhances the C3 structure of YOLOv5 with a
parallel-branch architecture. One branch preserves the original features, while the other extracts multilevel
features through repeated bottleneck modules, thereby improving boundary detection accuracy. The SPPF
module fuses information from different spatial scales, allowing the model to recognize both fine details
and broader context within an image. The neck section of YOLOv8 combines Feature Pyramid Network and
Path Aggregation Network to enable features to be transmitted in both directions-both from lower to higher
layers and vice versa. This bidirectional feature transmission helps the model integrate detailed and contextual
information, improving detection across various object sizes. The head section is divided into multiple heads
based on functionality. The detection head uses a loss function combining Complete Intersection over Union
and Distribution Focal Loss, whereas the classification head employs Varifocal Loss. In addition, YOLOv8
uses an anchor-free head, which predicts object locations directly without relying on predefined reference
boxes. This approach simplifies the detection process and can improve accuracy, especially for small or
irregularly shaped objects.

YOLO11, released by Ultralytics in September 2024, introduces architectural refinements for an
enhanced speed-accuracy balance. The backbone replaces C2F modules of YOLOv8 with C3k2 blocks,
thereby improving the low-to-high-level feature integration efficiency. The novel Convolutional Block with
Parallel Spatial Attention (C2PSA) module enhances the object boundary recognition accuracy through
parallel spatial attention mechanisms. The neck section incorporates these C2PSA modules to achieve
improved spatial attention with fewer parameters, thereby accelerating inference speeds. The head is explic-
itly optimized for latency reduction in the final prediction layers, while maintaining detection precision.

Two datasets were constructed to train the object detection model. The first dataset was generated
by applying the Video Transformation module, whereas the second dataset was created by applying Affine
transformation only to the original images. Both datasets were annotated with identical bounding box labels
using the VGG Image Annotator. Dataset splitting was performed in the same manner for both datasets.
These two datasets were then utilized to evaluate the effectiveness of the Video Transformation module and
comparatively analyze the performance of the object detection model.
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4 Experiments

4.1 Details
The dataset used for glass detection experiments in this study consists of images captured at a factory

that produces glass. During production, the glass moves from the left to the right along a conveyor system,
as illustrated in Fig. 6.

Figure 6: Glass manufacturing process

To construct the background using a GMM, only 40 images of factory facilities without any glass were
utilized. During model training, the number of Gaussian distributions was set to 15 and the variance
threshold was set to 50. The dataset for the YOLO model training consisted of 230 images, excluding those
used for GMM training. This dataset was divided into training (40%), validation (10%), and testing (50%)
sets comprising 92, 23, and 115 images, respectively. The training and validation data were used exclusively
during the training process and were excluded from the testing set. Additionally, grayscale images processed
with the Video Transformation module were employed to enhance the object detection performance, and
the input channel of the YOLO model was modified to a single channel accordingly. To train and evaluate
the glass detection model in this study, a system equipped with an Intel Core i9 CPU, an NVIDIA GeForce
RTX 3060 GPU, and two 32 GB RAM modules was utilized.

4.2 Results
The results emphasizing the glassy regions in the input images using the Video Transformation module

are shown in Fig. 7.
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(a) Top-view transformation results of the 

original input images with applied Affine 

transformation

(b) Results obtained by applying the 

proposed Video Transformation module, 

effectively separating glass regions from the 

background

Figure 7: Results of applying the Video Transformation module, highlighting glass regions in the input images

To compare the outcomes of Video Transformation, Fig. 7a shows the top-view transformation results of the
original images with the applied Affine transformation, and Fig. 7b illustrates the results obtained by applying
the proposed Video Transformation module. The experimental results confirm that the proposed module
effectively separates glass regions from complex glass images. In particular, the GMM-based background
removal technique improves the robustness of the model by reducing the complex background noise caused
by the conveyor rollers.

In glass-production environments, resistance to lighting variations is a critical factor in detection
models. Owing to the refractive and reflective properties of glass, there is a high likelihood of false detections,
and glass-detection models in real production environments require high robustness. Background learning
using GMM is an effective approach for meeting these requirements. The adaptive background learning
mechanism based on the GMM was introduced in this study to ensure consistent background removal per-
formance against various external factors, such as time-dependent lighting changes, seasonal environmental
variations, and equipment rearrangements in production lines. This mechanism standardized the quality of
input images for object detection models.

