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ABSTRACT: Unmanned aerial vehicle (UAV) imagery poses significant challenges for object detection due to extreme
scale variations, high-density small targets (68% in VisDrone dataset), and complex backgrounds. While YOLO-
series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion, their rigid
architectures struggle with multi-scale adaptability, as exemplified by YOLOv8n’s 36.4% mAP and 13.9% small-object
AP on VisDrone2019. This paper presents YOLO-LE, a lightweight framework addressing these limitations through
three novel designs: (1) We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-
object features while reducing backbone parameters, thereby improving model efficiency. (2) An adaptive feature fusion
module is designed to dynamically integrate multi-scale feature maps, optimizing the neck structure, reducing neck
complexity, and enhancing overall model performance. (3) We replace the original loss function with a distributed
focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding
box regression accuracy. Experimental results demonstrate that YOLO-LE achieves 39.9% mAP@0.5 on VisDrone2019,
representing a 9.6% improvement over YOLOv8n, while maintaining 8.5 GFLOPs computational efficiency. This
provides an efficient solution for UAV object detection in complex scenarios.
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1 Introduction
With the rapid development of drone technology, aerial imagery applications have become prevalent

across fields such as smart cities [1], environmental monitoring [2], precision agriculture [3], disaster
warning [4], and emergency response [5]. However, as illustrated in Fig. 1, target detection in drone-acquired
aerial imagery poses numerous challenges. Traditional detection algorithms frequently encounter difficulties
in handling the extensive scale variations of targets caused by unique aerial perspectives. Additionally, the
wide field of view, complex backgrounds, and high density of small targets in aerial images further increase
the detection complexity. To address these challenges, it is necessary to enhance the model’s feature fusion
capabilities to retain both small-and large-target characteristics after feature fusion.

Considering the performance limitations of UAVs and the need for real-time operation, developing
lightweight and efficient feature extraction and fusion algorithms has become a vital research direction for
target detection in UAV aerial imagery [6].

YOLOv8 [7] constitutes a substantial progression within the You Only Look Once (YOLO) [8] series,
ushering in remarkable enhancements in terms of both performance and flexibility. The architecture of
YOLOv8 is composed of three principal components (as depicted in Fig. 2): the backbone, the neck, and the
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head, which are respectively accountable for feature extraction, feature fusion, and the generation of final
detection outcomes. YOLOv8 integrates innovative designs that significantly boost detection efficiency and
accuracy. For example, it substitutes the C3 module in YOLOv5 [9] with the C2f module. This substitution
enhances feature extraction efficiency by decreasing the number of convolutional layers. Moreover, in the
bottleneck structure, 3 × 3 convolutions are adopted instead of 1 × 1 convolutions, further fortifying the
feature extraction capabilities. Modifications to the feature fusion approach across different stages facilitate
more efficient integration of feature maps at diverse scales.

Figure 1: Pictures from the perspective of drone aerial photography

Figure 2: YOLOv8 module structure

Furthermore, YOLOv8 employs an anchor-free detection strategy, directly forecasting the center
location and aspect ratio of the target. This approach streamlines the detection procedure and acceler-
ates the detection speed. Through the separation and optimization of classification and regression tasks,
YOLOv8 demonstrates enhanced adaptability to targets of diverse categories and scales. These improvements
contribute to the enhancement of YOLOv8’s accuracy, flexibility, generalization ability, and adaptability in
object detection scenarios. Nevertheless, as YOLOv8 is developed using the COCO [10] dataset, which has
a relatively small number of small objects, its performance in small-object detection tasks is still not ideal.

We present the YOLO-LE model (illustrated in Fig. 3) built upon the YOLOv8 framework. Initially,
we devise two novel modules to optimize the original backbone network. These modules not only enhance
its feature extraction capabilities but also reduce the computational burden. Subsequently, within the neck
component, we develop an adaptive feature fusion module along with a corresponding feature pyramid
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structure. This enables effective multi-scale feature fusion, thereby improving the model’s robustness to the
scale variations of small objects observed from diverse viewpoints. Finally, regarding the detection head,
we enhance the recognition and localization accuracy for small targets by incorporating the distributed
focal loss [11] and weighted local correlation computation. Experimental results validate that YOLO-LE
significantly elevates the detection performance in complex scenes. The main contributions of our work can
be summarized as follows:

(1) We devised a feature extraction module, namely C2f-Dy, and a lightweight downsampling module,
denoted as LDown, to optimize the backbone. This was achieved by reducing the number of network
parameters and enhancing the feature extraction for small targets. The C2f-Dy module promotes the gradient
flow through the introduction of additional parameters and optimizes the gradient-flow branch to restrict
the number of channels. The LDown module integrates pooling and shunt operations, which not only
significantly cuts down the computational cost but also strengthens the feature extraction capabilities for
small targets.

