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ABSTRACT: Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of
clustering technology. The combination of domain knowledge and fuzzy clustering algorithms has some problems,
such as initialization sensitivity and information granule weight optimization. Therefore, we propose a weighted kernel
fuzzy clustering algorithm based on a relative density view (RDVWKFC). Compared with the traditional density-based
methods, RDVWKFC can capture the intrinsic structure of the data more accurately, thus improving the initial quality
of the clustering. By introducing a Relative Density based Knowledge Extraction Method (RDKM) and adaptive weight
optimization mechanism, we effectively solve the limitations of view initialization and information granule weight
optimization. RDKM can accurately identify high-density regions and optimize the initialization process. The adaptive
weight mechanism can reduce noise and outliers’ interference in the initial cluster centre selection by dynamically
allocating weights. Experimental results on 14 benchmark datasets show that the proposed algorithm is superior to
the existing algorithms in terms of clustering accuracy, stability, and convergence speed. It shows adaptability and
robustness, especially when dealing with different data distributions and noise interference. Moreover, RDVWKFC
can also show significant advantages when dealing with data with complex structures and high-dimensional features.
These advancements provide versatile tools for real-world applications such as bioinformatics, image segmentation, and
anomaly detection.
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1 Introduction
Clustering is an unsupervised machine learning algorithm that groups similar data points in a dataset

by calculating similarity while ensuring that the data points between clusters are as different as possible
[1–3]. The method aims to divide the data set into subsets so that data points within the same subgroup have
the greatest similarity while significant differences remain between different subsets. This process reveals the
data’s inherent structure and provides powerful support for applications in areas such as image processing,
speech recognition, and market analysis [4]. This study addresses a critical gap in clustering research by
proposing a novel method that enhances robustness and scalability for complex datasets.

Clustering algorithms can handle large data sets without prior training, so clustering algorithms are
widely used in various industries. Early clustering algorithms mainly use complex clustering methods; each
data point is strictly assigned to a specific cluster, and each point belongs to only one cluster. The DPC
(Density Peak Clustering) algorithm proposed by Rodriguez and Laio [5] is a typical complex clustering
method, which can effectively identify the peak density of data sets and thus achieve efficient clustering.
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In 1969, Ruspini introduced fuzzy sets into cluster analysis and promoted the development of fuzzy
clustering methods. Fuzzy clustering represents the degree of data points belonging to different clusters by
membership value, which provides a more flexible way of classification. Among all kinds of fuzzy clustering
algorithms, the FCM (Fuzzy C-Means) algorithm [6,7] is the most extensively utilized. By minimizing the
objective function, FCM effectively calculates the cluster centre and membership degree of each data point,
minimizes the intra-cluster distance, and maximizes the inter-cluster separation degree. However, FCM’s
sensitivity to initial clustering centres and vulnerability to noise points remain significant limitations. For this
reason, Krishnapuram and Keller proposed the Probabilistic C-Means (PCM) algorithm [8], which alleviates
the membership constraint of FCM and enhances the robustness of noise points. Although PCM solves
the overlapping problem of cluster centres to a certain extent, it still faces the challenge of initialization
sensitivity [9].

At the same time, with the wide application of kernel methods in machine learning, kernel-based clus-
tering methods are also developing. The KFCM (Kernel Fuzzy C-Means) algorithm utilizes kernel functions
to map data into high-dimensional spaces [10,11], thus improving clustering performance. For example,
it improves important clustering effect evaluation indicators such as classification accuracy (ACC) [11].
However, choosing a suitable kernel function remains a major challenge. To solve this problem, Huang et al.
proposed the MKFC (Multi-Kernel Fuzzy Clustering) algorithm [12], which uses the weight of each kernel
function to enhance the clustering results. In addition, Yang and Benjamin proposed the FWPCM (Feature-
weighted Probability C-Mean algorithm) algorithm [13], which combines probability clustering and subspace
clustering and enhances the clustering effect by applying feature weighting.

In recent research on fuzzy clustering, introducing domain knowledge into clustering algorithms has
become a very popular method for improving clustering quality. Hussain et al. introduce novel weighted
multi-view k-means algorithms using L2 regularization [14], designed specifically for clustering multi-view
data. Pedrycz and colleagues developed the Viewpoint-based Fuzzy C-Means (V-FCM) algorithm [15], which
uses domain knowledge to guide the clustering process to optimize the results from a specific perspective.
However, the selection of viewpoints in V-FCM relies on subjective input, which limits its automation and
flexibility. The algorithm still has difficulties in dealing with noisy points. In order to solve these problems,
Tang et al. proposed the DVPFCM (Density View-induced Probabilistic Fuzzy C-Means) algorithm [16],
which uses density peaks as viewpoints to improve the stability of cluster centre initialization. Despite the
progress, DVPFCM still faces challenges in making full use of the intrinsic structure of the data for viewpoint
optimization. Subsequently, Tang et al. [17] proposed the Kernel-based Hypersphere Density Initialization
(KHDI) algorithm as a certain premise and proposed the density Viewpoint-based Weighted Kernel Fuzzy
Clustering (VWKFC) algorithm.

In practice, although the VWKFC algorithm shows good results, we believe that the algorithms based
on KHDI and VWKFC still have the potential to be further optimized to achieve better results in various
data sets. We note that the information granularity factor in the new algorithm plays an important role in
membership adjustment and optimization, but there are still two problems to be solved.

The suitability of information granularity factors for adjusting fuzziness has not been properly evaluated.
It is not clear whether the adjustment to ambiguity has been efficiently implemented. Therefore, we try
to apply the double fuzzy fusion of information granularity factors and further optimize some steps and
algorithms in the initialization process of KHDI in the VWKFC algorithm.

In order to solve these problems, this paper proposes a double fuzzy fusion strategy for information
granularity factors and further optimizes the key steps in the initialization process of KHDI and the clustering
algorithm under the framework of VWKFC.
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Unlike previous studies, this paper proposes a knowledge extraction algorithm based on relative density.
The algorithm selects the initial viewpoint by identifying the relatively high-density region in the data,
provides an ideal initial clustering centre for the clustering algorithm, and improves the accuracy of the initial
clustering process. We introduce the adaptive weight mechanism into the fuzzy clustering framework and
build the information granularity weight model. By dynamically adjusting the importance of data points in
the clustering process, the algorithm effectively reduces the influence of noise and outliers, thus improving
the robustness and accuracy of clustering. In addition, we also designed a dynamic optimization algorithm,
which adaptively adjusts the weights according to the changes in data distribution and further improves the
flexibility and robustness of the algorithm in different feature spaces and dimensions.

The contributions of this paper are as follows:
Cluster initialization method based on relative density: We propose an innovative knowledge extraction

algorithm based on relative density, which takes the relatively high-density region in the data as the clustering
initialization viewpoint, and significantly improves the quality of the initial clustering process. This algorithm
uses the local density feature of data to locate the potential cluster centre accurately, reduces the error caused
by traditional random initialization, and enhances stability and accuracy.

Adaptive information granularity weighting mechanism: We introduce an adaptive information granu-
larity weighting model, which dynamically adjusts the influence of data points according to their importance
in the clustering process. The proposed mechanism effectively reduces the influence of noise and outliers,
especially when the data is unevenly distributed or contains outliers, thus improving the accuracy and
robustness of the clustering results.

Dynamic weight optimization algorithm: A dynamic optimization algorithm is designed to adjust the
weight of data points based on the change in data distribution. By combining the local characteristics of the
data, the algorithm has strong adaptability and flexibility, which ensures robust clustering performance in
different feature Spaces and high-dimensional environments.

A new adaptive weighted clustering algorithm: By integrating the above innovations, we propose the
RDVWKFC algorithm to combine the advantages of the above different algorithms and methods. An
excellent linkage algorithm mechanism is formed, which provides a comprehensive and effective solution to
the complex data clustering problem.

2 Related Work
In this section, we will review the previous works and concisely introduce some algorithms concerning

the new algorithm proposed in this paper.
Referring to [18], a maximum entropy regularized weighted fuzzy C-means algorithm (EWFCM)

is proposed, which breaks through the limitation that the traditional Euclidean distance as a measure
of membership cannot identify and distinguish these attributes unrelated to clustering. The EWFCM
algorithm achieves feature selection by providing weights for the features. Increasing the maximum entropy
regularization term effectively affects the feature weight distribution. However, the clustering effect of this
algorithm depends very much on the initialization of the cluster centre. The appearance of noise points in
the data will seriously interfere with the clustering results.

Oskouei et al. [19] proposed an intuitionistic fuzzy c-means-based clustering algorithm for multi-view
clustering (VCoFWMVIFCM) to artificially solve the problems of noise sensitivity, outliers’ influence, and
different perspectives, features, and sample importance. The algorithm combines membership degree, non-
membership degree, and hesitation degree to design intuitive fuzzy C-mean (IFCM) loss terms, which greatly
enhances the processing ability of the algorithm for uncertain data. At the same time, by weighting three
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different levels of features, views, and samples, the low coupling between classes and high aggregation within
classes are more significant, and the clustering effect is further enhanced. Moreover, Oskouei et al. also
designed a neighbourhood agreement term to enhance the stability and robustness of the local structure of
the cluster by punishing the membership difference of domain samples.

