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ABSTRACT: Deep learning-based object detection has revolutionized various fields, including agriculture. This paper
presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture
by exploring the evolution of different methods and applications over the past three years, highlighting the shift
from conventional computer vision to deep learning-based methodologies owing to their enhanced efficacy in real
time. The review emphasizes the integration of advanced models, such as You Only Look Once (YOLO) v9, v10,
EfficientDet, Transformer-based models, and hybrid frameworks that improve the precision, accuracy, and scalability
for crop monitoring and disease detection. The review also highlights benchmark datasets and evaluation metrics. It
addresses limitations, like domain adaptation challenges, dataset heterogeneity, and occlusion, while offering insights
into prospective research avenues, such as multimodal learning, explainable AI, and federated learning. Furthermore,
the main aim of this paper is to serve as a thorough resource guide for scientists, researchers, and stakeholders for
implementing deep learning-based object detection methods for the development of intelligent, robust, and sustainable
agricultural systems.
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1 Introduction
Agriculture is one of the most important fields that plays an important role in ensuring global food

security, rural development, and economic growth. With the technological advancements and moderniza-
tion of agriculture, certain challenges need to be addressed, such as climate change, pest infections, crop
diseases, workforce shortages, and the necessity for sustainable resource management [1]. These challenges
can be mitigated by the integration of Artificial Intelligence (AI) and computer vision, which has unveiled
new opportunities for improving efficiency, accuracy and production in agricultural processes. Object
detection has emerged as a pivotal AI technology, facilitating the autonomous identification, localization,
and classification of objects such as leaves, fruits, pests, and diseases from images or video frames [2]. There
are different technologies utilized for object detection in agriculture, including IoT sensors with cameras that
monitor leaves, fruits, vegetables, and crops in real time. Other technologies include drones and satellites
for capturing large-scale crop images for analysis and disease/pest detection, and robotic harvesters are also
utilized for the automation of fruit and vegetable seeding and picking. Further, due to the advancements
in deep learning, object detection methodologies have transitioned from feature-based models to data-
driven approaches such as Convolution Neural Network (CNN) [3], You Only Look Once (YOLO) [4],
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Region-based CNN (R-CNN) [5], etc., which are utilized for detecting pests, diseases, and stages of growth.
Moreover, recent developments in Vision Transformers (ViT) [6], EfficientDet [7], YOLOv9, YOLOv10, and
hybrid CNN-transformer architectures have significantly enhanced detection performance in demanding
field settings. The agricultural AI business has shown significant expansion in recent years.

Despite significant expansion, a substantial gap exists in reviewing multimodal object detection
approaches, benchmark dataset standardization, and lightweight solutions for field-ready deployment, espe-
cially in resource-constrained rural environments. This necessitates a comprehensive and timely systematic
review that not only compiles current developments but also identifies research gaps and future directions.
This paper is thus motivated by the need to bridge the knowledge gap, provide a structured analysis of
deep learning-based object detection techniques in agriculture, and guide future research toward building
intelligent, sustainable, and scalable agri-tech solutions. A survey by GlobeNewswire indicates that the
market was valued at roughly $1.63 billion in 2022 and is anticipated to attain $7.97 billion by 2030, exhibiting
a compound annual growth rate (CAGR) of 21.9% throughout this timeframe [8]. These statistics underscore
the growing incorporation of artificial intelligence technology in agriculture, propelled by the demand for
improved efficiency and production in farming methods [9]. Table 1 presents a comparative analysis of the
existing review papers based on object detection.

Table 1: Comparison of the existing review papers on agriculture based on object detection

Author Year Type of
review

Application Dataset Metrics Challenges
& future
aspects

Limitations

Upadhyay
et al. [10]

2025 Compreh
-ensive
review

Plant disease
detection

✓ ✓ ✓ Concentrated only
on plant disease

detection
Badgujar
et al. [11]

2024 Bibliometric
and sys-
tematic

Different
applications of

farming, excluding
leaves

✗ ✗ ✗ Concentrated only
on YOLO methods

Pai
et al. [12]

2024 Compreh
-ensive
review

Weed detection ✗ ✗ ✓ Concentrated only
on weed detection

Alif
et al. [13]

2024 Compreh-
ensive
review

Different
applications of

agriculture

✗ ✗ ✓ Concentrated only
on YOLO methods

Huang
et al. [14]

2023 Survey Crop counting ✓ ✓ ✓ Concentrated only
on crop counting

Guerri
et al. [15]

2023 Review Hyperspectral
image analysis for
crop monitoring

✓ ✗ ✓ Concentrated only
on hyperspectral

image analysis

The current review papers predominantly concentrate on specific objects, methodologies, or applica-
tions, such as plant disease detection or weed identification, resulting in a substantial deficiency of cohesive
insights across several agricultural sectors. Based on the comparative analysis, the following gaps have been
identified: (i) Limited Scope in Previous Research: Most of the prior reviews concentrate on a single object
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or application, such as exclusively plant disease identification [10] or solely weed detection [12]. Certain
methods are exclusive to particular techniques, notably the YOLO family [11]. (ii) Insufficient Exploration
of Wider Agricultural Applications: Few studies explore object detection’s application in monitoring, yield
estimation, and disease analysis across multiple agricultural objects like leaves, fruits, vegetables, and crops.
(iii) Lack of Dataset and Metric Analysis: Numerous reviews [11–13] fail to address datasets or evaluation
metrics, which are essential for replicability and performance assessment in deep learning research.

This paper fills the gap by delivering a comprehensive and current analysis of various object detection
methodologies, datasets, evaluation metrics, and challenges, thus providing essential guidance to researchers,
practitioners, and policymakers aiming to create scalable and effective AI-driven agricultural solutions. The
importance of this study lies in its thorough examination of deep learning-based object detection methods
utilized for many agricultural elements, including leaves, fruits, vegetables, and crops. The rising demand
for precision agriculture and automation in farming necessitates the integration of AI-driven solutions to
enhance productivity, sustainability, and resilience. The systematic review was conducted for the last three
years, from 2022 to 2024, and also included recent papers. This paper aims to act as a fundamental reference
for researchers, scientists, stakeholders, and policymakers working in AI and agriculture, specifically for
leaves, fruits, vegetables, and crops aiming to utilize deep learning-based object detection approaches for
the development of intelligent, resilient, and sustainable agriculture. The presented systematic review for
agriculture based on object detection using deep learning has the following contributions:

• Scope: The paper concentrated on a broader range of object detection techniques based on deep learning
for four types of objects: leaves, fruits, vegetables, and crops used for different applications of agriculture,
such as disease detection, monitoring, and analysis.

• Recent developments: The paper included a review of recent contributions (last three years, including
the current year) in the field of agriculture based on object detection, ensuring the systematic review
incorporates current technologies and trends.

• Comprehensive dataset: The paper presented a detailed overview of publicly accessible datasets utilized
for object detection in agriculture, with their attributes and sources.

• Evaluation metrics: The evaluation metrics are one of the most important aspects of any research,
therefore, the paper also discusses the commonly used metrics for object detection in agriculture,
highlighting their relevance and effectiveness.

• Challenges and future aspects: The paper highlighted current challenges and research deficiencies in
the domain, providing insights on prospective research trajectories to researchers and academicians.

2 Method and Research Questions
This section discusses the details of the method used for review based on the PRISMA approach.

2.1 Inclusion and Exclusion Criteria
A systematic search approach was employed in accordance with PRISMA2020 standards to collect

pertinent literature on object identification, deep learning, agriculture, and smart farming. The investigation
was performed across multiple digital repositories, including Google Scholar, IEEE Xplore, Scopus, Springer,
ACM, and ScienceDirect. Keyword combinations and Boolean operators were employed to construct the
search queries. The investigation was carried out from January 2022 to January 2025, concentrating on
journal papers and conference proceedings in Computer Science, Artificial Intelligence, and Agriculture. The
chosen articles were subsequently examined for technical specifications, experimental outcomes, datasets,
and assessment criteria. There were four major reasons for excluding the studies such as studies not employ
deep learning, studies not based on object detection, studies related to other fields of agriculture, like animals,
poultry, etc., and manuscripts that were not in the English language were excluded.
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2.2 Search Procedure and Risk of Bias
A systematic search approach was employed in accordance with PRISMA2020 standards to collect

pertinent literature on object identification, deep learning, agriculture, and smart farming. Keyword combi-
nations and Boolean operators were employed to construct the search queries. Examples, “object detection”
AND “deep learning” AND “agriculture”; “CNN” “YOLO” OR “SSD” OR “Faster R-CNN” OR “EfficientDet”
AND “crop” OR “fruit” OR “plant” OR “leaf ”; “smart farming” AND “computer vision” AND “detection”.
The researchers mitigated information bias by conducting an exploratory literature review, using relevant
databases and tools, and avoiding data duplication. The chosen articles were subsequently examined for
technical specifications, experimental outcomes, datasets, and assessment criteria. The search was completed
on January 30, 2025, yielding 1295 studies. The process of inclusion and exclusion with the details of databases
is shown using the PRISMA 2020 flow diagram in Fig. 1.

Figure 1: PRISMA 2020 flow diagram
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2.3 Results
(i) Study Selection

Table 2 shows the results of the search of different databases for the manuscript.

