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ABSTRACT: This study presents a novel hybrid topology optimization and mold design framework that integrates
process fitting, runner system optimization, and structural analysis to significantly enhance the performance of
injection-molded parts. At its core, the framework employs a greedy algorithm that generates runner systems based on
adjacency and shortest path principles, leading to improvements in both mechanical strength and material efficiency.
The design optimization is validated through a series of rigorous experimental tests, including three-point bending
and torsion tests performed on key-socket frames, ensuring that the optimized designs meet practical performance
requirements. A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven
Prestress Algorithm (AETDPA), which refines the prediction of mechanical failure and strength fitting. This algorithm
has been shown to deliver mesh-independent accuracy, thereby enhancing the reliability of simulation results across
various design iterations. The framework’s adaptability is further demonstrated by its ability to adjust optimization
methods based on the unique geometry of each part, thus accelerating the overall design process while ensuring struc-
tural integrity. In addition to its immediate applications in injection molding, the study explores the potential extension
of this framework to metal additive manufacturing, opening new avenues for its use in advanced manufacturing
technologies. Numerical simulations, including finite element analysis, support the experimental findings and confirm
that the optimized designs provide a balanced combination of strength, durability, and efficiency. Furthermore, the
integration challenges with existing injection molding practices are addressed, underscoring the framework’s scalability
and industrial relevance. Overall, this hybrid topology optimization framework offers a computationally efficient and
robust solution for advanced manufacturing applications, promising significant improvements in design efficiency,
cost-effectiveness, and product performance. Future work will focus on further enhancing algorithm robustness and
exploring additional applications across diverse manufacturing processes.

KEYWORDS: Plastic injection molding; 3D printing; three-point bending; tensile test; adjacent element temperature-
driven pre-stress algorithm; D-S-ER; S-D-S-ER; thermal expansion; greedy algorithm

1 Introduction
Studies on process optimization, runner and gating system design, and process-based topology opti-

mization form a comprehensive framework for improving mold and part design. Process optimization
focuses on refining manufacturing parameters to enhance quality and efficiency, while runner and gating
system design aims to optimize material flow and minimize defects. Process-based topology optimization
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integrates structural performance enhancements with manufacturing constraints. By examining these areas,
a systematic evaluation of key parameters and challenges enables more effective design solutions.

1.1 Process Optimization: Plastic Injection Molding
Research on process optimization in injection molding focuses on determining optimal manufacturing

parameters to enhance product quality, efficiency, and reduce defects. Zhao et al. [1] integrated fast strip
analysis (FSA) with particle swarm optimization (PSO) to optimize process parameters, significantly
reducing computational costs while maintaining high accuracy in predicting filling behavior. Building on
this, Feng et al. [2] developed a two-stage multi-objective optimization tool that combined Taguchi methods,
ANOVA, artificial neural networks (ANN), and a multi-objective genetic algorithm (MOGA). Their system
effectively reduced defects in automobile air conditioning vents, improving efficiency without requiring
extensive knowledge of optimization techniques.

To address weld line constraints and warpage, Wu et al. [3] applied a distributed multi-population
genetic algorithm (DMPGA), successfully reducing maximum warpage and the scrap rate by over 40%.
López et al. [4] focused on complex part geometries using Design of Experiments (DOE) methods, revealing
how localized cooling and material flow variations necessitate detailed experimental analysis for optimal
process parameters.

Kitayama et al. [5] used sequential approximate optimization (SAO) with a radial basis function (RBF)
network to optimize weld line temperature and clamping force. Their results demonstrated the superiority of
3D cooling channels over straight-type designs in reducing defects. Yang et al. [6] advanced real-time defect
detection by integrating digital image processing (DIP) with model-free optimization (MFO), effectively
reducing shrinkage and other surface defects.

Focusing on packaging applications, Chen et al. [7] optimized warpage in polyethylene terephthalate
(PET) preforms by identifying ambient temperature (42.116%) and melting temperature (41.278%) as the
most influential parameters. Their process optimization reduced warpage by 7.72% and lowered rejection
rates by 4%. Zhao et al. [8] developed a support vector classifier (SVC) combined with PSO for weight
classification, achieving a 0.0212% error with minimal experimental data, demonstrating an efficient and
cost-effective optimization strategy for weight control in molded products

1.2 Runner and Gating System Design
Optimization of the runner and gating system is essential for improving material flow, minimizing

defects, and optimizing filling patterns. Zhai et al. [9] introduced a multi-objective genetic algorithm to
optimize runner diameters, gate locations, and cooling layouts for a balanced trade-off between part quality
and manufacturing cost. Their method utilized a Pareto-optimal solution set and a weighted sum approach,
proving effective for gate location and cooling layout optimization.

