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ABSTRACT: Recent advancements in computational and database technologies have led to the exponential growth
of large-scale medical datasets, significantly increasing data complexity and dimensionality in medical diagnostics.
Efficient feature selection methods are critical for improving diagnostic accuracy, reducing computational costs, and
enhancing the interpretability of predictive models. Particle Swarm Optimization (PSO), a widely used metaheuristic
inspired by swarm intelligence, has shown considerable promise in feature selection tasks. However, conventional PSO
often suffers from premature convergence and limited exploration capabilities, particularly in high-dimensional spaces.
To overcome these limitations, this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-
tion and a Crossover Operator (OrPSOC). Orthogonal Initialization ensures a diverse and uniformly distributed initial
particle population, substantially improving the algorithm’s exploration capability. The Crossover Operator, inspired
by genetic algorithms, introduces additional diversity during the search process, effectively mitigating premature
convergence and enhancing global search performance. The effectiveness of OrPSOC was rigorously evaluated on three
benchmark medical datasets—Colon, Leukemia, and Prostate Tumor. Comparative analyses were conducted against
traditional filter-based methods, including Fast Clustering-Based Feature Selection Technique (Fast-C), Minimum
Redundancy Maximum Relevance (MinRedMaxRel), and Five-Way Joint Mutual Information (FJMI), as well as
prominent metaheuristic algorithms such as standard PSO, Ant Colony Optimization (ACO), Comprehensive Learning
Gravitational Search Algorithm (CLGSA), and Fuzzy-Based CLGSA (FCLGSA). Experimental results demonstrated
that OrPSOC consistently outperformed these existing methods in terms of classification accuracy, computational
efficiency, and result stability, achieving significant improvements even with fewer selected features. Additionally, a
sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on
model performance. These findings highlight the superiority and robustness of the proposed OrPSOC approach for
feature selection in medical diagnostic applications and underscore its potential for broader adoption in various
high-dimensional, data-driven fields.

KEYWORDS: Machine learning; feature selection; classification; medical diagnosis; orthogonal initialization;
crossover; particle swarm optimization

1 Introduction
Particle Swarm Optimization (PSO) is a powerful stochastic optimization technique inspired by

swarm intelligence, first introduced by James Kennedy and Russell Eberhart in 1995 [1]. PSO simulates
the social behaviors of animals such as bird flocking and fish schooling. Its flexibility, simplicity, and ease
of implementation have made it one of the most widely adopted metaheuristic optimization methods.
Over the years, PSO has been successfully applied to a range of problems, including feature selection [2,3],
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feature extraction [4,5], hyperparameter optimization [6,7], clustering [8,9], neural network training [10,11],
forecasting [12,13], and multi-objective optimization [14,15].

Despite its widespread use, PSO suffers from limitations such as premature convergence, slow conver-
gence, and stagnation [16]. To address these challenges, various improvements have been proposed, including
enhanced velocity handling techniques [17], new position update mechanisms [18], control parameter
adaptation strategies [14], swarm adaptation methods [19,20], modifications to neighborhood topologies [21],
and fitness landscape analysis tools [22].

However, PSO continues to face difficulties—particularly premature convergence—when applied to
complex datasets [16,23]. To overcome these issues, this study introduces advanced strategies to enhance
PSO’s performance, especially in the context of high-dimensional and complex medical datasets. Specifically,
we incorporate orthogonal initialization and a crossover operator to improve population diversity and
mitigate premature convergence. Detailed descriptions of these enhancements will be provided in the
following sections.

The motivation behind this research stems from the critical role of feature selection in improving
the efficiency and interpretability of machine learning models. By identifying the most relevant subsets of
features from large datasets, feature selection helps to address the challenges associated with the exponential
growth of data—often referred to as the “curse of dimensionality” [24]. Our proposed method addresses this
issue by selecting informative features, thereby improving predictive performance through the elimination
of noisy, irrelevant, and redundant data. Below is a summary of the key contributions of this research:

1. Enhancement of PSO’s efficiency and convergence stability using orthogonal initialization and
crossover techniques.

2. Integration of the optimized PSO framework with machine learning to improve feature selection and
model interpretability.

3. Evaluation and comparison of feature selection techniques on complex medical datasets.

The rest of the paper is organized as follows: Section 2 provides a literature review, covering recent
advancements in PSO and its applications in feature selection. Section 3 outlines the proposed method and
implementation process. Section 4 discusses the datasets and evaluates the proposed approach on various
medical datasets. Finally, Section 5 concludes the study and presents future research directions.

2 Literature Review
Building on the introduction of PSO and its limitations mentioned in Section 1, this literature review

examines various methods that have been proposed to address issues such as premature convergence,
slow convergence, and stagnation [19]. Modifications to the PSO algorithm can be categorized into several
approaches [16]. We review six of these categories below, before discussing the broader machine learning
problem of feature selection and existing applications of PSO in this domain.