Table 2: Search results of the database

Exclusion criteria

Database First search Peer-
reviewed
journals

Elimin
ating
dupli-
cates

Not
aligned
with the

topic

Full text
not

available

Manusc
ript eval-

uated

Inclusion

Google scholar 470 235 137 6 22 25 45
Scopus 300 123 155 2 0 5 15

IEEE explore 315 145 150 3 0 7 10
Science direct 110 73 26 0 6 3 2

Springer 50 0 38 12 0 0 0
ACM 50 0 44 0 6 0 0
Total 1295 576 550 23 34 40 72

(ii) Synthesis of Results
The synthesis of the selected literature for review which is a total of 72, indicates an increasing

inclination for deep learning-based object identification techniques in agriculture, specifically YOLO
variants, EfficientDet, and transformer-based frameworks. These models provide rapidity and precision
in real-time agricultural monitoring and pathogen identification applications. Hybrid frameworks that
combine computer vision techniques with deep learning are increasingly gaining prominence. Nonetheless,
performance measurements and scalability deficiencies persist, especially in practical implementations.

The systematic review of object detection in agriculture is done on the basis of the following research
questions:

1. What are the most commonly used object detection techniques in the era of deep learning in agriculture,
specifically for leaves, fruits, vegetables, and crops?

2. What are the most common datasets available for object detection in agriculture?
3. What are the common evaluation metrics used for evaluating object detection techniques in agriculture?
4. Which models in the literature are utilized most, and which are performing better at the present stage?
5. What are the challenges and future directions for researchers and practitioners working in the field of

object detection in agriculture?

The review paper is divided into different sections to answer the above research questions, starting
with the introduction of deep learning and object detection techniques. Further, the existing techniques
are discussed with their comparative analysis for object detection in agriculture considering four objects,
namely, leaves, fruits, vegetables, and crops. The review also highlights the benchmark datasets available for
object detection in agriculture and evaluation metrics used for implementing and evaluating techniques,
answering the second and third research questions, respectively. Moreover, the systematic review discusses
the advantages and limitations of the existing object detection techniques. Additionally, answering the
last research question, the applications and future aspects are discussed in the context of object detection
in agriculture.
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3 Overview of Object Detection in the Era of Deep Learning
Deep learning techniques have revolutionized the field of agriculture by providing accurate and efficient

solutions for various tasks, such as disease detection, crop monitoring, and yield prediction. Deep learning
models such as CNNs, Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs) [16],
and transfer learning are extensively employed in agriculture for disease detection, image classification, crop
surveillance and weed detection. These methodologies are applicable for sequential data tasks, synthetic data
generation, and the fine-tuning of pre-trained models on novel datasets. These methodologies can be utilized
on drone or satellite-based images, soil moisture, historical climatic data, and additional variables to enhance
crop yields and soil vitality. Among different applications of deep learning in agriculture, object detection
has been one of the most prominent areas of computer vision, achieving efficiency and efficacy with the help
of deep learning techniques. The timeline of the evolution of prominent object detection techniques is shown
in Fig. 2.

Figure 2: Timeline of prominent object detection techniques evolution

In agriculture, the objective of object detection entails identification and localization of certain objects
such as sick fruits, leaves, vegetables, pests on crops, etc., using images or videos. The presented review
considered four types of objects in agriculture, namely, leaves, fruits, vegetables, and crops. There are different
applications of object detection in these four objects as shown in Fig. 3.

For leaf monitoring there are several applications which have been explored in the literature by
researchers such as disease and pest detection, stress detection, nutrient deficiency analysis. In disease
detection, researchers identified diseases such as rust, mildew, bacterial infections, etc. [17,18] and by
identifying leaf damage patterns to detect pest infections [19]. Similarly, for stress detection, researchers have
identified drought stress via withering patterns and observed leaf yellowing and curling resulting from severe
temperatures [20]. Furthermore, the leaf discoloration and irregular shapes were identified due to nutrient
deficiencies. There is another important application, the Leaf Area Index (LAI) calculation to measure leaf
density for the estimation of crop health and growth rates. For fruit and vegetable monitoring, one of the
major applications in the literature is ripeness detection, which is done by analyzing the texture and color
for optimal harvesting time [21]. Another application is automated harvesting, which includes robotic arms
for picking selective fruits and vegetables, ultimately helping in increasing efficiency and reducing labor.
Additionally, researchers have worked on yield estimation and grading of size and quality using classification
to produce high-quality products [22,23]. The fourth object that has been considered in this review is crop
monitoring, in which researchers have done efficient work lately, including weed detection and removal for
precise herbicide [24].
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Figure 3: Agricultural applications of object detection in leaves, fruits, vegetables and crops

Furthermore, Automated robots are also been invented that works in weed detection and removal [25].
The researchers are also working in the application of growth stage analysis where plants are monitored for
different growth phases from germination to harvest [26]. The color and size of crops helps in monitoring
the stage of the crop whether it is ready to harvest or not or it needs extra care such as more water
etc. [27]. The paper focused on the review of the four objects and the related work is mentioned in the
next section with their comparative analysis. Fig. 4 shows a typical example of an object detection system
for agriculture. A typical object detection system in agriculture uses deep learning techniques like CNN
and attention mechanisms like ViT and EfficientDet for different objects and applications. For agriculture,
a dataset is curated and pre-processed using techniques like normalization and data augmentation. Post-
processing techniques like thresholding, label mapping, and Non-Maximum Suppression improve precision
and accuracy. Outputs include qualitative and quantitative results.

Figure 4: Basic flow of object detection in agriculture
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4 Object Detection Techniques in Agriculture
This section discusses the work done by researchers and academicians in the field of object detection by

utilizing deep learning models for different applications in agriculture. The section is categorized into four
sub-sections covering four objects of agriculture: leaves, fruits, vegetables, and crops.

4.1 Leaves
This section describes the techniques used for object detection in leaves for different applications, such

as disease detection, classification, etc. Du et al. [28] presented a novel object detection model for Spodoptera
frugiperda using the Faster R-CNN framework and high-spatial-resolution RGB ortho-images from an
unmanned aerial vehicle. The model, categorized into four classes based on feeding and invasion, achieved a
mean Average Precision (mAP) of 43.6% on a test dataset. The model is useful for monitoring pest stress and
achieving precise pest control in maize fields. Further, Zhang et al. [29] presented a Tranvolution detection
network using GAN modules for plant disease identification. The researchers used a generative model and
GAN models in the attention extraction module. The Tranvolution architecture outperformed CNN and ViT,
achieving 51.7% precision, 48.1% recall, and 50.3% mean Average Precision. Xu et al. [30] introduced a real-
time object detection technique for melon leaf illnesses in greenhouses, improving early disease diagnosis in
agriculture. The Pruned-YOLO v5s + Shuffle (PYSS) model was used, achieving 93.2% and 98.2% mAP@0.5
for powdery mildew and genuine leaves, respectively. The model’s size and inference time were reduced
by 85% and 7.5%, making it an economical and portable technique. Andrew et al. [31] used CNN-based
models like VGG-16, ResNet-50, DenseNet-121, and Inception V4 to detect plant diseases in crops, focusing
on optimizing hyperparameters. The study also analyzed transfer learning models to improve recognition
and classification accuracy, address labeling and classification challenges, and mitigate overfitting issues. For
experiments PlantVillage dataset was used and achieved a classification accuracy of 99.81% for DenseNet-121.

Haque et al. [32] used YOLOv5 to classify and detect four common rice leaf diseases in Bangladesh:
bacterial leaf blight, brown spot, leaf blast, and sheath blight. The method used a Roboflow AI notebook and
pre-trained COCO weights, achieving high accuracy during training on approximately 1500 images. Cho
et al. [33] introduced an intelligent agricultural robot that uses object detection, picture fusion, and data
augmentation to accurately quantify plant development data. Further, Li et al. [34] presented a lightweight,
high-precision target detection model using YOLOv4 for recognizing tea buds in complex agricultural
environments and achieved an 85.15% detection accuracy for one-bud-one-leaf and one-bud-two-leaf teas.
Furthermore, Abid et al. [35] used the YOLOv8 model for the automation of detecting and classifying
leaf diseases in five principal crops in Bangladesh: rice, corn, wheat, potato, and tomato. The YOLOv8
model surpassed its predecessors, with a mean average precision (mAP) of 98.3% and an F1 score of 97%.
Recently, Li et al. [36] presented a “Plant Leaf Detection transformer with Improved De-noising Anchor
boxes (PL-DINO)” methodology that integrates a Convolutional Block Attention Module (CBAM) into the
ResNet50 backbone to extract features from leaf pictures and uses an Equalisation Loss (EQL) to mitigate
class imbalance in relevant statistics.

Saberi [37] presented a new framework for classifying leaf diseases in plants and fruits using a modified
deep transfer learning model. The model used model engineering, SVM models, and kernel parameters. The
ResNet-50 model achieved 99.95% accuracy in genome classification, leaf enumeration, and PLA estimation.
Hemanth et al. [38] presented a hybrid model for precision agriculture disease identification, utilizing VGG16
and DenseNet121 for image classification. The model, trained on the “DiseaseLeafNet” dataset, achieved
an impressive validation accuracy of 86.53%. Further, Pulugu et al. [39] presented a multi-phase system
using sensors and images for disease detection, including preprocessing, feature extraction, model training,
and disease identification. Ensemble Deep Reinforcement Learning was used to develop a plant disease
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prediction model in Pennsylvania, achieving an accuracy of 89.47%. Similarly, Gokeda et al. [40] presented
a hybrid model for pest detection based on an IoT-UAV smart agriculture system. Moreover, Guan et al. [41]
provided Insect25, an innovative dataset for agricultural pest detection, aimed at overcoming issues such as
the scarcity of comprehensive datasets and the performance constraints of detection methods. They proposed
GC-Faster RCNN, a hybrid attention mechanism that achieved 0.970 mAP@0.5 and 0.939 mAP@0.75.