In the context of conformal cooling system design, Li et al. [10] applied topology optimization using
boundary element methods (BEM) to improve cooling efficiency and uniformity while ensuring easy
integration with CAD (Computer-Aided Design) systems. Feng et al. [11] conducted a comprehensive review,
classifying eight cooling layouts and demonstrating a 70% reduction in cycle time compared to conventional
systems. Their study emphasized the role of additive manufacturing (AM) techniques, particularly laser
powder bed fusion (L-PBF) and epoxy casting, in fabricating high-accuracy cooling molds.

Fu et al. [12] proposed a Voronoi-based level set method for optimizing weld line formation and material
distribution by improving injection gate locations. Liu et al. [13] developed a multi-material level set (MMLS)
topology optimization method, leveraging fiber orientation distribution to enhance stiffness and achieve
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a balanced structural design in plastic components. Their simulations demonstrated that weaker materials
tend to follow shorter paths to form thick sections, while stronger materials distribute efficiently across the
structure for improved mechanical performance.

1.3 Residual Stress: Injection Molded Polymers
Residual stresses in injection-molded polymers directly influence warpage, shrinkage, and overall

product quality. Guevara-Morales and Figueroa-López [14] emphasized the need for advanced finite element
analysis (FEA) models to account for the varying through-thickness properties of complex geometries. Their
research highlighted the importance of integrating experimental data from instrumented molds with FEA
simulations to better predict residual stress development in molded parts.

Tang et al. [15] designed an injection mold for producing warpage testing specimens and conducted
thermal residual stress analysis using LUSAS Analyst R©. Their findings revealed that shrinkage is most sig-
nificant near cooling channels, leading to uneven cooling and increased warpage. Xie et al. [16] investigated
the impact of gate size on flow patterns and residual stresses, showing that undersized gates lead to jetting,
slower filling speeds, and increased residual stresses, while appropriately sized gates improve flow stability
and reduce stress accumulation.

Glomsaker et al. [17] studied warpage behavior in semicrystalline polyethylene (Linear Low Density
Polyethylene), revealing that higher crystallinity levels increase warpage due to uneven solidification during
the cooling process. Hassan et al. [18] demonstrated that rectangular cooling channels improve cooling
efficiency but necessitate a careful balance between residual stress and shrinkage rate. Qiao [19] proposed
a computer-aided optimization method using BEM-based cooling analysis, perturbation-based sensitivity
analysis, and a hybrid optimizer combining the Davidon-Fletcher-Powell (DFP) method with simulated
annealing (SA) for uniform temperature distribution across the mold cavity.

1.4 Hybrid Topology Optimization Methods
Topology optimization has advanced from simple manual material removal methods [20] to systematic

approaches integrating sensitivity analysis, filters, and objective function calculations. Modern research
emphasizes hybrid strategies that combine multiple methods for greater efficiency and effectiveness. The
ESO-I-PR-PSO method [21] integrates evolutionary structural optimization (ESO) with inverse page rank
PSO, where ESO removes excess material and PSO minimizes compliance.

Teimouri et al. [22] utilized bidirectional evolutionary structural optimization (BESO) for lattice gener-
ation and material redistribution, while density and level-set methods [23] were used to design functionally
graded lattice structures, optimizing both shape and structural performance. Liu et al. [24] enhanced level-
set-based optimization using radial basis functions for smoother transitions and boundary interpolation.

Zhou et al. [25] showed that shape and topology optimization without size optimization yields better
results, while Bremicker et al. [26] combined computer vision with topology-size-shape optimization for
truss and 2D continuum structures [27,28]. Lee [29] introduced a nodal density-based approach combined
with shape optimization, a method akin to boundary-based techniques. Lian et al. [30] minimized Von-Mises
stress through a combined shape-topology optimization, reducing compliance by up to 33% compared to
conventional methods. Nguyen et al. [31] further refined structural optimization by incorporating adaptive
mesh coarsening for improved computational efficiency.

Focusing on additive manufacturing, Teke et al. [32] proposed the D-S-ER hybrid method, integrat-
ing density-based optimization, shape optimization, and element removal. Their approach demonstrated
significant improvements across three case studies:
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• 167.5% compliance reduction for a cantilever beam
• 27.8% volume reduction for a corbel structure
• A reduction of compliance from 84.34 to 21.397 Nmm in the GE bracket

Teke and Ertas [33] applied this methodology to optimize a lifting hook, effectively reducing maximum
stress while maintaining structural integrity. Their 1D submodeling approach [34], validated through beam
formulations and 3D printing-based experimental tests, proved efficient for improving fatigue life and
ensuring safety compliance under repeated loading conditions.

In addition, Grubits et al. [35] explored topology optimization in the plastic-limit regime by applying
BESO to I-beams with various beam-column connection types under nonlinear conditions. Their results
demonstrate that optimized configurations can achieve similar structural performance to conventional solid
web beams, while saving material and enhancing rotational stiffness across semi-rigid and welded joints.