2.1 Methods of Velocity Handling
In the context of velocity handling, several key techniques have emerged in the literature to enhance

the efficiency of PSO. These techniques primarily involve modifications to velocity initialization methods,
velocity updating strategies, and velocity clamping approaches. Proper adjustment of these components is
crucial for achieving a balance between exploration and convergence efficiency.

Typically, the initial velocity of particles is set to zero. While this approach stabilizes initial convergence,
it restricts exploration capabilities. Random initialization, on the other hand, promotes greater swarm diver-
sity [25]. Similarly, Gaussian Disturbance PSO [26] employs the Gaussian distribution to boost the likelihood
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of escaping from local optimum points. Techniques such as Velocity-free Boolean PSO [27] employ random
velocity initialization to enhance performance. The Self-Balanced PSO [28] focuses on refining the velocity
updating process by utilizing the current global best to enhance the cognitive component. This approach
not only improves swarm diversity but also helps control exploitation abilities, thereby enhancing overall
convergence. Additionally, Modified Particle Velocity-based PSO (MPV-PSO) [29] introduces an adaptive
velocity updating equation, which increases insensitivity to local optima.

2.2 Position Update Mechanisms
To address limitations in traditional PSO—particularly its difficulty in handling constrained

optimization—several position update strategies have been proposed. Zhao and Li [30] introduced a Two-
Stage Multi-Swarm PSO, which employs multiple swarms for global exploration in the first stage, followed
by local exploitation using elite solutions in the second. This approach enhances both search diversity and
convergence stability. Another variant, Constrained Multi-Swarm PSO Without Velocity [31], eliminates
the component entirely and updates particle positions through a linear combination of the personal best
and global best. Both methods reflect ongoing efforts to improve position updates in PSO, particularly for
constrained and complex search spaces.

2.3 Control Parameter Adaptation
In the initial PSO algorithm, particle velocity was not controlled, resulting in a tendency for particles to

explore large regions of the search space. Several approaches have modified the calculation process of inertia
weight, including PSO with Self-Regulating Inertia Weight [32], Selective Multiple Inertia Weights [33], and
Exponential Dynamic Inertia Weight PSO [34]. Additionally, the well-known Constriction Factor PSO and
Ramp Rate Constriction Factor PSO [35] have been developed by incorporating advanced techniques to
control cognitive and social coefficients.

PSO is heavily dependent on initial settings, which can lead to premature convergence. By adapting
the control parameters based on the current situation, the likelihood of the algorithm reaching the global
optima can be enhanced. One variant using this technique is Unique Adaptive PSO [36], where particles are
encouraged to learn solely from their feasible solutions. Furthermore, optimally selecting control parameters
is crucial for enhancing exploration capabilities, reducing premature convergence, and minimizing the
number of parameters involved.

2.4 Swarm Adaptation
Swarm initialization methods and swarm size significantly impact PSO’s effectiveness and should be

tailored to specific optimization problems. Researchers typically use uniform or Gaussian distributions for
initializing particle coordinates in PSO, but these can limit search space coverage. Studies indicate that using
different distributions, such as logarithmic or normal, can significantly improve convergence speeds. One
innovative approach is Generalized Opposition-based PSO, which involves Generalized Opposition-based
Learning to help trapped particles escape from local optima [37]. Additionally, Chaotic PSO (CPSO) has
shown promising results by integrating chaos into initialization and PSO mechanics, improving performance
across various scenarios [38].

With the introduction of the algorithm in 1995, the authors suggested setting the population size
between 20 and 50 particles. However, Piotrowski et al. recommended larger swarm sizes (70–500 particles),
noting these generally yield improved performance across various PSO variants, particularly for more
complex problems. Conversely, they suggested smaller swarm sizes when addressing unimodal problems for
most PSO variants [20].
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2.5 Neighborhood Topologies
After the introduction of PSO, researchers investigated what might be the best social structure for

particles and showed that the performance of PSO is significantly affected by neighborhood topology, with
the effects varying depending on the function being optimized. A subsequent study examined neighborhood
topology across PSO, Bare-bones PSO (BBPSO), and an extension of BBPSO, using six different topologies:
ring, fully connected, mesh, star, toroidal, and tree. Their findings indicated that PSO performs best with
toroidal, mesh, and ring topologies, while BBPSO excels with fully connected, star, or tree structures [39,40].
This demonstrates that the choice of topology should be made thoughtfully, depending on the specific
algorithm employed.

2.6 Fitness Landscape Analysis
In understanding and improving the behavior of metaheuristic algorithms, fitness landscape analysis is

helpful. Fitness landscape modification can effectively eliminate many local optima that could lead the search
away from the global optimum [41]. In this approach, the fitness values of some particles are estimated, while
those of others are obtained from objective functions.

