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ABSTRACT: Early and accurate detection of Heart Disease (HD) is critical for improving patient outcomes, as HD
remains a leading cause of mortality worldwide. Timely and precise prediction can aid in preventive interventions,
reducing fatal risks associated with misdiagnosis. Machine learning (ML) models have gained significant attention
in healthcare for their ability to assist professionals in diagnosing diseases with high accuracy. This study utilizes
918 instances from publicly available UCI and Kaggle datasets to develop and compare the performance of various
ML models, including Adaptive Boosting (AB), Naïve Bayes (NB), Extreme Gradient Boosting (XGB), Bagging, and
Logistic Regression (LR). Before model training, data preprocessing techniques such as handling missing values, outlier
detection using Isolation Forest, and feature scaling were applied to improve model performance. The evaluation was
conducted using performance metrics, including accuracy, precision, recall, and F1-score. Among the tested models,
XGB demonstrated the highest predictive performance, achieving an accuracy of 94.34% and an F1-score of 95.19%,
surpassing other models and previous studies in HD prediction. LR closely followed with an accuracy of 93.08% and
an F1-score of 93.99%, indicating competitive performance. In contrast, NB exhibited the lowest performance, with
an accuracy of 88.05% and an F1-score of 89.02%, highlighting its limitations in handling complex patterns within the
dataset. Although ML models show superior performance as compared to previous studies, some limitations exist,
including the use of publicly available datasets, which may not fully capture real-world clinical variations, and the lack
of feature selection techniques, which could impact model interpretability and robustness. Despite these limitations,
the findings highlight the potential of ML-based frameworks for accurate and efficient HD detection, demonstrating
their value as decision-support tools in clinical settings.
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1 Introduction
Artificial Intelligence (AI) encompasses a range of computing advancements that mimic human

intelligence, including cognition, deep learning, and adaptability. In healthcare, AI has garnered attention for
its potential in disease detection, diagnosis, treatment recommendations, and surgical assistance. AI systems
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aid healthcare providers in making timely and informed decisions by the analysis of vast amounts of data
and thereby identifying patterns that might escape human observation [1].

Within the realm of AI, Machine Learning (ML) has proved to be a viable approach for disease
detection [2], offering great potential in improving diagnostic capabilities such as identifying skin cancer [3],
Alzheimer’s disease [4], diabetes [5], breast cancer [6], pancreatic cancer [7], heart disease (HD) [8], liver
ailments [9], and brain tumor classification [10,11]. ML’s capacity to process diverse medical data enables
quicker and more precise diagnoses, ultimately leading to enhanced healthcare outcomes. Among these
diseases, HD is also a major global cause of mortality, accounting for approximately 31% of all deaths [12].
Patients face numerous challenges in diagnosing and treating HD, particularly in resource-limited settings
where access to diagnostic centers and skilled medical professionals is limited. Common risk factors,
including high cholesterol levels, diabetes and elevated blood pressure further complicate detection. Prompt
and accurate diagnosis of the disease is very crucial for effective treatment, thus preventing additional
complications. ML techniques offer promise in enhancing disease diagnosis by processing extensive medical
data and generating precise predictions. Machine learning (ML) models are increasingly being utilized in
the medical field, including the detection of cardiovascular diseases (CVD), to improve the accuracy and
efficiency of diagnosis, ultimately leading to better patient outcomes and reduced healthcare costs. Various
studies have proposed different ML models, each with distinct strengths and limitations [13–15]. However,
this study aims to evaluate multiple ML models to identify the most effective approach for accurately
predicting the presence of HD. A review of existing research on HD diagnosis using ML reveals several
limitations and areas for improvement. The most common shortcomings in these studies are outlined below:

i. The dataset contains outliers that must be handled before model training.
ii. None of the studies reviewed utilized bagging classifier for HD diagnosis. In this research, in addition

to LR, XGB, ADB, and NB, the performance of bagging classifier has been evaluated for HD diagnosis.
iii. Many studies only reported accuracy as the performance evaluation metric (PEM). For medical

diagnosis tasks, additional metrics like recall, precision and F1-score are necessary to evaluate the
model’s reliability.

iv. The PEM scores reported in previous studies were lower than expected, requiring further enhancement
for effective HD diagnosis.

To enhance the precision and accuracy of HD classification, this study focuses on addressing these
limitations through the following contributions:

i. Outliers in the dataset were detected using the isolation forest technique and subsequently removed to
enhance model performance.

ii. Considering the advantage of bagging classifier in diagnosing other diseases, this study evaluates its
effectiveness for HD diagnosis in addition to LR, XGB, ADB, and NB.

iii. In addition to accuracy, other key PEMs like confusion matrix, F1-score, precision and recall are used
to assess the reliability of ML models for HD diagnosis.

iv. The models used in this research achieved the highest PEM scores compared to previous studies in HD
diagnosis thus demonstrating the effectiveness of this study.

This study utilizes several machine learning (ML) models, including Adaptive Boosting (AB), Naïve
Bayes (NB), Logistic Regression (LR), Bagging Classifier, and Extreme Gradient Boosting (XGB), all of
which exhibit strong potential for HD prediction. Unlike earlier works that often disregarded the influence
of outliers, this study integrates the Isolation Forest technique to identify and eliminate them, thereby
enhancing model performance. Additionally, while many previous studies relied solely on accuracy as
the primary performance evaluation metric (PEM), this research adopts a more comprehensive approach
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by incorporating recall, precision, and F1-score analysis. This multifaceted evaluation ensures a deeper
understanding of model reliability. Moreover, the proposed models achieve superior PEM scores compared
to existing studies, highlighting their effectiveness in improving HD classification accuracy. Section 2
presents a related work on the diagnosis of HD using ML. The experimental setup and methodology are
described in Section 3. Section 4 discusses the results, while Section 5 offers a comparative analysis with
previous studies in this area. Finally, Section 6 summarizes the key findings and concludes the paper by
suggesting directions for future research.

