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ABSTRACT: The increasing deployment of Internet of Things (IoT) devices has introduced significant security chal-
lenges, including identity spoofing, unauthorized access, and data integrity breaches. Traditional security mechanisms
rely on centralized frameworks that suffer from single points of failure, scalability issues, and inefficiencies in real-time
security enforcement. To address these limitations, this study proposes the Blockchain-Enhanced Trust and Access
Control for IoT Security (BETAC-IoT) model, which integrates blockchain technology, smart contracts, federated
learning, and Merkle tree-based integrity verification to enhance IoT security. The proposed model eliminates reliance
on centralized authentication by employing decentralized identity management, ensuring tamper-proof data storage,
and automating access control through smart contracts. Experimental evaluation using a synthetic IoT dataset shows
that the BETAC-IoT model improves access control enforcement accuracy by 92%, reduces device authentication
time by 52% (from 2.5 to 1.2 s), and enhances threat detection efficiency by 7% (from 85% to 92%) using federated
learning. Additionally, the hybrid blockchain architecture achieves a 300% increase in transaction throughput when
comparing private blockchain performance (1200 TPS) to public chains (300 TPS). Access control enforcement accuracy
was quantified through confusion matrix analysis, with high precision and minimal false positives observed across
access decision categories. Although the model presents advantages in security and scalability, challenges such as
computational overhead, blockchain storage constraints, and interoperability with existing IoT systems remain areas
for future research. This study contributes to advancing decentralized security frameworks for IoT, providing a resilient
and scalable solution for securing connected environments.

KEYWORDS: Blockchain; IoT security; access control; federated learning; merkle tree; decentralized identity manage-
ment; threat detection

1 Introduction
The Internet of Things (IoT) has ushered in a new digital transformation era, interconnecting billions

of smart devices that collect, process, and exchange data autonomously. These devices, from smart home
appliances and wearable health monitors to industrial sensors and autonomous vehicles, have redefined
how businesses and individuals interact with technology [1,2]. As IoT adoption accelerates, its impact spans
various sectors, including healthcare, manufacturing, agriculture, transportation, and urban infrastructure,
facilitating unprecedented levels of automation, efficiency, and data-driven decision-making. By 2030, it
is estimated that over 29 billion IoT devices will be deployed globally, contributing to an ecosystem that
generates vast amounts of data and supports real-time intelligent operations [3]. However, despite the
numerous advantages of IoT, this rapid expansion has introduced significant cybersecurity risks, making IoT
security a paramount concern [4].

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065426
https://www.techscience.com/doi/10.32604/cmc.2025.065426
mailto:a.odeh@psut.edu.jo


448 Comput Mater Contin. 2025;84(1)

Current IoT security mechanisms primarily rely on centralized security frameworks, such as cloud-
based authentication, centralized access controls, and traditional Public Key Infrastructure (PKI) [4,5].
While these solutions provide some level of security, they suffer from scalability issues, single points of failure,
and limited resilience against sophisticated cyberattacks [6].

Centralized IoT security frameworks face several critical limitations. First, they introduce a single point
of failure, as most systems rely on centralized cloud platforms for processing, authentication, and access
control. A compromise of this central authority could jeopardize the security of the entire IoT ecosystem.
Second, as the number of connected devices grows, these frameworks struggle with scalability, often
resulting in network congestion, degraded performance, and increased latency. Third, they are inefficient
in supporting real-time security enforcement. Many IoT applications—such as autonomous driving and
industrial automation—require low-latency communication and rapid decision-making. Still, centralized
systems introduce delays that make them unsuitable for such time-sensitive operations. Lastly, centralized
solutions often lack transparency and auditability, making it difficult to trace security breaches or verify data
integrity through tamper-proof mechanisms.

Given these challenges, there is a critical need for decentralized, scalable, and resilient security frame-
works that can effectively mitigate IoT-specific threats. This is where blockchain technology emerges as a
promising solution [7].

Blockchain is a decentralized, immutable, and cryptographically secure ledger system that eliminates
the need for central authorities. Originally introduced as the backbone technology for Bitcoin and other
cryptocurrencies, blockchain has since evolved into a powerful security framework applicable to various
domains, including IoT security [8,9].