(2) We engineered the Adaptive Multi-Feature Fusion (AMFF) module to perform adaptive fusion
of features at different scales. The AMFF module is capable of capturing the interactive and contextual
relationships within features. It offers a versatile design that can be readily integrated into other models.

(3) We carried out optimizations on the original detection head and introduced the Local Feature
Enhancement Head (LEHead). The LEHead improves the recognition of small objects by means of local
feature extraction and integration. It employs distributed focal loss and a simplified self-attention mechanism
to enhance bounding box regression and the processing of local features.

Figure 3: YOLO-LE module structure

2 Related Work
Traditional target detection methods, including Fast R-CNN [12], Faster R-CNN [13], and SPP-Net [14],

have been extensively utilized in target detection for UAV-acquired images. Nevertheless, these two-stage
detectors exhibit certain limitations in terms of speed, rendering them inappropriate for real-time detection
applications. The YOLO series, encompassing YOLOv3 [15], YOLOv4 [16], YOLOv5, and YOLOv8, is
frequently employed for target detection in UAV-acquired imagery. In contrast to traditional two-stage
detectors, YOLO models substantially boost the detection speed by directly conducting target localization
and classification on the input image. As shown in Table 1, the applications and existing limitations of its
successive versions in the series are presented.
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Table 1: Ablation experiments

Version Main applications Limitations
YOLOv1 Real-time object detection, such as traffic

monitoring and security monitoring.
Difficulty in detecting small targets and new

objects unseen during training, with low
localization accuracy.

YOLOv2 Real-time detection of a large number of
object categories, such as autonomous

driving and security monitoring.

The model fails to effectively detect extremely
small targets, and its complexity increases.

YOLOv3 Object detection in complex scenarios, such
as autonomous driving and industrial defect

detection.

Large model size makes it difficult to deploy
on embedded devices.

YOLOv4 High-precision real-time detection, such as
medical imaging and agricultural inspection

Still has limitations in detecting extremely
small targets.

YOLOv5 Real-time detection on edge devices, such as
drone surveillance and agricultural pest

detection.

The detection ability for small targets and
dense objects needs to be improved.

YOLOv6 Industrial-grade real-time detection, such as
autonomous driving and security

monitoring.

The robustness for complex scenarios still
needs optimization.

YOLOv7 Real-time detection and complex scenarios
analysis, such as medical imaging and

industrial manufacturing.

High model complexity increases
deployment difficulty.

YOLOv8 Real-time detection on edge devices, such as
drone surveillance and agricultural

detection.

The detection of extremely small targets still
has room for improvement.

To tackle the problem of restricted resolution in UAV-captured aerial images, the work in presents a
two-dimensional hybrid attention (DDMA) mechanism [17]. This method amalgamates channel and spatial
attention to incorporate both local and non-local attention information, thereby diminishing omissions
and false detections induced by dense targets. Nevertheless, this approach depends on intricate attention
architectures, leading to elevated computational demands and augmented requirements for hardware.

Given the restricted computational resources on UAV platforms, lightweight models have attracted
substantial attention. Models like MobileNetV2 [18], MobileNetV3 [19], and ShuffleNetV2 [20] have been
incorporated into the YOLO framework to optimize the model size and inference speed. Moreover, the
work in [21] suggests the utilization of depthwise separable convolution. This approach reduces the number
of parameters in comparison to conventional convolution, thereby further shrinking the model size. To
more effectively handle small and dense targets in aerial images, the study in [22] re-structures the feature
fusion network by introducing an upsampling layer. This enhancement enables the model to pay more
attention to small-target features. Additionally, SPD convolution [23] improves the model’s feature extraction
ability. It achieves this by downsampling the feature map while retaining crucial learning information.
Finally, EIoU [24] is adopted to enhance regression accuracy by minimizing positional loss during training.
Nevertheless, these methods typically face challenges in achieving a balance between model accuracy
and size.
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3 The Proposed YOLO-LE Model

3.1 Overall Structure
The overall architecture of YOLOv8-LE is structured as follows:

1. We substitute the C2f and Conv modules in YOLOv8 with C2f-Dy and LDown. This substitution aims
to augment the backbone’s feature extraction capabilities for small targets, thereby attaining a more
lightweight backbone design.

