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ABSTRACT: Wireless technologies and the Internet of Things (IoT) are being extensively utilized for advanced
development in traditional communication systems. This evolution lowers the cost of the extensive use of sensors,
changing the way devices interact and communicate in dynamic and uncertain situations. Such a constantly evolving
environment presents enormous challenges to preserving a secure and lightweight IoT system. Therefore, it leads to
the design of effective and trusted routing to support sustainable smart cities. This research study proposed a Genetic
Algorithm sentiment-enhanced secured optimization model, which combines big data analytics and analysis rules to
evaluate user feedback. The sentiment analysis is utilized to assess the perception of network performance, allowing
the classification of device behavior as positive, neutral, or negative. By integrating sentiment-driven insights, the IoT
network adjusts the system configurations to enhance the performance using network behaviour in terms of latency,
reliability, fault tolerance, and sentiment score. Accordingly to the analysis, the proposed model categorizes the behavior
of devices as positive, neutral, or negative, facilitating real-time monitoring for crucial applications. Experimental results
revealed a significant improvement in the proposed model for threat prevention and network efficiency, demonstrating
its resilience for real-time IoT applications.
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1 Introduction

IoT is a cutting-edge technology, interconnected with various electronic equipment that supports real-
time observation and big data analytics for critical applications [1,2]. Using the developed system, network
devices and end users gathered data from the deployed IoT sensors to improve the sustainability of the
sensing field [3,4]. Due to the high speed and low implementation costs, web-based network infrastructure
is utilized frequently for critical analysis of big data in smart applications [5,6]. The extensive use of digital
devices has accumulated massive data repositories; therefore, proposing intelligent solutions for effective
communication along with security is a significant area of research [7,8]. Due to the massive amount of
data, constrained devices cannot interpret network requests intelligently. Numerous artificial intelligence
and machine learning techniques have been investigated for optimization and system sustainability [9,10].
Future technologies are interconnected with electric equipment to significantly develop next-generation
communication services, effectively addressing evolving critical user demands [11,12]. Constrained devices
cannot interpret network requests intelligently due to the timely processing of big data. To address these

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065660
https://www.techscience.com/doi/10.32604/cmc.2025.065660
mailto:mamoona.humayun@roehampton.ac.uk

434 Comput Mater Contin. 2025;84(1)

issues, many learning techniques have been explored for optimization in developing emerging services
by exploring network conditions [13,14]. Alternatively, sentiment analysis offers critical services for smart
applications with the support of IoT security by evaluating the user response and device feedback based
on real-time insights. It provides the early detection of communication threats and network anomalies,
thus reducing the probability of data breaches and providing a timely response in the event of fault
detection [15,16]. It enhances the decision-making process for trusted and secure algorithms by exploring
authentic and access control strategies. The continuous monitoring of user behavior and system activities
using sentiment analysis copes with malicious activities and reduces unauthorized access on IoT networks.
Accordingly, we need a predictive innovative system for sustainable development growth by exploring user
demands and system feedback. This research aims to present an Artificial Intelligence-driven (AI-driven),
sentiment-based adaptive model for smart cities to guarantee the efficient allocation of network resources
and increase trust in coping with network anomalies by exploring system feedback. The objectives of our
proposed model focus on enhancing the efficiency of IoT routing using sentiment analysis by determining the
device’s behavior. It combines big data analytics and the status of the network environment to ensure quality
of service and improve decision-making in the management of resources. Moreover, based on the device’s
response, time detection of threats against various anomalies is carried out, increasing the trustworthiness
of the intelligent communication systems. In addition, decision-making strategies are dynamic and updated
using continuous evaluation of sentiment-driven insights, providing resilience with the intelligent computing
environment. The following are the main research contributions of our proposed model.

i. By exploring the sentiment analysis with fitness evaluation, the proposed model leverages big data and
improves the efficiency of routing based on various real-time parameters and user feedback.

ii. The incorporation of network behavior for sentiment analysis, the proposed model offers in-depth
involvement in ensuring the quality of service and generates dynamic decision-making policies for
efficient management of big data.

ili. Leveraging the user feedback allows for the early detection of network anomalies and malicious threats,
thus improving the security framework of smart systems.