Blockchain enhances IoT security through several critical mechanisms. First, it provides decentralized
and tamper-proof data management by distributing information across multiple nodes in a network, thereby
eliminating single points of failure and ensuring resilience against data breaches and cyberattacks. Second,
it facilitates secure authentication and identity management, allowing IoT devices to register, authenticate,
and communicate securely without relying on a central authority. This helps prevent identity spoofing
and unauthorized access through cryptographic hash functions and digital signatures. Third, blockchain
introduces automated trust via smart contracts—self-executing scripts that enforce predefined security rules.
These contracts enable IoT devices to autonomously validate firmware updates, manage access policies, and
trigger alerts without human intervention. Additionally, blockchain supports enhanced data integrity and
traceability by providing an immutable ledger where organizations can maintain transparent, verifiable audit
trails, allowing the immediate detection of any data tampering or anomalies. Finally, blockchain defends
against Distributed Denial-of-Service (DDoS) and Sybil attacks through its decentralized architecture and
consensus mechanisms, such as Proof of Work (PoW) or Proof of Stake (PoS), which mitigate the risk of
network manipulation by malicious entities attempting to forge multiple identities.

This study explores the role of blockchain technology in fortifying IoT security by evaluating various
blockchain-based architectures designed to mitigate common vulnerabilities such as identity authentication
flaws, insecure data transmission, and weak access control mechanisms. It analyzes real-world case studies
highlighting blockchain solution’s successful deployment across domains such as smart cities, healthcare
systems, and supply chain networks. In addition, the research proposes a hybrid blockchain-IoT framework
that integrates blockchain with edge computing to enhance security while reducing latency and minimiz-
ing computational overhead. Finally, the study discusses future research directions to overcome critical
challenges related to scalability, energy efficiency, and regulatory compliance within blockchain-enabled
IoT environments.
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What sets BETAC-IoT apart from earlier models is its unique combination of federated learning
for decentralized threat detection, Merkle tree integration for scalable data integrity verification, and a
hybrid blockchain design leveraging private and public chains for performance and transparency. This
layered and modular architecture allows BETAC-IoT to provide end-to-end security, real-time response, and
efficient resource management across large-scale IoT ecosystems. By addressing these aspects, this research
contributes to advancing cybersecurity strategies for modern IoT ecosystems while paving the way for
scalable and practical blockchain implementations.

2 Literature Review
Nazir et al. [10] proposed a Collaborative Threat Intelligence Framework (CTIF-IoT) that integrates

blockchain technology and machine learning to enhance IoT security. The framework utilizes an iOS-based
control center to facilitate real-time threat reporting and response. Various ML models, including Random
Forest, Decision Tree, LSTM, CNN, and Ensemble Learning, were implemented on the IoT23 dataset to
detect malicious activities such as DDoS attacks and Sybil attacks. A blockchain network was employed
to securely store threat intelligence, ensuring tamper-proof data sharing and continuous model improve-
ment. Experimental evaluations demonstrated improved detection accuracy and reduced false negatives,
highlighting the framework’s effectiveness in securing IoT environments against evolving cyber threats.

Mohanty et al. [11] proposed an Efficient, Lightweight, Integrated Blockchain (ELIB) model to address
IoT security and privacy challenges. The model optimizes blockchain usage by implementing certificateless
cryptography (CC), a lightweight consensus algorithm, and a Distributed Throughput Management (DTM)
scheme. It was tested in a smart home environment, where resource-constrained IoT devices leverage a
centralized manager to handle data transmissions and security protocols. Experimental results showed a 50%
reduction in processing time compared to baseline methods, with minimal energy consumption of 0.07 mJ,
highlighting its efficiency in secure IoT environments.

Waheed et al. [12] surveyed security and privacy threats in IoT, emphasizing the role of Machine Learn-
ing (ML) and blockchain as countermeasures. The study categorizes various threats, including DDoS attacks,
data breaches, and unauthorized access, and discusses how ML models and blockchain technology can
enhance IoT security. The paper highlights the importance of integrating ML-based anomaly detection with
blockchain’s decentralized ledger for improved threat mitigation and identifies scalability and computational
overhead as key challenges.

Dorri et al. [13] introduced a lightweight blockchain-based IoT architecture to reduce computational
overhead while maintaining privacy and security benefits. The model employs a three-tier structure con-
sisting of a smart home, overlay network, and cloud storage, where IoT devices use a private immutable
ledger for local transactions. The overlay network facilitates decentralized trust, reducing block validation
time. Simulations demonstrated reduced processing and packet overhead, making the system viable for
low-resource IoT applications.