2.7 Feature Selection (FS)
Having reviewed various PSO modification techniques, we now turn to the application domain of our

study: feature selection. The exponential growth of data has led to significant challenges associated with
high dimensionality, commonly referred to as the “curse of dimensionality” [24]. One effective approach
to addressing this issue is feature selection, which involves identifying and selecting the most important
features from a dataset to enhance the performance of specific machine learning algorithms. Applying feature
selection improves predictive accuracy by eliminating noisy, irrelevant, and redundant data.

There are two categories of FS methods based on the method of evaluation of features: feature ranking
method and subset selection method [42]. In feature ranking methods, based on predefined criteria, each
feature gets a score and using a threshold, the low score features are eliminated. In subset selection methods,
the optimum subset is chosen from all the possible subsets, which makes it an NP-hard problem. When
the problem becomes more complicated, metaheuristic algorithms such as Tabu search [43], Ant Colony
Algorithm (ACO) [44], Genetic algorithm [45], Gravitational Search Algorithm [46], and many more have
been utilized in feature selection.

2.8 Utilization of PSO in Feature Selection
An extensive evaluation was conducted on the use of metaheuristic algorithms—particularly swarm-

based methods—for feature selection. The analysis compared the effectiveness and limitations of various
algorithms, including Particle Swarm Optimization (PSO), Firefly Algorithm (FA), Differential Evolution
(DE), Ant Colony Optimization (ACO), Artificial Bee Colony Optimization (ABC), Gravitational Search
Algorithm (GSA), Bat Algorithm (BA), Cuckoo Optimization Algorithm (COA), Whale Optimization Algo-
rithm (WOA), Gray Wolf Optimization (GWO), and Salp Swarm Algorithm (SSA), across six diverse medical
datasets with varying feature dimensions. The results demonstrated that PSO consistently outperformed the
other methods in terms of average classification accuracy, performance stability, feature selection efficiency,
and execution time [42,47].

The literature has seen significant advancements in utilizing PSO as a feature selection method.
Researchers have integrated PSO with Support Vector Machines (SVM) to optimize feature selection
and reduce computational demands. Other notable developments include enhancing particle updating
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methods for feature selection tasks and employing binary PSO alongside Hamming distance in classification
tasks [12,45]. Yong et al. proposed a multi-objective PSO algorithm aimed at classifying unreliable data,
introducing new search operators to enhance performance [48]. Zhang et al. introduced a multi-objective
PSO method for cost-effective feature selection [49]. Jain et al. applied a modified binary PSO for gene
selection and cancer classification [50]. Recent advancements have also included hybrid methods for
selecting relevant features from DNA microarray data.

Building on these findings and addressing the limitations identified in the literature, we introduce an
advanced PSO method for improved feature selection in this study. The next section describes our proposed
method in detail.

3 Methods
In this section, we provide a detailed discussion of Particle Swarm Optimization (PSO) and introduce

our proposed algorithm, Orthogonal Particle Swarm Optimization with Crossover (OrPSOC). We begin by
explaining the fundamental concepts and mathematical formulation of the standard PSO algorithm, followed
by a comprehensive description of our enhancements designed to overcome its limitations when applied to
complex feature selection problems.

3.1 Particle Swarm Optimization
The main points of Particle Swarm Optimization (PSO) are collaboration, exploration, and exploitation.

Imagine a Cartesian coordinate system where each point represents a bird in a swarm [1]. Initially, each
bird (or particle) is assigned a random position. Each particle has a velocity that determines its movement
through the solution space, which evolves over time based on both individual experiences and the collective
experience of the swarm. Each particle keeps track of its personal best position and the global best position
found by the swarm. At each iteration, particles update their velocity by considering their personal best and
the swarm’s global best. The algorithm updates the position and velocity of each particle iteratively to find the
optimal solution [51]. The velocity update equation is a crucial part of PSO, combining the particle’s personal
experience and the collective knowledge of the swarm. The equation is given by:

V d
i (t + 1) = w × V d

i (t) + c1 × r1 × (pd
best i
− Pd

i (t)) + c2 × r2 × (gbest − Pd
i (t)) (1)

here, V d
i (t) represents the velocity of particle i in dimension d at time t, w is weight, c1 and c2 are

cognitive and social components, respectively, guiding the particle towards its personal best position pd
best i

and the global best position gbest . The random variable r1 and r2, drawn from the uniform distribution, add
stochasticity to the search process.

The position of each particle is then updated using the new velocity:

Pd
i (t + 1) = Pd

i (t) + V d
i (t + 1) (2)

This equation shifts the particle from its current position Pd
i (t) in the direction determined by its

velocity. The continuous adjustment of positions and velocities allows the swarm to explore the solution
space, converging towards the optimal solution.

3.2 The Proposed Method
In this section, we discuss enhancements to the PSO mechanism by introducing orthogonal initializa-

tion, which improves the algorithm’s exploratory behavior. Additionally, we integrate crossover techniques
to enhance diversity and prevent premature convergence.
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3.2.1 Orthogonal Initialization
Orthogonal initialization is a method used to generate a diverse and well-distributed initial population

of particles in optimization algorithms [52]. This technique leverages orthogonal vectors to ensure that
the initial particles effectively cover the search space, thereby enhancing the exploration capabilities of
the algorithm.