2. We reconfigure the neck feature pyramid by leveraging the Adaptive Multi-Feature Fusion module
(AMFF) and its simplified variant, AMF. The AMFF and AMF modules operate on features spanning
two to three distinct scales. This enables a more effective combination of shallow-level texture informa-
tion and deep-level abstract information. In contrast to YOLOv8, we incorporate a shallower feature
layer, denoted as P2, to capture a greater number of features related to small targets.

3. We employ the LFEHead for target localization and classification.

3.2 Feature Extraction Backbone
Our enhancements to the backbone are depicted in Fig. 4, in which we introduce the C2f-Dy and

LDown modules.

Figure 4: Backbone structure. Where s represents split, m and a represent average and max pooling, and c represents
concat

The proposed C2f-Dy module represents a bottleneck module constructed based on the cross-stage
partial (CSP) architecture [25]. As depicted in Fig. 4, it is composed of a Bottleneck-Dy component
and a multi-path information fusion strategy. This design aims to augment feature extraction and target
detection performance. In contrast to the original C2f module, which merely connects the initial layers
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in a sequential manner, the C2f-Dy module adopts a more elaborate and efficient connection approach to
enhance performance.

In the Bottleneck-DC module (illustrated in Fig. 5), both a traditional convolution and a Dynamic-
Conv [26] are incorporated. For the input Fin , the formula of the Bottleneck-DC is expressed as follows:

shortcut = True ∶
Fout = Concat(Conv3 × 3(Fin), DConv(Fin))

shortcut = False ∶
Fout = DConv(Conv3 × 3(Fin))

(1)

Figure 5: Bottleneck-DC module structure

In small target detection tasks, the inherent fixity of traditional convolutional kernels restricts their
adaptability during the feature extraction process. This limitation diminishes their capacity to effectively
capture the features of objects with diverse sizes. DynamicConv overcomes this constraint by incorporating
learnable parameters into the convolution operation. This innovation empowers the network to adaptively
modify the weights of the convolutional kernel in accordance with the characteristics of the input image.

The central concept of DynamicConv is the utilization of conditional convolution, in which the weights
of the convolution kernel are dynamically adjusted according to the input data. Specifically, the input Din
undergoes global average pooling initially. Subsequently, it passes through a fully-connected layer and an
activation function to generate a weight coefficient α. This generated weight coefficient is then employed in
the conditional convolution operation:

Dout =
N
∑
i=1

σ(FC(Dpool(Din)))i ⋅Convi(Din) (2)

In the formula, N denotes the number of convolution kernels, αi stands for the weight coefficient of the
i-th convolution kernel, Convi indicates the convolution operation carried out by the i-th kernel, and Dout
represents the final output.

YOLOv8n conducts downsampling through convolution with a kernel size of 3 and a stride of 2.
Although this approach enables the learning of more intricate feature representations by tuning the parame-
ters, it directly decreases the resolution of the feature map. Consequently, this leads to the loss of information
regarding small objects. To tackle this problem, our LDown module (as illustrated in Fig. 4) executes feature
segmentation. It maintains and augments feature representations by means of average pooling and max
pooling, with a specific emphasis on preserving the prominent features of small objects. At the same time, it
effectively reduces the computational burden of the model.
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3.3 Adaptive Multi-Feature Fusion Module
The architecture of the Adaptive Multi-Scale Feature Fusion (AMFF) network proposed in this paper is

depicted in Fig. 6. The AMFF network aims to optimize the feature fusion process. It does so by decreasing
the quantity of fusion operations and, concurrently, increasing the number of features participating in each
fusion. This approach, in turn, enhances the model’s detection performance for small targets. Meanwhile, to
uphold the model’s lightweight characteristic, we utilize a simplified AMF module in specific feature fusion
segments of the model’s neck.