2 Related Work
Cardiovascular diseases (CVDs) are the major global cause of mortality. Every year, around 17.9 million

lives are lost to CVDs [16] and most of them are caused by heart attacks and strokes. If HD is detected
early and treated promptly, it can significantly improve a person’s chances of getting better. That’s why there
has been a lot of interest in using ML to detect and diagnose HD early and accurately. Many researchers
are studying how ML can help find signs of HD sooner and make accurate diagnoses. The author in [17]
concluded that the support vector machine (SVM) along with reliefF feature selection technique has the
best performance in prediction of HD. A comprehensive analysis was conducted to diagnose HD using three
datasets: the HD Database, Z-Alizadeh Sani Dataset and South African HD [18]. Their study focused on
two main approaches: predictive analysis and descriptive analysis. For the predictive analysis, they employed
Neural Networks (NN), NB, Support Vector Machine and Decision Trees (DT).

On the other hand, the descriptive analysis focused on association and decision rules. The results
obtained from their study were highly promising, often comparable to or even surpassing the outcomes
achieved in other related works. In another study, the authors developed an ML-based system for diagnosing
coronary artery disease using the Cleveland HD dataset of 303 patients and 76 features [19]. Seven popular
ML algorithms and three feature selection algorithms were applied, with LR achieving the highest accuracy
of 89%. Different ML algorithms such as SVM, Gradient Boosting (GB), Random Forest (RF), NB classifier,
and LR were employed to predict CVD [20]. LR outperformed other models, achieving the highest accuracy.

Supervised ML techniques like SVM, DT and NB were used on the South African HD dataset,
employing 10-fold cross-validation [21]. The results showed promising potential for probabilistic models
derived by NB in detecting coronary HD. An Internet of Things (IoT) and cloud-based healthcare application
to monitor and diagnose HD is presented in [22]. The prediction of HD in patients utilized the UCI
Repository dataset and healthcare sensors. Patient data is classified using various algorithms, such as SVM,
J48, LR and multilayer perception (MLP). Among these classifiers, J48 outperformed others in terms of F1-
score and accuracy. However, it is worth noting that the model’s training and testing were conducted on a
limited dataset of only 270 instances. Furthermore, the MLP exhibited poor performance with a relatively
low accuracy of 78.14%. A comprehensive review of ML-based coronary artery disease diagnosis is presented.
The research examined aspects like the characteristics of the dataset used and the ML methods employed.
The study revealed concerns regarding how well the developed models could be applied to new cases due
to limited data and insufficient information in certain areas. It was observed that while certain ML models
performed effectively on the specific dataset they were trained on, their performance could have extended
better to other datasets.

An enhanced ML technique was introduced [23] to predict the risk of HD. Their method involved
randomly dividing the dataset and utilizing ensemble modelling with a classification and regression tree
(CART) approach. They created a homogenous ensemble by combining multiple CART models using a
weighted aging classifier ensemble based on accuracy. This approach demonstrated classification accuracies
of 93% for the Cleveland dataset and for the Framingham dataset it was found to be 91%, surpassing the
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performance of other algorithms. Reference [24] introduces a highly effective and precise ML system, which
utilizes the Fast Conditional Mutual Information feature selection algorithm (FCMIM). This system incor-
porates multiple classification algorithms and standard feature selection techniques to eliminate irrelevant
and redundant features. By employing FCMIM in combination with the SVM classifier, the ML system can
design an intelligent system for identifying Huntington’s disease at a high level. The proposed diagnosis
system, i.e., FCMIM-SVM, exhibits the highest accuracy as compared to all other models discussed in the
study. An experimental analysis used an online UCI HD dataset to compare different ML classifiers for HD
prediction [25]. The results demonstrated the strength of the RF Classifier, which achieved a prediction
accuracy of 88.35%. Authors in [26] utilized different ML models such as LR, SVM, K-Nearest Neighbours
(KNN), Gradient NB (GNB), Multinomial Naïve Bayes (MNB), Extra Trees (ET), RF, GB, DT, CatBoost,
Light Gradient Boosting Machine (LGBM), and XGB were utilized to predict the heart failure probability.
LGBM outperformed other algorithms, achieving the highest accuracy of 86.21%. CatBoost, RF, and GB
were identified as providing acceptable results for predicting heart attacks. The authors employed several
ML algorithms to detect and predict HD in humans using various evaluation metrics [27]. The researchers
took steps to enhance the performance of ML classifiers by performing hyperparameter tuning. All the
classifiers underwent training and testing through a 10-fold cross-validation process to ensure robustness.
The experimental findings demonstrated that hyperparameter tuning improved accuracy in the prediction
classifiers, with SVM displaying particularly noteworthy accuracy. In a recent study [28], the authors focused
on diagnosing HD using ML techniques on the Cleveland Clinic dataset. SVMs emerged as the most
effective in diagnosing HD, achieving the highest diagnostic accuracy of 96%. Table 1 summarizes the main
advantages and disadvantages of the related work conducted in the field of HD diagnosis using ML.