We constructed the orthogonal matrix [H]n×d where n represents the number of particles and d is
dimensions or features. Each element Hi j of the matrix H is calculated using the formula:

Hi j =
(2i + 1) (2 j + 1)

2(n × d) where i = 0, 1, 2, . . . , n − 1; j = 0, 1, 2, . . . , d − 1 (3)

This formula ensures that the elements of the matrix are arranged in a specific pattern that promotes
orthogonality. To achieve orthogonal initialization in PSO, we employ Singular Value Decomposition (SVD)
to obtain orthogonal vectors [47]. This process helps to decompose H into three matrices such as:

H = UΣV T (4)

where U is n × n orthogonal matrix, Σ is n × d diagonal matrix, and V is d × d orthogonal matrix. The
orthogonal matrix U contains vectors that are linearly independent and orthogonal to each other.

After creating the orthogonal matrix, we utilize the orthogonal components from the matrix U . Specif-
ically, we take the first d columns of matrix U and consider their absolute values to ensure non-negativity,
defined as:

P = ∣U [∶ , 0 ∶ d]∣ (5)

In matrix P, each row represents a starting position for a particle, and these positions spread out in
the search space. Finally, the initialized particles in matrix P are scaled to conform to the boundaries of the
search space such as:

P = P × (upper bound − lower bound) + lower bound (6)

This scaling ensures that all particles are positioned within the feasible region of the search space, ready
for the optimization process to begin.

For clearer understanding, suppose we initialize a swarm with n = 3 particles in a d = 2 dimensional

space. First, we compute each element Hi j of the matrix H ∈ R3×2 as: H =
⎡⎢⎢⎢⎢⎢⎣

0.083 0.25
0.25 0.75
0.417 1.25

⎤⎥⎥⎥⎥⎥⎦
. Next, we apply

Singular Value Decomposition (SVD) to decompose the matrix H into: H = UΣV T . Where U ∈ R3×3 is
the left orthogonal matrix, Σ ∈ R3×2 is the diagonal matrix of singular values, and V ∈ R2×2 is the right
orthogonal matrix.

We then extract the first d = 2 columns of U , take their absolute values to ensure non-negativity
and define: P = ∣U [∶ , 0∶ 2]∣ ∈ R3×2. This gives us a matrix P ∈ R3×2 representing the orthogonally initialized
positions of the 3 particles in the search space. Then finally we scale P according to the problem bounds
using Eq. (6).

3.2.2 Crossover Operator
Once the initialization is completed, particles update their velocity and position based on personal

best and global best positions. At each iteration, the crossover mechanism is applied to selected particles to
introduce genetic diversity and create new potential solutions [45].
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During each iteration, particles are randomly selected for the crossover operation based on a prede-
termined crossover probability. This probability determines whether a particle will undergo crossover with
another particle. A random binary mask m = [m1 , m2, . . . , md] , of the same length d is generated, where
each element mi is determined as follows:

mi = {
1 with probabil it y crossoverrate
0 otherwise } (7)

This mask determines which dimensions of the particle will be inherited from each parent. For each
dimension, an offspring o = [o1 , o2, . . . , od], is created by combining elements from two parent particles, p1
and p2 based on the mask m:

oi = mi .pi , i + (1 −mi) .p2, i (8)

If mi = 1, the offspring inherits the gene from the first parent (pi , i) and if mi = 0, the offspring inherits
the gene from the second parent (p2, i). This process combines characteristics from both parents. If the
offspring has a better fitness score than either parent, it replaces the parents in the population until the best
solution is obtained. This introduction of genetic diversity helps prevent the algorithm from converging
prematurely to a suboptimal solution, thereby avoiding local optima [25]. The detailed pseudocode of the
proposed algorithm (OrPSOC) is provided in Algorithm 1.

Algorithm 1: Pseudocode for PSO with Orthogonal Initialization and Crossover (OrPSOC)
Step 1: Initialize Parameters

Set number of particles (n), dimensions (d)
Set inertia weight (w), learning coefficients (c1, c2)
Set number of iterations (maxiter), crossover_rate
Set upper and lower bounds of the search space

Step 2: Orthogonal Initialization
Construct the orthogonal matrix [H]n×d using Eq. (3)
Perform singular value decomposition using Eq. (4)
Extract the first d columns and take their absolute values to form the initial particle positions P.
Step 3: Evaluate Initial Fitness
Calculate the fitness of each particle using the objective function.
Find fitness value of pbest .
Identify the global best as gbest
Step 4: Optimization Loop
f or iteration in range(maxiter):

f ori in range(n)∶
# Velocity Update
r1 = RandomVector(d)

r2 = RandomVector (d)
Vi = w × Vi + c1 × r1 × (pbesti − Pi) + c2 × r2 × (gbest − Pi)
# Position Update
Pi = Pi + Vi
# Apply Crossover