A major limitation of previous studies on glass detection was that semantic segmentation and object
detection models often misdetected objects behind the glass because of the transparent nature of the
glass projecting onto the background. This study effectively addressed this issue by leveraging the static
background characteristics of conveyor systems in glass production lines. The proposed method hier-
archically combined the background removal and object detection stages to effectively separate moving
glasses from stationary backgrounds. This approach offers a novel solution to the challenging problem of
detecting transparent objects using deep-learning-based object detection. Notably, the integrated framework
of dynamic background removal and static object detection provides a methodological foundation for
designing moving-object monitoring systems in industrial environments.

In this experiment, a dataset emphasizing glass regions was constructed using a Video Transformation
module to comprehensively evaluate the tempered glass detection performance of the object detection
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models. Considering the computational resource constraints in embedded systems, comparative experi-
ments were conducted targeting lightweight architectures (nano/tiny and small) of the YOLOv8, YOLOv9,
YOLOv10, and YOLO11 models. The tempered glass detection results for each model are listed in Table 2.

Table 2: Performance comparison of YOLO models for glass detection

Model Parameters GFLOPs Precision Recall F1-score mAP50 mAP50-95 Inference (msec)
YOLOv8 Nano 2,690,115 6.9 1.0000 0.5154 0.6802 0.7577 0.7450 3.6387
YOLOv8 Small 9,838,771 23.5 1.0000 0.9015 0.9482 0.9507 0.9388 5.2110
YOLOv9 Tiny 1,764,835 6.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
YOLOv9 Small 6,314,739 22.6 1.0000 0.4015 0.5730 0.7008 0.6920 7.4215
YOLOv10 Nano 2,707,142 8.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
YOLOv10 Small 8,066,550 24.7 0.9902 0.9713 0.9806 0.9896 0.9645 5.2874
YOLO11 Nano 2,589,747 6.4 1.0000 0.9672 0.9833 0.9833 0.9681 3.8255
YOLO11 Small 9,427,603 21.4 0.9996 0.9826 0.9910 0.9949 0.9635 8.6456

As shown in Table 2, the YOLO11 small model achieves the highest performance, with an F1-score of 99.10%
and mAP50 of 99.49%. The nano-version also demonstrates outstanding performance among the lightweight
models with an F1-score of 98.33%. Although the YOLOv8 small model exhibits decent performance with
an F1-score of 94.82%, its nano version exhibits a significant performance drop with an F1-score of 68.02%.
Notably, YOLOv9 tiny and YOLOv10 nano-models fail to detect tempered glass entirely, with a 0% detection
success rate.

All experimental models exhibit high precision, ranging from 99.02% to 100%; however, their recall
values vary significantly. For example, YOLOv8 Nano achieves a recall rate of only 51.54%, missing nearly half
of the actual glass regions, whereas YOLO11 Nano achieves a recall rate of 96.72%, demonstrating an excellent
detection sensitivity despite its lightweight architecture. These results indicate that the improved feature
extraction mechanism of YOLO11 effectively handles complex glass patterns. In terms of model complexity,
YOLO11 Nano consumes only 6.4 GFLOPs and has 2.59M parameters, making it one of the most resource-
efficient models in its class. Additionally, the inference speed of 3.83 ms is recorded, which is 2.26 times higher
than that of small models. Fig. 8 compares the FLOPs, parameters, and F1-scores across different models.

Figure 8: (Continued)
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Figure 8: Performance-efficiency trade-off analysis

As shown in Fig. 8, based on the performance efficiency relative to computational resources and Pareto
optimization analysis, YOLO11 Nano is determined to be the most suitable for embedded applications,
achieving an F1-score of 98.33% and inference speed of 3.83 ms simultaneously. Accordingly, this study
adopted the YOLO11 Nano as the standard model for experiments and ablation studies, confirming that it
meets both real-time processing requirements and high detection reliability. Fig. 9 shows the tempered glass
detection results for the YOLOv8 Nano and YOLO11 Nano models.

Figure 9: (Continued)
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Figure 9: Glass detection results using YOLOv8 and YOLO11

The qualitative comparison shown in Fig. 9 demonstrates that while YOLOv8 Nano frequently fails to
detect glass regions, YOLO11 Nano successfully detects most central glass regions despite missing some
peripheral areas.