Table 1: Main advantages and disadvantages of related work

S. No. Reference Main advantages Main disadvantages
1 [17] • Evaluates multiple ML models

with feature selection
• SVM + ReliefF gives best

accuracy (84.81%)

• Small dataset (270 records)
affects generalizability

• Only accuracy and
AUC-ROC used

• Lacking precision, recall, and
F1-score

2 [18] • Uses decision trees, NB, SVM, and
NN across three datasets

• NN achieves 89.93% accuracy

• Ignores outliers
• Evaluates only with accuracy,

missing key medical metrics such
as precision, recall and F1-score

3 [19] • Tests 7 classifiers with Relief,
mRMR, and LASSO

• LR + Relief achieves 89% accuracy

• Small dataset (303 records)
• Approach can be

computationally intensive

4 [20] • Compare SVM, GB, RF, NB,
and LR

• LR achieves 91.61% accuracy

• Ignores outliers
• Only accuracy used for evaluation,

lacks medical PEMs such as
precision, recall and F1-score

(Continued)
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Table 1 (continued)

S. No. Reference Main advantages Main disadvantages
5 [21] • Compare six classifiers

• KNN with 8 neighbors, performs
best with 94.10% accuracy and
90.80% F1-score

• Small dataset (303 records)
limits generalizability

6 [22] • Assesses J48, LR, MLP, and SVM
• J48 achieves 91.48% accuracy and

91.50% F1-score

• Uses small dataset (270 records)
• Preprocessing steps are

not detailed
7 [23] • Uses ensemble learning on

Cleveland and
Framingham datasets

• Achieves 93% and 91% accuracy

• Ignores outliers
• Lacks preprocessing details

8 [24] • Applies standard classifiers with
feature selection (e.g., FCMIM
+ SVM)

• Achieves 92.37% accuracy and
89% sensitivity

• Small dataset (303 records)
• Lacks precision, F1-score, and

AUC-ROC metrics

9 [25] • Uses NB, SVM, and DT for
CHD prediction

• NB achieves 71.7% accuracy

• Uses small dataset (462 records)
• Ignores outliers
• Low sensitivity/specificity

10 [26] • Evaluates multiple models
• CatBoost performs best with

87.93% accuracy

• Small dataset (300 records)
• Lacks detailed evaluation metrics

like F1-score and AUC-ROC
11 [27] • Tests nine classifiers

• SVM has best PEMs
• Multiple datasets combined

without explanation on what
features are considered

• Ignores outliers
• Performance drops with

increasing dataset size
12 [28] • Compares major ML models

• SVM achieves top accuracy (96%)
using Cleveland dataset

• Small dataset (303 records)
• Outliers ignored
• High execution time limits

real-time use

3 Experimental Setup and Methodology
This study analyzes and compares various ML models for HD prediction in terms of performance. The

experimental setup involves several critical steps. The workflow for the entire process is shown in Fig. 1.
The dataset is acquired and subjected to multiple preprocessing techniques, as detailed in the subsequent
sections. The ML models, including Bagging, LR, NB, XGB, and AB, are trained using preprocessed data.
Finally, the performance of all the models used is assessed using standard performance evaluation metrics:
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Accuracy, F1-Score, Recall and precision. This approach provides a comprehensive assessment of the different
ML models in terms of their effectiveness in HD prediction.

Figure 1: Steps involved in implementing the models for heart disease prediction

3.1 Implementation and Computational Platform
The techniques outlined above were implemented using the Python programming language to obtain

the results. Google Colab, a cloud-based service, was used as the computational platform for running
simulations. It provides a browser-based interface that allows the users to write and then execute Python
code. It eliminates the need for high-speed computers or specialized hardware. It also provides access to
powerful computing resources, including high-end Graphics Processing Units (GPU) and Tensor Processing
Units (TSU), which can significantly accelerate the execution of computationally intensive tasks, such as
training ML models [29].

3.2 Dataset Description
The dataset utilized in this study was first introduced by [30] and has been obtained from Kaggle [31]. A

large dataset has been used by combining four datasets originated from well-known institutions: University
Hospital in Zurich, Switzerland (200 patients); Hungarian Institute of Cardiology in Budapest, Hungary
(294 patients); Cleveland Clinic Foundation in the United States (303 patients); and Veterans Administration
(VA) Medical Center in Long Beach, California, U.S. (123 patients). These datasets have been combined
because they offer advantages like increased data diversity, improved model performance, mitigated bias and
variance, enhanced feature representation, and addressing data scarcity. It allows the model to leverage a wide
range of data, capture complex patterns, and improve predictions. Each dataset provides a unique perspective
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on HD distribution. Table 2 displays the distribution of patients with positive and negative diagnoses in each
dataset. The dataset has 918 instances and 12 attributes. The details of the attributes are mentioned in Table 3.
These attributes are essential in predicting HD and understanding its underlying factors.

Table 2: Distribution of patients with positive and negative diagnostics

Dataset Patients with positive diagnostics Patients with negative diagnostics
Switzerland dataset 149 51
Hungarian dataset 106 188
Cleveland dataset 139 164

VA dataset 115 8

Table 3: Details of the attributes

S. No. Attribute name Description of attribute
1 Age 28–77 years

2 Sex 0→ Female
1→Male

3 ChestPainType

Chest pain type
1→ Typical angina
2→ atypical angina
3→ non-anginal pain
4→ asymptomatic

4 RestingBP Resting blood pressure
0–200 (mm/Hg)

5 Cholesterol Serum cholesterol
0–603 (mg/dL)

6 FastingBS
Fasting blood sugar

0→ False (less than 120 mg/dL)
1→ True (greater than 120 mg/dL)

7 RestingECG

Result of resting electrocardiogram
0→ normal
1→ ST-T wave abnormal
2→ left ventricular hypertrophy by Estes’ criteria

8 MaxHR Maximum heart rate achieved
60–202

9 ExerciseAngina
Exercise-induced angina

0→ no
1→ yes

(Continued)
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Table 3 (continued)

S. No. Attribute name Description of attribute

10 Oldpeak ST depression due to exercise relative to rest
−2.6–6.2 (mm)

11 ST_Slope

Peak exercise ST segment’s Slope
1→ upsloping
2→ flat
3→ down sloping

12 HeartDisease
Diagnosis of HD (Angiographic disease status)

0→ normal (<50% diameter narrowing/absence of HD)
1→ patient (>50% diameter narrowing/presence of HD)

The dataset used in this study comprises patient records from a total of 918 individuals, consisting of 725
men and 193 women. The dataset covers a wide range of ages. Among the patients, 410 individuals (44.67%)
exhibited normal cardiac function, while 508 individuals (55.34%) were diagnosed with HD. Fig. 2 displays
the distribution of patients based on their cardiac condition, illustrating the proportion of individuals with
normal cardiac function vs. those diagnosed with HD. This figure offers insights into the prevalence of HD
within the dataset. Fig. 3 presents the distribution of patients based on gender, visually representing the
proportion of males and females in the dataset.