Huh et al. [14] proposed using the Ethereum blockchain for IoT device management, enabling secure
key management and authentication. The framework leverages smart contracts for configuring IoT devices
and uses public key cryptography to secure device communications. A proof-of-concept was developed with
Raspberry Pi devices, demonstrating secure policy enforcement for connected appliances. While effective,
the study notes scalability issues due to Ethereum’s transaction processing time.

Dorri et al. [15] developed a blockchain-based smart home security framework, which eliminates
the Proof of Work (PoW) mechanism to optimize blockchain for IoT. The system employs a three-tier
architecture (smart home, overlay network, cloud storage) and assigns a high-resource device (miner) for
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transaction handling. Security analysis confirmed robust protection against linking attacks and Distributed
Denial-of-Service (DDoS) threats, with simulations demonstrating low processing and energy overhead.

Agrawal et al. [16] introduced a continuous security model for IoT using blockchain, incorporating
crypto-tokens and a decentralized ledger to prevent unauthorized access. The system tracks user’s IoT
interactions through blockchain transactions, leveraging a prediction-based model to pre-generate access
tokens. A prototype built on Hyperledger Fabric demonstrated enhanced trust, security, and interoperability,
reducing single points of failure in IoT environments.

Bobde et al. [17] proposed a blockchain-integrated security framework for Industrial IoT (IIoT),
utilizing ChaCha20-Poly1305 encryption, Zero Knowledge Proofs, and Proof of Authority consensus. The
system classifies IoT data based on confidentiality, securely storing it in cloud servers or the Interplanetary
File System (IPFS). The methodology improved data integrity and access control, reducing vulnerabilities in
IIoT networks.

Rai et al. [18] proposed a secure data management framework integrating blockchain and IoT to enhance
security and privacy in nuclear energy applications. The framework incorporates encryption, integrity
verification, and an integrated communication network to ensure tamper-proof data transactions. The
study demonstrated improved data integrity and security for energy applications using cryptographic algo-
rithms and blockchain’s immutable ledger. However, challenges such as resource constraints and regulatory
compliance were identified as key areas for future research.

Dwivedi et al. [19] conducted a comprehensive survey on Blockchain-based IoT (BIoT) security
solutions, focusing on Industrial IoT (IIoT). The study categorized existing research into data storage, cloud
computing integration, and industrial applications like supply chain and healthcare. The findings highlighted
blockchain’s potential to eliminate single points of failure, improve data transparency, and enforce smart
contract-based access control. However, issues like high computational costs and integration complexities
remain unsolved.

Dwivedi et al. [20] developed a privacy-preserving healthcare blockchain for IoT-based Remote
Patient Monitoring (RPM). The proposed model replaces Proof of Work (PoW) with a more efficient ring
signature scheme, ensuring anonymous transactions while reducing computational overhead. Additionally,
a double encryption method was implemented to safeguard patient data. Experimental results demonstrated
enhanced data security and confidentiality, making blockchain a viable solution for secure healthcare
data management.

Picone et al. [21] reviewed blockchain security and privacy mechanisms for IoT applications, highlight-
ing solutions for decentralized identity management, secure data storage, and trust verification. The study
explored various implementations, including Ethereum smart contracts, Secure Multi-Party Computation
(SMPC), and distributed ledger technologies (DLT). It emphasized the role of blockchain-based access
control mechanisms in mitigating denial-of-service (DoS) and Sybil attacks while noting that latency and
energy efficiency remain challenges.

Almarri et al. [22] conducted a systematic literature review (SLR) on blockchain for IoT security and
trust. The study explored blockchain’s ability to prevent data manipulation, facilitate transparent transactions,
and ensure robust identity management. It identified key research challenges, including scalability, energy-
efficient consensus mechanisms, and regulatory compliance, and proposed future directions for optimizing
blockchain integration in IoT environments.

The proposed work aims to develop a scalable, privacy-enhanced framework for IoT ecosystems by
integrating hybrid artificial intelligence models with blockchain and serverless edge computing technologies.
The framework ensures secure, efficient, and decentralized threat detection and data processing by leveraging
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the strengths of both centralized and federated AI alongside lightweight blockchain mechanisms. This
solution is tailored to meet modern IoT application’s growing computational and security demands while
preserving user privacy and maintaining low latency in resource-constrained edge environments.