The following subsections organize this research. Section 2 presents related work. Section 3 provides a
discussion of the proposed model. Section 4 presents the results and discussion. At the end, a conclusion is
provided in Section 5.

2 Related Work

Wireless networks utilize adaptive computing and integrate artificial intelligence techniques to ele-
vate the processing and dynamic strength of distributed systems. This combination not only affects the
sustainability level of the network but on the other side also enables timely prediction for emerging IoT appli-
cations [17,18]. In addition, the advancements in sentiment analysis and future technologies are reshaping the
decision-making process in real-time and dynamic networks [19,20]. In smart cities, sentiment-enhanced
network infrastructure contributes to system and user response and enables the communication system
to adjust adaptively based on the network conditions [21,22]. The combination of user response, system
feedback, and sentiment-driven IoT networks enables smart systems to adapt to latency, reliability, and
security needs for big data analytics. It enhances the network performance optimization, responsiveness,
and threat detection over the unpredictable environment [23]. The integration of blockchain technology for
smart communication with the combination of AI-driven approaches fosters a more sustainable environment
against threats and guarantees an efficient digital world [24,25]. Smart cities face significant research in
real-time systems, particularly in optimizing IoT systems with scalability and the least computational cost.
Moreover, ensuring security with trust and reliable communication between IoT users is a crucial factor
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for the development of sustainable solutions [26,27]. Therefore, integrating sentiment analysis into smart
systems can enhance adaptability for the processing of big data by assessing system and user feedback. It
reduces traffic distribution and reduces network congestion on constrained electronic devices and sensing
systems [28,29].In [30], an Energy-Efficient Multilevel Secure Routing (EEMSR) protocol is proposed for IoT
networks. Because the clustering technique efficiently manages energy resources, a cluster-based, multi-hop
routing protocol reduces the high communication overhead in IoT networks. In particular, a more reasonable
analytic hierarchy process and genetic algorithms are used to assign precise weights and optimize intercluster
routing in heterogeneous IoT systems that support numerous network services. By computing the trust factor
on the data and routing, including data perception trust, data fusion trust, and communication trust, multiple
clustering levels are adopted to defend against the various attacks. However, it faces research challenges in
terms of scalability for a high number of IoT devices and imposing additional computational overheads. In
addition, to cope with real-time threat detection, the proposed approach is very limited in controlling the
dynamic network infrastructure. To optimize the efficiency of authentication, the authors [31] proposed a
lightweight blockchain-based authentication mechanism for IoT networks. It stores only a few credentials of
ordinary sensors to reduce the computational overhead for IoT networks. Furthermore, a genetic algorithm-
based SDN controller is explored to increase the network lifetime for route calculation and on-demand
routing, as a result, the proposed solution optimizes energy consumption. Furthermore, to detect malicious
devices, a route correctness mechanism is introduced, and a list of malicious devices is in the form of a
blockchain. However, it is observed that the proposed scheme only copes with energy resources and the
detection of malicious activities, but overlooks the scalability problem for a wide range of IoT devices and
coverage areas. In such cases, it reduces the timely response to crucial services and decreases the reliability
level of the deployed system. In [32], the main aim of the proposed work is to propose an Enhanced
Multi-Attribute-Based Attack Resistance (EMBTR) algorithm that securely performs data routing based on
trusted values of nodes. The proposed algorithm explored Quality of Service (QoS) characteristics, including
Stability rate (SR), Reliability rate (RR), and elapsed time (ET), to improve network performance and
prevent trust-related attacks. It may introduce the complexity and communication overheads for IoT devices
due to the multi-attributed routing scheme. In terms of network scalability, latency may vary due to the
inconsistent selection of forwarders. In mobile edge computing networks, authors [33] proposed an adaptive
routing protocol for the effective control of energy usage among end-user devices. Firstly, a link quality
prediction method is utilized to split the objects of the network into different clusters. Secondly, the data is
routed toward the destination by considering an account of the object’s movement. However, the ARPMEC
protocol incurs the research problem in coping with network scalability issues while the IoT environment
is densely deployed. Moreover, under the adaptive network scenario, the proposed approach can degrade
the performance of mobile devices and cause unnecessary network disruption. The authors [34] proposed
a data aggregation back pressure routing (DABPR) method to aggregate overlapping routes for effective
data transmission while extending the network’s lifetime. Event data is transferred from the event regions
to the sink nodes during each of the five phases of the DABPR routing algorithm. These include the phases
of route selection with multiple attributes, such as decision-making metrics, data aggregation, scheduling,
maximizing event detection reliability, and cluster-head selection. The proposed algorithm performs data
aggregation on redundant data at relay nodes to reduce message size, exchange rate, communication
overhead, and energy consumption. However, the DABPR approach may introduce research challenges to
establish the trusted forwarding connections among devices and make it harder to cope with communication
breaches in the event of malicious activities. Moreover, the DABPR may incur network congestion and
disruption under emergency and more responsive applications when the devices have mobility patterns. As
per the analysis of existing studies, IoT applications are broadly utilized in the growth of smart wireless
systems. They interact with many mobile devices to sense the real-time environment and communicate
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with central processing stations for onward data processing. However, the rapid growth in unpredictable
IoT devices and wireless networks imposes significant challenges to optimizing the network resources with
efficient energy consumption and intelligent decisions for crucial conditions. In addition, most existing
approaches lack scalability and adaptive network traffic management when IoT devices communicate in a
large-scale target field.