Figure 2: Target (0→ Normal, 1→ Patient) distribution in the dataset

To gain a deeper understanding of the dataset, Fig. 4 presents the frequency distribution of all 12
attributes/features included in the dataset. The frequency distribution of attributes enables a detailed analysis
of the dataset’s characteristics during the subsequent steps of preprocessing, feature engineering, and
model development.
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Figure 3: Gender (0→ Female, 1→Male) distribution in the dataset

Figure 4: (Continued)
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Figure 4: Frequency distribution of 12 attributes of the dataset

3.3 Data Preprocessing
Preprocessing of data is a very crucial step in ML and data mining, involving transforming raw data

into an appropriate format for analysis and modeling. It holds considerable importance in enhancing the
performance and accuracy of ML algorithms by addressing various aspects of the dataset [32]. These include
handling missing values, dealing with outliers, performing feature scaling, and encoding categorical values.

3.3.1 Handling of Missing Values
After the analysis of the dataset, it was found that there was a total of 173 missing values in two attributes

of the dataset. The summary of the missing values is given in Table 4. To address this issue, the mean
imputation method was applied [15,33,34], replacing missing entries with the mean value of the respective
attribute. Before performing mean imputation, the dataset was divided into two subsets: one containing
records of healthy individuals and the other containing records of patients. Imputation was then carried out
separately for each subset to ensure that the statistical properties of patient data did not influence the data of
healthy individuals, and vice versa.

Table 4: Summary of missing values in different attributes

S. No. Attribute title No. of missing values
1 RestingBP 01
2 Cholesterol 172

3.3.2 Handling of Outliers
An outlier in a dataset refers to a data point that falls outside a defined range. The presence of outliers

can negatively impact the performance of machine learning models, as they often represent anomalies or
noise [35]. Identifying and treating these data points as outliers was essential to enhance the reliability and
effectiveness of the machine learning models. Measurement errors, incorrect data entries, or rare occurrences
that deviate from the general pattern of an attribute can result in biased or unstable predictions. Eliminating
such anomalies contributes to developing a more generalized and accurate model. Consequently, outlier
removal is a crucial preprocessing step to improve model accuracy. In this study, the Isolation Forest
technique was employed for outlier detection. This method isolates outliers by constructing an ensemble
of decision trees. The detected outliers were removed from the dataset. By removing outliers, the decision
boundary learned by the classifier can better identify the underlying trends and correlations in most of the
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data. This leads to a more accurate separation between classes, reducing the chances of misclassification.
After the application of Isolation Forest, outliers were identified in only three attributes/features. Summary
of the detected outliers in these three attributes is given in Table 5. These records containing outliers were
subsequently removed from the dataset.

Table 5: Summary of the outliers present in different attributes

S. No. Attribute title No. of outliers
1 RestingBP 45
2 Cholesterol 45
3 MaxHR 46

Outliers were carefully analyzed before removal to ensure that clinically significant data was not
excluded. For example, regarding the cholesterol attribute, the normal cholesterol range for humans is
typically below 200 mg/dL. Values between 200–240 mg/dL indicate high cholesterol levels, while val-
ues between 240–420 mg/dL are rare and may signal serious underlying health concerns. Values above
400 mg/dL are typically considered laboratory errors, thus classified as outliers.

This reasoning is further supported by Fig. 5, which visualizes the distribution of data points for
the cholesterol attribute using a box plot. The outliers identified by the Isolation Forest technique were
subsequently removed, and the resulting dataset is illustrated in Fig. 6. We believe that this approach helps
preserve the integrity of the dataset while ensuring the removal of spurious values that could distort the
model performance.

Figure 5: Datapoints of attributes before outliers’ removal
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Figure 6: Datapoints of attributes after outliers’ removal

3.3.3 Feature Scaling
Feature scaling was carried out using the Min-Max normalization technique, which transforms numer-

ical values into a standardized range between 0 and 1 [36]. Min-Max scaling for an attribute is performed
using Eq. (1).

X′ = X − Xmin

Xmax − Xmin
(1)

where X is the original value of the attribute, Xmin is the minimum value of the attribute, Xmax is the maximum
value of the attribute while X′ is the scaled value. This approach ensures that features with different units or
magnitudes contribute equally to the model, preventing attributes with larger ranges from dominating the
analysis. In this study, Min-Max scaling was specifically applied to Age, RestingBP, Cholesterol, MaxHR, and
Oldpeak to maintain consistency across variables and improve the performance of the ML Models.

3.3.4 Encoding Categorical Variables
To transform categorical variables into a numerical format suitable for machine learning models, the

one-hot encoding technique was applied. This method converts categorical attributes into binary vectors,
where each unique category is represented as a separate column with values of either 0 or 1. By doing so,
one-hot encoding ensures that machine learning algorithms can interpret categorical data without assigning
any inherent order or priority to the categories.