Hashemzadeh et al. [20] proposed a New fuzzy C-means clustering method based on feature-weight
and cluster-weight learning (FWCW-FCM). The algorithm solves two problems of traditional FCM by
simultaneously optimizing feature weight and cluster weight: feature importance difference and initialization
sensitivity. The innovation of the algorithm is to independently adjust the feature weight in each cluster with
the help of the local feature weight to improve the quality of clustering. The cluster weight was dynamically
adjusted to punish the clusters with large intra-cluster distances to reduce the dependence of the algorithm on
initialization. This algorithm significantly improves the clustering performance of traditional FCM by jointly
optimizing the feature and cluster weights and reducing the initialization sensitivity. Dynamically adjusting
the importance of features and clusters is suitable for complex real datasets. This algorithm outperforms
the traditional FCM algorithm in terms of feature weighting and resistance to initialization jitter, but its
performance is highly dependent on parameter tuning and data type.

Nie et al. [21] proposed a new graph Clustering model called Fast Clustering with Anchor Guidance
(FCAG), which significantly solved the high computational cost and difficulty in adjusting hyperparameters.
FCAG introduces anchor technology to construct a bipartite graph, which significantly reduces the size of the
similarity matrix and makes it suitable for large-scale data sets. By designing a parameterless optimization
objective function, the model effectively avoids the complex parameter tuning problem caused by the
regularization term in traditional methods and the trivial solutions of “all samples belong to the same class”
or “uniform distribution” in the clustering results.

Hu et al. [22] proposed a novel clustering algorithm called self-regulating possibilistic C-means (PCM)
with high-density points (SR-PCM-HDP), which combines Density Peak Clustering (DPC) and possibilistic
C-means (PCM) to determine the optimal number of clusters. The density-based knowledge extraction
method (DBKE) was introduced to estimate the initial number of clusters without a predefined density radius
and extract high-density points as knowledge guidance. Through the adaptive mechanism and knowledge
guidance, the clustering efficiency and robustness are improved so that it can be effectively applied to complex
data scenarios.

In order to better solve the sensitive problem of cluster initialization, Tang et al. [17] proposed the
VWKFC algorithm. This algorithm mainly puts forward the concept of information granules, which mainly
contains two aspects: for one thing, it gives a feature matrix that assigns different weights to different features
of any data. For another, it provides sample weights for each data point in the dataset. Thus, in the process of
clustering, the raw data is transformed into weighted information granules. In the research of initialization
methods for clustering analysis, traditional density peak detection methods and initialization strategies based
on Euclidean distance often face problems with sensitivity to noise and insufficient processing ability of
high-dimensional data. Tang et al. proposed a Kernel-based Hypersphere Density Initialization (KHDI)
method. VWKFC achieves efficient clustering for complex data through kernel density initialization, weight
mechanism, and viewpoint guidance and is obviously ahead of the traditional fuzzy clustering algorithms
in noise robustness, high-dimensional processing, and convergence speed. The idea of combining domain
knowledge with data-driven methods provides a new optimization paradigm for fuzzy clustering.

3 The Proposed RDKM Method
In previous clustering algorithms, the initialization process of the cluster centres is highly sensitive, and

this problem has been significantly improved and solved in the previously proposed KHDI algorithm [17].
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The KHDI algorithm uses a Gaussian kernel to calculate the local density and determine whether the data
points belong to the same cluster based on a fixed radius. However, choosing this fixed radius may lead to
inaccurate density estimates, especially in data sets with uneven distribution or high dimensionality, thus
affecting the quality of clustering results.

To improve the KHDI algorithm, in this study, we propose a relative density-based knowledge
Extraction method (RDKM) and introduce an adaptive density radius calculation method.

By designing an appropriate function, the DPC algorithm dynamically adjusts the radius to ensure that
the average density remains within 2% to 3% of the total number of data points. This adaptive mechanism
allows the local density calculation to be optimized according to the actual distribution of the datasets rather
than relying on a fixed radius parameter. This innovation significantly improves the robustness of the DPC
algorithm in datasets with non-uniform density and avoids the error caused by the fixed radius.

In some cases, it is difficult to directly define an appropriate similarity measure function in the original
feature space, especially when the data distribution is complex. In this case, using Euclidean distance often
fails to produce desirable clustering results.

We introduce the Gaussian kernel function as an effective tool for constructing a clustering model
to try to solve this problem. By normalizing each sample feature, we will constrain the eigenvalues in a
standardized range, thus greatly enhancing the stability in the subsequent kernel function calculation. This
preprocessing step not only improves the numerical stability of the model but also enhances the adaptability
and robustness of the algorithm in high-dimensional space. The data points are mapped from the original
feature space to the higher-dimensional space through the kernel function, where the clustering structure
becomes clearer and clearer. This method makes good use of its advantages, overcomes the limitations of
traditional clustering algorithms in processing high-dimensional data, and provides a new perspective for
revealing internal data patterns.

The selection of initial clustering centres is particularly important in the process of fuzzy clustering,
which directly affects the convergence of the algorithm and the quality of clustering results. The traditional
random initialization method is inefficient and may cause the algorithm to converge to a suboptimal
solution. In addition, the density calculation based on Euclidean distance shows limited performance when
dealing with high-dimensional or noisy data. In order to solve these problems, this paper proposes an
initial clustering centre selection method based on the DPC algorithm and kernel density optimization.
Adaptability of the RDKM method to complex data distribution by designing a reasonable density radius
and viewpoint selection mechanism.

The local density of a point is defined by the following formula:

ρi =
N
∑
j=1

χ(di j − r), χ(x) = {1, if x < 0
0, otherwise (1)

here, di j represents the kernel distance between the representing point xi and point x j, and r is the density
radius. The kernel distance is calculated as follows:

di j =∥ ϕ(xi) − ϕ(x j) ∥2= K(xi , xi) − 2K(xi , x j) + K(x j , x j) (2)

The kernel function is a mapping function used to map the data from the original space to the high-
dimensional feature space. Gaussian Radial Basis Function (RBF) is used as the kernel function K(x , y).

K(x , y) = ex p(−∥ x − y ∥ 2
2σ 2 ) (3)
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here, σ is the width parameter of the Gaussian kernel, which controls the sensitivity of the kernel function to
distance variations. Through the introduction of the normalization formula, its key role in data preprocessing
is revealed. By using the range transformation technique, the effect of diverse variables (features) in the data
is productively eliminated. This process maps features of different orders of magnitude to a unified [0, 1]
interval, ensuring that the entire set of features has equal importance in the cluster analysis.

x jl =
x jl −min (xkl)

max (xkl) −min (xkl)
(4)

Another advantage of normalization is that the transformed data is restricted to the range [0, 1], which
simplifies the choice of parameters.

Using the Radial Basis Function (RBF), the optimal result can be obtained by setting σ = 1 for
normalized features.

Based on the distance matrix, D = [di j], the density radius r is initialized as follows:

r = [max(di j) + min(di j)]/2 (5)

This formula makes the density distribution more stable by smoothing the interference of noise and
outliers on the local density calculation, especially for the processing of high-dimensional data.

The selection of the density radius significantly impacts local density estimation and global clustering. A
large radius can cause uniform density estimates, reducing the algorithm’s ability to capture local structural
features, while a small radius leads to excessive sensitivity to noise, affecting the clustering accuracy and
effectiveness. To address this complex issue, we present a method designed to dynamically optimize the
density radius:
(1) Density sorting: All data points are sorted by their density value ρi to form a density sequence.
(2) Average density calculation: Select all the data points and calculate their average density.

ρ = 1
N

N
∑
i=1

ρ (i) (6)

(3) Density radius optimization: We adjust the density radius r so that the average density meets the
following conditions. Character p is the percentage of the total data volume (e.g., p = 2% to 3%):

ρ = p × N (7)

Therefore, we can consider the local density estimation to be consistent with the overall characteristics
of the data distribution. By dynamically adjusting the density radius, the new algorithm can capture the local
distribution characteristics of the data adaptively, so as to avoid the limitation of fixed parameters.

According to the results of kernel density calculation, the cluster centres and viewpoints can be
further determined:

For each data point, we identified all the points with a density greater than. nd computed the minimum
distance between x j and these points, and then we obtained the standard distance δi .

δi = min jdi j , where ρ j > ρi (8)

For each data point, we define a co-weight parameter τ j that integrates the density and pivot distance.

τi = ρi × δi (9)
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In the process of selecting the cluster centre, the larger the parameter value τi , the more likely the
corresponding data point x j is to be the cluster centre. Specifically, if x j is not a cluster centre, its local density
ρ j may be relatively high, but its pivot distance δj is small. On the contrary, for noisy points or outliers,
their pivot distance is larger, but their local density is usually lower. Therefore, by introducing a selection
mechanism that favours larger values, the potential cluster centres can be effectively distinguished while
significantly resisting the interference of noise and outliers.

Based on this, we sort the data points τi in descending order and select potential cluster centres from
this ranked list. To prevent the selected initial cluster centres from being too close to each other, a reasonable
strategy is to ensure that the distance between any two selected cluster centres exceeds the following critical
distance dc .

dc =
max (di j)

aC
, (i , j ∈ 1, 2, . . . , N) (10)

The max (di j) represents the maximum distance between any two data points in the dataset, C
represents the number of cluster centres, and a is the parameter used to adjust the minimum distance between
cluster centres. This constraint not only ensures the reasonable distribution of the initial clustering centres
in the feature space but also improves the stability of the clustering algorithm.