The performance evaluation of the developed object detection model showed that the precision reached
100%, indicating that no false positives occurred. In other words, the model did not mistakenly classify non-
glass objects as glass. The recall was 96.72%, which is relatively high; however, some glass objects were not
detected, resulting in false negatives. As analyzed in Fig. 10, these false negatives mainly occurred when glass
objects were positioned at the left or right boundaries of the image, so that only a portion of the object was
visible. This phenomenon is attributed to the model’s inability to reliably recognize glass objects when their
features are only partially captured. An effective approach to address this issue is to restrict the detection area
to the central region of the image. Since all glass objects eventually pass through the center of the conveyor
belt, this method can help prevent missed detections caused by partial occlusion at the image boundaries.

4.3 Ablations
Systematic ablation experiments were conducted to analyze the impact of Video Transformation

module components (GMM, HSV transformation, and contour detection) on the tempered glass detection
performance. YOLO11 Nano was adopted as the standard model; Table 3 presents the performance variations
based on different combinations of these components.
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Figure 10: Analysis of model prediction for False Negative case

Table 3: Ablation study results of video transformation components

GMM HSV Contour Affine Precision Recall F1-score mAP50 mAP50-95 Inference (msec)
√

1.0000 0.8822 0.9374 0.9410 0.9049 7.0286√ √
1.0000 0.9421 0.9702 0.9709 0.9593 4.4155√ √ √
1.0000 0.9440 0.9712 0.9718 0.9570 3.8425√ √ √
1.0000 0.9691 0.9843 0.9844 0.9669 4.0481√ √
1.0000 0.8417 0.9140 0.9208 0.8720 3.8446√ √ √
1.0000 0.9054 0.9504 0.9526 0.8848 4.0389√ √ √ √
1.0000 0.9768 0.9883 0.9880 0.9727 3.8255

As shown in Table 3, under the condition (GMM×, HSV×, Contour×, Affine
√

), the model achieves a recall of
88.22% and an F1-score of 93.74%, which represents the lowest performance compared to other combinations.
When GMM-based background removal is added, recall improves by 5.99% to 94.21%, whereas inference
speed is enhanced by 37.18%, achieving 4.42 ms. Under the condition excluding HSV transformation
(GMM

√
, HSV×, Contour

√
), recall reaches 96.91% and F1-score improves to 98.43%, indicating improved

performance compared to the GMM-only condition. This suggests that the structural feature extraction
components (GMM and contour detection) play a dominant role in driving performance improvements.
When all components are applied (GMM

√
, HSV

√
, Contour

√
, Affine

√
), the model achieves the best

performance with a recall of 97.68% and an F1-score of 98.83%. HSV transformation and contour detection
contribute to an additional recall improvement of 3.47% compared to using the GMM alone; this can
be interpreted as a synergistic effect between background removal and boundary enhancement. Table 4
summarizes the results of the ablation experiments.



Comput Mater Contin. 2025;84(1) 1411

Table 4: Summary of the ablation study results

Combinations Recall F1-score Inference (msec)
Baseline (applying only Affine transformation) 0.8822 0.9374 7.0286

+GMM 0.9421 (+5.99%p) 0.9702 (+3.28%p) 4.4155 (−37.18%)
+GMM+HSV 0.9440 (+6.18%p) 0.9712 (+3.38%p) 3.8425 (−45.33%)
+GMM+Contour 0.9691 (+8.69%p) 0.9843 (+4.69%p) 4.0481 (−42.41%)

+GMM+HSV+Contour 0.9768 (+9.46%p) 0.9883 (+5.09%p) 3.8255 (−45.57%)