In this study, one-hot encoding was applied to categorical attributes, including Sex, ChestPainType, Fast-
ingBS, RestingECG, ExerciseAngina, and ST_Slope. This process expanded the dataset from 11 independent
attributes to 21 independent attributes, effectively increasing the feature space while preventing the model
from making incorrect ordinal assumptions about non-numeric categories. By eliminating any unintended
relationships between categorical values, this approach helps improve the overall accuracy and reliability of
the predictive model.
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3.4 Performance Evaluation Metrics
Any field of study must have a critical step for performance evaluation. This study includes accuracy,

precision, F1-Score and Recall [37]. These assessment parameters are used to perform a comparative analysis
of the used model’s (AdaBoost, Bagging, Logistic Regression, Naïve Bayes, and XGBoost) performance to
those of the existing models and are given as:

3.4.1 Confusion Matrix
It is a tabular representation which provides an in-depth view of the classification capabilities of an ML

model and also forms the basis for calculating other Performance Evaluation Metrics (PEMs). It presents the
counts of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions.

3.4.2 Accuracy
Accuracy plays a vital role in assessing the overall correctness of a classifier. It measures ratio of the

correctly predicted instances (the sum of TP and TN) to the total number of instances (the sum of TP, TN,
FP, and FN). The accuracy is then calculated using Eq. (2).

Accurac y = TP + TN
TP + TN + FP + FN

(2)

Accuracy is commonly used when the distribution is relatively balanced. However, there are more
appropriate metrics when dealing with imbalanced datasets. Due to the balanced dataset used in this study,
accuracy has been selected as the performance evaluation metric to further evaluate the models’ effectiveness.
By leveraging accuracy as the evaluation metric, we aim to provide a complete assessment of the used model’s
ability to classify instances of HD within the dataset correctly.

3.4.3 Precision
It assesses the classifier’s ability to identify positive instances accurately. Ratio of true positives to the

total predicted positives (both TP and FP) is calculated using precision. Precision is particularly useful when
the cost of FP is high. Eq. (3) is used for the calculation of precision.

Precision = TP
TP + FP

(3)

3.4.4 Recall
It is also called sensitivity or TP rate. Recall represents the classifier’s potential to correctly identify the

positive instances out of all the actual positive instances. The ratio of TP to the total actual positives (both
TP and FN) is computed using Recall. It is important when the cost of FN is high. It is generally expressed
using Eq. (4).

Recal l = TP
TP + FN

(4)
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3.4.5 F1-Score
It offers a balanced assessment of ML models by taking both precision and recall into account. F1 score

is especially useful when the class distribution is imbalanced. It is calculated using Eq. (5).

F1 − Score = 2 × Precision × Recal l
Precision + Recal l

(5)

3.4.6 AUC-ROC
The AUC-ROC (Area Under the Receiver Operating Characteristic Curve) is a popular measure for

evaluating the effectiveness of binary classifiers. It measures how well a classifier can separate positive and
negative classes at various probability thresholds. The AUC-ROC score ranges between 0 and 1, where a
higher score indicates better performance. A score of 0.5 indicates a classifier that performs randomly, while
a score of 1 indicates a flawless classifier.

These performance evaluation metrics offer valuable insights into the effectiveness of supervised
classifiers and aid in assessing their performance for a given task.

4 Results and Discussion
This section presents a comparative analysis of five machine learning (ML) models—XGBoost,

AdaBoost, Logistic Regression, Naïve Bayes, and Bagging Classifier—used for heart disease diagnosis. The
dataset was split in two subsets, i.e., 70% of the dataset constitute the training subset which was used to
train the ML models while 30% of the dataset constitute the testing subset which was used to evaluate the
performance of ML models. The models were evaluated under two experimental conditions:

Experiment 1 (Without Outlier Removal): In this experiment, the dataset was subjected to different
preprocessing steps such handling missing values using mean imputation, feature scaling using Min-Max
normalization and categorical encoding using one hot encoding. The preprocessed dataset was then trained
and tested using the training subset and testing subset, respectively.

Experiment 2 (With Outlier Removal): In this experiment, in addition to the preprocessing steps
described for Experiment 1, outlier detection was performed using isolation forest. The detected outliers were
then subsequently removed from the dataset before training and testing of ML models.

The models were assessed using five key evaluation metrics: accuracy, precision, recall, F1-score, and
AUC-ROC. The results of each experiment are discussed in the subsection given below.

4.1 Experiment 1: Model Performance without Outlier Removal
Fig. 7 illustrates the accuracy comparison of different machine learning models in Experiment 1. Among

all models, XGB demonstrated the highest accuracy at 88.17%, indicating its strong predictive ability in
diagnosing HD. LR followed closely with an accuracy of 87.40%, thus showing its effectiveness in handling
structured medical data. The Bagging Classifier also performed competitively, achieving an accuracy of
86.75%. Meanwhile, AB and NB exhibited slightly lower but consistent accuracy values of 86.64% and
86.60%, respectively. These results suggest that while all models provided reliable predictions, XGB and LR
had a slight edge in classification performance, likely due to their ability to capture complex relationships
within the dataset.

Fig. 8 presents the precision scores of the ML models for Experiment 1, further elaborating on their
classification effectiveness. Precision is a critical metric, especially in medical diagnostics, as it indicates the
model’s ability to minimize false positives. Among the models, NB achieved the highest precision at 90.34%,
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demonstrating its strong capability to correctly classify HD cases while reducing false alarms. AB and XGB
closely followed with precision scores of 89.80% and 89.03%, respectively. Meanwhile, the Bagging Classifier
and LR recorded slightly lower precision values of 88.74% and 88.39%, respectively. This minor variation
suggests that while all models performed well, XGB had a slight advantage in accurately identifying positive
cases, which aligns with their relatively strong accuracy scores.