Users usually directly provide the selection of “viewpoints” to guide the clustering process. However, a
new viewpoint selection strategy is used in this study. Specifically, after obtaining the initial cluster centres,
we select the data point τ j with the largest computed value (that is, the first data point in descending order)
as the “viewpoint xd ” selection. The rationale is that this data point has a high local density ρ and a large
pivot distance δ, which makes it a true cluster centre.

With the help of the setup of viewpoint xd , we observe the structure of the whole dataset starting
from core locations with high density and large critical distance. This method not only avoids the subjective
deviation caused by the traditional viewpoint selection but also improves the rationality and scientific validity
of the viewpoint, which lays the foundation for the subsequent clustering process.

In the cluster centre, the data point τ j that has the largest value is selected as the viewpoint xd , that is,

xd = arg max
j

τi (11)

The pseudocode for this algorithm is shown below. We mainly follow the principles of modularity and
simplicity when writing this part of the pseudocode. The detailed flow of the RDKM algorithm is given
in Table 1.

Table 1: Kernel-based hypersphere density initialization method (RDKM)

Inputs: A collection of N pieces of data X = {x j}
N
j=1, a cluster number C, and the width control

parameter σ of the Gaussian kernel function.
Outputs: Clustering centre matrix V = {vi}C

i=1, and the density viewpoint xd .
procedure RDKM (Data X, Number C)

V = [ ];
The original data are normalized;
The density radius r is determined by the binary search method;
The local density ρ j of data points is computed by (5);

(Continued)
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Table 1 (continued)
The minimum distance δ j of the data points is calculated by (8);
The parameters τ j of the data points are computed by (9);
The distance dc between centres is calculated by (10);
Arrange τ = {τ j}

N
j=1 in descending order, and get the corresponding data set X′ according

to the descending order of τj;
Select the data point x

′

1 corresponding to τ1, and take it as the first clustering centre v1,
and let V = V ∪ v1;

Take the first selected cluster centre as the viewpoint, i.e., xd = v1;
Set num = 1, index = 2;

repeat
while ∥x

′

k − V∥ < dc

index = index + 1;
V = V ∪ x

′

k ;
num = num + 1;

until num = C
return V , xd ;

end procedure

4 The Proposed RDVWKFC Algorithm
In this paper, a Relative-Density-Viewpoints-based Weighted Kernel Fuzzy Clustering Algorithm with

Adaptive Weights (RDVWKFC) is proposed. The objective function is as follows:

J =
C
∑

i=1, i≠q

N
∑
j=1

α
′

ju
m
i j

L
∑
l=1

ωi l ∥ ϕ (x jl) − ϕ (vi l) ∥2 +
N
∑
j=1

α
′

ju
m
q j

L
∑
l=1

ωql ∥ ϕ (x jl) − ϕ (xd l) ∥2 +η
C
∑
i=1

N
∑
j=1

ui j lnui j

+ γ−1
C
∑
i=1

L
∑
l=1

ωi l lnωi l + λ
C
∑
i=1

N
∑
j=1

ui j ln
ui j

1
K

(12)

Among them, the constraints on the parameters are as follows:

C
∑
i=1

ui j = 1 (13)

L
∑
l=1

ωi l = 1, ωi l > 0 (14)

α
′

j =
1
C

C
∑
i=1

ui j ⋅ exp (− ∥ x j − v(0)i ∥) (15)

In Eq. (12), C denotes the number of clusters, and N denotes the number of data points to be processed.
L denotes the feature dimension of the data and q denotes the row position of the viewpoint. ui j denotes the
degree of membership of a data point x j to cluster i, its range is [0, 1]. m is the fuzzy coefficient, and its range
is (0, +∞). In general, the optimal range of m is between 1.5 and 2.5. The feature weight ωi l can represent the
significance of the characteristics of the data to the cluster i. The xd l denotes the feature l of the viewpoint
xd obtained by the RDKM algorithm. The α

′

j is defined as the sample weight and the v(0)i represents the i-th
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initial cluster centre obtained by RDKM. The γ parameter is the regularization parameter, and its value is an
adjustable parameter. By choosing an appropriate γ, a balance between the first two terms and the third term
can be achieved to achieve better clustering performance.

In Eq. (12), αj represents the weight x j of a data point, reflecting its importance. v(0)i refers to the centre
of the initial cluster i obtained by the RDKM algorithm. The initial cluster centres obtained by the methods
are generally close to the reference cluster centres. Therefore, the initial cluster centre can be used to measure
the importance of the data point x j. The closer x j is to the initial clustering centre V(0), the larger the weight
φ j is, indicating that the data point has a greater impact on the clustering results. In this way, the weights
of noise points far away from the initial clustering centre will be minimized, which significantly reduces the
influence of noise points on the clustering results.

The significance of the objective function design is as follows:

• First item: In the case that the cluster centre is not the viewpoint, the sample weight α
′

j is combined with
the feature weight ωi j to form a weighted information granule. Then, the weighted information granule
was adjusted and optimized adaptively and dynamically by combining the membership degree, and the
adaptive, optimized weighted information granule was obtained.

• Second item: In the case that the cluster centre is a viewpoint, the importance of the viewpoint is
emphasized, and the number of clusters need not be included.

• Third item: This term enhances the fuzziness of the clustering and prevents the membership from going
over degree extremes.

• Fourth item: Negentropy regularization is applied to optimize the distribution of feature weights,
preventing the clustering process from relying on only a few dimensions.

• Fifth item: By adjusting the weight of KL (Kullback-Leibler) divergence, the distribution of membership
entropy can be controlled, and the dispersion of membership can be promoted.

Based on the mathematical concept of weighted information granule, we propose an objective function
structure of adaptive optimization weighted information granule, which includes the following three main
stages:

• Feature weight matrix construction: We assign different weights to different features of the data to
achieve the effect of reducing the adverse influence of irrelevant features.

• Sample weight assignment: We assign varying weights to the features of the data to reduce the effect of
influence of irrelevant features.

• Adaptive adjustment of information granules: We dynamically adjust the weighted information granules
to optimize their adaptability and improve the clustering performance.

This paper introduces the concept of applying weighted information granularity in fuzzy clustering,
which mainly includes two research aspects:

In the clustering process, the weighted information granules are dynamically optimized to obtain better
clustering results. We name this structure the weighted information granule for adaptive optimization.

Moreover, we can combine the first and second terms in the objective function to unify the representa-
tion of viewpoint and non-viewpoint cluster centres into a single form. Finally, the reduced objective function
can be expressed as follows.

JRDV W KFC =
C
∑
i=1

N
∑
j=1

α
′

ju
m
i j

L
∑
l=1

ωi l ∥ ϕ (x jl) − ϕ (gi l) ∥2 +γ−1
C
∑
i=1

L
∑
l=1

ωi l lnωi l + η
C
∑
i=1

N
∑
j=1

uij lnui j

+ λ
C
∑
i=1

N
∑
j=1

ui j ln
ui j

1
K

(16)
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among them:

gi l =
⎧⎪⎪⎨⎪⎪⎩

xd l

xi l

i = q
i ≠ q (17)

We describe this procedure in detail below.
Firstly, the RDVWKFC algorithm was used to obtain the V(0) and xd . To determine the row position

d of the viewpoint xd in the cluster centre matrix V , we need to find the cluster centre xd in the matrix that
is closest to the viewpoint vq . Specifically, suppose the row position of the viewpoint in the cluster centre
matrix is q and the cluster centre is vq . By calculating the kernel distance, the cluster centre closest to the
viewpoint can be found.

dqd = ∥φ(xd) − φ(vq)∥
2 (18)

dqd reflects the shortest distance between the viewpoint and the cluster centre. At this point, the
viewpoint replaces the location of the cluster centre.

In the process of algorithm execution, because the value of the viewpoint will shift constantly, its position
in the cluster centre matrix will also shift. A key aspect of this process is the calculation of the kernel distance,
which ensures that viewpoints can adjust their position according to the density of the data distribution, thus
reflecting the data structure more accurately.

On this framework, the proposed RDVWKFC algorithm aims to achieve more accurate and robust
clustering analysis by considering the local density and feature weights of the data. The algorithm improves
the stability and accuracy of clustering results by dynamically adjusting the density viewpoint.

The mechanism and derivation of the objective function of the new algorithm are described in
detail above.

Finally, the running process of the new algorithm is summarized as shown in Table 2.

Table 2: The proposed RDVMKFC algorithm

Inputs: Data X = {x j}
N
j=1, cluster number C, m, σ , y, iteration stop threshold e and maximum number of

iterations iM.
Outputs: Membership matrix U = {ui j}

C ,N
i , j=1, cluster centre matrix G = {gi}C

j=1, and feature weight matrix

W = {ωi l}C ,L
i , l=1

The cluster centres G(0) is initialized by running RDKM, and the density viewpoint xd is obtained;
Set ωi l uniformly as 1/L;
Let iter = 0;
repeat

iter = iter + 1;
Compute ui j by (A8), and update U(iter);
Calculate gi by (A12), and renew G(iter);
Figure up ωi l by (A17), and update W(iter):
until ∣∣G(iter) − G(iter − 1)∣∣ <e or iter> iM;
return U(iter), G(iter), W(iter);

end procedure
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5 Experiments
To verify the effectiveness of the proposed RDVWKFC algorithm, we conduct a series of experiments

to observe the clustering results. In addition, nine other algorithms were selected for comparison, including
FCM, KFCM, V-FCM, EWFCM, FRFCM, DVPFCM, VWKFC, FCAG, and SR-PCM-HDP. The experiments
were performed on the Windows 10 platform and the programming was done in Matlab 2022b. During
the experiments, the algorithm was run on 13 datasets, including 5 synthetic datasets (Data-a, Data-b,
Data-c, Data-d, and Data-e) and 8 UCI datasets. The UCI datasets used include Iris, Wisconsin Breast
Cancer dataset, Letter recognition (A, B) dataset, SPECT heart dataset, Wine dataset, Landsat, seed and Wifi
localization dataset.