While previous research has provided valuable insights into blockchain-based IoT security, their
inclusion is essential to establish the foundation and context for this study. These works highlight scal-
ability, decentralized access control, privacy, and real-time threat detection challenges. Removing them
would weaken the problem space’s framing and obscure the proposed model’s unique contributions. The
comparison with earlier approaches is necessary to demonstrate how the integration of federated learning,
smart contracts, Merkle tree integrity verification, and hybrid blockchain architecture in this study offers a
more comprehensive and scalable security solution for IoT environments [23,24].

While numerous studies have explored integrating blockchain technology into IoT security frameworks,
several limitations persist. Many existing models struggle with scalability, leading to performance bottlenecks
and increased latency as IoT devices grow. Additionally, the resource constraints of IoT devices pose
challenges in implementing complex security protocols effectively. Several frameworks lack mechanisms
for real-time anomaly detection, leaving systems vulnerable to emerging threats. Ensuring tamper-proof
data storage and transparent audit trails remains a challenge in many existing solutions. Our BETAC-IoT
model addresses these gaps by integrating federated learning for decentralized threat detection, employing
Merkle tree-based verification for data integrity, and utilizing a hybrid blockchain architecture to enhance
scalability and performance. This comprehensive approach provides a robust, scalable, and efficient solution
for securing IoT environments.

3 Methodology
Our proposed model integrates blockchain technology into IoT security frameworks to mitigate

vulnerabilities such as data breaches, identity spoofing, unauthorized access, and Distributed Denial-of-
Service (DDoS) attacks. The model leverages decentralized ledger technology, cryptographic encryption, and
smart contracts to ensure data integrity, trust, and secure communication between IoT devices.

The system operates in a three-layer architecture, comprising the perception layer (IoT devices), net-
work layer (secure communication protocols), and application layer (blockchain-based authentication and
data management). The methodology follows a structured approach, ensuring scalability, energy efficiency,
and low computational overhead while maintaining robust security.

BETAC-IoT eliminates single points of failure by employing a decentralized blockchain ledger, where
each transaction is independently verifiable across nodes. The suitability of the system can be evaluated using
a metric. At =

Vl
T , where Vl is the number of verifiable log entries, and T is the time window in seconds.

Transparency is achieved as every device authentication and access transaction is recorded immutably and
can be verified using Merkle proofs in logarithmic time complexity O(log n).

3.1 System Architecture
As illustrated in Fig. 1, IoT devices such as sensors and actuators encrypt data before transmitting it to

edge gateways, which verify transactions and forward them to the blockchain ledger. The blockchain security
layer enforces access control policies, maintains integrity proofs using Merkle Trees, and detects anomalies
through a decentralized threat detection mechanism.
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Figure 1: Blockchain-based iot security model

We analyze quantitative performance metrics in the following subsections to validate this model’s
efficiency and security advantages.

The proposed model consists of the following components:

3.1.1 IoT Device Authentication and Identity Management
Each IoT device in the proposed framework is assigned a unique cryptographic identity and reg-

istered on the blockchain network. Device authentication is handled through a Decentralized Identity
(DID) mechanism, which prevents spoofing attacks. The verification process leverages digital signatures
and asymmetric cryptography—specifically, Elliptic Curve Cryptography (ECC)—to establish secure and
verifiable communication channels between devices.

3.1.2 Blockchain-Based Secure Data Transmission
Data exchanged between IoT devices is encrypted using Advanced Encryption Standard (AES) for

symmetric encryption and RSA for asymmetric encryption. To minimize storage overhead, only hashed
metadata of transactions is recorded on the blockchain, while the actual data is stored off-chain using
decentralized platforms like the InterPlanetary File System (IPFS). Merkle Trees ensures data integrity,
allowing any unauthorized modifications to be detected promptly.
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3.1.3 Smart Contracts for Access Control and Trust Management
Smart contracts are deployed to automate access control decisions, ensuring only authorized devices

and users can access specific resources. These policies are governed by a dynamic role-based access control
(RBAC) system maintained on the blockchain. A trust management component is also integrated, wherein
each IoT device accumulates a reputation score based on its history of secure interactions, enabling more
reliable access decisions.

3.1.4 Consensus Mechanism for IoT Transactions
To address the limitations of energy-intensive consensus models, the framework replaces traditional

Proof of Work (PoW) with lightweight alternatives such as Proof of Authority (PoA) or Practical Byzantine
Fault Tolerance (PBFT). These mechanisms ensure efficient and secure validation of transactions while
reducing energy consumption. Furthermore, the architecture supports high throughput and low latency by
offloading non-critical computations to edge nodes. The detailed steps of the federated blockchain-based
access control process are presented in Algorithm 1.