(Continued)



734 Comput Mater Contin. 2025;84(1)

Algorithm 1 (continued)
i f RandomValue() < prob(crossover_rate)∶

parent2_idx = RandomIndex(n)
Pi = Crossover(Pi , P[parent2_idx])

# Bounds Checking
Pi = (Pi , lower bound, upper bound)
# Evaluate Fitness
score = Ob jectiveFunction(Pi)
# Update Personal Best
i f score < pbestscore i :

pbesti = Pi
pbestscorei

= score
# Update Global Best
i f score < gbestscore ∶

gbest = Pi
gbestscore = score

Step 5: Return Results
Return gbest , gbestscore

Hence by strategically combining orthogonal initialization and the crossover mechanism, the proposed
OrPSOC algorithm not only enhances initial diversity but also continuously introduces new genetic material
into the population. This dual approach ensures that the algorithm maintains a balance between exploring
new areas of the search space and exploiting known good solutions, thereby optimizing performance more
effectively than traditional PSO methods. The complete experimental layout, model details, and other
relevant aspects of the experiment are illustrated in Fig. 1.

Figure 1: Overview of the experimental framework used in this study
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4 Experimental Setting and Results Discussion
This section assesses the effectiveness of our newly developed feature selection strategy. We measure

performance based on the number of features selected and the classification accuracy [53], computed using
the formula:

CA = TP + TN
TP + TN + FP + FN

(9)

here, TN, TP, FN, and FP denote the counts of true negatives, true positives, false negatives, and false positives
respectively. We conduct ten iterations of each feature selection method, averaging the outcomes to gauge
methodological efficacy. For each iteration, we standardize the dataset and split it into a training set (70%)
and a testing set (30%), using the training set for feature selection and the testing set for method validation.
This consistent approach across all tested methods ensures comparability.

To evaluate the effectiveness of the proposed Orthogonal PSO with Crossover (OrPSOC) method, we
compared it against a carefully selected set of baseline algorithms, including both traditional filter-based
techniques and nature-inspired metaheuristic approaches. The choice of these benchmarks was based on
their wide acceptance in the feature selection literature, their demonstrated effectiveness in high-dimensional
settings, and their complementary strengths [49–51].

The filter-based methods—Fast clustering-based Feature Selection (Fast-C) [54], Minimum
Redundancy Maximum Relevance (MinRedMaxRel) [55], and Five-way Joint Mutual Information
(FJMI) [56]—were chosen for their simplicity, computational efficiency, and strong performance in
ranking relevant features across various domains. These techniques serve as robust, non-iterative baselines
commonly used in feature selection studies, enabling a clear performance contrast against iterative
optimization-based methods.

In addition, we included four nature-inspired metaheuristic algorithms: the original Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO) [44], Comprehensive Learning Gravitational Search
Algorithm (CLGSA) [57], and its fuzzy-based variant (FCLGSA) [58]. These were selected for several
reasons. First, PSO serves as the foundational baseline to demonstrate the improvements introduced by the
OrPSOC enhancements. ACO was selected as a classical swarm intelligence technique often benchmarked
in feature selection tasks. CLGSA and FCLGSA, more recent and advanced algorithms, represent hybrid and
enhanced metaheuristic strategies that have shown competitive performance in prior studies involving high-
dimensional and imbalanced data. This diverse set of metaheuristics allows for a fair and comprehensive
comparison, evaluating the effectiveness of OrPSOC not only against its predecessor but also against broader
state-of-the-art optimization strategies.

Together, these methods cover a spectrum from traditional statistical approaches to cutting-edge
heuristic techniques, offering a balanced and rigorous evaluation framework. All methods were implemented
in Python using consistent experimental protocols and libraries such as Scikit-learn, PySwarms, DEAP, and
pymrmr, ensuring reproducibility and comparability across results.

4.1 Datasets
This study utilizes three specialized medical datasets to assess the performance of the proposed method.

These datasets are chosen for their unique properties and relevance to specific medical conditions: Colon,
Leukemia, and Prostate Tumor. The Colon and Leukemia datasets are available from the Bioinformatics
Research Group at Universidad Pablo de Olavide [59], and the Prostate Tumor dataset is sourced from the
Gene Expression Model Selector at Vanderbilt University [60].
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Table 1 elaborates on the specifics of the three chosen medical datasets, each selected for their distinct
attributes, such as the number of features they contain. The Prostate Tumor dataset is particularly notable
for its high-dimensional feature space coupled with a relatively small sample size. These datasets—Colon,
Leukemia, and Prostate Tumor—are used for binary classification tasks aimed at cancer detection. In some
cases, these datasets include attributes with a broad range of values, where larger values can overshadow
smaller ones. To address this, max-min normalization is applied. Additionally, there are instances of missing
values within some datasets. To rectify this, missing values are replaced by calculating the average of the
available data for the corresponding attributes.