Expanding the discussion to uncertainty modeling, Habashneh et al. [36] introduced a reliability-
based topology optimization framework that accounts for stochastic variation in load position and material
imperfections. Their BESO-based approach integrates probabilistic constraints (e.g., target reliability index)
into the optimization loop, yielding robust structures under geometric and material nonlinearity. They
validated their method across multiple benchmark cases including cantilever and shell structures, showing
marked shifts in optimal topology and stress distribution when uncertainty is explicitly considered.

1.5 Scope of the Study
This study optimizes part and mold design by integrating topology optimization with gating and

runner system determination within a structural analysis framework. The goal is to enhance mechan-
ical performance and manufacturability by ensuring efficient material distribution in injection-molded
components. For part optimization, density-based topology optimization (TO), shape optimization, and
element removal methods refine structural configurations. A submodeling-based approach, incorporating
beam formulation in finite elements, enables localized stress analysis while maintaining global optimization.
Both standalone methods and hybrid strategies—such as D-S-ER (Density-Shape-Element Removal) and
Submodeling-D-S-ER—are explored to maximize design flexibility and improve the strength-to-weight
ratio. The gating and runner system is optimized to enhance mechanical performance. A randomized
search algorithm identifies optimal ingate locations, while a greedy algorithm combined with the adjacent
element method generates an adaptive, efficient runner layout. The Adjacent Element Temperature-Driven
Prestress Algorithm (AETDPA) is integrated into the finite element model (FEM) to refine material
distribution and thermal behavior, accounting for temperature-dependent material properties and prestress
effects. Iterative optimization ensures temperature uniformity, minimizing residual stresses and thermal-
induced deformations. A comparative analysis evaluates the optimized design against existing solutions
in terms of mechanical strength, weight reduction, manufacturability, and cycle time efficiency. Advanced
structural analysis techniques assess stress distribution, ensuring industry performance standards. This study
establishes a computationally efficient, automated framework for part and mold optimization, applicable
across injection molding and advanced manufacturing. By integrating topology optimization, gating and
runner system determination, and AETDPA, the methodology enhances structural integrity, manufacturing
efficiency, and product reliability for complex engineering components.

1.6 Novelty and Contribution
This study introduces a novel hybrid optimization framework that integrates topology optimization

(TO), Adjacent Element Temperature-Driven Pre-Stress Algorithm (AETDPA), and greedy runner system
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generation algorithms for the structural enhancement of injection-molded parts. The key contributions
distinguishing this work from previous studies include:

• The first application of AETDPA within a concurrent mold-part design loop, offering mesh-independent
accuracy in stress prediction and failure localization.

• A unique D-S-ER and S-D-S-ER hybrid topology optimization sequence integrating density-based,
shape, and element removal techniques within a submodeling environment.

• A greedy algorithm for runner system generation, optimized for manufacturability and mechanical
strength, outperforming random or purely global search methods in structured injection paths.

• Experimental validation through bending and torsion tests, directly confirming numerical findings and
showcasing the physical performance benefits of the integrated approach.

Compared to previous frameworks, this method streamlines part optimization, enhances manufac-
turability under thermal-induced prestress, and enables adaptive structural improvements across different
mold designs.

2 Computational Framework
The process in Fig. 1 begins with the determination of the AETDPA parameters for both the current

part and mold design. These parameters are then applied within the finite element model (FEM) to account
for thermal expansion, ensuring accurate displacement calculations.

Figure 1: Hybrid framework for part and mold design
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A displacement-based submodeling approach is used to extract displacements at the boundary surfaces,
which will later be incorporated into the optimization framework.

If part optimization is required, the procedure follows a hybrid topology optimization framework,
integrating different methods to refine the part design. First, a submodeling-based optimization approach
utilizing beam formulation on finite elements is employed.

Then, additional topology optimization methods such as element removal, density-based topology
optimization (TO), and shape optimization are applied to refine the structure. The final part optimization
procedure is determined based on these techniques, which can be executed individually (submodeling-
based optimization, density-based TO, shape optimization, or element removal) or in a loop using a
D-S-ER sequence (Density-based TO, Shape Optimization, and Element Removal) or a Submodeling-D-S-
ER sequence (Submodeling-based Optimization followed by Density-based TO, Shape Optimization, and
Element Removal).

Once the part optimization is completed, or if part optimization is not required, the ingate location
determination is conducted using a randomized search method. The next step involves the application of
thermal expansion in the finite element model, using the previously determined AETDPA parameters. Based
on the identified ingates, a runner system is generated utilizing a greedy algorithm combined with the
adjacent element method. The finite element selection process then determines the specific elements where
the injection starts, and AETDPA is used to generate the temperature distribution across the part.