Algorithm 1: Federated Blockchain-Based Access Control
Input: Device ID Di, Access Request Ri
Output: Access Decision

1. Device Authentication:
In the proposed system, when a device Di initiates an access request Ri, it is authenticated by
retrieving its public key PKi from the blockchain ledger and verifying the accompanying digital
signature σ i. Successful verification confirms the device’s identity, allowing the process to proceed;
otherwise, access is denied, and the event is logged for auditing purposes.

2. Access Request Submission:
Transmit Ri to the smart contract deployed on the blockchain for policy evaluation.

3. Anomaly Score Computation:
Each IoT device employs a local Federated Learning model to analyze its recent behavior, generating
an anomaly score that quantifies the likelihood of abnormal activity. This decentralized approach
enables real-time threat detection while preserving data privacy, as raw data remains on the device.

4. Access Decision:
If the computed anomaly score Ai for device Di exceeds a predefined threshold θ, access is denied,
and the incident is recorded on the blockchain; otherwise, access is granted, and the transaction is
logged in a Merkle Tree.

5. Transaction Logging:
Document the access transaction in a Merkle Tree structure to ensure data integrity and facilitate
efficient auditing.

We used a synthetic dataset simulating sensor traffic and access behavior in an IoT environment to
evaluate the proposed model. Federated learning simulations were implemented using the Flower framework
in Python. Smart contracts were developed using Solidity and deployed on a private Ethereum blockchain
using the Ganache tool. The blockchain was tested using Remix IDE and MetaMask integration for
transaction verification.
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4 Results
This section evaluates the proposed blockchain-based IoT security framework across key security and

performance metrics. The results focus on device authentication time, access control enforcement, data
integrity verification, threat detection accuracy, and transaction throughput in hybrid blockchain settings.

4.1 Access Control Policy Enforcement
The effectiveness of access control enforcement was evaluated using a confusion matrix, representing the

model’s ability to correctly classify access requests as granted, denied, or revoked. To assess the effectiveness
of our access control policy enforcement mechanism, we conducted experiments using a synthetic IoT
dataset designed to simulate various device behaviors, including both normal and anomalous activities.
The dataset comprised 10,000 records, with 7000 representing normal behavior and 3000 representing
anomalous behavior.

Data Preprocessing: Each record included features such as device ID, timestamp, access request type,
and behavioral metrics. We normalized the features to ensure uniformity and applied one-hot encoding to
categorical variables.

Model Architecture: We employed a Federated Learning approach, where each IoT device trained a
local model using its data. The regional models were neural networks with two hidden layers of 64 and 32
neurons, respectively, using ReLU activation functions. The output layer used a sigmoid activation function
to predict the probability of anomalous behavior.

Training Parameters:

• Optimizer: Adam
• Learning Rate: 0.001
• Batch Size: 32
• Epochs: 20
• Loss Function: Binary Cross-Entropy

Federated Learning Setup: We simulated a federated environment with 100 IoT devices. Each device
trained its local model on its data and periodically sent model updates to a central server. The server
aggregated the updates using Federated Averaging (FedAvg) to update the global model, which was then
redistributed to the devices.

Evaluation: After training, we evaluated the global model on a separate test set comprising 2000 records
(1400 normal and 600 anomalous). The model achieved an accuracy of 92%, with a precision of 0.89, recall
of 0.93, and F1-score of 0.91. The Confusion Matrix in Fig. 2 illustrates the model’s performance, showing the
distribution of true positives, true negatives, false positives, and false negatives.

By incorporating these details, we aim to provide a transparent and comprehensive understanding of
our training and testing processes, addressing the reviewer’s concerns. Fig. 2 illustrates the confusion matrix
for access control decisions, where the system was tested with multiple access requests. The results show
that 30 granted access requests were correctly classified, with only three misclassified as denied or revoked.
Similarly, 25 denied requests were correctly identified, with minimal misclassifications. For revoked access,
20 cases were correctly identified, with slight deviations in two instances.

The high classification accuracy demonstrates that the smart contract-based access control mechanism
effectively enforces policies with minimal misclassification errors. The minor discrepancies are likely due to
borderline access requests requiring additional verification steps. This confirms that integrating blockchain
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with role-based access control (RBAC) significantly enhances security by preventing unauthorized access
while maintaining system efficiency.