3 Proposed Model

This section describes the AI-Driven Sentiment Analysis Secure Communication (AI-SASC) model
for IoT networks. Initially, it connects the sensors with cutting-edge wireless technologies to collect data
from the unpredictable environment and process it using lightweight computing power. Sentiment rules are
integrated to attain fault-tolerant routes while transmitting sensitive data. The routes are kept secure with
user and device feedback. It strengthens the IoT system in processing the collected data and increases the
stability of the network. The AI-SASC model intends to optimize the allocation of resources for smart systems
with the combination of sentiment analysis. Unlike traditional metrics, it also utilizes user sentiment, which
reflects feedback and system satisfaction. Fig. 1 shows the proposed model’s architecture, highlighting the
designed states’ interaction. Initially, the population of routes is identified as P, defined in Eq. (1), and each
route r; is the random sample for transmitting IoT data.

P={r,ry....1u} 1

r'd

Devices Deployment l

|

Data Preprocessing and
Features Extraction ‘

|

Semantic Analyzer Secured Communication

| I

Fitness Evaluation and
Genetic Optimizer H Route Selection ‘

Figure 1: Sequential architectural flow of the proposed AI-SASC model

Each route r; determines its fitness function F(r) formulated using latency ¢, reliability rel, and fault
tolerance ft parameters. Also, the semantic score Sc based on the user feedback is incorporated into the
decision-making process, given in Eq. (2).

F(r) =wy = 1t(r;) + wyrrel(r;) + wy* ft(r;) + wy * Sc(r;) 2)

where w; (for i = 1,2, 3,4) are weighted contributions. The latency of a route is determined using Eq. (3) and
derived from the time taken to transmit the IoT data toward the destination. Moreover, distance d, is also
considered for all the hops k in the route r;.
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k
It(r) = St +d, (3)
i=1

Reliability for a particular route rel(r;) performs a significant role in evaluating network optimization,
as it reflects the consistency and trust of the devices. It is based on the average reliability RL(j) over hops k
on a particular route, as given in Eq. (4).

k
rdUJ:%ZRMﬁ (4)
=

ft is used to evaluate the combined effect of failure probability Probs and security level Rt(s) at
state s, as given in Eq. (5). It ensures the system’s availability while transmission of IoT data on most reliable
and trustworthiness links.

ft(ri) =1-(Proby).Rt(s) (5)

where Rt(s) is defined as a weighted sum of the encryption En and authenticity authen of the selected
route r;, along with weighted factors & and 8 as shown in Eq. (6).