To quantitatively evaluate the clustering performance, we used five different evaluation metrics:
classification accuracy (ACC), Normalized Mutual Information (NMI) [23], Calinski-Harabasz index [24]
(CH), ARI (Adjusted Rand Index) Expansion Index (EARI) [25,26], and Xie-Beni (XB) index [27]. Among
them, ACC, NMI, and CH are hard clustering metrics that are applicable to both hard and soft clustering
algorithms. EARI and XB indices are soft clustering metrics. EARI and XB index are only suitable for soft
clustering algorithms because a membership degree is required for calculation.

5.1 Experiments on Synthetic Datasets
We first conduct an experimental evaluation on five synthetic datasets (Data-a to Data-e) to verify

the performance of the proposed algorithm. These datasets are generated by Python’s scikit-learn library
and have clear cluster structure characteristics. We focused our analysis on the results of Data-a and b.
The datasets used here are all two-attribute datasets, which can be visualized as scatter plots. Among them,
Data-a and Data-b, as benchmark sets, both contain 7 clusters and 1000 two-dimensional data points, which
are characterized by moderate overlap between clusters and tight internal structure. Data-d, on the other
hand, presents a higher complexity, containing 12 clusters and 1500 data points, where the clusters are closely
linked and there is some degree of overlap between the classes. Although Data-e has the same number of
clusters (7) and Data size (1000 points) as Data-a and Data-b, its spatial distribution pattern is more complex.
In contrast, Data-c, as the simplest test set, contains only three clusters and 150 data points, but its remarkable
feature is that there is a greater degree of overlap between clusters, which puts forward higher requirements
for the robustness of the clustering algorithm. A greater degree of overlap between classes poses a more
significant challenge to clustering algorithms.

In Table 3, we present the evaluation metric values obtained after running the proposed algorithm and
the comparison algorithm on different artificial datasets. Here, “(+)” means that the evaluation criterion is
“bigger is better”, which indicates higher values, while “(−)” means “smaller is better”, which indicates lower
values. It can be seen that our proposed new algorithm achieves the best results in all evaluation metrics,
among which the ACC, NMI, and EARI values on the datasets are the highest.

The new algorithm uses the RDKM method to initialize the cluster centres, which avoids the problem
of convergence to a local optimum caused by improper initialization of the cluster centres. In the clustering
process, feature selection is carried out by feature weights to make the clustering results more accurate. In
addition, the introduction of high-density viewpoints reduces the influence of outliers and noise points on
the clustering results. As shown in Table 3, the accuracy of the new algorithm on the artificial dataset Data-b
is the highest, which is 0.9880, and the CH index value reaches 15.1141. Table 3 shows the results for different
synthetic datasets.
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Table 3: Performance of comparative algorithms on synthetic datasets

FCM KFCM V-FCM EWFCM FRFCM DVPFCM VWKFC FCAG SR-PCM-HDP RDVWKFC

Data-a

ACC(+) 0.9940 0.9940 0.9940 0.9690 0.9810 0.9670 0.9930 0.9890 0.7590 0.9950
CH(+) 14.4732 14.4552 14.3819 13.0286 13.9121 14.0504 14.4247 13.8007 0.2378 14.4866

NMI(+) 0.9831 0.9838 0.9823 0.9343 0.9580 0.9344 0.9807 0.9702 0.7653 0.9861
EARI(+) 0.9932 0.9940 0.9918 0.9566 0.9795 0.9658 0.9928 0.9885 0.7078 0.9941

XB(−) 0.1096 0.2278 0.1148 0.1754 0.1230 1.9737 0.1952 0.6190 0.3412 0.0902
RECALL(+) 0.8589 0.9090 0.9066 0.8883 0.6784 0.9487 0.9710 0.9782 0.8278 0.9900
FSCORE(+) 0.7978 0.8223 0.8216 0.8661 0.6049 0.9481 0.9708 0.9781 0.6708 0.9900

Data-b

ACC(+) 0.7880 0.9880 0.9870 0.9670 0.9600 0.7040 0.9880 0.9870 0.8630 0.9880
CH(+) 14.2019 14.9013 14.8926 13.7571 14.7787 14.836 14.9467 14.2088 12.1857 15.1141

NMI(+) 0.8997 0.9671 0.9659 0.9295 0.9295 0.9029 0.9671 0.9655 0.9130 0.9671
EARI(+) 0.9467 0.9841 0.9856 0.9531 0.9581 0.8980 0.9868 0.9864 0.8904 0.9870

XB(−) 0.5334 0.2036 0.1059 0.3288 0.1487 0.9030 0.1055 0.6128 0.1272 0.0990
RECALL(+) 0.8443 0.8690 0.8729 0.8471 0.6780 0.8942 0.9666 0.9743 0.9569 0.9802
FSCORE(+) 0.7503 0.7727 0.7705 0.7644 0.5945 0.8129 0.9665 0.9742 0.8564 0.9801

Data-c

ACC(+) 0.7133 0.7667 0.9667 0.6467 0.9533 0.9600 0.9933 0.9800 0.7067 0.9933
CH(+) 8.3890 10.9977 10.2349 10.2172 10.9952 6.3406 12.0128 11.5764 1.1610 12.3104

NMI(+) 0.6380 0.6829 0.8997 0.6433 0.8342 0.8702 0.9702 0.9188 0.7154 0.9702
EARI(+) 0.8108 0.9446 0.9523 0.8682 0.9306 0.9486 0.9911 0.9736 0.4787 0.9911

XB(−) 2.0545 1.6796 0.2849 0.8822 0.2138 2.1823 0.2003 0.2716 0.2034 0.1907
RECALL(+) 1.0000 1.0000 0.9616 1.0000 0.9600 0.9499 0.9739 0.9605 0.9282 1.0000
FSCORE(+) 1.0000 1.0000 0.9605 1.0000 0.9599 0.9479 0.9733 0.9596 0.7347 1.0000

Data-d

ACC(+) 0.5940 0.5000 0.6420 0.5400 0.736 0.4793 0.7293 0.6027 0.7133 0.8347
CH(+) 7.3025 7.4783 7.3953 7.5401 6.9706 7.3105 7.3671 6.8499 6.3598 7.5672

NMI(+) 0.7094 0.7096 0.7113 0.6581 0.7548 0.6559 0.7958 0.7643 0.7409 0.8011
EARI(+) 0.7005 0.7072 0.6652 0.6457 0.7833 0.4786 0.7954 0.7108 0.7822 0.8177

XB(−) 0.0608 0.1036 0.0537 0.8228 0.1127 0.0701 0.0548 1.9735 0.4685 0.0529
RECALL(+) 0.5927 0.5674 0.6825 0.7162 0.7117 0.7011 0.7406 0.7081 0.6877 0.7425
FSCORE(+) 0.5131 0.6457 0.6623 0.6698 0.5212 0.6873 0.7003 0.6436 0.6246 0.7412

Data-e

ACC(+) 0.7740 0.7710 0.7710 0.8790 0.8140 0.9620 0.9700 0.9670 0.7670 0.9720
CH(+) 14.8241 14.8379 15.8842 14.5288 15.7315 15.5855 15.8434 15.1690 12.8991 15.8847

NMI(+) 0.8906 0.8906 0.9439 0.8558 0.8894 0.9336 0.9414 0.9379 0.8490 0.9439
EARI(+) 0.9581 0.9645 0.9747 0.9210 0.9518 0.9625 0.9746 0.9661 0.9687 0.9744

XB(−) 0.7266 1.6370 0.2105 2.5234 0.2657 1.7740 0.2691 2.4422 0.0049 0.2034
RECALL(+) 0.9021 0.8980 0.9014 0.8923 0.8610 0.9317 0.9008 0.9387 0.8554 0.9468
FSCORE(+) 0.8143 0.8100 0.8844 0.8480 0.8504 0.9292 0.8920 0.9376 0.7652 0.9464

5.2 Experiments with UCI Datasets
Subsequently, we conducted experiments using eight UCI datasets. These datasets are as follows: Iris,

Wisconsin Breast Cancer, letter recognition (A, B), SPECT heart data, Wine, Statlog (Landsat satellite), Seed,
and Wifi localization.