Further, Liu et al. [42] introduced an intelligent agricultural robot that uses object detection, picture
fusion, and data augmentation to accurately quantify plant development data. The robot used a real-time
deep learning object detector and image fusion of RGB and depth pictures to identify target plants with
enhanced accuracy. This solution addressed the limitations of traditional detection models and requires fewer
calculations than current 3D point cloud-based approaches. Kaur et al. [43] explored the use of deep learning
and object detection techniques to identify tomato leaf diseases, a significant risk to global tomato cultivation.
The study introduced a deep convolutional Mask R-CNN framework, modifying the RPN network and
restructuring its backbone for better detection accuracy. Additionally, Wang et al. [44] developed a method
for detecting sweet potato leaves in natural scenes using a modified Faster R-CNN architecture and a
visual attention mechanism. The technique, which uses a convolutional block attention module and DIoU-
NMS algorithm, achieved a 95.7% precision, surpassing leading object detection approaches. Giakoumoglou
et al. [45] presented the Generate-Paste-Blend-Detect method, which is a synthetic dataset for object
detection in agriculture, focusing on insect whiteflies. It used Denoising Diffusion Probabilistic Models to
create objects, integrate them with the environment, and use an object detection model. The method achieved
a mean average precision of 0.66 using the advanced YOLOv8 object detection model.

Further, Nwaneto et al. [46] utilized the YOLOv8 model to detect Taro Leaf Blight (TLB) early
in taro plants, improving detection accuracy. The model, integrated into an Android application, offers
real-time diagnostic and disease management capabilities to farmers. Field studies showed the model’s
efficacy and intuitive design, with an impressive 98.53% accuracy on an extensive dataset. Mumtaz and
Jalal [47] presented a four-phase classification pipeline to identify precision agriculture plant diseases. It
used histogram equalization, contrast stretching, segmentation methods, SIFT, Harris corner detection,
and genetic algorithms for feature extraction and structure recognition. The presented method achieved an
accuracy of 92.0%. Preanto et al. [48] introduced a semantic segmentation approach for diagnosing sweet
orange leaf diseases using YOLOv8, which improved precision agriculture by addressing manual inspection
constraints. The algorithm achieved an accuracy of 80.4% in training and validation, outperforming VIT’s
99.12%. Mahmoud et al. [49] introduced a new strategy to improve root collar detection in precision
agriculture using the YOLOv5 neural network model. The model, trained on blueberry image data, achieves a
precision of 0.886 on modified images, and a smooth perturbation training attains a mAP of 0.828, enhancing
its robustness and generalizability. Dai et al. [50] presented a deep information feature fusion extraction
network (DFN-PSAN) for plant disease classification in natural field environments, using YOLOv5 Backbone
and Neck network and pyramidal squeezed attention. The model achieves an average accuracy of 95.27%,
saving 26% of parameters.

Lin et al. [51] presented the MobileNetv3-YOLOv4 architecture as a highly efficient framework for object
detection in smart agriculture, achieving high accuracy and speed. Experimental results showed that the
lightweight MobYOLv4 design reduces parameters by 82.31% and 28.87 FPS, while the enhanced MobYOLv4
architecture outperforms lightweight models in accuracy, detection speed, and computational complexity,
making it ideal for real-time or resource-limited applications. Moreover, Aldakheel et al. [52] used the
YOLOv4 algorithm to detect and identify plant leaf diseases using the Plant Village dataset. The algorithm
used over 40,000 images from 14 species and focused on rust and scab in apple leaves, using real-time
object detection. The presented technique achieved an accuracy of 99.99% on the dataset, claiming that the
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integration could improve disease prediction and management in agriculture. YOLO-Leaf is a novel model
for detecting apple leaf diseases, overcoming challenges in illumination, shadows, and perceptual fields [53].
It uses Dynamic Snake Convolution for feature extraction, BiFormer for augmented attention, and IF-CIoU
for enhanced bounding box regression. Experimental results show that YOLO-Leaf outperforms current
models in detection accuracy with mAP50 scores of 93.88% and 95.69%, respectively, demonstrating the
potential of advanced technologies in precision agriculture.

Highlights of the discussed literature
Deep learning models (YOLOv5, YOLOv8, Faster R-CNN, Mask R-CNN, DenseNet, and Transformer-

based architectures like PL-DINO) have significantly advanced leaf disease detection. YOLO-based methods
dominate in real-time applications, particularly for mobile-friendly implementations. Transformer-based
approaches (PL-DINO) improve feature extraction and class imbalance issues. Hybrid models (e.g.,
Tranvolution with GAN modules, MobileNetv3-YOLOv4) offer lightweight, high-accuracy solutions for
resource-limited environments. Ensemble learning and synthetic datasets are emerging trends to improve
the generalizability and robustness of agricultural object detection models. Table 3 presents a comparative
analysis of the above-mentioned leaf-based reviewed techniques.

Table 3: Comparative analysis of techniques for object detection in leaves

Authors Method Problem statement Dataset Results Key features
Du et al. [28] Faster R-CNN Pest detection on

corn leaves
UAV
RGB

images

43.6% mAP Pest
monitoring

in maize
fields

Zhang
et al. [29]

Tranvolution +
GAN

Leaf disease
detection

PlantDoc 51.7%
precision,

50.3% mAP

Outperformed
CNN and

ViT
Eunice

et al. [31]
CNN (VGG-16,

ResNet-50,
DenseNet-121,
Inception V4)

Plant disease
classification

PlantVillage 99.81%
accuracy

(DenseNet-
121)

Optimized
hyperpa-

rameters for
accuracy

Haque
et al. [32]

YOLOv5 Rice leaf disease
detection

Roboflow
AI

High
accuracy
(~1500
images)

Real-time
classification

Abid et al. [35] YOLOv8 +
CNN

Leaf disease
detection in 5

crops

Custom
dataset-

2850
images

mAP 0.983,
F1-score 97%

Deep
ensemble
learning
model

(DELM)
Li et al. [36] PL-DINO

(Transformer +
CBAM +

ResNet-50)

Plant disease
detection

PlantDoc Superior to
other models

Improved
feature

extraction
and class
balance

(Continued)
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Table 3 (continued)

Authors Method Problem statement Dataset Results Key features
Saberi [37] Hybrid model Leaf diseases in

plants and fruits
PlantVillage
and UCI

ResNet-50
99.95%

accuracy

Classified
multiple leaf

diseases
Pulugu

et al. [39]
Ensemble deep
reinforcement

Disease detection New
plant

disease
dataset

89.7%
accuracy

Presented a
multiphase

system
utilizing IoT
and sensors

Wang et al. [44] Faster R-CNN
+ DIoU-NMS

Sweet potato leaf
detection

Custom
dataset-

7686
images

95.7%
precision

Surpassed
existing
models

Giakoumoglou
et al. [45]

Synthetic
dataset +
YOLOv8

Whitefly detection
on leaves

Custom
dataset

mAP 0.66 Synthetic
data for
better

training
Nwaneto
et al. [46]

YOLOv8 +
Android app

Taro Leaf Blight
detection

Custom
dataset

98.53%
accuracy

Real-time
farmer

assistance
Preanto

et al. [48]
YOLOv8 Sweet orange leaf

disease
segmentation

Custom
dataset-

5675
images

80.4%
accuracy

Improved
citrus

disease
diagnosis

Mahmoud
et al. [49]

YOLOv5 +
Smooth

perturbation

Root collar
detection

Blueberry
dataset

Precision
0.886, mAP

0.828

Increased
robustness

Dai et al. [50] DFN-PSAN Plant disease
classification

PlantVillage
and

Katra-
Twelve

95.27%
accuracy

deep
information

feature
fusion

extraction
network

Lin et al. [51] MobileNetv3-
YOLOv4

Smart agriculture
detection

CCL’20
dataset

28.87 FPS,
reduced
82.31%
params

Optimized
for edge
devices

4.2 Fruits
For fruits, several researchers utilized object detection for different applications. Liu et al. [54] developed

a model for detecting and segmenting obscured green fruits. The model used a fully convolutional one-stage
object detection framework and a two-layer convolutional block attention network to restore incomplete
edges. The model also introduced a double-layer convolutional block attention network. The model achieved
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recognition and segmentation accuracies of 81.2% and 85.3% on the Apple dataset and 77.2% and 79.7% on
the Apple-ape dataset. Zhang et al. [55] presented a deep learning object detection method for accurately
enumerating fruit yield on a holly tree. The method uses UAV imagery to create a detailed map of the tree’s
surface, and a YOLOX object identification network is trained using innovative techniques. The YOLOX-
based fruit-counting technique is effective for various fruits, including apples and lychee, and has high
inference efficiency, making it a viable option for real-time use in orchard and plantation management.
The statistical correlation between detected and real figures reaches 96% for a ring shot parameter of
the tree at R ≤ 1.2 m, 95% at R ≤ 1.6 m, and exceeds 99% at R ≤ 1.2 m, while surpassing 97% at
R ≤ 2.0 m. Zhai et al. [56] presented the TEAVit model as a camouflage object detection network designed
for identifying green tomatoes in agricultural settings. The model used a hybrid architecture of CNN and
Transformer, combining convolutional neural networks lightweight efficiency with the transformer’s vision
and self-attention capabilities. The augmented dataset includes 4944 accurately labeled targets, with the
model surpassing existing deep learning methods in object detection.

