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ABSTRACT: Soilcrete is a composite material of soil and cement that is highly valued in the construction industry.
Accurate measurement of its mechanical properties is essential, but laboratory testing methods are expensive, time-
consuming, and include inaccuracies. Machine learning (ML) algorithms provide a more efficient alternative for this
purpose, so after assessment with a statistical extraction method, ML algorithms including back-propagation neural
network (BPNN), K-nearest neighbor (KNN), radial basis function (RBF), feed-forward neural networks (FFNN), and
support vector regression (SVR) for predicting the uniaxial compressive strength (UCS) of soilcrete, were proposed
in this study. The developed models in this study were optimized using an optimization technique, gradient descent
(GD), throughout the analysis (direct optimization for neural networks and indirect optimization for other models
corresponding to their hyperparameters). After doing laboratory analysis, data pre-preprocessing, and data-processing
analysis, a database including 600 soilcrete specimens was gathered, which includes two different soil types (clay and
limestone) and metakaolin as a mineral additive. 80% of the database was used for the training set and 20% for testing,
considering eight input parameters, including metakaolin content, soil type, superplasticizer content, water-to-binder
ratio, shrinkage, binder, density, and ultrasonic velocity. The analysis showed that most algorithms performed well
in the prediction, with BPNN, KNN, and RBF having higher accuracy compared to others (R2 = 0.95, 0.95, 0.92,
respectively). Based on this evaluation, it was observed that all models show an acceptable accuracy rate in prediction
(RMSE: BPNN = 0.11, FFNN = 0.24, KNN = 0.05, SVR = 0.06, RBF = 0.05, MAD: BPNN = 0.006, FFNN = 0.012,
KNN = 0.008, SVR = 0.006, RBF = 0.009). The ML importance ranking-sensitivity analysis indicated that all input
parameters influence the UCS of soilcrete, especially the water-to-binder ratio and density, which have the most impact.

KEYWORDS: Soilcrete; laboratory analysis; uniaxial compressive strength; machine learning; sensitivity analysis

1 Introduction
Soilcrete, a composite material consisting of soil and cement, has become increasingly popular in

geotechnical engineering and construction projects. Its mechanical features, including uniaxial compressive
strength (UCS), modulus of elasticity, and shear strength, play a crucial role in determining the stability and
load-bearing capacity of structures constructed with it [1,2]. Accurately measuring the mechanical properties
of silcrete is essential for ensuring the safety and durability of construction projects. This article aims to
predict the UCS of silcrete using soft computing techniques.
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UCS is controlled not only by the mixing ratios and macroscopic interrelations but also by the
crystallographic and microscopic interactions at the building blocks of the material. The mechanical behavior
of soilcrete is critically influenced by its internal structure stemming from the hydration of cement and the
interactions of its mineral additives with soil particles. The development of hydration products, especially
calcium silicate hydrate (C-S-H), improves the mechanical strength of the material to a great extent. These
products constitute the main phase of binding that creates a matrix, thus improving the structural density
and the capacity of the material. The presence of pozzolanic materials, particularly metakaolin, further
enhances this effect by reacting with calcium hydroxide to yield additional C-S-H, which improves pore
structure by refining it, resulting in a denser and more uniform matrix. The increased UCS is a direct result of
decreased porosity. Additionally, soilcrete’s performance is affected by the interfacial transition zones (ITZ)
between the soil particles and the binder, as well as the packing density of the particles. Greater packing
density improves stress transfer across the matrix, reducing void spaces and increasing strength. Even though
soilcrete is a composite material and not strictly crystalline, the hydration phases, such as crystal morphology
and orientation, have some subtle impact on the crystallographic properties, which can influence fracture
toughness and crack propagation paths. Similar to the principles of dislocations and lattice points, which
are more common to metals and crystalline ceramics, a microcrack will form and grow in soilcrete. Weak
or flawed regions within a binder matrix, or even at the particle-matrix boundary, may work as stress
concentrators under uniaxial loading, influencing the failure mechanism. Thus, both microstructure and
material interactions must be considered to understand and fully predict the UCS of soilcrete.

Traditional laboratory testing methods are time-consuming, expensive, and subject to variability in soil
and cement specifications, which can result in design and construction inaccuracies [3]. The progress of
machine learning (ML) in geotechnical engineering offers a promising solution to address these challenges.
ML algorithms can analyze large datasets and identify patterns and relationships among input variables
and desired outcomes. By training models on gathered datasets of laboratory-tested soilcrete samples, these
algorithms can predict the mechanical properties of soilcrete based on various input parameters that have
an impact on the mechanical specification of these materials [4–7].

The use of ML techniques in assessing the mechanical properties of materials offers significant
advantages [8–11]. ML algorithms can reduce the costs associated with traditional laboratory testing [9]. By
training models to predict soilcrete properties accurately, engineers can make informed decisions efficiently,
leading to cost savings and improved project schedules. Additionally, ML methodologies can account for the
variability in soil and cement characteristics by considering multiple input parameters. This comprehensive
analysis allows ML models to capture complex relationships and provide more precise predictions, enhancing
the reliability and predictability of soilcrete performance. Furthermore, ML techniques enable continuous
monitoring and real-time evaluation of soilcrete properties by integrating sensor data from construction sites
or existing structures. This proactive approach to maintenance ensures the long-term stability and safety of
infrastructure [12].