The Iris dataset is one of the most classic datasets in the field of machine learning. It contains 150
data points, and each data point contains four feature attributes: sepal length, sepal width, petal length, and
petal width. The Iris dataset can be divided into three classes: Iris-setosa (Iris mountain), Iris-versicolor (Iris
changing colors), and Iris-virginica (Iris Virginia). The Wisconsin Breast Cancer dataset is a cancer dataset
containing 569 sample data points, which can be divided into two classes: benign and malignant. The Letter
Recognition (A, B) dataset is a character recognition dataset. The Spect heart dataset is a heart disease dataset
with binary data. Wine is a dataset about wine, containing 178 samples and 13 numerical features. It is divided
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into three categories, each with a different sample size. The Stalog (Land Satellite) dataset is a Landsat dataset
with 36 feature attributes. The Seed dataset is about wheat seeds, contains 70 data samples, and belongs to
three different wheat varieties: Kama, Rosa, Canadian. Table 4 gives the details of the UCI datasets we used
in the experiments, which include the number of data samples, the number of categories, and the number
of features.

Table 4: Details for each UCI dataset

Name Instances Atttibutes Classes
Iris 150 4 3

Wine 178 13 3
Breast_cancer Wisconsin 569 30 2

SPECT heart data 267 22 2
Stalog (Landsat satellite) 6435 36 6

Seeds 210 7 3
Letter Recognition (A,B) 1555 16 2

Wifi localization 2000 7 4

Table 5 presents the evaluation metrics for different clustering algorithms applied to various
UCI datasets.

Table 5: Performance results of comparison algorithms on UCI datasets

FCM KFCM V-FCM EWFCM FRFCM DVPFCM VWKFC FCAG SR-PCM-HDP RDVWKFC

Iris

ACC(+) 0.8867 0.8800 0.9533 0.8933 0.9067 0.8400 0.9467 0.9000 0.9133 0.9733
CH(+) 11.6197 11.6251 11.8362 11.5658 11.4901 11.9263 12.0054 11.0659 3.7412 12.0121

NMI(+) 0.7353 0.7277 0.8498 0.7496 0.7857 0.6712 0.8322 0.7476 0.7839 0.9011
EARI(+) 0.8703 0.8868 0.9312 0.8733 0.9172 0.7832 0.9333 0.8980 0.9088 0.9643

XB(−) 0.2903 0.3446 0.2787 0.2806 0.3484 2.5841 0.2961 0.5028 0.2711 0.2546
RECALL(+) 0.8190 0.8220 0.9148 0.8299 0.8824 0.8310 0.9238 0.8299 0.8430 0.9483
FSCORE(+) 0.8101 0.8180 0.9117 0.8271 0.8781 0.8123 0.9233 0.8271 0.8415 0.9478

Breast
Cancer

ACC(+) 0.9209 0.9016 0.9297 0.8041 0.8981 0.9016 0.9016 0.9279 0.7610 0.9315
CH(+) 1.1610 17.2804 78.259 15.3786 6.1301 21.0100 34.4968 78.5709 9.8154 107.3924

NMI(+) 0.5947 0.5676 0.6194 0.3377 0.5077 0.5443 0.5208 0.6264 0.2736 0.6293
EARI(+) 0.8159 0.7777 0.8982 0.8354 0.7636 0.8135 0.8593 0.8890 0.4125 0.9116

XB(−) 85.0710 1.4380 1.3400 5.0580 2.8875 1.2216 1.3478 0.6289 0.3905 0.2974
RECALL(+) 0.8752 0.8956 0.9073 0.8859 0.8431 0.8363 0.9082 0.8601 0.6318 0.9115
FSCORE(+) 0.8766 0.8917 0.8929 0.8780 0.8504 0.8447 0.8782 0.8722 0.6483 0.8934

Letter_
AB

ACC(+) 0.9273 0.9331 0.8887 0.9048 0.9293 0.9305 0.9344 0.9389 0.8051 0.9408
CH(+) 135.9163 166.0395 172.2868 44.2458 177.5480 155.0735 212.4524 204.0585 49.9026 213.3964

NMI(+) 0.6483 0.6811 0.5021 0.5551 0.6528 0.6955 0.7069 0.7256 0.3487 0.7315
EARI(+) 0.8517 0.8686 0.8643 0.7868 0.8642 0.8718 0.8952 0.9829 0.2906 0.8995

XB(−) 0.3579 0.4017 0.7316 1.0933 0.3851 0.6098 0.4769 0.6800 0.3678 0.3421
RECALL(+) 0.8644 0.8697 0.8792 0.8588 0.8722 0.8823 0.8859 0.8908 0.7361 0.8978
FSCORE(+) 0.8612 0.8667 0.8765 0.8567 0.8689 0.8789 0.8803 0.8858 0.7009 0.8936

Wine

ACC(+) 0.9045 0.927 0.882 0.8596 0.8876 0.9045 0.9438 0.9213 0.6124 0.9719
CH(+) 9.2506 12.1667 10.4631 14.4481 2.0072 15.3527 10.2622 10.1291 0.9514 14.8109

NMI(+) 0.7295 0.771 0.7047 0.6504 0.6888 0.7255 0.7987 0.7553 0.2662 0.8920
EARI(+) 0.8012 0.8593 0.8236 0.7848 0.7323 0.8215 0.8813 0.9220 0.4256 0.9738

XB(−) 1.2469 1.3542 0.9811 1.4104 1.1924 3.7708 1.4889 1.0218 0.9978 0.9384
RECALL(+) 0.8125 0.8188 0.7840 0.7949 0.8328 0.8627 0.8708 0.8439 0.5841 0.9369

(Continued)
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Table 5 (continued)

FCM KFCM V-FCM EWFCM FRFCM DVPFCM VWKFC FCAG SR-PCM-HDP RDVWKFC
FSCORE(+) 0.8214 0.8170 0.7920 0.8020 0.8419 0.8699 0.8776 0.8461 0.4964 0.9425

SPECT
heart

ACC(+) 0.6030 0.7004 0.7678 0.7940 0.6255 0.8427 0.7865 0.7753 0.8052 0.8543
CH(+) 0.0954 0.6909 30.5773 21.9245 0.5926 33.2145 11.9338 22.3562 1.3601 33.2571

NMI(+) 0.1029 0.1394 0.1908 0.2518 0.1613 0.2742 0.1305 0.1537 0.1594 0.3209
EARI(+) 0.2636 0.3730 0.8316 0.8675 0.2893 0.8935 0.4925 0.7635 0.1257 0.8943

XB(−) 24.8697 12.5958 0.8664 1.3100 2.6459 0.7489 0.7165 1.2925 1.8233 0.6948
RECALL(+) 0.5169 0.5644 0.6532 0.6337 0.5268 0.7569 0.8844 0.6682 0.7406 0.8922
FSCORE(+) 0.5910 0.6428 0.7174 0.6358 0.6049 0.7833 0.7881 0.7196 0.7596 0.8242

Statlog

ACC(+) 0.9463 0.7214 0.7759 0.8202 0.8301 0.9445 0.9521 0.9580 0.9302 0.9611
CH(+) 188.0739 262.4992 130.0652 109.7552 60.6775 142.9682 400.2993 379.8112 84.6025 440.698

NMI(+) 0.676 0.3165 0.3651 0.2497 0.4027 0.713 0.7418 0.7650 0.6626 0.7780
EARI(+) 0.9035 0.4856 0.7788 0.4376 0.6277 0.9004 0.9407 0.9448 0.9925 1.0000

XB(−) 2.1408 0.3423 2.5743 0.6826 1.1449 1.2239 0.3239 0.3920 0.4012 0.3137
RECALL(+) 0.9590 0.9608 0.9586 0.7152 0.9599 0.9558 0.9685 0.9597 0.9400 0.9700
FSCORE(+) 0.9299 0.9333 0.9305 0.7452 0.9365 0.9239 0.9485 0.9313 0.8917 0.9499

Seeds

ACC(+) 0.5524 0.6841 0.8952 0.9 0.8571 0.8952 0.8952 0.8905 0.8571 0.9048
CH(+) 10.4292 10.8944 16.046 14.8147 8.5833 15.4141 11.9425 14.7541 8.7259 15.6115

NMI(+) 0.5446 0.5445 0.6781 0.6842 0.6192 0.6962 0.6395 0.6707 0.6049 0.8150
EARI(+) 0.6998 0.4813 0.858 0.866 0.716 0.8352 0.9316 0.8743 0.8047 0.9391

XB(−) 0.3916 0.1515 0.5709 0.5649 0.2654 3.1523 0.9233 0.5802 0.1149 0.0686
RECALL(+) 0.8188 0.8050 0.8178 0.8141 0.8032 0.8018 0.8083 0.8090 0.7516 0.8210
FSCORE(+) 0.8170 0.8026 0.8173 0.8070 0.7981 0.7991 0.8048 0.8049 0.7460 0.8188

Wifi
Locali-
zation

ACC(+) 0.6000 0.6295 0.6830 0.6955 0.6790 0.9240 0.9565 0.9575 0.7720 0.9585
CH(+) 0.5438 35.5301 72.3962 55.6873 18.7185 69.5697 78.6978 74.6102 34.9604 79.5165

NMI(+) 0.5391 0.5267 0.8049 0.5823 0.5003 0.7928 0.8743 0.8693 0.7485 0.8929
EARI(+) 0.5039 0.4447 0.7769 0.5344 0.4585 0.8599 0.9600 0.9532 0.7336 0.9655>

XB(−) 0.8616 4.6048 0.9243 17.3775 0.6079 0.8697 0.4638 0.7373 1.9549 0.4529
RECALL(+) 0.8909 0.9055 0.8953 0.9046 0.9071 0.8914 0.9200 0.9196 0.8955 0.9248
FSCORE(+) 0.8878 0.9050 0.8946 0.9040 0.9035 0.8888 0.9199 0.9180 0.7620 0.9206

From the data in this tables, it can be seen that the proposed algorithm has high accuracy and is
better than previous clustering algorithms in other indicators. For the classic Iris dataset, the accuracy of
the new algorithm reaches 0.9733. In the datasets with high feature dimensions, such as Wisconsin Breast
Cancer dataset, SPECT heart dataset and Statlog dataset, the accuracy of the new algorithm reaches 0.9315,
0.8543 and 0.9611, respectively. This shows that the new algorithm has certain advantages over the previous
algorithms when dealing with data sets with more attribute features.