Liu et al. [23] introduced an MAE-YOLOv8 model for detecting green crisp plums in complex
orchard environments. The model, based on YOLOv8s-p2, used an efficient multi-scale attention module,
an asymptotic feature pyramid network (AFPN), and minimum point distance intersection over union
(MPDIoU) as regression loss functions. The experimental results claimed 92.3% precision, 82% recall, 89.4%
average precision, and 68 frames per second. Furthermore, Zheng et al. [57] explored object detection in
remote sensing imagery, specifically focusing on identifying strawberries on a central Florida strawberry
farm. Researchers used an object-detection model and an enhanced FaceNet model to detect strawberry
fruit and blossom items. The method improved the recognition accuracy of strawberry flowers, unripe
fruits, and ripe fruits from 76.28% to 96.98%, 71.64% to 99.09%, and 69.81% to 97.17%, respectively. Jrondi
et al. [58] compared two object detection models, DETR and YOLOv8, for fruit detection in agriculture.
DETR is effective in localizing fruits, while YOLOv8 improves detection efficacy, particularly for orange
and sweet_orange categories. Both models offer insights for precision agriculture, aiding farmers in yield
forecasting and harvest strategizing. DETR’s ability to identify objects of various sizes and thresholds is
beneficial for precise fruit identification, while YOLOv8’s precision and recall rates make it suitable for swift
fruit recognition.

Additionally, Zhao et al. [59] aimed to improve the detection accuracy of blueberry fruits by developing
a UAV remote sensing target detection dataset for blueberry canopy fruits in an orchard setting. The
PAC3 module integrates position data encoding during feature extraction, minimizing the likelihood of
overlooking blueberry fruits. The PF-YOLO model outperforms other models, with improvements in mAP
of 5.5% to Yolov5s, 6.8% to Yolov5l, 2.5% to Yolov5s-p6, 2.1% to Yolov5l-p6, 5.7% to Tph-Yolov5, 2.9%
to Yolov8n, 1.5% to Yolov8s, and Yolov9c 3.4%. Furthermore, the AG-YOLO algorithm proposed by Lin
et al. [60] for detecting citrus fruits addressed low detection accuracy and overlooked detections in occluded
situations. It used NextViT architecture and a Global Context Fusion Module to assimilate contextual
information. The algorithm achieved high precision on over 8000 outdoor images, attaining a precision
of 90.6%, a mean average precision of 83.2%, and a mAP@50:95 of 60.3%. Lee et al. [61] introduced a
machine vision and learning method for detecting flower clusters on apple trees, enabling the prediction
of potential yield. A field robot was used to gather 1500 photos of apple trees, achieving a cluster precision
of 0.88 and a percentage error of 14%. Although the model predicted lower yields, it provided insights
into tree development and production. The research explores modifications to improve detection, including
external illumination, diverse training data conditions, and ground truth boxes for circular items like apples
and tomatoes.
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Focusing on edge computing, Jiao et al. [62] introduced a real-time litchi detection technique using
low-energy edge computing devices. It utilized litchi orchard pictures and a CNN-based detector, YOLOx,
to identify litchi fruit locations. The method achieved a 97.1% compression rate and is suitable for practical
orchard settings. Similarly, ref. [63] presented edge AI by utilizing lightweight vision models for farmers
to identify orange diseases, achieving 96% accuracy in species classification and object detection. Mao
et al. [64] presented RTFD, a lightweight method designed for edge CPU devices to identify fruit utilizing the
PicoDet-S paradigm. It enhanced real-time detection efficiency by 1.9% and 2.3% for tomato and strawberry
datasets, respectively, with no computational loss. The RTFD model possesses significant potential for
intelligent picking robots and is anticipated to be effectively implemented in edge computing. Zhou et al. [65]
presented a framework for detecting and analyzing rod-like crops (fruits and vegetables) using multi-
object-oriented detection techniques. It employed Zizania shots and deep learning models using OBBLabel.
The model achieved a precision of 0.903 and an accuracy of 93.4%. Furthermore, the ITF-WPI cross-
modal feature fusion model improves the accuracy of wolfberry pest identification and optimizes data
consumption [66]. It employs CNN and Object-Based Linear Localization (OBLL) for the concurrent
analysis of pictures and text. The approach has pragmatic applications in agriculture, pest management of
wolfberries, and yield enhancement. Evaluated over multiple datasets, it attained an average accuracy of
97.91%.

Highlights of the discussed literature
These studies focus on improving fruit detection and segmentation in agricultural settings using deep

learning techniques. Methods range from CNN-based models like YOLOX and MAE-YOLOv8 for real-time
detection to Transformer-enhanced architectures such as TEAVit and AG-YOLO for improved accuracy
in complex environments. UAV and remote sensing imagery are leveraged for large-scale monitoring,
while object detection frameworks like DETR and YOLOv8 are compared for citrus fruit recognition.
Specialized approaches, such as a fully convolutional framework for obscured green fruits and PAC3-
integrated models for blueberry detection, enhance precision in challenging scenarios. These advancements
contribute to automated harvesting, yield estimation, and smart agriculture applications. Table 4 highlights
the comparative analysis of reviewed techniques.

Table 4: Comparative analysis of techniques used for object detection in fruits

Authors Model/Method Problem statement Performance Key features
Liu et al. [54] Fully

convolutional
one-stage

Obscured green
fruits detection

81.2%
recognition,

85.3%
segmentation

Double-layer
convolutional

block attention
network

Zhang et al. [55] YOLOX Holly fruit
counting using

UAV

96%–99%
accuracy

depending on
distance

High inferencing
efficiency, mobile

deployment

Zhai et al. [56] TEAVit
(Camouflage
object detec-

tion+Transformer)

Green tomato
detection

Enhanced
detection over
deep learning

methods

Texture-edge-
awareness

module, CNN-
Transformer

hybrid

(Continued)
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Table 4 (continued)

Authors Model/Method Problem statement Performance Key features
Liu et al. [23] MAE-YOLOv8 Green crisp plum

detection
92.3% precision,
82% recall, 89.4%

AP

Multi-scale
attention module,

asymptotic
feature pyramid

network
Zheng et al. [57] FaceNet + Object

Detection
Strawberry
detection in

remote sensing
images

99.09% ripe fruit
detection
accuracy

Improved
detection

accuracy of
flowers and fruits

Jrondi et al. [58] DETR vs.
YOLOv8

Citrus fruit
detection

DETR: better
localization,

YOLOv8: better
precision

Comparison of
Transformer vs.

YOLO-based
methods

Zhao et al. [59] PF-YOLO Blueberry
detection in UAV

imagery

Improves mAP
over YOLOv5
and YOLOv8

models

PAC3 module for
feature encoding

Lin et al. [60] AG-YOLO
(NextViT +

Global Context
Fusion)

Citrus fruit
detection

90.6% precision,
83.2% mAP,

60.3%
mAP@50:95

Addresses
occlusion and
size variations

Lee et al. [61] Machine Vision +
Learning

Apple flower
cluster detection

88% precision,
14% error in yield

estimation

Field robot-based
data collection

Zhou et al. [65] OBBLabel +
Deep Learning

Rod-like crops
sorting

90.3% precision,
93.4% accuracy

Edge intelligence
prototype sorting

machine
Dai et al. [66] CNN + OBLL Woflberries pest

management
97.98% accuracy,
93.19% F1-Score

Cross model
feature fusion

4.3 Vegetables
This section covers literature related to vegetables. Siddiquee et al. [67] developed an IoT-enabled smart

agriculture monitoring system that detects, quantifies, assesses ripeness, and identifies diseased produce. It
was tested on a tomato field in Chittagong, Bangladesh, and aimed to assist farmers in digitally tracking
production in Bangladesh and Malaysia. The system uses a CNN with a 90% accuracy rate. Jin et al. [68]
developed a deep learning-based model to detect weeds in vegetable crops, identifying vegetables and
categorizing all other green entities as weeds. The system, YOLO-v3, achieved a high F1 score of 0.971,
with precision and recall values of 0.971 and 0.970, respectively. The research used ImageNet, a dataset
with over 14 million labelled images, and three types of Convolutional Neural Networks (CNNs) for visual
identification. Guo et al. [20] developed an automated surveillance system for airborne vegetable insect
pests in South China using an RGB camera and YOLO-SIP detector. Yellow sticky traps were used for
pest sampling, and a computer vision detector, YOLO-SIP, was used to accurately identify pests. The
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system demonstrated potential for automated pest control in vegetable fields, surpassing existing detectors
in counting efficacy. Roy et al. [69] introduced a high-performance real-time fine-grain object detection
model derived from an enhanced version of the YOLOv4 algorithm. The model tackles challenges in
plant disease detection, including dense distribution, uneven morphology, multi-scale object classes, and
textural similarity. The revised network architecture incorporates DenseNet, residual blocks, Spatial Pyramid
Pooling, and Path Aggregation Network, with the Hard-Swish function enhancing accuracy through superior
nonlinear feature extraction. The model surpasses current detection algorithms in accuracy and speed,
offering an efficient approach for identifying plant diseases in intricate situations. The model additionally
incorporates generalised IoU (GIoU) and Distance-IoU (DIoU) loss to enhance performance. The advanced
YOLOv4 method is employed to create a precise real-time high-performance image detection model on a
single GPU.