Table 1: Attribute of datasets

Dataset Features Class distribution Patterns
Colon 2000 (22, 40) 62

Leukemia 7129 (47, 25) 72
Prostate Tumor 10509 (50, 52) 102

4.2 Parameters and the Utilised Classifies
The implementation of the proposed OrPSOC method requires careful setting of various parameters.

Initial values for these parameters are determined through trial and error based on preliminary runs, though
these values are not necessarily optimal. In PSO, the parameters w, c1, and c2 are crucial as they represent
the inertia weight, cognitive learning rate, and social learning rate, respectively. To effectively balance deep
exploration (diversification) and focused exploitation (intensification), these parameters are initially set to
0.6, 0.2, and 0.2. Additionally, as outlined in the methods section, the crossover rate is configured at 0.6, with
the number of particles and the number of iterations both set at 100.

To assess the efficiency of the proposed OrPSOC method across various scenarios, this study employs
three distinct classifiers: Support Vector Machine (SVM) [61], and AdaBoost (AdaB) [62], Naïve Bayes
(NaBa) [63]. SVM is a well-established supervised learning algorithm designed to optimize the separation
margin between data points, and it has demonstrated robust performance in both classification and regres-
sion tasks. Naïve Bayes (NaBa) consists of a set of probabilistic processes that apply Bayes’ theorem, assuming
independence among features. Lastly, AdaBoost (AdaB) enhances its efficacy by adjusting the weights of
misclassified instances in successive iterations, increasingly focusing on the more challenging cases.

4.3 Results
This part of the discussion analyzes the performance of the OrPSOC approach by comparing it with

traditional filter-based and subsequent nature-inspired metaheuristic techniques. The comparisons focus on
two primary criteria: classification accuracy and the quantity of features selected. The parameter settings
for each approach were adopted from the relevant literature or determined through preliminary trials when
optimal values were not specified.

Initially, we assess the performance of the OrPSOC approach against well-known filter-based feature
selection strategies using different classifiers. Table 2 summarizes the mean classification accuracy percent-
ages from ten separate runs for each method, including MinRedMaxRel, Fast-C, FJMI, and OrPSOC, across
three different datasets. The entries in Table 2 include both the mean accuracy and the standard deviation
(in parentheses) for these runs, providing a comprehensive overview of each method’s performance stability
and effectiveness.
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Table 2: Comparison of classification accuracy across various feature selection methods

Dataset Selected features Filter-based-approach NaBa AdaB SVM

Colon

20 MinRedMaxRel 74.23 (1.80) 75.10 (1.77) 75.23 (1.88)
20 Fast-C 74.34 (1.45) 75.55 (1.86) 78.56 (1.99)
20 FJMI 73.87 (1.99) 74.23 (1.06) 80.34 (1.27)
20 OrPSOC 80.45 (2.04) 82.12 (1.76) 85.54 (2.16)

Leukemia

20 MinRedMaxRel 76.01 (0.77) 76.45 (0.87) 79.42 (1.67)
20 Fast-C 78.14 (1.12) 77.13 (1.05) 83.76 (2.55)
20 FJMI 78.56 (1.00) 77.67 (0.78) 81.45 (1.00)
18 OrPSOC 81.14 (1.21) 83.13 (1.08) 87.67 (1.45)

Prostate Tumor

12 MinRedMaxRel 73.12 (0.54) 74.23 (0.67) 76.26 (1.66)
12 Fast-C 76.12 (0.56) 76.67 (0.87) 82.23 (1.22)
12 FJMI 80.12 (1.02) 78.89 (1.01) 80.12 (1.77)
10 OrPSOC 80.01 (1.67) 79.34 (0.99) 89.76 (1.80)

According to Table 2, the OrPSOC method consistently outperforms the other feature selection meth-
ods across all datasets and classifiers, underscoring its effectiveness in enhancing classification accuracy.
This method shows particularly strong synergy with the SVM classifier, leading to the most significant
performance gains. Among the traditional filter methods, FJMI often exhibits superior or competitive
performance, especially with the SVM classifier, indicating its effectiveness in extracting valuable features
that positively impact classification outcomes. The performance variation across different datasets is note-
worthy, with the Prostate Tumor dataset showing significant improvements when using OrPSOC, even
with a reduced number of features. This suggests that OrPSOC is not only effective in feature selection but
also efficient in utilizing fewer, more impactful features. Additionally, the reported performance metrics,
including mean accuracy and standard deviation, confirm the statistical stability of the results—an essential
factor in validating the reliability of feature selection methods for practical applications.