Asteris et al. [13] utilized artificial neural networks (ANN) to predict the mechanical properties of
soilcrete materials using 134 data points. They showed that the ANN method was highly accurate in predic-
tion [13]. Bin Inqiad et al. [8] employed several ML algorithms, such as extreme gradient boosting (XGBoost),
gene expression programming (GEP), Adaptive boosting (AdaBoost), and multi-expression programming
(MEP) for the prediction of compressive strength (CS) and modulus of elasticity (E) of soilcrete [8]. Ala’a
et al. [9] utilized ANN, Gaussian process regression (GPR), support vector regression (SVR), decision
tree regressor (DTR), extra tree regressor (ETR), gradient boosting regressor (GBR), hist GBR (HGBR),
null Space SVR (NuSVR), XGBoost, random forest (RF), voting regressor (VR), and multilayer perceptron
regression (MLPR) for prediction of UCS of soilcrete using 400 data. Bin Inqiad et al. (2025) utilized two
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ML algorithms, including gene expression programming (GEP) and extreme gradient boosting (XGB), to
propose prediction models for three features of soilcrete (shrinkage, strain, and density) [4].

Nevertheless, the utilization and progress of ML techniques in predicting soilcrete properties are
not widely seen. Thus, this study aims to explore the effectiveness of ML methods in predicting the
UCS of soilcrete materials (as one of the most important mechanical properties of soilcrete). Various
ML techniques, such as back-propagation neural network (BPNN), feed-forward neural network (FFNN),
K-nearest neighbor (KNN), support vector regressor (SVR), and radial basis function (RBF), are used for
evaluation. The aim is to assess the performance of these techniques and determine the most accurate and
reliable method for predicting the UCS of soilcrete. To do this analysis, a series of soilcrete samples is
prepared for UCS testing, resulting in various data points. All of the critical factors in the study of UCS
assessment of soilcrete were considered in the laboratory investigation. These samples are made using two
different types of soil—natural clay ground soil (CGS) and crushed quarry limestone sand (CQLS) with the
addition of metakaolin, water-to-binder ratio, and other geotechnical and physical features of soilcrete. The
significant factors affecting the UCS of soilcrete and the performance prediction of models are identified
using sensitivity analysis.

2 Preparatory Knowledge; Database Analysis

2.1 Data Gathering—Laboratory Settings
Laboratory investigations on different soil samples were done to collect and generate a database. In

laboratory settings, 600 cylindrical soilcrete samples with a height-to-diameter ratio of 2, including two types
of soils, natural clay ground soil (CGS) and crushed quarry limestone sand (CQLS), were considered in place
of the aggregate step. Metakaolin (MK) was added as a mineral additive to the mixture of ordinary Portland
cement-based binder with water at various water/binder (W/B) ratios. The curing time for UCS assessment
of the soilcrete samples was 28 days. In the laboratory investigation, different binder categories involving
combinations of CEM I 42.5 N Portland cement (PC) percentages and MK were considered. Achieving
homogeneity within the binder categories was obtained by milling MK and PC in a laboratory swing mill
for one hour. Two different types of soil materials, including CGS and CQLS, were utilized to create batches
of soilcrete samples. The natural clay ground soil was generated by blending CGS with the binder at varying
W/B ratios. In contrast, the crushed quarry limestone sand was produced by mixing CQLS with the binder
at different W/B ratios.

A total of 600 data points were gathered in a database, which included seven inputs and one output:
soil type (ST), W/B ratio, MK content, superplasticizer content (SP), shrinkage (Sh), binder (B), density (D),
ultrasonic velocity (UV), and UCS. The dataset was divided into two sets: 80% (480 data points) for training
the models and 20% (120 data points) for testing. The selection of the data points for testing and training was
done randomly from the overall dataset.

2.2 Data Analysis
The statistical measurements of numerical and nominal factors in the database, such as minimum,

maximum, average, and standard deviation values, are presented in Tables 1 and 2. The soil type variable is
categorical. Therefore, the ML models would not misinterpret the data as ordinal with one-hot encoding
ordinal logic hierarchies, which is why this format was chosen. In particular, two binary vectors were created
to represent the two soil types: CGS was [1 0], and CQLS was encoded as [0 1]. This method was preferred over
numerical labels to retain the nominal value of the soil type feature since it avoids unintended implications
of ranking or magnitude. The one-hot encoding enabled the models to treat both categories of soil equally,
which enhanced model performance and interpretability during the training and evaluation phases.
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Table 1: The statistical measurements of numerical parameters in the database