Furthermore, Reyes-Hung et al. [70] utilized YOLOv7 and YOLOv8, to categorize stress in potato
crops using multispectral pictures captured by drones. The integration of RGB and monochrome photos
markedly enhanced accuracy metrics for both healthy and stressed plants, yielding values of 0.917 and 0.914,
respectively, alongside F1 scores of 0.902 for healthy plants and 0.881 for stressed plants. Ullao et al. [71]
presented Sureveg CORE Organic Cofund ERA-Net that developed a robotic platform for strip cropping
using a CNN Vegetables Detection-Characterization Method. The project explores the benefits of strip
cropping systems for organic vegetable cultivation, automated equipment management, and biodegradable
waste repurposing. The Automatic Robotic Fertilization Process uses ROS algorithms to identify crop
varieties and central coordinates, with cabbage achieving the highest recognition rate. The method has a
high reliability index and mean accuracy of 90.5% with minimal error rates in vegetable characterization. Li
et al. [72] presented a novel YOLOv5-based method for vegetable disease detection that has been developed,
improving detection range and efficacy for minor diseases. The algorithm’s CSP, FPN, and NMS modules
have been optimized to mitigate external impacts and extend detection range. Experiments show a mean
Average Precision of 93.1% for vegetable disease identification, minimizing false negatives and false positives.
The model’s size is 17.1 MB and the average detection duration is 0.03 s. The algorithm is effective in vegetable
cultivation and agricultural output, offering precise planting and informed decision-making.

Liong et al. [73] explored automated inspection systems in the food sector, using computer vision
technology to analyze the geometric characteristics of agricultural goods. The DeepLabv3+ algorithm for
semantic segmentation, object detection, and object tracking is employed to precisely categorise and evaluate
the geometric characteristics of carrots. The system accurately recognizes features like width, length, area,
and volume, with average errors of 1.85%, 2.51%, and 5.35%. Islam et al. [74] used eight machine learning
and deep learning-based CNN models to classify and segment green vegetables and diseases in Bangladesh.
The paper analyzes seven leafy vegetables utilizing five classification models (YOLOv5, YOLOv8, ResNet50,
VGG16, and VGG19,) and three instance segmentation models (YOLOv5, v7, and v8). The combination of
these models with sensors and remote sensing technologies aids real-time disease identification. López-
Correa et al. [75] utilized RetinaNet to automatically identify and categorize weed species in tomato
cultivation. The model, trained on RGB photos, achieved an average precision of 0.900–0.977. The research
also evaluated its efficacy on novel data sets, proving RetinaNet an effective method for weed detection in
real-world settings.

Rodrigues et al. [76] explored the use of computer vision and deep learning for the dynamic pheno-
logical classification of vegetable crops. Four advanced models were evaluated using a dataset containing
RGB and grayscale annotations. The YOLO v4 model accurately classified 4123 plants from 5396 ground
facts, demonstrating the potential of CNN_DL in agricultural procedures, thereby advancing sustainable
agriculture practices. Hu et al. [21] presented a new technique for precision spraying of agricultural robots
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on vegetable plants using Multiple Object Tracking and Segmentation (MOTS) methodologies. Moreover,
Das et al. [77] developed an autonomous agricultural rover using deep learning algorithms for vegetable
harvesting and soil analysis. The model yields a precision score of 0.8518, a recall score of 0.7624, and mean
average precision scores of 0.8213 and 0.4419. For real-time identification of different vegetables, Shreenithi
et al. [78] presented a Mobile Veggie Detector system based on deep learning that used a smartphone
application, eliminating the need for spoken communication. Zhao et al. [79] introduced a new framework
that uses two CNNs for crop harvesting, YOLO-VGG. Additionally, Wang et al. [80] also used YOLOv8 and
presented YOLOv8n-vegetable, a model designed to improve vegetable disease identification in greenhouses.
The experimental results achieved a mAP of 92.91% and a speed of 271.07 frames per second, demonstrating
its competence in vegetable disease detection tasks within greenhouse planting environments. The model
showed a 6.46% increase in mAP and a novel IoU loss function.

Highlights of the discussed literature
This collection of studies explores deep learning and computer vision applications in smart agriculture,

focusing on vegetable crop monitoring, disease detection, weed classification, and automated farming.
Various models, including YOLO variants, RetinaNet, ResNet, and VGG, have been employed to improve
accuracy in detecting pests, plant stress, and ripeness assessment. IoT-based systems, robotic automation,
and multispectral imaging enhance efficiency in tasks like fertilization, phenological classification, and
precision spraying. Additionally, mobile applications and AI-driven object detection improve real-time crop
monitoring. The advancements highlight the potential of AI in optimizing agricultural productivity and
sustainability. Table 5 shows the comparative analysis of the reviewed techniques.

Table 5: Comparative analysis of techniques used for object detection in vegetables

Authors Problem
statement

Technology used Dataset Results Application/Key
features

Siddiquee
et al. [67]

Smart
agriculture
monitoring

CNN Tomato
field,

Chittagong

90%
accuracy

Ripeness
assessment,

disease
detection

Jin
et al. [68]

Weed
detection

in
vegetables

YOLO-v3,
CNNs

ImageNet
(14 M

images)

F1-score:
0.971,

Precision:
0.971, Recall:

0.970

Identifying and
classifying

weeds

Reyes-
Hung

et al. [70]

Stress
detection
in crops

YOLOv7,
YOLOv8

Multispectral
imagery
(drone)

Accuracy:
RGB-0.917,

Monochrome-
0.914

Precision
agriculture,

stress
classification

Ullao
et al. [71]

Robotic
fertiliza-
tion in
strip

cropping

CNN, ROS
algorithms

Sureveg
CORE

Organic

90.5%
accuracy

Automated
fertilization and

vegetable
detection

(Continued)
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Table 5 (continued)

Authors Problem
statement

Technology used Dataset Results Application/Key
features

Li
et al. [72]

Vegetable
disease

detection

Improved
YOLOv5

CSP, FPN,
NMS

mAP: 93.1%,
17.1 MB

model size

Early disease
detection

López-
Correa

et al. [75]

Weed man-
agement in

tomato
crops

RetinaNet RGB dataset Precision:
0.900–0.977

Automatic
weed species

categorization

Rodrigues
et al. [76]

Phenological
classifica-

tion of
vegetables

YOLOv4,
CNNs

RGB and
greyscale

Classified
4123 plants
out of 5396

Crop growth
stage analysis

Das
et al. [77]

Agricultural
rover for

harvesting
& soil

analysis

Deep learning,
robotics, soil

sensing

Vegetable
harvesting

dataset

Precision:
0.8518,
Recall:
0.7624

Smart
agricultural

robotics

Zhao
et al. [79]

Real-time
object

detection
for robotic
harvesting

YOLO, CNNs,
Mask R-CNN

Crop
harvesting

dataset

Enhanced
detection

and gripping
efficiency

Automated
robotic

harvesting

Wang
et al. [80]

Vegetable
disease

detection
in green-

houses

YOLOv8n-
vegetable,
C2fGhost,

OAM, HIoU

Greenhouse
environ-

ment
dataset

mAP:
92.91%,

271.07 FPS

High-speed
disease

detection

4.4 Crops
In this section literature of different crops have been reviewed, the crops terminology here resembles

wheat, rice, maze, etc. The majority of the tasks in crops are for weed detection, yield estimation, disease
detection and growth stage detection.

Kong et al. [81] proposed CropDetdiff, a diffusion learning detector designed for identifying small-
scale crop diseases in agricultural settings. It uses dynamic convolutional kernels and a graph attention
network to improve feature extraction. Researchers used fuzzy label assignment and a novel loss function,
HIoU, to manage detection. CropDetDiff achieved an optimal balance between detection efficacy and
operating efficiency, reaching a mean Average Precision (mAP) of 73.2% and 40.1% on two datasets.
Dang et al. [82] introduced a novel dataset for cotton cultivation consisting of 5648 images of 12 weed
categories. The detection accuracy of different YOLO models varied from 88.14% with YOLOv3-tiny to
95.22% with YOLOv4, and from 68.18% with YOLOv3-tiny to 89.72% with Scaled-YOLOv4. Further, Kalezhi
et al. [83] explored the early identification and localization of plant diseases in agriculture using YOLO
and Generalised Efficient Layer Aggregation Network (GELAN) for cassava plant leaf diseases. The results
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showed an improvement in evaluation metrics, exceeding 80% for most disorders. Zou et al. [24] introduced
a deep learning-based image augmentation technique for agricultural fields, concentrating on synthetic
representations of crops, weeds, and soil. The approach is evaluated on image classification, object detection,
and semantic segmentation tasks utilizing ResNet, YOLOv5, and DeepLabV3. The obtained results had
an overall accuracy of 0.98, with precision, recall, and F1-score all at 0.99. The findings indicate that the
suggested strategy significantly enhances crop categorization, object recognition, and semantic segmentation
in agricultural fields, although with minor overfitting.

Further, Lee et al. [84] presented a technique that integrates Image Captioning and Object Detection
techniques to improve crop disease diagnosis in Korean agriculture. They utilized a transformer to generate
precise diagnostic words for disease-infected crops, considering crop types, disease types, damage levels, and
symptoms. The mean BLEU score for Image Captioning is 64.96%, but the mAP50 for Object Detection
is 0.382. Onler et al. [18] presented a work for wheat powdery mildew, caused by the fungal disease
Blumeria graminis tritici, a global concern. They have utilized the YOLOv8m model and achieved the
highest precision of 0.79, recall 0.74, F1 score of 0.77, and average precision of 0.35. Moreover, Gomez
et al. [85] investigated the effectiveness of precision weed spraying using two datasets, two GPU types, and
multiple object detection algorithms. The work used deep learning-based object detectors like YOLOv3 and
CenterNet, and a new statistic called weed coverage rate (WCR) to assess the influence of detector precision
on spraying accuracy. YoloV5m, Yolov3, and Faster R-CNN, demonstrated optimal performance, achieving a
frame rate of 980 or 1024, contingent upon the number of cameras utilized. Rai et al. [86] utilized the YOLO-
Spot model to detect weeds in aerial images and videos obtained from small unmanned aerial vehicles.
It employed fewer parameters and diminished feature map dimensions, attaining considerable prediction
accuracy. The optimized model was advised for incorporation with remote sensing technologies for targeted
weed management.