86.64% 86.60%

88.17%

86.75%

87.40%

AdaBoost Naïve Bayes XGBoost Bagging
Classifier

Logistic
Regression

Accuracy of ML Models

Figure 7: Accuracy of employed ML models (Experiment 1)

89.80%
90.34%

89.03% 88.74%
88.39%

AdaBoost Naïve Bayes XGBoost Bagging
Classifier

Logistic
Regression

Precision of ML Models

Figure 8: Precision of employed ML models (Experiment 1)

Fig. 9 further supports the models’ performance by illustrating their recall scores, which reflect their
ability to correctly identify actual positive cases—an essential aspect in the context of HD diagnosis where
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missing a true case could have serious consequences. XGB achieved the highest recall at 90.79%, indicating
its superior sensitivity and reliability in capturing true heart disease cases. LR also demonstrated strong
performance with a recall of 90.13%, closely matching XGB and reaffirming its robustness as observed in
both accuracy score and precision score. The Bagging Classifier followed with a recall of 88.16%, showing
only a modest drop of approximately 2% compared to XGB. In contrast, NB and AB recorded slightly lower
recall scores of 86.18% and 86.84%, respectively—about 4% less than XGB. This suggests that while NB had
the highest precision, it has sacrificed some sensitivity, potentially due to its strong bias toward minimizing
false positives. These results highlight the trade-off between precision and recall in different models and
emphasize the importance of selecting a model that balances both metrics effectively, especially in critical
healthcare applications.

86.84%
86.18%

90.79%
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Logistic
Regression

Recall of ML Models

Figure 9: Recall of employed ML models (Experiment 1)

Extending the analysis of model performance, the F1-score presented in Fig. 10 offers a balanced
evaluation by combining both precision and recall into a single metric. This is particularly valuable in medical
diagnostics, where both false positives and false negatives carry significant consequences. Among the models,
XGB achieved the highest F1-score of 89.90%, reinforcing its overall robustness and consistency across
all evaluation metrics. LR followed closely with an F1-score of 89.25%, further validating its competitive
performance as observed in precision and recall metrics. AB and the Bagging Classifier exhibited very similar
F1-scores of 88.29% and 88.45%, respectively, indicating reliable but slightly lower balanced performance
when compared to XGB and LR. Notably, although NB had the highest precision among all models, its
F1-score was the lowest at 88.22%, approximately 1.7% lower than XGB. This weakness suggests that NB’s
comparatively lower recall reduced its overall F1-score, highlighting the trade-off between detecting true
positives and avoiding false positives. Therefore, in terms of achieving a balanced and effective classification,
XGB stands out as the most robust model in Experiment 1.

The AUC-ROC curves for the ML models are presented in Fig. 11 thus offering deeper insights into
the discriminative power of each model across different classification thresholds. The Area Under the ROC
Curve (AUC-ROC) reflects a model’s ability to distinguish between classes, i.e., in this case, patients with and
without HD. A higher AUC indicates better performance in differentiating true positives from false positives
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across all thresholds. Among the models, LR achieved the highest AUC-ROC score of 0.94, indicating its
strong capability to consistently separate positive and negative cases. NB followed closely with an AUC of
0.93, aligning well with its high precision performance. Both Bagging Classifier and XGB demonstrated solid
discriminative performance, each with an AUC-ROC of 0.92, further confirming their reliability. AB, while
still effective, showed a slightly lower AUC of 0.91, suggesting a marginally reduced ability to maintain a
strong distinction between classes across thresholds. Overall, these AUC-ROC results complement the earlier
metrics, reinforcing LR and XGB as the most balanced and reliable models in terms of both sensitivity and
specificity in Experiment 1.

88.29% 88.22%

89.90%

88.45%

89.25%

AdaBoost Naïve Bayes XGBoost Bagging
Classifier

Logistic
Regression

F1-Score of ML Models

Figure 10: F1-Score of employed ML models (Experiment 1)

Figure 11: AUC-ROC for the employed ML models (Experiment 1)

The presence of outliers in the dataset likely impacted model performance, particularly for ensemble-
based classifiers such as Bagging and AdaBoost. Since these models aggregate multiple weak learners,
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extreme values in the dataset may have introduced noise, reducing their ability to make optimal predictions.
The relatively lower recall scores across certain models also suggest that outliers may have contributed to
misclassifications, particularly in cases where heart disease was present but not detected.

4.2 Experiment 2: Impact of Outlier Removal on Model Performance
After incorporating outlier detection and removal using the Isolation Forest algorithm alongside the

preprocessing techniques already employed in Experiment 1, a notable enhancement in model performance
was observed across all ML models. As depicted in Fig. 12, the accuracy scores of all models improved,
demonstrating the effectiveness of removing noisy data points that may have distorted the learning process.

Figure 12: Accuracy of employed ML models (Experiment 2)

Notably, XGB exhibited the most substantial improvement, achieving an accuracy of 94.34%, which
reflects a 6.17% increase compared to its performance in Experiment 1. This significant gain suggests that
XGB was particularly sensitive to noisy data and benefited greatly from a cleaner dataset. Similarly, LR
and the Bagging Classifier also experienced notable boosts in accuracy, reaching 93.08% and 92.45%,
respectively, improvements that highlight their enhanced ability to generalize from more consistent and
representative training data. Even AB and NB, which had relatively stable performances earlier, demonstrated
improvements. The accuracy of AB rose by 5.18%, while NB saw a more modest but still meaningful increase
of 1.45%. These improvements collectively emphasize that addressing outliers not only refines the dataset but
also positively influences the stability and predictive power of ML models.