Factors W/B MK B SP Sh D UV UCS
Unit – % % % % kg/m3 m/s MPa

Count 600 600 600 600 600 600 600 600
Train (80%) 480 480 480 480 480 480 480 480
Test (20%) 120 120 120 120 120 120 120 120
Minimum 0.30 0.00 20.00 0.00 0.00 1528.70 1635.78 17.49
Maximum 1.86 15.00 72.10 4.00 28.30 2359.20 5003.40 69.79

Average 0.77 6.42 38.28 1.21 9.86 1938.89 3266.61 40.88
Std. Dev. 0.28 4.58 10.86 1.08 7.02 176.35 675.97 10.73

Table 2: The statistical measurements of the nominal parameter in the database

Factor Sets Count Soil types Vector No. of data points

ST
Train 480 CGS [1 0] 237

CQLS [0 1] 243

Test 120 CGS [1 0] 50
CQLS [0 1] 70

The dataset is made up of 600 samples in total, which were divided into training (n = 480, 80%) and
testing (n= 120, 20%) subsets using random stratified sampling. To ensure the robustness and trustworthiness
of the ML techniques implemented, special care was made to the equilibrium and partitioning of the dataset.
As for the numerical input parameters, their distribution to statistical values is presented in Table 1. The
statistical measurements demonstrate a broad and well-dispersed range across all variables, validating that
the data set encompasses all conceivable values captured in the laboratory.

The data is pretty evenly distributed, considering the soil type. In the training set, there are 237 CGS
samples and 243 CQLS samples. The testing set also has a similar distribution, with 50 CGS and 70 CQLS
samples (see Table 2). This distribution allows both soil types to be equally balanced during model training
and testing, reducing the chances of model bias towards a specific soil type.

This dataset is essential as it allows the ML models to generalize accurately regardless of the variations in
material composition and physical conditions the models are required to work with, increasing the reliability
of predictions for soil concrete based on clay or limestone soils.

Fig. 1 presents a boxplot graph for each selected factor, considering their statistical measurements. Fig. 2
also shows the distribution of parameters in the database and their readings for each factor. These graphs
show that the generated database has a good distribution of values in both training and testing.
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Figure 1: The box plots of input and output parameters for UCS evaluation of soilcrete in this study
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Figure 2: The values of each factor through each reading
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Feature engineering is one of the most critical steps in data preprocessing and data processing analysis,
where the features and their importance are selected and evaluated for ML investigation. In this article, the
extraction method, as one of the most popular techniques used in statistical analysis, was used to consider
the influence of each feature from a given dataset and also consider their variance, anti-image covariance,
and anti-image correlation. The findings presented in Table 3 show the variance and related measurements
utilized principal component analysis (PCA) as one of the extraction methods in two different raw and
rescaled tests.

Table 3: The results of PCA analysis and its relevant measures

Component Initial eigenvalues a Extraction sums of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative %

Raw

1 462,436.63 94.54 94.54 462,436.63 94.54 94.54
2 26,438.59 5.40 99.94
3 123.00 0.03 99.97
4 93.08 0.02 99.99
5 43.45 0.01 100.00
6 19.46 0.00 100.00
7 1.03 0.00 100.00
8 0.23 0.00 100.00
9 0.05 0.00 100.00

Rescaled

1 462,436.63 94.54 94.54 1.33 14.82 14.82
2 26,438.59 5.40 99.94
3 123.00 0.03 99.97
4 93.08 0.02 99.99
5 43.45 0.01 100.00
6 19.46 0.00 100.00
7 1.03 0.00 100.00
8 0.23 0.00 100.00
9 0.05 0.00 100.00

Note: a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.

Table 4 presents the anti-image covariance and anti-image correlation for each defined factor in the
database. These analyses show the relationship between parameters and also investigate multicollinearity.
The values given in this table indicate a low correlation between parameters and the need for the utilization
of innovative techniques to identify the patterns and connections between parameters. It is concluded that
there is no linear relationship between parameters using simple statistical analysis. Thus, it is necessary to
use more advanced functions and ML techniques to find the pattern between factors.
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Table 4: The results of anti-image covariance and anti-image correlation to show the relationship between the factors

ST W/B MK B SP Sh D UV UCS
A

nt
i-i

m
ag

ec
ov

ar
ia

nc
e ST 0.93 0.01 0.08 −0.06 −0.08 0.10 0.05 −0.10 −0.04

W/B 0.01 0.64 −0.05 0.05 0.14 −0.11 0.06 −0.02 0.28
MK 0.08 −0.05 0.93 0.15 −0.04 −0.08 0.07 −0.01 −0.10

B −0.06 0.05 0.15 0.90 −0.16 0.02 0.06 −0.03 0.06
SP −0.08 0.14 −0.04 −0.16 0.84 −0.06 −0.18 −0.04 0.15
Sh 0.10 −0.11 −0.08 0.02 −0.06 0.88 −0.01 0.05 0.09
D 0.05 0.06 0.07 0.06 −0.18 −0.01 0.68 −0.21 −0.18