This consistency is particularly noteworthy given that the three selected datasets vary significantly in
both feature dimensionality and sample size, which offers a valuable testbed to evaluate the robustness
of OrPSOC. For instance, the Prostate Tumor dataset contains over 10,000 features but only 102 samples,
presenting an extreme case of high dimensionality with limited observations. Leukemia is similarly high-
dimensional with a small sample size, while Colon has a moderate number of features and samples. Despite
these challenges, OrPSOC consistently achieved strong performance across all datasets. This demonstrates
the algorithm’s adaptability to both feature redundancy and sparsity. The crossover operator appears
particularly effective in managing noise in high-dimensional settings, while orthogonal initialization ensures
a diverse search from the outset, helping to mitigate overfitting in small-sample scenarios.

In Table 3, which showcases classification accuracies and computational times (in seconds) for various
nature-inspired metaheuristic algorithms, the first column corresponds to the SVM technique without any
metaheuristic enhancement. The results show that several metaheuristics outperform the baseline SVM
model. OrPSOC consistently achieves the highest accuracy across all datasets—85.64% for Colon, 88.02%
for Leukemia, and 89.74% for Prostate Tumor—highlighting its strong capability in identifying relevant
features for medical diagnostics. Among the competing methods, PSO emerges as the closest in performance,
trailing OrPSOC by approximately 5–6% across the datasets. ACO, on the other hand, exhibits the lowest
accuracy, particularly underperforming on the Prostate Tumor dataset with only 76.12%. This may reflect its
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limited effectiveness in navigating high-dimensional medical data. Regarding computational efficiency, all
algorithms require similar time, with OrPSOC occasionally taking slightly longer. For example, on the Colon
dataset, OrPSOC takes 56 s compared to PSO’s 54 s. However, this modest increase in time is justified by the
notable improvement in classification accuracy.

Table 3: Comparative analysis of classification accuracy and computational time across various metaheuristics using
SVM classifier

Dataset SVM (t) OrPSOC (t) PSO (t) ACO (t) CLGSA (t) FCLGSA (t)
Colon 77.17 (49) 85.64 (56) 80.12 (54) 78.12 (89) 80.12 (80) 83.21 (67)

Leukemia 80.98 (52) 88.02 (50) 82.12 (52) 80.03 (82) 81.32 (88) 82.14 (87)
Prostate Tumor 80.11 (55) 89.74 (51) 83.45 (52) 76.12 (88) 83.45 (90) 85.43 (82)

Tables 4 and 5 detail the frequency with which different feature selection methods achieved the
highest performance across these datasets on filter-based and metaheuristic-based, respectively. These tables
collectively underscore OrPSOC’s dominant efficacy in both filter-based and metaheuristic-based feature
selection categories across various medical datasets, indicating its robustness and reliability as a feature
selection method in diverse diagnostic scenarios.

Table 4: Frequency of performance by filter-based methods

Dataset OrPSOC MinRedMaxRel Fast-C FJMI
Colon 8.0 0.0 1.0 1.0

Leukemia 8.0 0.0 1.0 1.0
Prostate Tumor 9.0 0.0 0.0 1.0

Average 8.3 0.0 0.7 1.0

Table 5: Frequency of performance by metaheuristics-based methods

Dataset OrPSOC PSO ACO CLGSA FCLGSA
Colon 7.0 1.0 0.0 1.0 1.0

Leukemia 7.0 0.0 0.0 0.0 3.0
Prostate Tumor 8.0 1.0 0.0 0.0 1.0

Average 7.3 0.6 0.0 0.4 1.7

The performance variation of OrPSOC across different datasets and classifiers can be explained by
the interplay between dataset characteristics and classifier behavior. High-dimensional and low-sample-
size datasets such as Prostate Tumor benefit significantly from OrPSOC’s orthogonal initialization, which
enhances diversity in the swarm and prevents premature convergence. This mechanism ensures that the
search space is explored more effectively from the outset. Additionally, the crossover operator in OrPSOC
maintains population diversity during the convergence phase, which is particularly valuable in complex,
nonlinear datasets like Leukemia. From a classifier standpoint, SVM perform notably well due to their
sensitivity to feature relevance and decision boundaries, which complements OrPSOC’s ability to prune
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irrelevant features. In contrast, Naïve Bayes, with its assumption of feature independence, is less able to
capitalize on the refined feature subsets, leading to more modest performance gains.

Overall, OrPSOC demonstrates its strength in handling high-dimensional, sparse, and noisy data—
scenarios where maintaining diversity and controlled convergence are critical. Its superiority over standard
PSO is evidenced by consistent improvements in classification accuracy: 6.3% (Colon), 5.9% (Leukemia), and
6.3% (Prostate Tumor), despite both algorithms sharing identical control parameters and search operators.
These improvements are directly attributable to the integration of orthogonal initialization and crossover.
Together, these enhancements boost the algorithm’s robustness and effectiveness in challenging feature
selection tasks.

4.4 Sensitivity Analysis of Crossover Parameter
To understand the impact of the crossover rate on classification accuracy, we conducted a detailed

sensitivity analysis, as depicted in Fig. 2. This analysis explores the effects of varying crossover rates on three
medical datasets: Colon, Leukemia, and Prostate Tumor, using SVM, NaBa, and AdaB classifiers.