Finally, after the new part design is finalized, the thermal expansion application is repeated using
the same AETDPA parameters in the FEM. A comparison is then conducted between the current and
newly designed parts, focusing on mechanical strength which is based on numerical three-point bending
analysis. This evaluation ensures that the new design maintains or improves upon the structural integrity of
the original part while optimizing manufacturability and performance. Maximum deflection and potential
fracture point are the measures for the mechanical performance. Thus, decrease in material usage reduces
cost and makes it a more suitable choice for the manufacturer. Main objectives for the optimization procedure
are reduction of mass and preserving or increasing mechanical strength.

2.1 Thermal Strain Application in Finite Element Method
The Adjacent Element Temperature-Driven Pre-Stress (AETDP) algorithm extends FEA by incor-

porating thermal strain distributions and residual stresses from manufacturing processes like additive
manufacturing and injection molding. By mapping thermal strains onto nodal displacements through shape
functions, it enhances stress and strain predictions, offering a more comprehensive depiction of material
behavior influenced by geometry and process effects. In FEA, the displacement field within an element is
approximated using nodal displacements and shape functions. The global displacement vector D is formed
by assembling nodal displacements from all elements. The governing system of equations is expressed as
KD = F, where K is the global stiffness matrix, and F is the nodal force vector. For a linear 3D hexahedral
element, shape functions are defined accordingly. Thermal displacement results from material expansion or
contraction due to temperature changes, given by thermal strain expressions (accordingly stress calculation
in FEA model is given in Eq. (1)). For isotropic materials, thermal displacement depends on the position
vector in the reference configuration and the temperature change. The total displacement field combines
both mechanical and thermal displacements. Incorporating thermal expansion into the constitutive equation
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modifies the stress-strain relationship based on Young’s modulus and Poisson’s ratio.
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Von Mises stress is used to evaluate yielding and failure under complex loading conditions. By inte-
grating AETDP with FEA, failure regions, strength assessments, and fracture orientations can be identified
more accurately, improving material behavior predictions under multi-axial stress states. Potential fracture
orientations are inferred from Von-Mises stress contours under static loading conditions (Eq. (2)).

σv m =
√

1
2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6 (σ 2

12 + σ 2
23 + σ 2

13)] (2)

Accordingly, assignment of temperatures via AETDP algorithm goes with the explanation given
in Fig. 2. This code processes finite element analysis (FEA) data by loading nodal and connectivity informa-
tion, mapping nodes to elements, and ordering elements using a breadth-first search (BFS). It then assigns
temperatures to nodes based on user-defined coolant and maximum temperatures, incorporating a geo-
metric modulus (volume/surface area). The script calculates the average temperature for each element and
visualizes the results using a 3D scatter plot with color mapping. This workflow ensures structured element
traversal, accurate thermal distribution, and clear visualization of temperature variations in the model.

Figure 2: Explanation diagram of AETDP algorithm
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2.2 Ingate and Runner System Design Algorithm
The pseudo-code in Fig. 3 automates the ingate determination process by evaluating mechanical

strength using ANSYS R© Workbench. It performs a randomized search by selecting different ingate finite
elements, loading node and connectivity data, and mapping elements using BFS. Temperatures are assigned
based on material properties, and average element temperatures are computed and saved. ANSYS R© is
then executed in batch mode for mechanical strength analysis, and the best ingate element is identified by
evaluating results from multiple iterations.

Figure 3: Randomized search for best ingate finite element

The runner system generation pseudo-code in Fig. 4 automates the determination of optimal ingate
paths in a finite element mesh, focusing on adjacency constraints and mechanical strength evaluation.

Below is an overview of the runner path generation method used in Fig. 4. The algorithm operates using
a beam search-inspired strategy, which iteratively expands the search space by evaluating the neighboring
elements of each node. At each iteration, a fixed number of adjacent elements with the shortest Euclidean
distance to the target are selected and added to the path. This step-by-step expansion continues until a valid
path to the injection target is formed. To prevent loops, already-visited elements are excluded from further
consideration. The process ensures efficient and manufacturable pathfinding within the finite element mesh.
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Figure 4: Runner system generation algorithm

2.2.1 Problem Definition
Elements: Each element is denoted as (for i = 1, 2, . . . , N) with a centroid (center of mass) given by:

C (vi) = (xi , yi , zi) (3)

Adjacency: Two elements are considered adjacent if they share at least one common node and the
Euclidean distance between their centroids is less than or equal to a given threshold (e.g., max_distance).

Objective: Find a path (or paths) from a starting element s (e.g., ingate1 or ingate2) to a target element t,
where at each step, more than one candidate (as specified by a parameter) from the current element’s adjacent
nodes is considered for path extension.