UV −0.10 −0.02 −0.01 −0.03 −0.04 0.05 −0.21 0.82 −0.08
UCS −0.04 0.28 −0.10 0.06 0.15 0.09 −0.18 −0.08 0.56

A
nt

i-i
m

ag
ec

or
re

la
tio

n ST 0.657a 0.01 0.09 −0.07 −0.08 0.11 0.06 −0.12 −0.05
W/B 0.01 0.660a −0.06 0.07 0.19 −0.15 0.10 −0.03 0.46
MK 0.09 −0.06 0.467a 0.16 −0.05 −0.09 0.08 −0.01 −0.14

B −0.07 0.07 0.16 0.550a −0.19 0.02 0.08 −0.04 0.09
SP −0.08 0.19 −0.05 −0.19 0.443a −0.07 −0.23 −0.05 0.22
Sh 0.11 −0.15 −0.09 0.02 −0.07 0.758a −0.02 0.05 0.13
D 0.06 0.10 0.08 0.08 −0.23 −0.02 0.677a −0.28 −0.30

UV −0.12 −0.03 −0.01 −0.04 −0.05 0.05 −0.28 0.730a −0.12
UCS −0.05 0.46 −0.14 0.09 0.22 0.13 −0.30 −0.12 0.615a

Note: a. Measures of Sampling Adequacy (MSA).

2.3 Data Processing and Normalization
Data normalization is one of the essential steps that should be done before training and testing the ML

models to ensure that all readings for all parameters in the database are on the same scale between 0 and 1.
After normalization factors in the data processing stage, the parameters were standardized and adjusted in
the modeling step with ML techniques. To achieve this standard scale, the StandardScaler method, as one
of the data standardization methods, was utilized in this work. Thus, each reading for each parameter was
normalized to have a value between zero and one.

Thus, before training the models, as one of the most important preprocessing steps, the database
was normalized into 0 to 1 values so that all parameters in the database have a one-scaled configuration
without their original units that may differ from each other. The database was collected from laboratory
investigations, and so each data point relates to one reading observation in the laboratory analysis. Thus,
missing values or duplicated data for each reading in laboratory settings were not presented, as all of the
readings were carefully observed for each test.

3 Methodology

3.1 Introduction to Methods
Several ML algorithms, including BPNN, KNN, RBF, FFNN, and SVR, were used for evaluation in the

present study. Below is a summarized description of these methods and their justification for the collected
database; however, a detailed description of these models can be found in the literature [14–16].

A basic structure within artificial neural networks is the FFNN, which is distinguished by the movement
of data in one direction through its layers. In this network, data is processed in a unidirectional manner,
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starting from the input layer and moving through one or more hidden layers until it reaches the output
layer; there are no cycles or feedback loops. In every layer, neurons are connected through weighted
connections, which apply activation functions to introduce non-linearity into the model. Because of their
structure, FFNNs are capable of modeling very complex patterns within datasets. They are effective in
performing regression tasks with intricate and non-linear inter-variable relationships due to their deep
learning capabilities. The FFNN was chosen for this study because of its proven effectiveness in capturing
intricate input-output mappings and versatility. Its layered structure is particularly well-suited for modeling
nonlinear dependencies. These dependencies are typical in geotechnical problems like forecasting the UCS
of soilcrete. The FFNN achieves high accuracy because, during training, it modifies its weights according
to optimization algorithms, which reduces prediction errors, even when noisy or overlapping input features
are used. In this research, the FFNN model presented competitive results and aided in the comparative
evaluation of several ML techniques.

SVR seeks to determine a function that best approximates the data within a defined margin of tolerance
or a bound. It focuses on a simple model where the regression function is as flat as possible while still allowing
a small distance to be off from the actual data points. The best balance SRV provides between accuracy
and generalization makes it an easier choice in models for continuous variables, in this case, UCS. SVR
was included in the modeling framework due to its capability of solving non-linear regression problems
with great accuracy. Its ability to ignore irrelevant noise and generalize from training data fetches predictive
models that are both accurate and stable. SVR is particularly beneficial when the dataset sample size is small,
which is often the case in soil mechanics and material testing. SVR can provide insights into the elements
that determine UCS by adjusting the epsilon margin, penalty parameter (C), kernel function, and other
hyperparameters to fit the intricate features of the dataset.

An RBF network is an ANN model that employs radial basis functions (RBFs), usually of the Gaussian
type, as activators in one of its hidden layers. They are comprised of three layers: an input layer, a single
hidden layer using RBF units, and an output layer. RBF networks are renowned for their speed in training
and their capability to approximate functions, especially for highly non-linear and local problems with a
steep relationship between the input and output. RBF was used in this work because of its effectiveness in
modeling localized patterns and its quick response to intricate data structures. RBF networks have a less
complex architecture and achieve faster convergence than deeper neural architectures while maintaining
high accuracy in prediction tasks. Concerning predicting UCS of soilcrete, the RBF model indicated excellent
performance, which shows its effectiveness in solving problems where processes act on variables, such as
binder composition, moisture content, and density, through local interactions. The addition of the RBF
model offered a compelling comparison to other neural network-based models in terms of performance
and efficiency.