Figure 2: Average classification accuracy across 10 independent runs at varying crossover rates for (a) Colon dataset;
(b) Leukemia dataset; and (c) Prostate Tumor dataset

The analysis reveals that for the SVM classifier, there is a noticeable improvement in performance as the
crossover rate increases, peaking at around a rate of 0.4 to 0.5. Beyond this point, the performance plateaus
before eventually experiencing a slight decline, suggesting an optimal range where crossover effectively
enhances feature recombination for SVM. The AdaB classifier also shows improvement with increasing
crossover rates, particularly up to 0.4–0.5, before gradually declining. In contrast, NaBa demonstrates a
steady performance gain until mid-range crossover rates, but drops sharply beyond 0.6, suggesting overfitting
or loss of useful feature combinations at higher crossover levels.

Notably, the findings indicate that adjusting the crossover parameter to 0.6 enhances the classifi-
cation accuracy of the OrPSOC approach across various datasets. These observations underscore the
importance of tailoring crossover rates to each classifier and dataset combination. Optimally adjusting
crossover rates can significantly enhance classifier accuracy by introducing beneficial diversity. However,
excessively high rates might disrupt learning processes by breaking down beneficial feature combinations,
thus hindering performance.
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4.5 Statistical Analysis
This section presents a statistical evaluation of the outcomes utilizing the Friedman test [64]. The

Friedman test, a nonparametric method, assesses the efficacy of various approaches across multiple datasets.
Due to the stochastic characteristics of the metaheuristic algorithms used in this study, the Friedman test
is well-suited for assessing the comparative performance of these methods when applied with the SVM
classifier. Each entry in our dataset denotes the accuracy achieved by each algorithm for each dataset, creating
a perfect framework for the Friedman test, as all algorithms were evaluated consistently across the same
three datasets.

Continuing the analysis, the Friedman test was administered with the assumption that all algorithms
would perform equivalently across the datasets (null hypothesis) vs. the possibility that one or more
algorithms would exhibit distinct performance (alternative hypothesis). The test generated a Friedman
statistic of 11.862 with a p-value of 0.0184, which is significant at a 5% threshold (α = 0.05). Consequently,
the null hypothesis was rejected, confirming meaningful variations in how the algorithms performed across
the datasets.

To further analyse which algorithms differed significantly, rankings based on performance within
each dataset were assigned. These rankings (ρ) were averaged across all datasets to determine the overall
performance of each algorithm, as presented in Table 6. This ranking methodology helps identify not
only the existence of performance differences but also how each algorithm stands in relation to others in
terms of performance. According to Table 6, the proposed algorithm OrPSOC achieved rank 1 across all
datasets, highlighting its superiority. While ACO did not perform well, PSO and CLGSA proved to be
strong competitors. This section validates the effectiveness of metaheuristic algorithms in improving feature
selection outcomes.

Table 6: Ranking of algorithms based on the Friedman test

Datasets ρ (OrPSOC) ρ (PSO) ρ (ACO) ρ (CLGSA) ρ (FCLGSA)
Colon 1.0 3.5 5.0 3.5 2.0

Leukemia 1.0 3.0 5.0 4.0 2.0
Prostate Tumor 1.0 3.5 5.0 3.5 2.0
Average Rank 1.0 3.33 5.0 3.666 2.0

5 Conclusion and Future Scope
This study presented OrPSOC, a novel enhancement of the Particle Swarm Optimization (PSO)

algorithm, incorporating orthogonal initialization and a crossover operator. The orthogonal initialization
strategy generates a diverse and well-distributed initial population, significantly improving the algorithm’s
exploratory capabilities. The integration of a crossover operator promotes genetic diversity throughout the
search process, effectively mitigating premature convergence and improving robustness in high-dimensional
feature spaces.

We evaluated OrPSOC on three benchmark medical datasets, demonstrating its superior performance
in feature selection tasks compared to traditional filter methods and state-of-the-art metaheuristic algo-
rithms. The algorithm consistently achieved the highest classification accuracy while selecting fewer, yet
more informative, features. A sensitivity analysis of the crossover rate provided further insight into param-
eter tuning, and statistical validation using the Friedman test confirmed OrPSOC’s significant advantage
in performance.
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These results highlight OrPSOC’s effectiveness and reliability in handling complex, high-dimensional
data, particularly in medical diagnostics. Its strong performance underscores its potential as a powerful and
interpretable tool for feature selection. However, since the method was tested primarily on classification tasks
with labeled data, its generalization to unsupervised learning scenarios or large-scale real-time applications
requires further validation.

Looking forward, OrPSOC can be extended to a broader range of applications, including unsupervised
learning tasks such as clustering. We are currently planning extended research to explore its performance in
clustering-based applications and across other domains such as finance, cybersecurity, and bioinformatics—
further validating its adaptability and practical impact in diverse data-driven fields.
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