2.2.2 Basic Formulas
Euclidean Distance: The Euclidean distance between the centroids of two elements is computed as:

d (C (vi) , C (v j)) =
√
(xi − x j)

2 + (yi − y j)
2 + (zi − z j)

2 (4)

This formula is used both to check adjacency (d (C (vi) , C (v j)) ≤max _distance) and to rank candi-
date nodes by their proximity to the target.

2.2.3 Beam Search Method Theory
Beam search is a heuristic search strategy that limits the search space by retaining only a fixed number

of the best candidate paths (the beam width) at each expansion step. In our context:
Initialization to start with a beam that contains a single path:
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p(0) = [s] (5)

Path expansion for each candidate path p(k)
j in the beam at iteration k:

• Let n j be the last element in p(k)
j .

• Obtain the set of adjacent elements A(n j) for n j
• Exclude those adjacent elements that are already in the current path (to prevent cycles).
• For each candidate a ∈ A(n j)/p(k)

j calculate its heuristic distance to the target:

h (a) = d (C (a), C (t)) (6)

• Extend the current path by appending candidate_i to form a new path:

p(k+1) = p(k)
j ∪ {a} (7)

2.2.4 Beam Pruning
After expanding all candidate paths, sort the new paths based on the heuristic value (i.e., the distance

from the new node’s centroid to the target centroid). Retain only the top B paths (where B is the specified
beam width or the number of adjacent nodes to be considered, referred here as advance Count).

2.2.5 Termination
The search stops when:

• One or more candidate paths have their last element equal to the target t, or
• A maximum number of iterations is reached.

Stopping criterion:

∃p(k)
j such that last element (p(k)

j ) = t or k = kmax (8)

The process begins with loading node and element data, mapping indices, and computing centroids for
each element. Using a node-to-elements mapping, adjacent elements are identified based on a 6 mm distance
threshold, establishing valid connections for pathfinding. The ingates, intermediate targets, and final target
are predefined to ensure structured traversal. A greedy path search is performed separately for ingate1 and
ingate2, where the algorithm iteratively selects the nearest adjacent element toward the goal centroid. To
prevent loops, cycle detection is implemented, and if no valid path is found, an error message is displayed.
Once paths are determined, each element in the path is expanded by incorporating up to six adjacent
neighbors or so, ensuring a broader selection of elements for further evaluation. Finally, the script displays
the final augmented paths and stops the timer to measure execution efficiency. This structured approach
ensures efficient ingate-to-target connectivity while considering mechanical constraints. The results provide
a robust basis for further ANSYS R© Workbench simulations, allowing for optimized ingate placement and
mechanical strength analysis.
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2.2.6 Justification for Greedy Algorithm Selection
The choice of a greedy algorithm over alternative search methods such as Dijkstra, A*, or genetic

algorithms is motivated by computational efficiency and practical suitability for injection mold design. Since
runner paths are constructed within constrained topologies with predefined ingates and targets, a greedy
approach ensures fast traversal of adjacent elements, emphasizing the shortest local paths and avoiding cycles.
Unlike global search methods, the greedy algorithm enables faster execution suitable for real-time simulation
loops and easy integration with AETDPA-based temperature assignments. Its localized nature also allows
greater flexibility for iterative manufacturability evaluations.

2.3 A Hybrid Framework: Concurrent Mold and Part Design
The hybrid framework’s working procedure (Fig. 5) is stated as follows:

1. Initial Thermal Strain Application in ANSYS R© Workbench: The model is first subjected to thermal
strain, establishing a prestressed condition. Under this state, mechanical loads are subsequently applied.

2. Structural Response Transfer via Submodeling: The structural results from the prestressed model are
exported to a separate sub-project to determine displacements due to mechanical loading. This process
is conducted using submodeling while preserving the integrity of the global model.

3. Topology Optimization for Feasibility: Various topology optimization (TO) methods are evaluated,
and the most manufacturable solution is selected. As illustrated in Fig. 5, the single key-socket frame
presents the most feasible outcome in terms of production. This design is refined using submodeling-
based TO to maintain its marketplace integrity. Conversely, density-based TO and shape optimization
techniques produce solutions that are impractical for manufacturing and market considerations.
Additionally, the D-S-ER approach results in a freeform structure, making it unsuitable. In contrast,
beam formulation-based submodeling TO, applied to finite elements, optimizes weight reduction by
minimizing thickness through cross-sectional reduction and element removal. Manufacturability is
judged based on: (i) absence of undercuts, (ii) continuous geometry for mold release, (iii) interface
flatness for runner joining.