KNN operates on a similarity principle by predicting the outcome based on the ‘K’ closest neighbors
in feature space. Standard proximity measures include distance metrics like Euclidean distance. KNN is
unique as it requires no explicit training phase apart from storing the training dataset. KNN’s simplicity
and transparency make it particularly effective when the data distribution is unknown or irregular. Within
automated laboratory-based studies like this one, wherein the model input conditions are often highly
constrained due to arbitrary factors, KNN remains a robust benchmark model. Moreover, KNN’s lack of rigid
assumptions enables it to capture intricate relationships. Additionally, its effectiveness in accommodating
nonlinear relationships and mixed data types makes KNN well-suited for the heterogeneous and diverse
soilcrete dataset used in this study.

A supervised, multilayer feedforward neural network trained with the backpropagation algorithm is
called BPNN. The output is made up of subclasses that are physically present in the input. It works by having
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a delay element and filters. During training, the predicted output and the expected output of the model are
compared to assess performance, and the result computed is propagated backward through the network to
adjust weights using gradient descent. Model training continues until a defined objective is reached. BPNNs
are capable of solving complex regression problems due to their flexibility and ability to approximate a wide
range of functions. The reason BPNN was selected in this study is its ability to model complex relationships
that are non-linear between the input features and target outputs.

It should be mentioned that the gradient descent (GD) optimization technique is directly used for BPNN
and FFNN neural networks to optimize their outcomes in both the training and testing phases. For other
used algorithms in this study, it should be mentioned that KNN is a non-parametric, instance-based learning
algorithm and does not inherently involve a training phase or optimization of a cost function via gradient
descent, as in models like BPNN and FFNN. In this study, gradient descent was not used to optimize the
KNN algorithm itself directly but instead to fine-tune its hyperparameters—like the number of neighbors (k)
and how distances are weighted—by minimizing a loss function and evaluation metrics using performance
metrics. Also, for SVR and RBF models, the GD technique was utilized for hyperparameters for models
directly for RBF and indirectly for SVR. This approach involved treating the hyperparameter selection as an
optimization problem, where gradient-based techniques were applied over a continuous approximation of
the hyperparameter space. In the present study, we used different optimization techniques such as gradient
descent, scaled conjugate gradient, Adam, AdaDelta, etc., to improve the results and make hybrid models.
However, based on the results of loss functions and evaluation metrics, we observed that gradient descent
showed better results than others for this database.

To determine the best hyperparameters and their optimal range for each model, a range of values
that seemed reasonable based on previous studies, engineering judgment, commonly used practices, and
the gradient descent technique was applied. The algorithms were trained several times using different
combinations within those ranges. Throughout this process, we evaluated how well each model performed
by looking at prediction accuracy and key metrics like loss functions and evaluation metrics. By comparing
the results across these runs, the set of hyperparameters that gave the most reliable and accurate outcomes
was determined. These chosen values, along with the optimal ranges, were presented in Table 5.

Table 5: The hyperparameters and structures of the applied ML techniques in this study

Models Descriptions
BPNN Learning rate: 0.01, Hidden layers: 2, Neurons per layer: 50, Activation function: ReLU,

Epochs: 500, Batch size: 64
FFNN Learning rate: 0.01, Hidden layers: 1, Neurons per layer: 30, Activation function: Tanh,

Epochs: 300
SVR Kernel: RBF, C (penalty parameter): 10, Gamma: 0.1
KNN Number of neighbors (K): 5, Distance metric: Euclidean
RBF Number of centers: 30, Spread parameter: 1
GD Used for BPNN and FFNN, Type: Batch gradient descent, Learning rate: 0.01, with no decay,

Stopping criteria: Maximum 500 epochs, convergence below error threshold (1 × 10−4),
Regularization: L2 regularization was used in some configurations to prevent overfitting

(λ = 0.01).

In this study, hyperparameter tuning was conducted manually through a series of iterative experiments.
Based on prior knowledge, literature, and engineering judgment, a reasonable range of values for the key
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hyperparameters was provided for each ML model. The model’s performance under different combinations
within those ranges was evaluated. The tuning process involved systematically adjusting one or more
hyperparameters at a time, observing the resulting changes in performance metrics, and selecting the
combination that yielded the most accurate predictions on the test dataset.

Although methods like grid search or cross-validation were not used, the manual tuning approach
(manual tuning based on iterative testing), repeated across multiple iterations, allowed us to identify optimal
configurations that balanced model accuracy and generalizability effectively. This way worked better for this
database, as in the current study, the number of hyperparameters was manageable, and based on laboratory
investigations, a knowledge of the best distribution existed to initial choices, as well as the good observations
of performing the models through each tuning.

A fixed train-test split was used as a validation technique, ensuring that the data used for model
evaluation was entirely independent of the data used for training. The dataset was randomly split into training
and testing sets (70/30, 80/20, 85/15 split) within SPSS software using the Select Cases and Split File functions.
In addition, residual analysis was used as a model validation technique.