Rt(s) = a-En(r;) + - auhen(r;) (6)

The proposed AI-SASC model utilizes some rules to derive the sentiment scores and explore them for
the computation of the fitness function. The rules are based on positive and negative feedback from users n
that reflects the semantic score, as given in Eq. (7). Also, if user feedback is higher than a certain threshold T,
a priority is assigned to a particular route r;, defined in Eq. (8).

1 n
Sc=— Z T (7)
nia
Assi d, if Sc>T
Priority = ssigne if Se (8)
Not Assigned, otherwise

A mutation is performed on the new route 7., (r) to introduce some variations, and as a result, a
mutated route ,,,14¢04 is given in Eq. (9). The fitness of the newly established route r is re-evaluated based
on the multi-facet attributes and sementic score, defined in Eq. (10).

Tmutated (7) = Mutation(7pey (7)) )
Foew(r) =wy - 1t(r) + wy-rel(r) + wy - ft(r) + wa-Sc(r) (10)

In the end, fitness values F,,,, of route r is normalized in the standard range of [0,1] using Eq. (11),
where F,,;, and F,,,, denotes minimum and maximum fitness values.

Fnew(r) — Fhin

(11)
Fmax - Fmin

Frey(r) =

Fig. 2a,b depicts the AI-SASC model flowchart for sentiment score evaluation. It explores the genetic
algorithm inspired by Charles Darwin’s theory of natural selection to optimize complex problems [35]. The
proposed mode integrates the sentiment scores to identify the multi-facet attributed routes. The sentiment
analysis evaluates the network based on user feedback and route experience. A genetic algorithm explores
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the fitness function to identify the set of routes. Using sentiment analysis, it performs some crossover
and mutation operations to determine the alternate and most reliable route. Later, the AI-SASC model
performs recursive strategies to compute the fitness, and the sentiment score continues until optimal routing
performance is achieved. It leads to learning from the network behavior and efficient utilization of resources
and their consumption.

Load population from pre-
computed fitness

[ Identity parent routes ]

[ Initialize population ]

[ Set GA parameters J

| |

[ Compute Sentiment Score ]—{ Fitness evaluation ] [ Evaluate Sentiment Score New population

[Perfonn crossover uperdtion]

Organized routes based on @ @

fit
e (b) Genetic Algorithm with sentiment-enhanced fitness for route
(a) Semantic analysis-based multi-facet route fitness computing,. optimization.

Figure 2: Flowchart of the AI-SASC model: (a) Semantic analysis-based multi-facet route fitness. (b) Genetic
Algorithm with sentiment-enhanced fitness for route optimization

Algorithm 1 illustrates the pseudocode of sentiment score computing and Genetic Algorithm
Sentiment-Enhanced Fitness evaluation for Route Optimization. In the beginning, it initializes the evalua-
tion of the fitness function for the populated routes using latency, reliability, fault tolerance, and sentiment
scores from user feedback. The sentiment score is derived for each route; otherwise, the default value is
retrieved. In the proposed model, weighted factors are explored to compute the fitness values using multiple
parameters. Moreover, to guarantee reliability and consistency, the computed fitness values are normalized.
In the end, the algorithm returns all the determined computed values of the routes, and optimizing decision-
making is made for routing the smart application. Unlike most of the existing solutions, the proposed
algorithm combines the users’ feedback and response in the decision-making process of IoT routing,
ultimately enhancing the sustainability and adaptability of network infrastructure.

Algorithm 1: Route fitness using sentiment score evaluation

Input: Population of routes P
Output: Initial fitness values for population P
1 for each route r € P do
2 Evaluate sentiment score Sc(r) from user feedback;
if Sc(r) is unavailable then
Assign default Sc(r);
end
Compute fitness: F(r) = wilt(r) + warel(r) + ws ft(r) + waSc(r);

AN U1 W

(Continued)
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Algorithm 1 (continued)

7 if Normalization required then

F 7Fmin
8 F’(T) - Flfl:z_Fmin;
9 end
10 end

11 return Initial fitness values for population P

Algorithm 2 shows the genetic algorithm driven sentiment-enhanced fitness for route optimization,
aims to present the evolutionary methods and principles to improve further the process of route selection
with the computation of multiple generations. The parent routes are selected using the derived fitness
values of populated routes in Algorithm 1. Later, genetic operations, crossover, and mutation, are applied
to generate offspring routes, and all new routes undergo a recomputation of sentiment-based fitness based
on user response and device feedback. Accordingly, the most reliable and optimized routes are selected
to transmit IoT data and ensure the continuous enhancement of the decision-making process using an
Al-driven approach.