We summarize the performance metrics of the RDVWKFC algorithm on eight UCI datasets in
the Appendix A, the proposed RDVWKFC algorithm can obtain the best results on these eight UCI datasets.

5.3 Experiments on High-Dimensional Datasets
In order to verify the performance of the RDVWKFC algorithm in clustering high-dimensional datasets,

we conducted several experiments by randomly selecting three classes from the Mfeat dataset with 649
features. The clustering performance is evaluated using two metrics: ACC and EARI. Table 6 presents each
algorithm result in Mfeat dataset. The calculation accuracy of the algorithm on the Mfeat dataset is 0.6150,
and the EARI value is 0.9555. The experimental results present that the proposed algorithm on the data set
has the best clustering performance.
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Table 6: Evaluation indexes of the new algorithm running on high-dimensional Mfeat dataset

FCM KFCM V-FCM EWFCM FRFCM DVPFCM VWKFC FCAG SR-
PCM
-HDP

RDVWKFC

ACC(+) 0.2200 0.2917 0.4688 0.3467 0.5733 0.4983 0.3300 0.5033 0.4483 0.6150
EARI(+) 0.3073 0.2485 0.6308 0.8766 0.4721 0.4774 0.9555 0.8308 0.9328 0.9555
RECALL(+) 0.7436 0.7398 0.7983 0.8230 0.6376 0.7219 0.6645 0.6439 0.5426 0.8376
FSCORE(+) 0.6247 0.6647 0.7524 0.6579 0.6252 0.5907 0.6291 0.5776 0.4336 0.7337

Table 6 presents the evaluation metrics for different clustering algorithms applied to the high-
dimensional Mfeat dataset.

Through the above experimental results, we can see that the algorithm shows comprehensive advantages
in four indicators. The value of ACC is ahead of the second place FRFCM, indicating that its clustering results
have the highest matching degree with the true label, and the value of the EARI index is tied for the first
place, which verifies its robustness under a complex clustering structure. RECALL and FSCORE both rank
first, which indicates that the algorithm performs best in the balance of coverage and precision.

Different from the traditional feature weighted clustering algorithm in the past, the new algorithm
uses RDKM method to initialize the clustering centre and introduces the viewpoint, which avoids the local
minimum problem in the objective function, which avoids the local minimum problem in the objective
function. In contrast to previous studies, our method assigns weights to feature attributes, so that it can show
better results while dealing with complex datasets.

Please refer to the Appendix A for the relevant supplementary experiments and discussions.

6 Conclusion and Outlook
In this paper, we proposed a new adaptive weighted clustering algorithm and the main contributions

and work are summarized as follows:

(i) Faced with the challenges that traditional clustering algorithms often encounter in the initialization
phase, the clustering results are highly sensitive to the initial centroid selection and unstable to noise
and outliers. We innovatively introduce the Relative Density based Knowledge Extraction Method
(RDKM) as the initialization strategy on the original KHDI algorithm. This method determines the
initial centroid by identifying relatively high-density regions in the data, which lays a more reasonable
foundation for the subsequent clustering process. Compared with the existing methods, RDKM
significantly improves the quality of the clustering initialization stage, effectively reduces the risk of
clustering results deviation caused by improper selection of initial centroids, and the algorithm has
significant advantages in the initial stage.

(ii) In order to alleviate the negative impact of noise and outliers on clustering accuracy, we propose
an adaptive weighting mechanism through the construction of the Information Granularity Weight
Model (IGWM). We implement the dynamic adjustment of the weights of data points according to
their importance in the clustering process. By giving more weight to the data points with higher
importance to make them play a key role in the clustering decision, and giving less weight to the
points that may be noise or outliers, it effectively weakens their influence on the clustering results. This
method improves the reliability of clustering results and significantly enhances the adaptability of the
algorithm to complex data environments.

(iii) In order to further improve the performance of the algorithm in different data characteristics and
dimensions (the function can adapt to low dimensions, but also can adapt to high and ultra-high
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dimensions), we design an adaptive optimization algorithm (AOA). AOA can adjust the weights
in real-time according to the dynamic change of the data distribution and always maintain good
adaptability of the algorithm. At the same time, when dealing with high-dimensional or feature-
diverging data, AOA shows a high degree of flexibility, which enables the algorithm to run stably
in various complex scenarios and effectively overcomes the limitations of traditional algorithms in
dealing with such data.

(iv) Combining the above innovations, we propose a new adaptive weighted clustering algorithm—
RDVWKFC. This algorithm integrates the advantages of each algorithm or method to build an
excellent collaborative algorithm mechanism and provides a comprehensive and effective solution for
dealing with complex data clustering problems.

(v) Experimental verification results show that the algorithm has achieved a remarkable application effect
in the application. In the test of various comparison algorithms, the new algorithm shows superior
performance on multiple data sets. For example, ACC, NMI, CH, EARI, and XB are superior to other
algorithms on key evaluation indicators. In addition, in terms of algorithm efficiency, the number
of iterations required by this algorithm is significantly less than that of the comparison algorithm,
indicating that it can quickly converge to stable clustering results and significantly improve computing
efficiency. It is worth noting that when the new algorithm is applied to the image segmentation data
set for the image clustering task, its clustering effect is superior to the existing methods, which further
verifies its effectiveness and superiority in practical applications.

Our study demonstrates that the proposed algorithm significantly improves clustering accuracy and
computational efficiency compared to existing methods. Future research will expand the application scope
of the new algorithm, especially in fields such as fuzzy inference and fuzzy systems [28]. We also expect that
the novel algorithm will exhibit superior performance in these real-world application scenarios, and provide
a more effective solution for solving complex data clustering problems.
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Appendix A
Appendix A.1 Summary of the Experiments

Fig. A1 presents scatter plots of these five synthetic datasets. These datasets are composed of two-
dimensional data. The horizontal and vertical coordinates in Fig. A1 correspond to two dimensions of the
data, respectively.
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Figure A1: Scatter diagrams of artificial data sets. (a) Data-a dataset. (b) Data-b dataset. (c) Data-c dataset. (d) Data-d
dataset. (e) Data-e dataset

The results of the proposed RDVWKFC algorithm on the five synthetic datasets are shown in Fig. A2.
The horizontal and vertical coordinates in Fig. A2 also correspond to two dimensions of the data, respectively.
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Figure A2: Operation results of the RDVWKFC algorithm on artificial data sets. (a) Data-a dataset. (b) Data-b dataset.
(c) Data-c dataset. (d) Data-d dataset. (e) Data-e dataset

As shown in Fig. A3, our proposed new algorithm processes data points from different clusters in
different datasets and labels them with easily distinguishable colors and shapes. From the visualized results
of the operation, it is not difficult to see that our algorithm shows excellent results on these data sets. The
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black dots in the rendering represent the location of the cluster centre obtained by the new algorithm. The
proposed algorithm can accurately locate the cluster centre, which is particularly obvious in the dataset
Data-e. Even though there is significant overlap between the different twelve categories. The algorithm can
still accurately identify 12 different clustering centres.

Figure A3: The density-distance (ρ − δ) decision plot on the Data-b dataset. (a) Density vs. min distance to higher
density point. (b) Density-distance product vs. data point index

To further validate the effectiveness of the proposed RDKM method, we examine the density-distance
(ρ − δ) determination plot and the parameter τ distribution plot after running the RDKM method on the
Data-b dataset, as shown in Fig. A3.