3.2 Computational Cost and Scalability
Among the models applied, BPNN and FFNN typically require more computational resources during

training due to iterative optimization and parameter tuning, especially with larger datasets. However, once
trained, their prediction times are fast and stable, making them suitable for real-time applications. SVR
is efficient for small- to medium-sized datasets, which aligns well with typical datasets in geotechnical
studies involving soilcrete (in the current study, 600 data points with eight features). KNN requires minimal
training time but has higher prediction-time complexity, which may limit its scalability unless optimized
with indexing techniques such as KD-trees [15].

3.3 Feasibility of Deployment in Engineering Workflows
In the context of UCS prediction for soilcrete, models like FFNN, BPNN, and SVR are particularly

suitable for engineering design tools and geotechnical software. These models can be trained offline and
embedded in computer-aided design (CAD) environments, or used as backend modules in real-time
monitoring systems for deep mixing or soil stabilization projects. Their rapid inference capability and ease of
deployment through modern ML libraries (e.g., TensorFlow Lite, ONNX) enhance their practical usability.
While KNN and RBF networks also show strong predictive ability, they may require additional optimization
for use in time-sensitive or large-scale applications.

4 Results and Discussions

4.1 Simple Regression-Based Analysis
This section of the paper presents the results of multivariable regression analysis. Before using ML

techniques, the new empirical model was developed based on the multivariable regression technique. In this
technique, all of the input parameters were considered as independent variables and the output factor was
considered as a dependent variable. In this technique, based on stepwise analysis, it was concluded that all
of the defined parameters (ST, W/B, B, MK, B, SP, Sh, D, UV, UCS) should be considered for developing
an empirical model. The developed formula is presented in Eq. (1). Each factor in this model has a specific
weight based on its influence (high or low impact) on the output factor (UCS), which was determined in
the analysis process using stepwise multivariable analysis. The high unstandardized coefficients indicate the
high influence of the input factor on the output, and the low value of this coefficient means a lower impact
on the output.



292 Comput Mater Contin. 2025;84(1)

UCS = 19.869 + 0.923ST − 16.574W/B + 0.253MK − 0.068B − 1.786SP − 0.158Sh + 0.017D + 0.002UV (1)

For evaluating the accuracy and precision rate of this formula, several statistical metrics, including R, R2,
adjusted R2, standard error of the estimate, change statistics, and the Durbin-Watson test, were considered
for investigation. The results of these metrics are presented in Table 6. Also, the results of the analysis
of variance (ANOVA), including several metrics for regression, residual, and total for this formula, are
presented in Table 7. The correlation between measured-actual values in laboratory settings and calculated
results from this empirical model is presented in Fig. 3. Based on the results in the tables and figure, it is
concluded that the developed empirical formulas based on multi-variable regression analysis do not have a
high accuracy rate in the estimation of UCS of soilcrete with R2 = 0.43 and standard error of the estimate rate
= 8.12. Thus, there is a need to add more investigation using more advanced models based on ML algorithms
to find the pattern between parameters and achieve a higher accuracy rate in prediction.

Table 6: The results of the statistical evaluations for the empirical model

R R square Adjusted
R square

Std. error
of the

estimate

Change statistics Durbin-
WatsonR square

change
F change df1 df2 Sig. F

change
0.660 0.435 0.427 8.12537 0.435 56.881 8 591 0.000 1.733

Table 7: The results of ANOVA analysis for the empirical model

ANOVA Sum of squares df Mean square F Sig.
Regression 30,043.047 8 3755.381 56.881 0.000

Residual 39,018.826 591 66.022
Total 69,061.873 599

Figure 3: The correlation between measured (laboratory) and calculated (empirical model) values for UCS
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A tornado graph-sensitivity analysis based on the developed empirical model was done. The tornado
diagrams corresponding to the proposed multivariable regression models for UCS of soilcrete are presented
in Fig. 4. As shown, three parameters, including UV, D, and B, have the least impact on UCS. However, the
W/B and SP are critical parameters affecting the UCS.

Figure 4: Sensitivity analysis based on an empirical equation

4.2 Machine Learning Investigtions
In this study, several ML algorithms, including back-propagation neural network (BPNN), K-nearest

neighbor (KNN), radial basis function (RBF), support vector regression (SVR), and feed-forward neural
network (FFNN), were utilized for prediction. All of these algorithms were optimized using one of the
optimization techniques, namely gradient descent (GD). 80% of the data points were used for training and
20% were used for testing the models. The results of ML algorithms and their comparison with measured
values in laboratory settings are presented in Fig. 5.