The enhancement in precision scores further supports the positive impact of outlier removal through
Isolation Forest. As illustrated in Fig. 13, all ML models exhibited increased precision, reflecting a reduced
rate of false positives, which is critical in the context of HD diagnosis, where misclassifying a healthy
individual as a patient can lead to unnecessary stress and medical intervention.

NB recorded the highest precision score of 95.06%, while LR followed closely with 94.51%, indicating
these models became significantly more adept at correctly identifying actual HD cases post outlier removal.
This improvement suggests that both models, particularly probabilistic ones like NB, benefited from cleaner
data distributions that better represented the true class boundaries. Additionally, XGB and the Bagging
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Classifier showed considerable gains in precision, improving by 4.65% and 3.81%, respectively. These
improvements suggest that ensemble models, which rely on multiple weak learners, become more robust
when trained on data free from noisy or misleading instances. Conversely, AB showed only a modest
precision increase of 1.78%, potentially due to its sensitivity to noisy data even in small amounts. Despite
this, the overall rise in precision across all models confirms that the removal of outliers enhanced the models’
reliability in distinguishing between healthy and diseased individuals.

Figure 13: Precision of employed ML models (Experiment 2)

In addition to the improvements in precision, the impact of outlier removal is even more evident when
examining the recall scores, which highlight each model’s ability to correctly identify actual HD cases. As
depicted in Fig. 14, a significant boost in recall values was observed across most models, indicating that
the removal of outliers not only reduced false positives (as seen with precision) but also decreased false
negatives, thereby enhancing the models’ sensitivity to detecting true positive cases. XGB demonstrated the
most substantial gain, achieving a recall of 96.74%, the highest among all models and a notable improvement
over its performance in Experiment 1. This indicates that XGB became more effective at capturing a
larger proportion of heart disease cases after the dataset was cleaned of anomalous entries. Similarly, both
Bagging and AB achieved recall scores of 94.57%, suggesting that ensemble-based models, particularly those
combining multiple learners, benefit considerably from training on a more homogeneous dataset. LR also
showed strong performance, attaining a recall of 93.48%, further supporting its robustness in identifying
heart disease cases when noise is minimized.

Interestingly, while most models showed improvement, NB experienced a slight decline in recall,
decreasing by 2.48% compared to Experiment 1. This could be attributed to the nature of the NB algorithm,
which assumes feature independence and might have lost some informative variability due to the removal
of outliers that, although noisy, may have contributed favourably for classification. Nonetheless, the overall
trend affirms that eliminating outliers enhanced the models’ capability to detect positive cases, a critical
factor in medical diagnostics where failing to identify a disease case could have severe consequences.
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Figure 14: Recall of employed ML models (Experiment 2)

The F1-scores of the ML models, presented in Fig. 15, offer a comprehensive view of the balance achieved
between precision and recall after outlier removal in Experiment 2. These scores further validate the positive
impact of incorporating Isolation Forest for outlier detection during data preprocessing. The XGB model led
with an F1-score of 95.19%, showing its consistency and robustness in both correctly identifying HD cases and
minimizing false predictions. This was closely followed by LR at 93.99%, Bagging Classifier at 93.55%, and
AB at 93.05%, all of which demonstrated significant improvements in F1-score as compared to F1-scores of
Experiment 1. These increases indicate that the models became more reliable and well-rounded in handling
imbalanced classification errors, a critical factor in medical diagnostics.

Figure 15: F1-Score of employed ML models (Experiment 2)
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While NB showed only a marginal improvement in F1-score i.e., from 88.22% in Experiment 1 to 89.02%,
this slight gain suggests that although the model became marginally more stable, its performance may be
inherently limited by its simplifying assumptions, particularly when dealing with datasets refined through
outlier removal.

The overall classification performance of the models is further supported by the AUC-ROC curves
shown in Fig. 16. This metric evaluates the models’ ability to distinguish between the two classes, patients
with and without HD. XGB again emerged as the top-performing model with an AUC-ROC score of 0.94,
confirming its excellent discriminative power. LR and Bagging Classifier followed with scores of 0.93 and
0.92, respectively, reinforcing their improved capability in accurate classification post outlier elimination.
While AB maintained a consistent AUC of 0.91, NB dropped to 0.89, the lowest among the models, which is
due to its decreased recall, as discussed previously. These AUC-ROC values reinforce the effectiveness of the
outlier detection strategy and highlight the relative strengths and limitations of each model in diagnosing
heart disease accurately.

Figure 16: AUC-ROC curve of employed ML models (Experiment 2)

Outlier removal significantly improved ML model’s robustness for diagnosing HD. Most models
demonstrated higher accuracy, recall, and F1-score after outlier removal, confirming that noisy data had
previously negatively affected the ML Models performance. The biggest improvements were observed for
XGB, Bagging, and LR. XGB emerged as the best-performing model for HD classification, achieving 94.34%
accuracy and 96.74% recall after outlier removal.

5 Comparative Analysis with Existing Models
In this section, the PEMs of the ML models used in this study are compared with those reported in

previous research on HD detection. Various datasets have been utilized in prior studies; however, for the
purpose of comparison, only those studies that employed the same dataset as this study have been considered.
It is important to note that since this study has utilized the same dataset as these previous studies, the results
have been directly extracted and analyzed to ensure a fair and accurate comparison. Table 6 presents detailed
comparative analysis of the PEMs, providing an overview of the relative performance of the proposed models
compared to existing approaches.
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Table 6: Comparison of ML models used with existing models

S. No. Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Reference

1

SVM 83.80 84.00 83.80 83.60

[38]NB 85.20 85.20 85.20 85.20
Neural Networks 86.20 86.20 86.20 86.10

RF 86.80 86.90 86.80 86.80

2

DT 83.50 88.74 82.70 85.60

[39]