4. Ingate Selection via Algorithmic Approach: A randomized search algorithm is employed to determine
the ingates by randomly selecting elements and evaluating their mechanical strength. Thermal expan-
sion is applied at these ingates to identify the optimal configuration. The finalized ingate locations are
then used in a greedy algorithm to determine the shortest path to the injection point. The part is enclosed
within a box to define the design space for runner system generation. As depicted in Fig. 5, the inclusion
of ingates and intermediate elements prevents collisions between the part and the runner, ensuring
flexibility for various runner system configurations.

5. Final Mechanical Strength Verification: The mechanical strength of the system is reassessed after
thermal expansion is applied. Each modification in part geometry, runner system, or ingate selection
alters the temperature distribution across elements, impacting mechanical strength. However, if the part
topology remains relatively unchanged, the same thermal expansion conditions can be reliably applied
despite variations in mechanical loading. This will be further explored in the subsequent sections. Run-
ner redesign was informed by bending stiffness criteria. While torsional response remained unchanged,
enhanced bending performance justified their inclusion.
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Figure 5: Hybrid framework flow chart

2.4 Topology Optimization Problem Definition
The 1D-submodeling code is developed to simulate the deformation behavior of a structurally opti-

mized, injection-molded component under load, where regional stiffness calculations are used to adaptively
resize the geometry. Additionally, the framework allows for design improvements that align with both
strength and manufacturability criteria. It integrates computational mechanics, automated FEM simulation,
optimization, geometric definition, and mesh visualization steps. Originally utilized to introduce internal
voids within thick components during initial geometry formation, this method has been adapted for thin
parts—such as the key-socket frame—by modifying wall thickness in specific regions to preserve structural
strength while achieving mass reduction. From a manufacturability standpoint, it is important to note
that the current design is already being produced and is part of a commercial product. Therefore, the
scope of allowable modifications is inherently limited. Moreover, to ensure compatibility with the existing
socket and key mechanisms, only minimal and localized adjustments were deemed appropriate within the
optimization process.

The topology optimization approach employed in this study includes a local section-wise flexural
optimization routine based on beam bending theory and nonlinear shape parameterization. The method
targets structural efficiency under bending by minimizing deflection caused by moment loads applied along
the span. The optimization is governed by the following parameter definitions:
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• Target Volume Constraint: The total cross-sectional area is distributed across n = 8n = 8n = 8 segments
along the beam length. Each segment is optimized individually with volume constraints implicitly
controlled by the integration of the moment and inertia relationship “Vi = ∫ Ai dx”.

• Penalization Scheme: Although not SIMP (Solid Isotropic Material with Penalization)-based, a geo-
metric penalization is embedded through nonlinear shape-to-area mapping: the optimized parameter is
transformed as Ai = 0.8⋅(ni⋅12)1/4, which mimics penalized stiffness control.

• Filtering: No explicit density filtering is applied as the optimization operates on isolated segments,
however, a symmetry condition and mirrored constraints are enforced to maintain structural continuity
and avoid checkerboarding.

• Update Strategy: A nonlinear minimization function based on bending energy is applied:

δi = −(
Mi L2

2EI
) + ki (

Mi ΔL2

2EI
) (9)

where ki is a curvature coefficient. Optimization is performed via MATLAB’s fmincon function with
bounds and linear inequality constraints.

• Convergence Criteria: Iterative optimization stops once segmental stiffness converges to within 1%
tolerance across two successive iterations. For each segment, the number of iterations ranges between
15–25.

• Mesh Resolution and Influence: The method operates on a mesh generated via Gmsh, using face-
normal-directed extrusions. Mesh sensitivity is addressed by fixing the number of longitudinal segments
(n = 8) and controlling lateral face placement through extracted nodes on min/max planes. Resulting
geometry is automatically re-fed into the thermal simulation loop for mechanical assessment.

Overall, this segment-wise optimization mimics a topology-shape hybrid method where moment-
induced stresses dictate shape growth, and prestressed FE (Finite Element) verification confirms
structural feasibility.

3 Experiments on Mechanical Strength and Numerical Comparison
The experimental setup for torsion and bending tests applied to single and quad frames, along with

the images of fractured specimens and the equivalent stress distributions, is presented in Table 1. Equivalent
stress distributions correspond to the final simulation state prior to fracture initiation. In the torsion test
conducted on the single frame, fractures occurred at the expected points, specifically at the locations where
the apparatus gripped the specimen. It was observed that the fracture took place at the fixed section of the
testing machine. This observation was further confirmed by the numerical analysis, which revealed that the
stress concentration was also localized in that specific area.

Table 1: Fractured specimens on the test machines and equivalent stress distribution in finite element model

Specimen Fractured specimen

(Continued)
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Table 1 (continued)

Specimen Fractured specimen

Testing equipment and procedure are as follows:
• Equipment: Shimadzu testing machine with a 1 kN load cell.
• Sample Preparation: ABS (Acrylonitrile butadiene styrene) injection-molded parts were fabricated

using a precision steel mold. Each configuration (single vs. quad; single vs. double ingate) included
three samples.
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• Boundary Conditions:
• Torsion Test: Fixed at one end, torque applied at the opposite end.
• Bending Test: Simply supported beam configuration with center-point loading.