Figure 5: (Continued)
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Figure 5: The correlation between the predicted and measured values of UCS using laboratory and ML analysis. (a)
KNN; (b) SVR; (c) SVM; (d) FFNN; (e) BPNN; (f) RBF

For the evaluation accuracy of each model in prediction, several evaluation metrics and loss functions
were used. The utilized evaluation metrics in this study are root mean square error (RMSE), mean absolute
percentage error (MAPE), relative absolute error (RAE), and median absolute deviation (MAD). The
formulas of these metrics were presented in Eqs. (2)–(5), where “P” is the predicted values, “A” is the actual
values, and “n” is the number of data points. The results of these metrics for each ML algorithm are presented
in Table 8. Based on the presented results in Table 8, it is concluded that all of the algorithms show acceptable
performance in both training and testing as the values of these metrics approach zero, and also the value of
R2 approaches one. The results of these metrics for training and testing separately are presented in Figs. 6
and 7.

RMSE =
�
���

n
∑
i=1

(P − A)2

n
(2)

MAD = ∑ ∣P − average(P)∣
n

(3)
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MAPE = 1
n∑∣

A− P
A
∣ (4)

RAE = ∑n
i=1 ∣A− P∣

∑n
i=1 ∣A− average(A)∣ (5)

Table 8: The results of the loss functions for the developed ML models in this study to predict the UCS of soilcrete

Parameters KNN SVR FFNN BPNN RBF
RMSE 0.0500 0.0657 0.2486 0.1184 0.0500
MAPE 0.0001 0.0003 0.0002 0.0001 0.0001
MAD 0.0083 0.0061 0.0124 0.0060 0.0098

R2 0.9550 0.9150 0.6720 0.9550 0.9280
RAE 0.0885 0.2608 1.3997 0.0536 0.0292

Figure 6: The results of the evaluation metrics for the training dataset of each model. (a) RMSE; (b) MAPE; (c) R2; (d)
RAE; (e) MAD



296 Comput Mater Contin. 2025;84(1)

Figure 7: The results of the evaluation metrics for the testing dataset of each model. (a) RMSE; (b) MAPE; (c) R2; (d)
RAE; (e) MAD

Table 9 indicates the score value (1–6; because of the number of models) for each evaluation metric
(RMSE, MAPE, MAD, RAE, R2) for ML algorithms. The lowest values for RMSE, MAPE, MAD, and RAE
metrics have the highest score (n = 6); however, for R2, the highest value of this metric has the highest score
(n = 6). This is because the lower values of loss functions and higher values of R2 show more accuracy and
reliability in prediction. It should be noted that, when the value of a metric is the same for two models, both
models receive the same score, and this time the maximum score is reduced from 6 to 5. Fig. 8 indicates the
total score for each model using the ranking score of each evaluation metric, which is presented in Table 9.
This analysis shows that the BPNN has more accuracy and reliability in prediction than the other models,
with a total score ranking of 21. RBF and KNN have more accuracy compared to the other models, with a
ranking score of 18. However, FFNN has lower accuracy than the other models, with a score ranking of 6.
SVR has a score ranking of 12.

Table 9: The score values for each metric and ML model (n = 1–6)

RMSE MAPE MAD R2 RAE
KNN 5 3 3 4 3
SVR 3 1 4 2 2

FFNN 1 2 1 1 1
BPNN 2 5 5 5 4
RBF 4 4 2 3 5
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Figure 8: Comparison between the performance of ML models based on their ranking score analysis

To monitor and prevent overfitting, model performance using evaluation metrics on the test dataset
was assessed. The stable performance across training and test sets indicated that no signs of overfitting were
present in the analysis. By comparing the MSE and R2 values presented in the study, there was no extended
difference between them, which proved that the model generalized well.

In addition to these analyses, for further evaluation, the outcomes of models and their accuracies were
measured using statistical metrics such as the Durbin-Watson test, change statistics, and other statistical
measurements. The results of these analyses are summarized in Table 10. As can be seen, the models show
acceptable performance in prediction. Also, Fig. 9 presents the results of the distribution of relative error
rates in both training and testing. These histograms indicate not only the acceptable range of error rate in
prediction but also a high accuracy rate for all applied models.

Table 10: The results of statistical measurements for the applied models in this study

Model R R2 Adj. R2 Std. error
of the

estimate

Change statistics Durbin-
watson

R square
change

F change df1 df2 Sig. F
change

KNN 0.977 0.955 0.955 2.176 0.955 12,731.0 1 599 0.000 1.757
SVR 0.957 0.916 0.916 3.022 0.916 6503.84 1 599 0.000 1.505

FFNN 0.819 0.670 0.670 4.964 0.670 1215.18 1 599 0.000 1.544
BPNN 0.977 0.955 0.955 2.232 0.955 12,806.1 1 599 0.000 1.808
RBF 0.964 0.928 0.928 2.866 0.928 7750.63 1 599 0.000 1.776

Fig. 10 presents the plots of frequency vs. regression standardized residuals for all applied ML tech-
niques. The histogram of standardized residuals should indicate a bell-shaped curve, as deviation from
normality indicates misspecification in the models or the presence of outliers. The best performance of
models should show residuals centered around zero without skewness. As can be seen, all of the models
show a bell-shaped curve with normal distribution and residuals centered around zero, which proves not
only the high accuracy rate of models in prediction, but also the absence of misspecification in the models
and outliers.
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Figure 9: The histograms of relative error rate in prediction based on the results of the applied ML models in this study,
(a) KNN; (b) SVR; (c) FFNN; (d) BPNN; (e) RBF
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Figure 10: The plots of frequency vs. regression standardized residuals for applied ML techniques. (a) KNN, (b) SVR,
(c) FFNN, (d) BPNN, (e) RBF