Algorithm 2: Genetic algorithm with sentiment-enhanced fitness for route optimization

Input: Population P with pre-evaluated fitness scores
Output: Best route from final population Pg

1 for generation g =1to G do

2 Select parents r;, r; based on fitness;

3 Generate offspring r' = Crossover(r;,r;);

4  foreachr do

5 Mutate if condition met; Recompute fitness using Eq. (2);
6 end

7 Update population P, with selected parents and offspring;

8 Retain top N best routes for next generation;

9  If No fitness improvement over threshold generations then

10 Terminate;

11 end

12 end

13 return Best route from Pg

4 Simulations and Results

We evaluate the performance of the AI-SASC model through simulations using Network Simulator 3
(NS-3) compared to existing studies. The experiments are done against two different scenarios. One is a
varying number of nodes, and the second is a varying distance among nodes. The simulated data was stored
in log files, and later, scripting files were explored to get the computed results for statistical analysis. The AI-
SASC model simulates the observing environment that comprises mobile sensors and gateways. The network
field is fixed to 4000 m x 4000 m, populated by 100 to 500 sensors, with 5] of initial energy level. Three
sink nodes are deployed to support data collection. Sensors are equipped with GPS with a 5 m transmission
radius. The simulation parameters are depicted in Table 1.
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Table 1: Simulation parameters

Parameter Value
Simulation area 4000 m x 4000 m
Number of sensors 100 to 500
Number of edges 10
Initial energy 5]
Malicious devices 20
Simulations run 60
Packet size 512 bytes

Evaluation scenarios  Varying distances and number of nodes

Fig. 3a,b illustrates the evaluation of packet loss for the AI-SASC model and related schemes for varying
distances and IoT nodes. The performance results show that the AI-SASC model remarkably decreased the
packet loss ratio by an average of 33.6% and 38% over EMBTR and DABPR, respectively. It is the combination
of a Genetic Algorithm, network conditions, and sentiment analysis that leads to optimizing the data routes
and offers a more intelligent decision-making system for constraint innovative applications. The AI-SASC
model employs a fitness computing function that uses multi-facet attributes and explores latency, reliability,
fault tolerance, and user sentiment feedback. Moreover, it produces the load-balancing routes with effective
traffic management on the communication links. Using optimized forwarders in the proposed model further
strengthens crucial data transmission using trusted data collectors and attains sustainable applications.
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Figure 3: Comparison of AI-SASC, EMBTR, and DABPR for packet drop ratio under varying nodes and distances

The experimental results presented in Fig. 4a,b show the performance results of the AI-SASC model
and existing solutions in terms of end-to-end delay. Based on the statistical analysis, the AI-SASC model
significantly improves the ratio of end-to-end delay by an average of 49.6% and 55.8% under varying
distances and numbers of nodes, as compared to EMBTR and DABPR, respectively. The proposed model
explored the genetic algorithm combined with semantic analysis and evaluated the network status to attain
fault tolerance and system reliability. Moreover, the user’s semantic feedback provides a more dynamic IoT
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system with intelligent monitoring of data aggregation and processing services for constrained devices. It
reevaluates the decision-making with the collaborative and system-level metrics to ensure a long-term and
stable communication channel for efficient big data management. In addition, the AI-SASC model reduces
the overloaded data flow on the bounded links with robust and adaptive routing policies. Ultimately, it offers
crucial data on time from source to destination and is appropriate for realistic smart applications.
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Figure 4: Comparison of AI-SASC, EMBTR, and DABPR for end-to-end delay under varying nodes and distances

In comparison to the existing solutions, the AI-SASC model enhances the performance of response
time for varying distances and numbers of nodes by an average of 43% and 52%, as illustrated in Fig. 5a,b.
This is because forwarding routes are re-evaluated based on the system behavior and semantic analysis at
the device level. The devices frequently update their tables to keep the most reliable forwarders and select
the optimal ones among them. In case any device in the route is malicious or inefficient, the AI-SASC model
announces the formulation of the new alternative routes using crossover and mutation operations of the
Genetic Algorithm. In addition, based on the sentiment score, the AI-SASC model can prioritize routes based
on user feedback and satisfaction. The routes with positive feedback gain more priority for the selection and
lead to network optimization for real-time IoT applications. Such strategies offer rapid and reliable routing
systems, and devices dynamically adjust the routes by exploring network demands.