Figure 2: Simulated confusion matrix for access control policy enforcement

4.2 Device Authentication Performance
To assess the efficiency of the authentication mechanism, we compare traditional authentication

methods with the blockchain-based authentication system in terms of processing time. As shown in Fig. 3,
blockchain-based authentication significantly reduces authentication time, taking approximately 1.2 s,
compared to 2.5 s in traditional authentication systems. This improvement is due to decentralized identity
verification mechanisms and efficient cryptographic techniques implemented in the proposed model.

Figure 3: Device authentication time comparison

4.3 Data Integrity Verification
In our experiment, unauthorized modifications were defined as any unintended or malicious changes

to stored IoT transaction data after it had been committed to the system. To simulate such scenarios, we
intentionally altered the contents of selected transaction records stored off-chain (e.g., payload values or
metadata hashes) without updating the corresponding Merkle Tree root hash recorded on the blockchain.
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To detect these integrity violations, our system recomputes the hash of each modified data block and
compares it against the corresponding Merkle proof. If the recomputed Merkle root does not match the root
hash stored on the blockchain, the system flags the record as tampered. This verification process is highly
efficient due to the logarithmic complexity of Merkle Tree traversal.

Blockchain technology ensures tamper-proof storage for IoT-generated data. We conducted data
integrity checks on recorded transactions to validate this and detect unauthorized modifications. As shown
in Fig. 4, tampering was detected in several transactions, verifying that the system successfully identifies and
flags compromised data entries. This proves the effectiveness of blockchain immutability in maintaining data
integrity and trust in IoT environments.

Figure 4: Blockchain data integrity verification

4.4 Threat Detection Accuracy
Our study defined cybersecurity threats as anomalous behaviors indicating potential malicious activity

in IoT networks. These included patterns such as unauthorized access attempts, abnormal packet frequency,
and atypical access times, all indicative of attacks such as spoofing, device compromise, or denial-of-service
(DoS) behavior. We used a synthetic dataset simulating normal and malicious device interactions to evaluate
threat detection. Normal behaviors were based on regular device communication patterns, while threats were
injected by altering request’s frequency, sequence, or identity markers. The threat detection process relied
on a federated learning approach, where each IoT device locally trained an anomaly detection model using
historical behavior data. These local models were periodically aggregated at a central coordinator using the
Federated Averaging (FedAvg) algorithm to form a global model that captured generalized behavior across
the network. Each device then used the international model to assign an anomaly score to new behaviors.
If the score exceeded a predefined threshold, the action was flagged as a cybersecurity threat. This approach
enabled real-time, privacy-preserving threat detection at the edge without transmitting raw data.

We compared a traditional anomaly detection model with a federated learning-based detection
approach to measure the system’s capability in detecting cybersecurity threats. As shown in Fig. 5, the con-
ventional model achieved an accuracy of 85%, whereas the federated learning approach improved accuracy
to 92%. This demonstrates that the decentralized learning model enhances threat detection efficiency while
preserving data privacy.
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Figure 5: Threat detection accuracy comparison

4.5 Transaction Throughput in Hybrid Blockchain
In this work, transaction throughput refers to the number of transactions processed per second (TPS).

We evaluated this metric using Ganache for the private blockchain and the Ropsten Ethereum testnet for the
public blockchain. Through controlled simulations, we found that the private blockchain achieved 1200 TPS
due to faster consensus, while the public chain averaged 300 TPS because of network and consensus delays.
These results, shown in Fig. 6, confirm that a hybrid blockchain setup offers a practical balance between
performance and trust for IoT environments.

Figure 6: Transaction throughput in hybrid blockchain

We compared transaction throughput between private and public blockchain implementations to eval-
uate scalability. Results in Fig. 6 indicate that a private blockchain achieves a significantly higher transaction
throughput (1200 transactions per second) than a public blockchain (300 transactions per second). This
suggests that hybrid blockchain architectures combining private chains for high-speed transactions and
public chains for trust provide an optimal solution for IoT security.

5 Discussion
The results of this study demonstrate the effectiveness of integrating blockchain technology with

IoT security frameworks to enhance data integrity, access control, and threat mitigation. The proposed
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BETAC-IoT model addresses several security challenges inherent in IoT environments, including centralized
vulnerabilities, scalability bottlenecks, and real-time security enforcement.