300 Comput Mater Contin. 2025;84(1)

Each input factor has a specific impact and importance on the prediction performance. Some factors
have higher importance on the results of prediction, and some others have a lower impact. The influence of
each input parameter on the result of the prediction can be obtained using importance ranking analysis. Thus,
the sensitivity analysis in this study was conducted based on feature importance analysis derived directly
from the internal mechanics of the ML models. Specifically, the feature importance measures provided by
the algorithms used, such as weights, coefficients, and split importance, depending on the nature of each
model, were utilized. This approach evaluated the relative contribution of each input variable to the model’s
predictions. The results of this importance ranking are presented in Fig. 11 for each technique. As can be
seen, W/B, UV, B, and D have more important values than others in all models; however, specifically, in the
RBF model, W/D and MK have a higher impact on the ML results compared to others. BPNN shows that, in
addition to the W/B factor, another factor, namely D, has a high impact on the prediction results. In the KNN
model, parameters B and D have a higher impact compared to the others. However, in the FFNN model, the
other two factors, including D and SP, show more influence. The SVR model shows that the UV factor has a
higher influence than other parameters.

Figure 11: The results of importance ranking based on the outcomes of ML techniques. (a) BPNN; (b) RBF; (c) KNN;
(d) FFNN; (e) SVR
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5 Future Directions of This Study
An emerging and promising area in ML for materials science is the application of Physics-Informed

Neural Networks (PINNs). These models integrate known physical laws (such as differential equations,
boundary conditions, and conservation principles) directly into the training process of neural networks. This
hybrid modeling framework allows PINNs to not only learn from data but also adhere to governing physical
laws. This improves generalizability and robustness, especially when experimental data is sparse or noisy.
Incorporating PINNs in future studies could enhance the interpretability and physical consistency of UCS
predictions, especially in soilcrete systems where the mechanical behavior stems from complex interactions
between soil particles, binders, moisture, and particulate dynamics.

Moreover, the blending of physical constitutive equations from classical soil mechanics and material
science offers an intriguing potential area of research. Such constitutive models can be employed as
constraints or regularization factors in data-driven implementations, for example, models based on stress-
strain relationships or the theories of poromechanics. From a solver-centric approach, coupling some of these
constitutive relations with numerical procedures, such as finite element models, augurs well for ML. This
will allow hybrid models where mechanistic simulations are complemented with data-driven predictions
to be optimized through ML. Enhanced integration would improve the quantification of UCS and other
geotechnical parameters while ensuring that the predictions are physically rather than verifiably grounded.

These approaches develop the opportunity to curate sophisticated empirical datasets through inter-
pretable algorithms while satisfying the principles of physics operating in composite geomaterials, like soil
concrete, not just through soil mechanics laws. Such physics-informed approaches are essential as the field
matures to close the gap between meaningfully actionable insights and black-box predictions.

6 Conclusions
This research analyzed the application of specific ML algorithms to estimating the UCS of soilcrete.

A laboratory-based dataset containing 600 data points along with a comprehensive set of associated
geotechnical, physical, and soil-type conditions was created. In total, 80% of that dataset was used to train
the ML models, and the remaining 20% was kept for validation purposes. Using multivariable regression, an
empirical equation predicting UCS was developed with a standard error of 8.12. Several ML models were also
applied and assessed alongside that baseline for comparison, including RBF, KNN, BPNN, SVR, and FFNN.
Direct gradient descent optimization was performed on the neural network models, while all other models
were tuned via hyperparameter optimization. Various loss functions were implemented to assess accuracy,
robustness, and overall model evaluation.

The analysis provided insight into how each model performed and noted that all models attained
acceptable accuracy benchmarks. Overall, the BPNN model performed best with the highest accuracy
(ranking score = 25), while the least effective was the FFNN model (ranking score = 7). The order of
the models in terms of prediction accuracy was: BPNN, RBF, KNN, SVR, and FFNN. Further sensitivity
analysis demonstrated that all ML model input parameters were important in predicting performance. In
particular, parameters W/B ratio, UV, B, and D emerged as the most influential parameters for the majority
of the models.

Even with its potential benefits, this study points out the lack of work done on the ML-based forecasting
of property soilcrete’s mechanical features and indicates one gap that is yet to be filled in the field. Additional
experimental work should focus on broadening the dataset by integrating more soilcrete physical and
mechanical attributes, expanding the range of soilcrete characteristics, and augmenting soilcrete features.
Furthermore, the application of different ML and deep learning techniques and their optimizations could
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increase the accuracy of predictions. While this study concentrated on two types of soil, other types with
various additives, curing times, and W/B ratios should be examined for model applicability and usefulness.
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