• Loading Parameters:
• Displacement-controlled loading at 10 mm/min.

• Failure Assessment:
• Visual fracture detection.
• Stress-strain curves analyzed to identify yield and fracture points.

• Post-Processing:
• Stress localization correlated with FE-predicted Von-Mises distribution.

In contrast, for the quad frame under torsion testing, the stress appeared to be almost uniformly
distributed across the entire structure. However, in other tests, including both single-runner and double-
runner configurations, the fractures consistently occurred in the same regions regardless of the system used.
The primary distinction between single-runner and double-runner systems for both the single and quad
frames became evident primarily in the bending tests.

For the single-runner single frame, when analyzing the stress distribution during the bending tests, it
was observed that high-stress concentrations occurred only on one side of the loading region. On the other
hand, in the double-runner single frame, the stress distribution was more homogeneous across the structure.
The fracture patterns for these parts during the tests are also displayed in Table 1.

In single-runner quad frames, the bending tests revealed that the initiation of fractures occurred slightly
towards the left from the loading center. The numerical analysis results of the equivalent stress distribution
confirmed that the stress concentration was focused in the same region. In contrast, for the double-runner
quad frame, fractures took place directly at the center of the loading area, and the stress distribution
demonstrated a significant level of symmetry between the left and right sides of the frame.

The numerical results mentioned above were obtained using the Adjacent Element Temperature-Driven
Prestress Algorithm (AETDPA). This algorithm allowed the stress regions, where fractures were observed
experimentally, to be effectively replicated within the finite element model. The finite element model was
developed using the ANSYS R© software, and the parameters used in the model are presented in Table 2.

Table 2: Finite element model parameters

Specimen
type

Material Type E (MPa) Poisson’s
ratio

Thermal expansion
coefficient (1/○C)

Vf (AETDPA
Parameter)

Bending
single frame

ABS Injection molded
single and double

ingate

2350 0.4089 0.000184 0.5

Torsion
single frame

ABS Injection molded
single and double

ingate

2350 0.4089 0.000184 0.5

Bending
quad frame

ABS Injection molded
single and double

ingate

2350 0.4089 0.000184 4

(Continued)
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Table 2 (continued)

Specimen
type

Material Type E (MPa) Poisson’s
ratio

Thermal expansion
coefficient (1/○C)

Vf (AETDPA
Parameter)

Torsion
quad frame

ABS Injection molded
single and double

ingate

2350 0.4089 0.000184 4

The parameters, including the Young’s modulus (E), Poisson’s ratio, and the thermal expansion coeffi-
cient, were utilized in an isotropic elastic material model, which represents the standard structural analysis
parameters. The parameter referred to as Vf denotes a cooling factor related to the mold filling and subsequent
cooling process. This parameter represents the gradual cooling of elements assigned temperature values and
simulates the cooling cycle the material undergoes after the molding process. By creating a temperature
distribution, a pre-stress condition is established, which enhances the default capability of the mechanical
failure detection in the simulation.

A critical point to note in Table 2 is that, even though different runner systems were used for the
same parts, the Vf parameter remained constant across all configurations. This consistency ensured that
mechanical simulations were performed under identical conditions and aligned with the experimental
results. Additionally, since the geometric module calculations included in the AETDPA supported this
approach, it was possible to design different runner systems and still accurately predict part behavior under
the same conditions, provided there were no critical geometric changes made to the part.

In Table 3, the experimental results of torsion and bending tests are presented. In addition to the
bending tests, newly developed runner systems and their corresponding finite element simulation results
for bending are also provided. The new designs were developed primarily based on bending tests, and
the results, presented in Table 3b,d, demonstrated significantly stiffer structures compared to the previous
configurations. In the torsion tests (Table 3a,c), no significant performance differences were observed
between the configurations. However, the bending tests (Table 3b,d) revealed a clear distinction, as the single
and double-runner systems in the quad frame exhibited substantially different strength performances. The
configurations of the previous and updated runner systems are detailed in Fig. 6.