Fig. A3a shows the density-distance (ρ − δ) decision diagram after processing the dataset using the
RDKM method. It can be seen from the Fig. A3a that the local density of the data points is evenly distributed
throughout the range. Most of the data points have a minimum distance value less than 0.05, and these
data points are represented by a “●” in the figure. By examining Fig. A3a, it can be noticed that there are
seven data points that are significantly different from the others. These points have relatively large minimum
distance values and significantly higher local density values compared to the other data points. In the decision
diagram, the seven points are marked with different symbols. Accordingly, Fig. A3b shows the parameter
distribution plot for the Data-b dataset. It is evident from the figure that the parameter values of seven data
points in Fig. A3b are significantly larger than those of most of the data points. Most of the data points
have values close to 0. According to the RDKM method, these seven data points correspond to the seven
initial cluster centres in the Data-b dataset. From Fig. A3a,b, we can see that the RDKM method successfully
distinguishes the potential cluster centres from the regular data points and effectively identifies the initial
cluster centres.
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Appendix A.2 The Proof of the RDVWKFC Algorithm
We use the Lagrange multiplier method to derive the update iteration formula for the new algorithm.
Firstly, we construct the Lagrangian function L through Eqs. (16) and (17) as follows:

L = JRDVWKFC +
N
∑
j=1

λ j ⋅ (1 −
C
∑
i=1

ui j) +
C
∑
i=1

βi ⋅ (1 −
L
∑
l=1

ωi l) (A1)

In order to obtain the minimum value of Eq. (16), the necessary conditions need to be satisfied, and the
mathematical constraints are expressed as follows:

∂L
∂ui j

= 0, ∂L
∂gi l

= 0, ∂L
∂ωi l

= 0, (i = 1, 2, . . . , C; j = 1, 2, . . . , N ; l = 1, 2, . . . , L) (A2)

And then, we calculate the result with a partial derivative of 0 with respect to ui j, based on Eq. (16), and
get the following (i = 1, 2, . . . , C; j = 1, 2, . . . , N):

∂L
∂ui j

= (α j ⋅ um
i j + m ⋅ um−1

i j ⋅ α
′

j) ⋅
L
∑
l=1

ωi l ∥ ϕ (xi l) − ϕ (gi l) ∥2 +η (lnui j + 1) + λ (lnui j + 1) + λlnK − λ j = 0

(A3)

from (A3):

λj − η (lnui j + 1) − λ (lnui j + 1) − λlnK = (α j ⋅ um
i j + m ⋅ um−1

i j ⋅ α
′

j) ⋅
L
∑
l=1

ωi l ∥ ϕ (x jl) − ϕ (gi l) ∥2 (A4)

Obviously, when η + λ = 0, these two different constraints cancel each other out, preventing the
membership from becoming overly concentrated without forcing them to be nearly uniform. This allows
membership to more flexibly reflect the clustering structure inherent in the data. The iteration is as follows:

ui j =
⎛
⎝

λj − λlnK
α j (m

C + 1) ⋅ ∑L
l=1 ωi l ⋅ ∥ ϕ (x jl) − ϕ (gi l) ∥2

⎞
⎠

1
m

(A5)

Due to the constraints of membership ui j, we get the following formula:

C
∑
i=1

ui j = (λ j − λlnK)
1
m ⋅

C
∑
i=1

⎛
⎝

1
α j (m

C + 1) ⋅ ∑L
l=1 ωi l ⋅ ∥ ϕ (x jl) − ϕ (gi l) ∥2

⎞
⎠

1
m

= 1 (A6)

From the above formula, it can be deduced:

(λ j − λlnK)
1
m = 1

∑C
s=1
⎛
⎝

1
α j (m

C + 1) ⋅ ∑L
l=1 ωsl ⋅ ∥ ϕ (x jl) − ϕ (gsl) ∥2

⎞
⎠

1
m

(A7)
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Then, the Eq. (A7) is substituted into the Eq. (A5), that is, the updated iterative formula of membership
is obtained:

ui j =
1

∑C
s=1
⎛
⎝
∑L

l=1 ωi l ⋅ ∥ ϕ (x jl) − ϕ (gi l) ∥2

∑L
l=1 ωsl ⋅ ∥ ϕ (x jl) − ϕ (gsl) ∥2

⎞
⎠

1
m

(A8)

Similarly, calculate the partial derivative of the feature weight and set it to 0 to get the following result
(i = 1, 2, . . . , C; l = 1, 2, . . . , L):

∂L
∂ωi l

=
N
∑
j=1

α
′

j ⋅ um
i j ⋅ ∥ ϕ (x jl) − ϕ (gi l) ∥2 +γ−1 ⋅ (1 + lnωi l) − βi (A9)

After differentiating, we get the following:

ωi l = eβi ⋅γ−1 ⋅ e−γ⋅∑N
j=1 α′j ⋅u

m
i j ⋅∥ϕ(x jl)−ϕ(gi l)∥

2
(A10)

Further, we get:

eβi γ−1 = 1

∑L
l=1 e−γ∑N

j=1 α′j ⋅u
m
i j ⋅∥ϕ(x jl)−ϕ(gi l)∥2 (A11)

Then we get the updated iterative formula for the feature weights ωi l :

ωi l =
e−γ⋅∑N

j=1 α′j ⋅u
m
i j ⋅∥ϕ(x jl)−ϕ(gi l)∥

2

∑L
l=1 e−γ∑N

j=1 α′j ⋅u
m
i j cdot∥ϕ(x jl)−ϕ(gi l)∥2 (A12)

When we use the Gaussian kernel function to calculate the distance between a data point and the cluster
centre, the mathematical expression is as follows:

∥ ϕ (x jl) − ϕ (gi l) ∥2= 2 − 2 ⋅ K (x jl , gi l) = 2 − 2 ⋅ e−
(x jl−gi l )

2

2σ2 (A13)

according to the equation:

X =
⎡⎢⎢⎢⎢⎢⎣

x11 ⋅ ⋅ ⋅ x1L
⋮ ⋱ ⋮

xn1 ⋅ ⋅ ⋅ xnL

⎤⎥⎥⎥⎥⎥⎦
(A14)

When i = q, the cluster centre has the same value as the viewpoint, i.e., gi l = xd l . When i ≠ q, it is not
a viewpoint, calculate the partial derivative of the cluster centre gi l , and set the resulting equation to 0, get
the following formula (i = 1, 2, . . . , C; l = 1, 2, . . . , L):

∂L
∂gi l

=
N
∑
j=1

α
′

j ⋅ um
i j ⋅ ωi l ⋅ (−2) ⋅ e−

(x jl−gi l )
2

2σ2 ⋅
(x jl − gi l)

σ 2 = 0 (A15)
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Therefore, it is not difficult to obtain:

gi l =
∑N

j=1 α
′

j ⋅ um
i j ⋅ ωi l ⋅ e−

(x jl−gi l )
2

2σ2 ⋅ x jl

∑N
j=1 α′j ⋅ um

i j ⋅ ωi l ⋅ e−
(x jl−gi l )

2

2σ2

(A16)

Finally, by combining Formula (17) and formula (A16), the updated iterative formula of cluster centre
gi l is obtained:

gi l =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xd l , i = q

∑N
j=1 α

′

j ⋅u
m
i j ⋅ωi l ⋅e

−
(x jl−gi l )

2

2σ2 ⋅x jl

∑N
j=1 α′j ⋅u

m
i j ⋅ωi l ⋅e

−
(x jl−gi l )

2

2σ2

, i ≠ q
(A17)

Appendix A.3 Time Complexity of the Algorithm
Table A1 shows the time complexity of the proposed algorithm along with the algorithms used for

comparison. Let denote the number of iterations and let denote the number of samples in the dataset. The
C is the number of clusters, W = {wil}C,L

i=1,l=1 represents the dimension of the data features. Since the new
algorithm involves an additional weight matrix to be updated, its time complexity is O(tNl2C).

Table A1: Time complexity of each algorithm

Algorithm Time complexity
FCM O(tNC2 l)

KFCM O(tNC2 l)
DPC O(Nl)

VFCM O(tNC2 l)
EWFCM O(tNl 2C)
FRFCM O(tNC2 l)

DVPFCM O(tNl 2C)
VWKFC O(tNC2 l)

RDVWKFC O(tNl 2C)

Updating the membership values includes distance calculation as the main computational cost. The
complexity of each distance calculation is O(l2) (due to the complexity of the feature map). Therefore, the
total complexity of membership update is O(Nl2C).

For cluster centre updates, the complexity of computing the weighted sum of each cluster i and each
feature l is O(Nl), resulting in a total complexity of O(NlC). The complexity of updating the weight
parameters for each cluster i and featurel is O(1), so the overall complexity is O(NlC).

Considering that the algorithm needs to iterate, the overall time complexity of retaining the highest
order term is O(tNl2C).
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Appendix A.4 Iteration Count and Runtime of the Algorithm
We calculated the average number of iterations of each algorithm on different data sets, and the statistical

results are shown in Table A2. We rank the average number of iterations of the different algorithms on the
same dataset in ascending order and fill in the brackets of the table indicating their rank.

Table A2: Average number of iterations the algorithm runs on different datasets

FCM KFCM V-FCM EWFCM FRFCM DVPFCM VWKFC RDVWKFC
Data-a 26(4) 45(6) 34(5) 1000(7) 6(1) 1000(8) 18(3) 18(2)
Data-b 32(4) 56(5) 159(6) 1000(6) 3(1) 1000(8) 27(3) 20(2)

Iris 17(4) 35(6) 18(5) 50(7) 11(2) 184 13(3) 10(1)
Breast_
cancer

22(5) 33(7) 7(2) 35(8) 2(1) 22(4) 24(6) 10(3)

Letter_AB 22(6) 43(8) 9(4) 32(7) 2(1) 16(5) 7(3) 6(2)
Spect 5(3) 10(6) 6(4) 19(8) 2(1) 15(7) 7(5) 4(2)
Wine 36(6) 61(7) 14(2) 85(8) 9(1) 32(4) 34(5) 19(3)
Stalog 17(4) 38(6) 12(3) 67(8) 5(1) 39(7) 10(2) 29(5)
Seeds 19(4) 31(6) 26(5) 53(7) 8(2) 60(8) 12(3) 8(1)
Wifi

local-
ization

86(5) 133(7) 59(3) 110(6) 15(2) 140(8) 76(4) 8(1)

The
average

28(4) 48(6) 34(5) 245(8) 6(1) 251(7) 23(3) 13(2)

Through the analysis, it is found that the average iteration count of the proposed algorithm is the lowest
among all the algorithms on the data sets of Iris, Seeds, heart disease and Wifi localization. On datasets
such as Data-a, Data-b, Letter_AB and Spect, its average number of iterations ranks second among all
algorithms. However, it is still worth noting that on the Statlog (Landsat) dataset, the average iteration count
of the proposed algorithm reaches 29, which is higher than some clustering algorithms such as FCM and
V-FCM. This observation indicates that the algorithm may encounter certain limitations when dealing with
recognition tasks related to satellite image datasets, which indicates that the algorithm does not show perfect
performance on all types of datasets, and also provides research directions and focus for future algorithm
optimization and targeted improvement.