When all transformation techniques are applied, the model achieves a 45.57% higher inference speed and
a 5.09% improvement in the F1-score compared to the baseline condition. These experiments demonstrate
that GMM-based background removal contributes to both inference speed enhancement and detection
sensitivity improvement, confirming that the hierarchical integration of multi-image processing techniques
is an effective strategy for overcoming the limitations in object detection model performance. Furthermore,
the system demonstrates strong adaptability to real-world manufacturing environments, where conditions
such as lighting and conveyor layout can change over time. In particular, the GMM background model is
constructed using the first 40 frames captured before the glass enters the field of view, during a stable idle
phase. This enables automatic reconstruction of the background for each production cycle, ensuring that the
model remains robust to environmental changes without requiring manual recalibration. The robustness of
tempered glass detection is directly reflected in the confidence distribution of the reliability of the model.
The proposed Video Transformation module further enhances system robustness by normalizing the input
space—mitigating effects of camera position shifts, lighting variations, and background inconsistencies.
This module ensures consistent input to the YOLO11 Nano model, making retraining unnecessary even as
external conditions change. The proposed Video Transformation module can enhance the inference speed
of YOLO11 Nano by utilizing classical computer vision algorithms, which can easily be implemented on
edge devices. YOLO11 Nano, being a lightweight model, is well-suited for deployment on edge devices where
computational resources are typically limited. As it is designed for high-speed inference while maintaining
accuracy, it can be easily implemented on edge devices such as industrial cameras or embedded systems, even
in environments with constrained processing power. Therefore, the proposed algorithm can be effectively
deployed on real-world edge devices and provide practical benefits in factory environments, enabling
real-time, non-contact quality inspection with minimal hardware requirements.

Fig. 11 compares the recall-confidence curves between the models applying only Affine transformation
and those applying the full Video Transformation module.
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Figure 11: Comparison of Recall-Confidence curves

When only Affine transformation is applied, the recall drops sharply beyond a confidence score of 0.3,
with most glass-object detections failing at confidence scores above 0.7. In contrast, the proposed Video
Transformation module maintains a stable recall of more than 95%, up to a confidence score of 0.85. Notably,
significant performance differences between the two approaches are observed in the high-confidence
range of 0.8–0.9, where applying Video Transformation minimizes recall degradation until reaching a
confidence threshold close to 0.9. This indicates that the proposed image transformation techniques enhance
glass-feature extraction capabilities, thereby simultaneously improving both the reliability and stability of
the detection results. In terms of confidence distribution, Video Transformation extends the maximum
confidence range from approximately 0.7 to above 0.9 compared with simple Affine transformation, demon-
strating its ability to significantly reduce false detections in practical applications. This improvement serves as
a critical factor in ensuring robust tempered-glass detection performance, even under limited computational
resource conditions in embedded environments.

5 Conclusions
This paper proposes a vision-based system for detecting and identifying defects in tempered glass in

smart glass-manufacturing environments. The proposed system integrated a Video Transformation module
that combined GMM-based background removal, HSV transformation, contour detection, and Affine
transformation with an object detection model to effectively detect tempered glass, even in complex factory
settings. The experimental results demonstrated that the approach combining the YOLO11 Nano model with
the Video Transformation module achieved a recall of 97.68%, an F1-score of 98.83%, and a high inference
speed of 3.83 ms. The proposed system offered higher accuracy, reliability, and faster processing than
traditional manual inspection methods, enabling non-contact real-time quality inspection and data-driven
decision-making support. Additionally, ablation experiments confirmed that GMM and contour detection
played a critical role in improving the glass detection performance, highlighting the significance of effectively
merging classical image processing techniques with state-of-the-art deep learning technologies. Future
research should aim to enhance the background learning mechanism of GMM and improve its adaptability
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to diverse lighting conditions. Furthermore, we plan to expand the usability of the system by integrating a
high-resolution image analysis module for the precise identification of the detected glass regions. In addition,
although the proposed algorithm was developed for use in tempered glass manufacturing, it can also be
applied to other industrial environments that involve panel-shaped products conveyed via rollers, such as
display or metal sheet production lines. We also plan to expand the dataset to include more diverse conditions
through both additional data acquisition and the application of video augmentation techniques, such as
random brightness adjustment, motion blur simulation, noise injection, geometric distortions (e.g., rotation
and scaling), and background replacement. These techniques will help simulate various real-world factory
environments and edge-case scenarios. In this context, generative AI models such as GANs may also be used
to create synthetic defect samples or simulate rare environmental conditions. In parallel, we plan to adopt
encoder-decoder-based architectures to enhance the segmentation and reconstruction of defect regions,
allowing for more detailed analysis and interpretable results. Through these advancements, the system is
expected to contribute further to automating quality control and improving productivity in the tempered
glass manufacturing industry.
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