Table 3: Experimental torsion (a,c) and bending test (b,d) result graphs for single-ingate and double ingate produced
parts and (b,d) new part and runner design results with bending load in numerical analysis

Torsional load Bending load

(Continued)
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Table 3 (continued)

Torsional load Bending load

Figure 6: (a) Old runner and single frame, (b) new runner and single frame, (c) old runner and quad frame, (d) quad
frame with new runner

It is important to note that the original runner system and part geometry were not theoretical proposals
but were in fact previously manufactured and experimentally validated in industrial practice. Therefore, the
objective of this study was not to replace an unvalidated system, but rather to evaluate whether an improved
structural response could be obtained through a redesign of the runner layout and selective refinement of the
part geometry—without violating existing manufacturing constraints. This case study framework allowed us
to develop and validate a novel hybrid methodology that incorporates both part optimization and runner
system reconfiguration using temperature-induced pre-stress effects derived from a process-fitted baseline.
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The newly developed runner systems prioritize enhanced bending performance and are evaluated within this
hybrid setting, without implying that the original design was deficient, but rather to explore the structural
optimization space enabled by AETDPA.

The equivalent stress distributions corresponding to these configurations are illustrated in Fig. 7. The
older single frame and runner system exhibited a broader stress distribution compared to the newer design.
In the updated design, the stress distribution became more concentrated, resulting in a clearer and more
predictable failure zone.

Figure 7: Old and new designs’ equivalent stress distributions

Similarly, in the initial double-runner configuration of the quad frame, there was an advantage of
focused fracture initiation around the loading center compared to the single-runner system. With the newly
developed runner system, the quad frame exhibited increased stiffness, and the stress distribution clearly
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highlighted the failure region, making it more distinct and predictable based on the stress concentration
patterns observed.

4 Discussion
Process fitting provides mechanical failure and strength properties, facilitating the design of new parts

and runner systems. This approach enhances both material efficiency and time optimization during mold-
part development.

Additionally, process fitting remains applicable when using different runner systems for the same part.
These runner systems are generated through a greedy algorithm that relies solely on adjacency and the short-
est path. This enables the evaluation of various runner configurations for improved mechanical performance
or reduced material usage. The validity of this approach has been confirmed through three-point bending
and torsion tests conducted on both single and quad key-socket frames, as detailed in Section 3.

By integrating part optimization with mechanical failure and strength fitting through thermal expansion
application (AETDPA which is a prestress algorithm developed for this process), this structural methodology
presents new opportunities in topology optimization research. AETDPA has been successfully validated
in previous studies for predicting mechanical failure regions and strength in both 3D-printed plastic
and injection-molded parts. Furthermore, its potential expansion to metal additive manufacturing could
introduce new capabilities for mechanical failure prediction and strength optimization. However, due to the
high cost of metal additive manufacturing, its implementation is reserved for future studies.

One of AETDPA’s most significant advantages is its mesh independence, eliminating the need for a
highly refined mesh to align with experimental results.

The hybrid topology optimization (TO) framework offers flexibility in selecting the most appropriate
optimization method for a given part. The process evaluates the part’s minimum thickness and geometric
constraints to determine the most suitable optimization approach. In this study, thin parts were utilized, and
the single key-socket frame was optimized through submodeling to achieve localized thickness reductions.
Due to its status as a market product, modifications to the design were kept minimal. Additionally, as an
improvement, runner systems were developed for both the single and quad key-socket frames.

By introducing new possibilities in both injection molding and additive manufacturing, the hybrid TO
and mold design framework can accelerate the runner system design process, enhance mechanical strength
predictions, and improve failure region assessments.

The proposed hybrid framework demonstrates strong computational performance in comparison to
conventional methods. For example, the greedy algorithm completes runner pathfinding in under 11.8 s on
average across 10 trials, while randomized ingate searches complete within 222 s depending on mesh size. The
D-S-ER loop converges within 2 or 3 steps for D-S loop (30–35 iterations) and as a final step ERM (Element
Removal Method) within 14–16 iterations, taking approximately 2–3 min per iteration on a 8-core CPU,
16 GB RAM. However, the chosen method is 1D-submodeling technique just takes 1–2 min in total. Actually
the time cost is very low because of the pre-stress algorithm which could predict fracture and strength
without need of a very dense mesh.

5 Conclusion
This study presents an integrated framework combining process fitting, topology optimization (TO),

and mechanical strength analysis to optimize part and runner system designs for injection molding
and additive manufacturing. Process fitting effectively identifies mechanical failure regions and strength
properties, enhancing material efficiency and reducing design time. The use of randomized search and
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greedy algorithms for runner system optimization allows for efficient analysis of multiple configurations,
as validated by three-point bending and torsion tests on single and quad key-socket frames. The Adjacent
Element Temperature-Driven Prestress Algorithm (AETDPA) demonstrates strong predictive capabilities for
mechanical failure and strength while offering mesh independence and potential future applications in metal
additive manufacturing. The hybrid TO framework adapts optimization techniques based on geometric
properties, effectively optimizing thin structures while maintaining market-ready designs. Overall, this
framework accelerates the design process, improves mechanical performance, and enhances failure predic-
tion for both injection molding and additive manufacturing, with future research focusing on extending its
applications to metal additive manufacturing and refining runner system optimization algorithms.
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