However, from the overall experimental results, our proposed algorithm achieves convergence in fewer
iterations than the other algorithms. The main reason is that we introduce more effective initial clustering
centres as well as the initial viewpoints obtained from the initializing RDKM algorithm to improve the
convergence speed of the algorithm. Therefore, the proposed algorithm can quickly reach the steady state in
most cases, and reduce the time required for iterative calculation and computing resource overhead, which
realizes the superiority of the algorithm in performance.

In Table A3, we calculate the average runtime of each algorithm on different datasets. In doing so, we
rank the average running time of each algorithm in ascending order, denoted by the corresponding rank
in parentheses.
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Table A3: Running time of each algorithm on different datasets

FCM KFCM V-FCM EWFCM FRFCM DVPFCM VWKFC RDVWKFC
Data-a 0.4020(2) 1.2500(7) 1.6040(8) 0.4450(3) 0.0150(1) 0.9050(5) 0.9400(6) 0.5940(4)
Data-b 0.4940(3) 1.4950(7) 6.0590(8) 0.4430(2) 0.0110(1) 0.9540(5) 1.0700(6) 0.6000(4)

Iris 0.0130(3) 0.0600(6) 0.0410(5) 0.0120(2) 0.0050(1) 0.0330(4) 0.1810(8) 0.0920(7)
Breast_cancer 0.0510(2) 0.1720(5) 0.2230(6) 0.0530(3) 0.0330(1) 0.1330(4) 0.6730(8) 0.2380(7)
Letter_AB 0.1000(3) 0.4650(4) 1.2710(7) 0.0530(2) 0.0310(1) 0.7390(5) 1.3260(8) 1.1480(6)

spect 0.0080(1) 0.0300(4) 0.0500(6) 0.0170(3) 0.0100(2) 0.0330(5) 0.1620(8) 0.1530(7)
Wine 0.0310(4) 0.1320(7) 0.0380(5) 0.0270(3) 0.0120(1) 0.0220(2) 0.2850(8) 0.0960(6)
Stalog 0.1640(1) 0.7520(4) 3.1370(8) 0.2670(3) 0.2450(2) 1.9340(5) 2.7000(7) 2.4020(6)
Seeds 0.0220(4) 0.0750(6) 0.0550(5) 0.0190(2) 0.0060(1) 0.0210(3) 0.1420(8) 0.0920(7)

Wifi local-
ization

1.1120(3) 4.2580(8) 2.9380(6) 0.1410(2) 0.0840(1) 1.2420(4) 3.8410(7) 1.7850(5)

By observing the experimental data, it is easy to find that the new algorithm needs fewer iterations to
reach convergence, but in some cases the running time cost is longer than other algorithms. This can be
attributed to the running time overhead caused by the additional computation of the weight matrix in the
algorithm. However, given the significant advantages possessed by the proposed algorithm, this additional
runtime computational cost is worth the investment. Although the extra computation increases the time cost,
we consider the overall performance improvement and clustering result optimization for these advantages,
the positive impact is enough to offset the increase in running time. This lays a solid foundation for the
algorithm to be used in practice.

Appendix A.5 Discussion
We verify the performance of the algorithm through a series of experiments. Initially, the algorithm was

performed on a manual dataset. The experimental results show that the algorithm has good performance
in the artificial data set environment. In order to accurately quantify the clustering performance of the
algorithm, we calculate 7 key indicators of the algorithm and the comparison algorithm on the artificial
datasets. The experimental results strongly show that the proposed algorithm outperforms other algorithms
on all seven indexes.

We then experimented with the new algorithm on eight UCI datasets. The experimental data show that
the proposed algorithm has superior performance on all evaluation indexes of each UCI dataset compared
with other algorithms. The test results show that it can show more outstanding advantages in many aspects,
including precision, stability and anti-interference.

The time complexity of each of the other clustering algorithms is given, along with the average number
of iterations and running times on different datasets. It is easy to see that in most cases, the average number
of iterations of this algorithm is less than that of other comparison algorithms, which shows that the iterative
effect of our designed algorithm is efficient and convergent.

Finally, we use the high dimensional state data set to carry out the experiment. The results show that
RDVWKFC algorithm has good performance. Compared with other algorithms, this algorithm mainly
shows its advantages in the following aspects:

• Innovative initialization strategy: This method is based on Relative Density Knowledge Extraction
(RDKM), which can accurately identify relatively high-density regions and thus determine the initial
viewpoint. This method overcomes the sensitivity of traditional clustering algorithms to initialization
and reduces the risk of result bias. It significantly improves the initial quality of clustering and provides
clear advantages over previous methods.
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• Effective anti-interference mechanism: We introduce the adaptive weight mechanism and construct
the Information Granularity Weight Model (IGWM). The model dynamically adjusts the influence of
data points according to the importance of data points to reduce the bad interference of noise and outliers
on clustering results. It improves the adaptability of the algorithm to a complex data environment and
improves the reliability of the clustering results.

• Outstanding performance: We design an adaptive optimization algorithm (AOA) to significantly
improve the performance of different data characteristics and dimensions. The algorithm can dynam-
ically adjust the weights according to the real-time distribution of data and can run stably in a
high-dimensional or feature differentiated data environment, which overcomes the limitations of tra-
ditional algorithms. By integrating a variety of innovative elements, the proposed algorithm is superior
to the comparison algorithms on multiple data sets and related key evaluation indicators, and realizes
the goals with fewer iterations, faster convergence speed and higher computational efficiency. The above
performance indicators fully prove its effectiveness and superiority in practical applications.

Appendix A.6 Limitations
Our findings confirm that the performance of the algorithm does depend heavily on a few key

parameters. These parameters include fuzzy coefficient, regularization parameter and the width of the
Gaussian kernel. The process of tuning these parameters can be quite subjective and may not always produce
optimal results.

Appendix A.7 Comparison of Different Clustering Algorithms
The comparison in Table A4 ensures a balance between classical foundational work and recent research,

effectively strengthening the context of our study.

Table A4: Comparison of different clustering algorithms

FCM FCM algorithm is the most classical algorithm among many fuzzy clustering
algorithms, and also the most common the algorithm used.

KFCM KFCM is an improved kernel function based fuzzy C-means clustering algorithm that
maps data from original space to high-dimensional feature space by kernel function.

V-FCM V-FCM algorithm is short for fuzzy C-means clustering algorithm based on viewpoint
and introduces the concept of viewpoint in the process of clustering for the first time

EWFCM The EWFCM algorithm constructs a dimension matrix and adds an additional attribute
weight entropy regularization term. The selection of features is realized by providing
weights for features.

FRFCM FRFCM is an improved FCM algorithm based on morphological reconstruction and
member filtering, which is faster and more robust than FCM.

DVPFCM DVPFCM proposes a viewpoint-driven possibility fuzzy clustering algorithm and
initializes cluster centres by searching density peaks

VWKFC VWKFC is a density-based weighted kernel fuzzy clustering algorithm. Based on the
kernel, the hypersphere density initialization algorithm is proposed and the concept of
weighted information particles is established.

FCAG FCAG is a fast clustering model based on anchor point guidance. The proposed model
avoids trivial solutions and has no additional regularization terms.

(Continued)
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Table A4 (continued)
SR-PCM-

HDP
SR-PCM-HDP is a self-adjusting possibility C-means clustering algorithm which uses
high density points to simplify clustering and improve clustering efficiency while
determining the number.

RDVWKFC RDVWKFC proposed a weighted kernel fuzzy clustering algorithm based on relative
density view, which can capture the intrinsic structure of data more accurately and
improve the initial quality of clustering.

Appendix A.8 Abbreviation of Various Clustering Algorithms
Table A5 shows the abbreviations of clustering algorithms mentioned in the manuscript.

Table A5: Abbreviation of various clustering algorithms

Abbreviation Full name
DPC Density peak clustering
FCM Fuzzy C-Means algorithm
PCM Possibilistic C-Means algorithm
KFCM Kernelized Fuzzy C-Means
FCAG Fast clustering with anchor guidance
SR-PCM-HDP self-regulating possibilistic C-Means (PCM) with high-density points
FWPCM Feature-Weighted Possibilistic C-Means algorithm
V-FCM Viewpoint-based Fuzzy C-Means (V-FCM) algorithm
EWFCM Entropy regularized weighted fuzzy C-Means algorithm
FRFCM A feature-reduction FCM
DVPFCM Density view-induced probabilistic fuzzy C-Means
VWKFC Viewpoint-based weighted kernel fuzzy clustering
RDVWKFC Relative-density-viewpoint-based weighted kernel fuzzy clustering algorithm
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