Kumar et al. [87] utilized YOLOv8 for weed detection in agricultural settings. The presented work
achieved an accuracy of 86% in real-time weed recognition, with few false positives. However, the algorithm
struggled to distinguish between weed and background instances, resulting in an accuracy of 0.0. The
YOLO v8-based weed recognition algorithm has the potential for real-time agricultural tasks, particularly
in-field herbicide neutralization, due to its rapid object detection and superior alignment with ground truth
bounding boxes. Bhat et al. [88] developed an optimal algorithm for weed detection and management using
agricultural imaging data. Researchers utilized Faster R-CNN and YOLOv6 for effective weed and crop
detection using an extensive dataset of images captured under different lighting and climatic conditions.
The models showed exceptional precision in identifying crops and weeds in agricultural fields, providing
high accuracy and rapid processing speeds. Additionally, Zhang et al. [89] presented HR-YOLOv8, an object
detection model that uses a dual self-attention mechanism to improve crop growth detection performance.
The model incorporates InnerShape (IS)-IoU as the bounding box regression loss and alters the feature fusion
component by linking convolution streams from high to low resolution in parallel. Experimental results
show a reduction in parameters and an average detection accuracy exceeding the baseline model by 5.2%
and 0.6%, respectively. The model also mitigates the imbalanced distribution of categories in the dataset.

Focusing on precision agriculture, Andreau et al. [90] utilized YOLOv8 framework for insect detection.
The authors analyze and assess YOLOv8 models, highlighting its versatility in detecting insects regardless of
crop type. The findings help create a robust dataset for future insect identification technologies. Additionally,
Darbyshire et al. [91] evaluated the viability of precision spraying in agriculture by employing two datasets,
distinct image resolutions, and multiple object detection algorithms to assess the accuracy of weed detection
and spraying. The paper presents measurements such as weed coverage rate and area treated to quantify
these elements. It was determined that 93% of weeds could be eradicated by treating only 30% of the land
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via advanced visual techniques. Furthermore, Thakur et al. [92] also utilized YOLOv8 for the detection
of crops and weeds and was trained and assessed on a specialized dataset for crop and weed detection,
with an mAP of 89.7%. Naik et al. [93] used RCNNs to identify and categorize weeds in sesame fields with
the goal of developing an automated pest and weed management system for sesame cultivation, providing
farmers with critical insights about weed composition, enhancing crop health, increasing yield, and reducing
herbicide application. The proposed technique was able to achieve a detection accuracy of 96.84% and a weed
classification accuracy of 97.79%, reducing reliance on hazardous chemicals.

Moreover, Singh et al. [94] presented an IoT-based real-time object detection system for crop protection
and agricultural field security using ESP32-CAM and Raspberry Pi, along with an optimized YOLOv8 model.
The Ad-YOLOv8 model integrates IoT and deep learning to tackle issues like scale variation, occlusion,
background clutter, light fluctuations, and small item recognition. The presented work delivered real-time
notifications to farmers via Firebase Cloud Messaging, achieving a precision of 97%, recall of 96%, and
accuracy of 96%. Furthermore, Sharma et al. [95] also utilized YOLOv8 models for pest detection. Suriyage
et al. [96] explored a new weed detection method using the DETR model with a ResNet-50 backbone.
The model shows promising performance with a training loss of 2.7083 and a validation loss of 1.9104.
Focusing on the security of sustainable agriculture, Singh et al. [97] developed E-YOLOv3 to improve
crop protection and reduce crop loss in agricultural settings. The model is most effective for real-time
applications and is the most effective in mitigating agricultural damage caused by humans or animals. The
model outperforms four previous models with 97% precision, 96% recall, 96% F1 score, 80.81% IoU, and
95.86% mAP. Another work presented by Wang et al. [98] introduced Concealed Crop Detection (CCD), a
new standard for detecting concealed objects in crowded agricultural environments. The authors proposed
a Recurrent Iterative Segmentation Network (RISNet) framework to improve current Change of Direction
(COD) methodologies.

Highlights of discussed literature
Studies have developed innovative object detection approaches for agricultural applications, focusing on

crop disease diagnosis, weed detection, and pest control. These include CropDetdiff, YOLOWeeds, GELAN,
and YOLOv8m. These methods have achieved high detection accuracies and improved crop and weed
segmentation accuracy. The use of advanced deep learning techniques in these applications demonstrates
the potential for real-time agricultural monitoring and decision-making. Table 6 highlights the comparison
of different object detection techniques in crops.

Table 6: Comparative analysis of techniques used for object detection in crops

Authors Focus area Model/Method
used

Dataset Performance metrics

Kong et al. [81] Small-scale crop
disease detection

CropDetDiff
with dynamic
convolutional
kernels and

graph attention
network

Strawberry and
Plant Disease

Dataset

mAP: 73.2%,
40.1%

Dang et al. [82] Weed detection in
cotton production

YOLO-based
models

(YOLOv3-tiny
to YOLOv4)

5648 images of 12
weed categories

Accuracy:
68.18%–95.22%

(Continued)
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Table 6 (continued)

Authors Focus area Model/Method
used

Dataset Performance metrics

Kalezhi et al. [83] Cassava plant
disease detection

YOLO, GELAN Cassava dataset Precision, recall,
and mAP > 80%

Zou et al. [24] Image
augmentation for
crop classification

ResNet,
YOLOv5,

DeepLabV3

10 selected images Accuracy: 98%,
Preci-

sion/Recall/F1:
0.99

Lee et al. [84] Image captioning
for disease
diagnosis

Transformer-
based Image
Captioning,

Object
Detection

Korean
agriculture

dataset

BLEU Score:
64.96%, mAP50:

0.382

Kumar et al. [87] Real-time weed
detection

YOLOv8 AmazonAWS Accuracy: 86%

Darbyshire
et al. [91]

Precision weed
spraying

Streamlined
object detection

model

Two datasets Weed elimination:
93% on 30% land

Naik et al. [93] Weed detection in
sesame crops

RCNN, ANN,
SVM, CNN

Sesame crop
dataset

Detection
Accuracy:
96.84%,

Classification
Accuracy: 97.79%

Singh et al. [94] IoT-based crop
security

Ad-YOLOv8 Custom Dataset Precision: 97%,
Recall: 96%,

Accuracy: 96%
Sharma et al. [95] Weed detection YOLOv8T Annotated weed

dataset
AP: 82.5%

Suriyage
et al. [96]

Weed detection DETR with
ResNet-50

Custom-3956
images

Training Loss:
2.7083, Validation

Loss: 1.9104
Singh et al. [97] Agricultural

security
E-YOLOv3,
Darknet-53

MS-COCO Precision: 97%,
Recall: 96%, IoU:

80.81%, mAP:
95.86%

5 Dataset Details
This section presents the benchmark dataset for all the four objects considered for this review. There

are common datasets present for agriculture such as the PlantDoc dataset that offers authentic image sets in
natural environments resulting in improving model resilience under real-world settings. New Plant Diseases
Dataset is one of the comprehensive dataset that provides an extensive compilation of images spanning
38 categories, ideal for training deep learning models for disease identification. PlantDoc Dataset: This
offers authentic photos set in natural environments, hence improving model resilience under field settings.
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Recently, another dataset, the Benchmark Dataset for Plant Leaf Disease Detection, which comprises high-
resolution images of particular vegetables, suitable for intricate analysis and segmentation tasks. Table 7
summarizes different datasets for leaves, fruits, vegetables and crops (including wheat, rice, etc.), covering the
details such as the name of the dataset, type of images, dataset size, source to download the dataset, etc. The
dataset covered in this section is mainly focused on diseases, as it is one of the most prominent applications
of image datasets that is being utilized for object detection [99], re-identification [100] and classification of
different plant species [101].

Table 7: Details of leaves, fruits, vegetables and crops dataset with their source link

Dataset name Image type Dataset size Plant/Crops types Diseases/Classif
ication

Source link

Mendeley leaf disease
dataset

High-resolution 4503 Rice, wheat,
maize, etc.

Healthy, Powdery
mildew, Leaf rust, etc.

Mendeley Data (https://data.
mendeley.com/datasets/

hb74ynkjcn/1)
PlantVillage (Leaf

Disease)
RGB 20,639 Apple, Grape,

Tomato, Corn,
Potato, etc.

Leaf spot, Rust,
Early/Late blight,

Mildew, etc.

PlantVillage (https://github.
com/spMohanty/

PlantVillage-Dataset/tree/
master/raw/color)

Rice leaf disease
dataset

RGB 120 Rice Brown spot, leaf blast,
bacterial leaf blight

Rice Leaf Disease (https://
www.kaggle.com/datasets/

vbookshelf/rice-leaf-diseases)
Leafsnap dataset Scanned & field

leaf images
23,147 lab &

7719 field
Tree species

(broadleaf plants)
Leaf species
classification

Leafsnap (https://leafsnap.
com/dataset/)

PlantDoc Field images 2598 Chilli, Brinjal,
Tomato, Cotton,

etc.