In Fig. 6a,b, the performance evaluation of the AI-SASC model is compared with existing solutions in
terms of mean time between failures. It was improved for varying distances and number of nodes an average
of 38% and 47.9% by utilizing a more reliable fault detection mechanism. By exploring sentiment scores and
user feedback for system performance, unpredictable events and issues can be identified before they cause a
system to fail. Using assigned priority values, the AI-SASC model can identify the data routes or IoT devices
at risk of failure at a particular time. In this case, the allocation of resources dynamically manages the failure
chances of the routes and provides optimized solutions with the least interruption or communication delays.
Thus, the AI-SASC model intelligently manages the network resources and improves the quality of service
across the network devices.
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Figure 5: Comparison of AI-SASC, EMBTR, and DABPR for end-to-end delay under varying nodes and distances
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Figure 6: MTBF comparison of AI-SASC, EMBTR, and DABPR under varying nodes and distances

In Fig. 7a,b, the AI-SASC model is assessed for security overhead in the comparison of related studies.
It is revealed that the AI-SASC model remarkably improved the overheads of the constraint IoT devices by
an average of 37.3% and 42% compared to other solutions due to the lightweight computing rules applied
in decision-making processes. In addition, the faults are detected at the beginning of communication and
marked as faulty communication associations with the help of the system log and appropriate network
conditions. The proposed AI-SASC model utilizes the user and device feedback in assigning priorities to
network resources with trusted links, decreasing the congestion on the IoT systems and attaining smooth,
reliable route maintenance for achieving optimized smart services.

In Fig. 8a,b, the AI-SASC model exhibits improved energy consumption against varying numbers of
nodes and varying distances as compared to existing solutions by an average of 29.6% and 36.7%. This
is due to the selection and exploration of the most intelligent forwarding schemes while transmitting the
routing data. The mult-attributed computation of fitness evaluation ensures the reliable channels based on the
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sentiment score. Moreover, the energy efficiency of the proposed AI-SASC model is significantly improved
by selecting optimal routing paths based on multi-attribute fitness, which includes latency, reliability, fault
tolerance, and user sentiment. The intelligence of the genetic algorithm decreases the network disruption in
routing the IoT data and effectively tackles the energy resource of the constraint devices. The device responses
play an additional role in preventing the energy hole near the source nodes and ultimately enhance the
stability of the management of big data in real-time applications.
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Figure 7: Comparison of AI-SASC, EMBTR, and DABPR for security overhead under varying nodes and distances
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Figure 8: Comparison of AI-SASC, EMBTR, and DABPR for energy consumption under varying nodes and distances

5 Conclusion

Smart cities are increasingly incorporating the technology of IoT and future networks for the growth of
smart communication systems. However, many existing approaches often struggle to overcome the research
challenges of optimization and allocation of resources for constrained applications. With the integration of
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sentiment analysis, the proposed model contributes to real-world smart city infrastructures by improving
the way users understand their experiences and promoting more responsiveness with reliable schemes.
Advanced data analysis, processing techniques, and strengthened security architecture enable prompt
response in decision-making capabilities. In addition, it provides proactive threat mitigation and offers
a trusted smart system. Moreover, utilizing a genetic algorithm, our proposed model enhances semantic
analysis to attain fault tolerance, service reliability, and smart traffic management by observing the network
behavior and device feedback. However, as the number of mobile devices increases, the proposed model may
raise the issues of scalability while analyzing big data. Furthermore, leveraging advanced machine learning
techniques with sentiment analysis can lead to growth in the development of more resilient and efficient
smart systems.
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