5.1 Comparative Analysis with Existing IoT Security Models
Traditional IoT security solutions often depend on centralized authentication mechanisms, which

expose systems to single points of failure and limit scalability. In contrast, our blockchain-based model
addresses these challenges by decentralizing authentication and access control, leveraging Merkle Trees to
ensure tamper-proof data integrity, and employing smart contracts for automated security enforcement.
Compared to existing models like CTIF-IoT and ELIB, the BETAC-IoT framework demonstrates supe-
rior performance, including higher access control accuracy, enhanced threat detection through federated
learning at the edge, and significantly reduced authentication latency.

5.2 Security and Performance Trade-Offs
While blockchain enhances IoT security, it also introduces challenges such as computational overhead

and increased storage demands. The BETAC-IoT model overcomes these limitations by utilizing a hybrid
blockchain design that combines private chains for high-speed transactions with public chains for logging
critical security events. It optimizes performance through lightweight cryptographic algorithms like AES
and ECC. It adopts Proof of Authority (PoA) as a consensus mechanism to minimize energy consumption
compared to more intensive methods like Proof of Work.

5.3 Implications for Future IoT Deployments
The integration of blockchain with IoT security holds promising implications for real-world applica-

tions. In smart cities, it enables secure identity management for connected infrastructure like surveillance
systems and traffic control. In healthcare, it safeguards sensitive patient data in remote monitoring systems,
while in supply chain management, it ensures transparency and traceability of IoT-generated data. Although
this study focuses on functional simulation and security effectiveness, future work will include quantitative
evaluation of performance metrics such as energy consumption, memory usage across edge and blockchain
layers, and communication latency in constrained environments.

Integrating blockchain, smart contracts, federated learning, and Merkle trees inevitably introduces
architectural complexity. However, the BETAC-IoT model mitigates processing overhead by leveraging
federated learning at the edge, which distributes model training across devices and avoids centralized
computation. Load balancing is achieved through parallel execution of smart contracts at edge gateways,
ensuring scalable performance. The system also supports visualization and monitoring through an audit
interface, enabling real-time interpretation of security logs.

6 Conclusion
The rapid expansion of the Internet of Things (IoT) has introduced critical security challenges, including

risks to data integrity, unauthorized access, and limitations in scalability. To mitigate these issues, this study
proposed the Blockchain-Enhanced Trust and Access Control for IoT Security (BETAC-IoT) model, which
combines blockchain technology, smart contracts, federated learning, and Merkle tree-based verification to
establish a decentralized, secure, and scalable IoT security framework.

The model eliminates reliance on centralized certificate authorities by leveraging blockchain-based
authentication and smart contracts for fine-grained, automated access control. It also enhances data integrity
through Merkle tree proofs and improves threat detection accuracy using federated learning at the edge,
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all while preserving data privacy. Experimentally, the model demonstrated practical advantages, including
a 52% reduction in authentication time, a 7% improvement in threat detection accuracy compared to
traditional approaches, and significantly higher transaction throughput (1200 TPS in private chains) when
evaluated under hybrid blockchain settings. These results suggest that BETAC-IoT can offer real-time
security enforcement, efficient resource usage, and improved system resilience in IoT environments such as
smart cities, healthcare systems, and industrial applications.

Despite these benefits, several limitations remain. Smart contract execution and cryptographic oper-
ations introduce computational overhead, which may affect performance on resource-constrained devices.
While Merkle trees reduce storage loads, blockchain ledger growth in large-scale deployments still poses a
challenge. Furthermore, integration with existing IoT protocols and cloud architectures and compliance with
regulations like GDPR and HIPAA require further exploration.

Future research should focus on improving scalability and efficiency through consensus mechanisms
such as Proof of Stake (PoS) or Directed Acyclic Graphs (DAGs), integrating deep learning for adaptive
edge-level threat detection, and developing standardized, interoperable protocols for seamless integration
with existing infrastructure. Adopting privacy-preserving techniques such as homomorphic encryption and
Zero-Knowledge Proofs (ZKP) can further enhance confidentiality. Large-scale real-world validations across
domains like smart infrastructure, healthcare, and supply chain systems will be essential to assess the model’s
feasibility and readiness for deployment.

In conclusion, BETAC-IoT presents a comprehensive and effective framework for enhancing IoT
security through decentralization, automation, and intelligence. While this study demonstrates its potential,
addressing scalability, interoperability, and regulatory compliance challenges will be key to realizing its full
impact in practical applications.
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