Mildew, bacterial
spot, leaf curl

PlantDoc (https://github.com/
pratikkayal/PlantDoc-Dataset)

AI Challenger 2018 High-Quality
RGB

~400,000 Various Chinese
Crops

61 different diseases AI Challenger (https://github.
com/AIChallenger/AI_

Challenger_2018)
Fruit-360 RGB 110,297 (Lab) Apple, avocado,

Blueberry, etc.
Classification Fruit-360 (https://www.kaggle.

com/datasets/moltean/fruits)
Orange disease RGB 2439 Orange Citrus canker and

black spot
Orange (https://www.kaggle.

com/datasets/
jonathansilva2020/

dataset-for-classification-of-
citrus-diseases)

New plant diseases RGB ~87,000 Apple, Grape,
Tomato, Corn,

Potato

Different diseases New Plant Disease (https://
www.kaggle.com/datasets/

vipoooool/
new-plant-diseases-dataset)

Fruit and vegetable
disease

RGB 29,091 14 different crops Healthy and rotten
conditions

Fruit and Vegetable (https://
www.kaggle.com/datasets/

muhammad0subhan/
fruit-and-vege

table-disease-heal
thy-vs-rotten)

Benchmark dataset
for plant leaf diseases

RGB 5381 Gourd, Zucchini,
Bitter melon,

Various disease
symptoms

Benchmark Dataset (https://
data.mendeley.com/datasets/

v46jkbbzv3/2)

6 Evaluation Metrics
Evaluation of object detection models based on deep learning in agriculture necessitates specific metrics

for evaluating the efficacy in detection, localization, and classification. Object detection can be done for
different objects in agriculture, such as leaves, vegetables, fruits, and crops. Some of the commonly used
evaluation metrics are as follows:

https://data.mendeley.com/datasets/hb74ynkjcn/1
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color
https://www.kaggle.com/datasets/vbookshelf/rice-leaf-diseases
https://leafsnap.com/dataset/
https://github.com/pratikkayal/PlantDoc-Dataset
https://github.com/AIChallenger/AI_Challenger_2018
https://www.kaggle.com/datasets/moltean/fruits
https://www.kaggle.com/datasets/jonathansilva2020/dataset-for-classifi cation-of-citrus-diseases
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
https://www.kaggle.com/datasets/muhammad0subhan/fruit-and-vege table-disease-heal thy-vs-rotten
https://data.mendeley.com/datasets/v46jkbbzv3/2
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i. Precision: The ratio of accurately detected objects to the total number of objects detected. A high value
of precision results in a diminished occurrence of false positives.

Precision = TP
TP + FP

(1)

where TP and FP refer to true positive and false positive.
ii. Recall: The ratio of accurately detected objects to the total number of actual objects present in the

image. A high recall indicates a few false negatives.

Recal l = TP
TP + FN

(2)

where FN refers to false negatives.
iii. F1-Score: F1-Score is the harmonic mean of precision and recall, offering a balanced assessment.

F1 − Score = 2 ∗ Precision ∗ Recal l
Precision + Recal l

(3)

iv. Frames Per Second (FPS): FPS is used to evaluate the model’s inference velocity, essential for real-time
applications such as drone-assisted crop monitoring.

FPS = 1
In f erence time per f rame

(4)

v. Intersection over Union (IoU): IoU is used to measure the precision of object localization by assessing
the overlap between the predicted and ground truth bounding boxes. A higher value of IoU (e.g.,
IoU > 0.5) signifies better localization.

IoU = Area o f overl ap
Area o f union

(5)

vi. Mean Average Precision (mAP): mAP is a standard metric for object detection that integrates IoU
with average precisions.

mAP = 1
N

n
∑
i=1

APi (6)

Common evaluation criteria for AI-driven object detection have limitations due to inconsistent
labelling, environmental variability, and class imbalance. The evaluation metrics like mAP, IoU, and F1-score
provide benchmarks for object detection models, but their alignment with real-world agricultural needs,
particularly for smallholder farmers and resource-limited environments, requires further scrutiny. Metrics
should reflect robustness to lighting, partial occlusion, lower-resolution imagery, energy efficiency, and com-
putational load. Aligning metric selection with ground-level use cases, data limitations, and socio-technical
constraints is crucial for translating AI-driven object detection into sustainable agricultural tools.

7 Critical Analysis and Discussion
Object detection using deep learning in agriculture provides numerous benefits, including enhanced

efficacy, accuracy, adaptability, and scalability. It is utilized for the automation of operations like crop
monitoring and disease identification, saving effort and time, and can be used on enormous datasets. Object
detection in agriculture can also be applied to a variety of tasks, including image classification and disease
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detection. In this section, performance analysis of agricultural studies has been done to find the choices for
efficient datasets, models, and metrics. In Fig. 5, the bar graph compares the accuracy or mAP values for
considered studies for leaves as mentioned in Table 3 for different models such as YOLOv5, Faster R-CNN,
DenseNet-121, ResNet-50, YOLOv8, etc.

Figure 5: Comparison of reviewed studies for leaves agricultural applications [28,29,31,32,35–37,39,44–46,48–51]

Fig. 6 shows visualization of the accuracy or mAP (%) performance of various studies and object
detection models on different fruit agricultural applications, Zheng et al. with FaceNet model surpasses all
other models with accuracy 99.09%.
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Figure 6: Comparison of reviewed studies for fruits agricultural applications [23,54,55,57,61,65,66]

The bar graph in Fig. 7 compares the accuracy/mAP of various studies used in vegetable-related
agriculture. The highest-performing model is Li et al. [72] with 93.1% accuracy, followed closely by Wang
et al. [80] with 92.91% accuracy and Reyes-Hung et al. [70] with 91.7% accuracy. Most models achieved
accuracy or mAP values above 90%, demonstrating their effectiveness in tasks like disease detection, pest
identification, and crop monitoring. The graph highlights the growing role of deep learning, particularly
YOLO-based architectures, in optimizing agricultural automation.

Figure 7: Comparison of reviewed models for vegetable agricultural applications [67,70–72,80]
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The bar chart in Fig. 8 presents the accuracy (or mAP) of various deep learning models used in recent
crop-based studies. Each entry includes the author’s name and the corresponding model on the y-axis, while
accuracy is represented on the x-axis. The chart highlights that models like Zou et al. [24] using ResNet
with YOLO and DeepLab, Singh et al. [94] YOLOv8 and Naik et al. [93] RCNN-based approaches have
demonstrated high accuracy, often exceeding 90%. Some studies focusing on weed and disease detection
achieved lower accuracy, indicating potential challenges in complex agricultural environments. Overall,
YOLO-based models dominate recent advancements in precision agriculture, offering reliable performance
for tasks such as crop classification, disease identification, and weed detection.

Figure 8: Comparison of reviewed models for crops agricultural applications [24,81–83,87,91,93–95,97]

This section also presents a critical analysis by summarizing the answers to the research questions
highlighted in Section 2.
1. What are the most commonly used object detection techniques in the era of deep learning in agriculture,
specifically for leaves, fruits, vegetables and crops?

Answer: Convolutional Neural Network (CNN) methodologies are extensively employed in agriculture
for the detection of crop diseases, identification of weeds, detection of fruits, and enumeration of fruits.
The techniques encompass R-CNN, YOLO, SSD, lightweight and mobile-optimized detectors, transformer-
based object detectors, hybrid methodologies, and classical approaches. R-CNN is employed for superior
accuracy, whereas YOLO is utilized for real-time detection. Lightweight and mobile-optimized detectors
are crucial for edge computing and IoT-driven agricultural systems. Transformer-based object detectors are
advancing swiftly thanks to their attention processes and enhanced spatial awareness. Hybrid methodologies



82 Comput Mater Contin. 2025;84(1)

use convolutional neural networks and transformers to achieve elevated precision and scalability. Classical
approaches, such HOG and SIFT/SURF, are infrequently utilized yet still cited in baseline comparisons.
2. What are the most common datasets available for object detection in agriculture?

Answer: There are different datasets present for agriculture covering different applications such as
disease detection, classification of different crops etc. One of the most commonly used dataset in the literature
is PlantDoc dataset which consists of images from natural environments, enhancing model resilience
in real-world settings. The New Plant Diseases Dataset, comprising 38 categories, is a comprehensive
collection of images ideal for complex analysis and segmentation tasks, particularly for training deep learning
models for disease identification. The Benchmark Dataset for Plant Leaf Disease Detection also offers high-
resolution images of specific vegetables. Other dataset examples include the Mendeley Leaf Disease Dataset,
PlantVillage, Rice Leaf Disease Dataset, AI Challenger 2018, Fruit-360, etc.
3. What are the common evaluation metrics used for evaluating object detection techniques in agriculture?

Answer: The common evaluation metrics used for evaluating object detection techniques in agriculture
includes IoU, mAP, F1-Score, Precision, Recall, Accuracy etc. The right evaluation metrics need to be chosen
for a particular problem of agriculture based on object detection. Some recommendations are as follows:

(i) Classification: For classification and counting problems common metrics are F1-score, IoU, mAP,
Recall and Precision.

(ii) Disease Detection: For problems related to crops disease detection Dice Coefficient, mAP, IoU, etc.
(iii) Object Detection: Real-time object detection can be evaluated using IoU, mAP, FPS and other

common metrics used for classification.
(iv) Estimation: Crop yield estimation can be evaluated using MSE, F1-Score, RMSE, etc.