NB 86.40 89.80 87.00 88.40
LR 87.20 89.90 88.30 89.10
RF 88.30 90.10 90.10 90.10

SVM 88.30 90.12 90.10 90.10
kNN 91.80 92.50 91.40 91.90

3

SVM 56.70 50.95 50.50 43.55

[40]

DT 72.60 78.27 69.75 73.47
kNN 73.15 75.59 75.75 75.51
RF 74.91 76.75 77.39 76.83

XGBoost 75.59 78.15 77.25 77.53
NB 77.25 78.66 80.00 79.23

AdaBoost 77.93 79.75 80.00 79.67
LR 78.61 80.25 80.75 80.30

4

Naïve Bayes 88.05 95.06 83.70 89.02

Models used
in this paper

AdaBoost 91.82 91.58 94.57 93.05
Bagging 92.45 92.55 94.57 93.55

Logistic Regression 93.08 94.51 93.48 93.99
XGBoost 94.34 93.68 96.74 95.19

A comparison with previous studies highlights the superiority of the implemented models. For instance,
this study outperformed ML models used in [40], where models like SVM and Decision Tree showed
significantly lower accuracy (56.70% and 72.60%, respectively). Their low performance is attributed to non-
treatment of outliers present in the dataset. Furthermore, the features were also not normalized before
training and testing of ML models. In comparison to [39], where classifiers like kNN and Random Forest
achieved competitive results (91.80% and 88.30%, respectively), XGBoost demonstrated higher accuracy and
F1-score. Although the authors in [39] have used strip charts to detect outliers, but very few outliers in
three attributes only were detected using this technique. Logistic Regression, with an accuracy of 93.08%,
also surpassed its performance in other studies, such as the 87.20% reported in [39]. The NB model used in
this study has 3% higher accuracy and 4% higher F1-score as compare to the NB model used in [38]. The
authors in [38] did not utilized pre-processing steps which contributed to lower model’s performance for HD
diagnosis as compare to this study. These results underline the impact of robust preprocessing techniques
and the adoption of advanced ensemble methods in improving diagnostic accuracy.

XGBoost consistently emerged as the best-performing model in this study. Its superior handling of
imbalanced datasets and effective optimization of loss functions enabled it to achieve the highest F1-score,
indicating balanced performance across precision and recall. This makes XGBoost especially well-suited for
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clinical applications where minimizing the impact of false positives and false negatives is crucial. Bagging and
Logistic Regression also demonstrated strong and balanced performance, reinforcing their utility in heart
disease diagnosis tasks.

This study emphasizes the significance of preprocessing and model selection in achieving state-of-
the-art results in medical data analysis. It illustrates that combining effective preprocessing steps with
advanced ensemble models like XGBoost can significantly improve the reliability and accuracy of diagnostic
systems for HD. These performance improvements are attributed to isolation forests for outlier detection and
removal. Outliers introduce noise in the data and disrupt the decision boundary learned by the classifier.
By removing them, the decision boundary becomes better aligned with most of the data, which results in
improved classification accuracy.

While this study offers valuable insights into heart disease prediction using machine learning models,
it has certain limitations and challenges. The dataset used in this study was collected from publicly available
sources, i.e., UCI ML repository and Kaggle. Expanding the analysis to larger, more diverse, and real-world
clinical datasets from multiple hospitals could impact the findings and improve generalizability. Although
multiple performance metrics are considered, real-world clinical adoption would require additional valida-
tion, such as external dataset testing and expert evaluation. Additionally, while the selected machine learning
techniques performed well, integrating more advanced or hybrid models could further improve predictive
accuracy. Moreover, the applicability of the proposed method to other diseases remains uncertain, as this
study specifically focuses on cardiovascular disease (CVD) prediction. Future research should explore the
effectiveness of these models on broader datasets and different medical conditions to enhance their practical
relevance in healthcare.

6 Conclusion and Future Work
The increasing mortality rate associated with HD requires the urgent need for reliable and efficient

detection methods to identify individuals at risk. This study presents an ML-based framework for HD
prediction, demonstrating superior performance compared to existing approaches. The enhanced accuracy
of the proposed models can be attributed to the use of a comprehensive dataset and effective preprocessing
techniques such as addressing missing values, detecting outliers using the Isolation Forest technique, and
applying feature scaling to enhance model efficiency. The models were evaluated using various performance
metrics, including accuracy, precision, recall, and F1-score. Among all tested models, XGB achieved the
highest predictive accuracy of 94.34% and an F1-score of 95.19%, outperforming other approaches and
previous studies in heart disease prediction. LR followed closely, attaining an accuracy of 93.08% and an F1-
score of 93.99%, demonstrating strong reliability. Conversely, NB exhibited the weakest performance, with
an accuracy of 88.05% and an F1-score of 89.02%, indicating its limitations in capturing intricate patterns
within the dataset. The results indicate the effectiveness of the proposed approach in accurately predicting
the presence or absence of HD. Despite these promising outcomes, further research is needed to enhance
model’s performance through the implementation of various feature selection techniques to identify the most
relevant predictors. Additionally, exploring alternative preprocessing methods could further improve model
accuracy and efficiency. The integration of advanced hybrid ensemble learning techniques may provide an
opportunity to compare and enhance predictive performance beyond traditional models like XGBoost and
AdaBoost, potentially leading to greater classification accuracy and model stability. Furthermore, privacy-
preserving approaches such as federated learning offer a promising direction for collaborative model training
across multiple healthcare institutions, enabling the secure integration of IoT-generated health data with
conventional medical records while maintaining data confidentiality. Lastly, validating the proposed models
on larger and more diverse datasets would improve their generalizability and reliability across different
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population segments. Addressing these aspects in future studies will contribute to the development of more
accurate and robust heart disease prediction systems.
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