4. Which models in the literature are utilized most and which are performing better at the present stage?
Answer: Researchers have used various deep learning methodologies for object detection in agriculture,

including YOLO, Faster R-CNN, Mask R-CNN, RetinaNet, EfficientDet, and transformer-based method-
ologies. YOLO uses a single neural network to predict bounding boxes and class probabilities, while Faster
R-CNN generates bounding boxes using a region proposal network. Mask R-CNN expands Faster R-CNN
by predicting pixel masks. RetinaNet uses Focal Loss for difficult samples, while EfficientDet combines one-
and two-stage detectors for precise detection. Transformer-based methodologies, such as DETR and ViT,
have also shown high performance in object detection tasks.

Further, edge computing is essential for instantaneous decision-making in precision agriculture,
diminishing dependence on the internet, and minimizing latency. Deploying deep learning models on edge
hardware poses problems related to memory, computational capacity, and energy efficiency. To tackle these
issues, researchers are investigating lightweight models such as MobileNet, EfficientDet-Lite, and Tiny-
YOLO, which can deliver near real-time inference with low accuracy loss. Edge AI integrates scholarly
research with scalable applications in diverse agricultural settings.
5. What are the challenges and future directions for researchers and practitioners working in the field of
object detection in agriculture?

Answer: In agriculture, object detection encounters some technical obstacles such as restricted datasets,
inadequate model generalization, etc. In addition to this, some major real-world challenges are difficult to
encounter. Examples include weather variability, occlusions, natural lighting conditions, and complicating
real-world implementation and scalability.

The findings of this review predominantly align with prior literature highlighting the efficacy of
YOLO-based object detection frameworks in agricultural settings, owing to their equilibrium of speed and
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precision [13,93]. This review recognizes the extensive utilization of YOLO variations (v5 to v10) for real-time
crop monitoring, pest detection, and yield calculation, akin to the findings of Badgujar et al. [11]. This study
expands beyond previous reviews that concentrated solely on specific applications, such as plant disease
detection or crop counting, by encompassing four distinct object types: leaves, fruits, vegetables, and crops,
thereby providing a more comprehensive overview of agricultural use cases. Moreover, Alif et al. [13] under-
scored the preeminence of YOLO models but neglected to investigate contemporary transformer-based
architectures such as PL-DINO or TEAVit, which this publication recognizes as advantageous for addressing
class imbalance and occlusion issues. Huang et al. [14] illustrated the potential of deep learning for crop
counting; however, their analysis did not adequately address the problems of lightweight deployment and the
possibility of multimodal learning, which are identified as significant gaps in the present study. This review
builds upon previous research by critically examining emergent trends, including synthetic datasets [45],
hybrid CNN-transformer models [56], and the necessity for explainable AI and domain adaptability—topics
that were scarcely addressed in earlier reviews. This article differs from Pai et al. [12], which concentrated
exclusively on weed detection, by including various applications such as disease diagnosis, phenological stage
analysis, and robotic integration, thereby serving as a more comprehensive reference for future agricultural
AI systems.

This review paper provides both theoretical and practical contributions. Theoretically, it enhances the
academic comprehension of the adaptation and evaluation of deep learning-based object recognition models
in various agricultural applications, emphasizing trends, performance constraints, and methodological
deficiencies. The findings provide a valuable resource for researchers, developers, and policymakers seeking
to implement AI-driven solutions in precision agriculture by offering insights into appropriate models,
datasets, and evaluation metrics for tasks, including yield estimation, crop monitoring, and disease detection.
To address the current challenges, some future aspects are recommended for object detection in agriculture,
encompassing multimodal data fusion, real-time edge computing, integration with robotics and drones,
and explainable artificial intelligence. Possible uses include automated harvesting, precision spraying,
climate-resilient monitoring, and advanced crop management systems for sustainable, high-efficiency
agricultural methods.

8 Challenges and Future Aspects
Object detection based on deep learning in agriculture offers both benefits and challenges, such

as data scarcity, model generalization, computing limitations, regulatory compliance, and the need for
domain-specific AI solutions. Agricultural ecosystems are dynamic, necessitating continual precision across
regions. Nonetheless, innovations such as self-supervised learning, few-shot learning, multimodal AI, and
Edge AI can surmount these constraints, transforming precision agriculture and facilitating sustainable
practices. Deep learning-based object recognition in agriculture faces challenges due to limited informa-
tion, environmental variability, and computational demands. Strategies like data augmentation, transfer
learning, and domain adaptation can improve model resilience and reduce reliance on extensive datasets.
Lightweight architectures and edge computing solutions can facilitate real-time execution with limited
hardware resources. Addressing these obstacles is crucial for progressing from experimental settings to
scalable, field-ready AI applications in agriculture. Using lightweight architectures and edge computing
solutions can help overcome these obstacles. Some of the other challenges are summarized in this section,
and further, future aspects for naive researchers intending to work in this domain are also discussed. The
challenges are as follows:
(i) Dataset: One of the major challenges in agriculture is the agricultural datasets that sometimes lack in
diverse, annotated, and extensive imagery, complicating categorization efforts. Variability in morphology
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(appearance), overlap between fruits and foliage, and class imbalance in detection present significant
obstacles. Researchers must focus on domain-specific datasets that are essential to encompass diverse
environmental aspects and tackle these data-related difficulties.
(ii) Deep Learning Model & Algorithms: Another major challenge in agriculture involves the selection of a
deep learning model due to the generalization across various crops, computational speed, complexity, speed,
few-shot and zero-shot learning, small item detection, and the difficulty of achieving real-time detection for
drones and robotics. Lightweight AI models are essential for on-device processing, whereas high-resolution
images are required for the early diagnosis of diseases.
(iii) Implementation: Challenges in implementing AI-based agriculture encompass cost, integration with
robotics and automation, accessibility, absence of standardization, and user acceptance. Affordable mobile
solutions are essential, while accurate object localization and intuitive interfaces are vital for confidence
and acceptance.
(iv) Environmental & Real-World Challenges: Environmental obstacles in agriculture images encompass
lighting, background intricacy, seasonal fluctuations, meteorological conditions, camera and sensor con-
straints. In the real world, environmental factors such as fog, precipitation, variations in sunshine intensity,
and dust can dominate and influence the quality of the image captured. Additionally, other real-world
challenges that need to be considered are sensor noise and unstructured fields that can impact precision
and accuracy.
(v) Regulatory Compliance: Deep learning in agriculture encounters data protection and regulatory obsta-
cles stemming from GDPR, CCPA, and country AI legislation. Concerns regarding privacy, data ownership,
security, and ethical considerations influence AI models for precision agriculture, disease identification, and
resource efficiency. Adherence to AI governance policies and resolving compliance concerns is essential for
facilitating AI deployment in agriculture.

Future Aspects
Agriculture will keep on evolving with the advancement of technology, and keeping this as a pivot, there

are several future aspects that need to be explored by researchers, scientists, practitioners, and stakeholders.
Some of the future aspects are discussed below:
(i) Explainable AI (XAI): Researchers and scientists should focus on developing explainable AI method-
ologies that elucidate the decision-making process. This will help farmers to understand the insights of AI
predictions and decisions.
(ii) Cross-Domain Adaptation: Cross-domain adaptation involves training of models for generalizability
across diverse areas and environments, hence augmenting their efficacy in training and adapting to numerous
situations in agriculture.
(iii) Agricultural Robotics: Agricultural robotics is one of the most prominent fields that is evolving at
a rapid rate for the advancement in agriculture. Creating robots for agriculture that utilize deep learn-
ing methodologies for the automation of agricultural works, including crop monitoring, crop trimming,
and harvesting.
(iv) Multimodal Learning: Multimodal learning is one of the latest and advanced techniques that involves
the integration of diverse data types such as text, images, sensor, and satellite data for improving decision-
making and automation in agriculture. Creating multimodal learning methodologies that utilize deep
learning models for analysis and fuse different information sources for enhanced accuracy and insights.
(v) Neural Architecture Search (NAS): NAS is an AI-based technique for the automatic construction of
optimal deep learning architecture, such as AutoML, NASNet, etc. For agriculture-specific problems, NAS
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can identify the optimal models based on different applications, such as crop monitoring, yield prediction,
precision farming, and crop disease detection. The model will be identified to enhance efficiency and
accuracy while minimizing the computing complexity.
(vi) Multispectral Analysis: Multispectral analysis uses several light bands such as visible, thermal, near-
infrared, etc. and the data could be captured through drones or satellites to assess soil conditions, crop health,
and water stress. This method is extensively employed to address real-time problems and helps in precision
agriculture, crop surveillance, and disease identification to enhance agricultural decision-making.
(vii) Self-Supervised Learning (SSL): Researchers should utilize SSL for facilitating yield prediction,
crop-disease diagnosis and multimodal analysis with unlabeled data, while enhancing domain adaptation,
real-time monitoring and Edge AI implementation of crop disease monitoring with limited labeled data.

9 Conclusion
This paper presented a systematic review of the last three years of research work done in agriculture,

focusing on deep learning-based object detection for examining four types of objects: leaves, fruits, vegeta-
bles, and crops. The paper discusses the evolution of object detection methods in agriculture, highlighting
the shift from traditional computer vision to deep learning strategies. It highlights advancements in
models like CNNs, Region-based CNNs, and the YOLO family, enhancing precision and efficiency. The
paper evaluates benchmark datasets and measures, highlighting the need for improved object detection
algorithms in agriculture. It highlights challenges in creating intelligent and sustainable systems and calls
for further research into creative solutions. The main contribution of the paper is that it offers a thorough
examination of recent developments and prospective trajectories in deep learning-based object identification
for agriculture, facilitating the emergence of intelligent agricultural solutions. It also lays the groundwork for
smart agricultural solutions, enhancing productivity, sustainability, and food security.
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