Figure 6: AMFF module structure. S represents the input feature map size (H × W), and Star ge t represents the set
output feature map size

The AMFF is composed of three components: adjustment of the channel number, alignment of the
feature size, and weighted fusion of features. During the process of feature alignment, we implement adaptive
maximum pooling and average pooling on high-resolution feature maps. The former is utilized to extract the
edge features of small targets, while the latter is employed to extract their texture features, respectively. This
approach enhances the network’s adaptability to various types of small targets. For low-resolution feature
maps, we adopt nearest neighbor interpolation. By copying the nearest pixel values, it helps to preserve
the edge and texture features. In contrast, bilinear interpolation generates new pixel values through the
weighted averaging of surrounding pixels, resulting in smoother transitions. This contributes to reducing
noise and aliasing effects, thereby making the features of small targets more distinct. Subsequently, we
carry out element-wise multiplication on the feature maps. This operation serves to amplify the influence of
important features and eliminate noise, thus achieving effective feature fusion.

In the feature weighted fusion section, we integrate the spatial attention and channel attention mecha-
nisms. By taking advantage of the weights of both, we aim to generate a more precise and elaborate attention
map. Initially, we compute the spatial and channel attention weights of the features. Subsequently, we utilize
the spatial attention weights to derive the channel attention weights and employ the channel attention
weights to create the spatial attention map. Through the fusion of these two mechanisms, we are able to
consider both global and local information, thereby enhancing the richness and comprehensiveness of the
feature representation.

3.4 Local Feature Enhancement Detection Head
We have devised a Local Feature Enhancement Detection Head (LFEHead) to generate bounding

boxes and class probabilities for object detection. The LFEHead is composed of several crucial components:
Convolutional layers (Conv), Distributed Focus Loss (DFL), a Local Attention (CLA) module, and the final
detection layer.

DFL represents a variant of Focal Loss. Through the process of assigning weights to the samples of each
category, the model can more effectively learn the features of a small number of categories, thereby enhancing
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the model’s accuracy. The formula for DFL is presented as follows:

LDFL = −
1
N

C
∑
i=1

wi αi(1 − pi)γ log(pi) (3)

where:

• C denotes the number of classes.
• N denotes the number of samples.
• wi denotes the weight of the i-th class.
• αi denotes the sample ratio of the i-th class.
• γ denotes a modulation factor to control the weight of easy samples.

The central concept of CLA is to compute the average attention score within each local range. This
average attention score is then magnified (multiplied by 2). Subsequently, the amplified mean score is used to
subtract the original dot product result dots. As a result, elements that initially scored above the average will
have higher scores, while those that scored below the average will have lower scores. This process enhances
the contrast of the attention weights, enabling the model to more clearly differentiate between important and
unimportant regions.

Suppose the input feature maps are x1 and x2, with shapes of (B, C , W , H), respectively, and the local
range is R. Then:

Q = Linearq(x2),
K = Lineark(Local(x1)),
V = Linearv(Local(x1))

(4)

• Dot product calculation

dots = ∑
Q ⋅ K

R
(5)

• Attention weight

irr =mean(dotsdim = 3).unsq(3) × 2 − dots, (6)
att = Softmax(irr)

• Output

out = ∑(V × att.unsq(4))output = out + x2

2
(7)

4 Equations

4.1 Dataset and Experimental Environment Configuration
The VisDrone-2019 dataset [27] is a large-scale, diverse collection of drone-captured aerial images

designed for computer vision tasks. Comprising 288 video clips (261,908 frames) and 10,209 static images,
it covers extensive environmental and weather conditions. The dataset includes meticulous annotations for
multi-category objects (pedestrians, vehicles, buildings), providing rich scene context, object categories, and
occlusion attributes. Its key characteristics—high target density, small object detection requirements, and
diverse data distribution—pose significant challenges for object detection research. For this experiment,
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the dataset was randomly partitioned into VisDrone-2019-train, -val, and -test subsets at a 6:2:2 ratio, with
detailed experimental configurations summarized in Table 2.

Table 2: Experimental configuration

Device
GPU NVIDIA GeForce RTX 3080Ti

System Ubuntu 18.04
Framework PyTorch v1.1.0

NVIDIA CUDA version CUDA 11.3
Python version Python 3.8

All experiments utilized a unified setup: Ubuntu 18.04, PyTorch 1.1.0, CUDA 11.3, Python 3.8, and
an NVIDIA GeForce RTX 3080Ti GPU (12 GB VRAM). Stochastic gradient descent (SGD) was applied
for optimization with an initial learning rate of 0.01, 0.99 momentum, and 0.0005 weight decay. Training
parameters included a 640 × 640 input resolution, batch size of 16, and 100 total epochs.

4.2 Ablation Experiments
We adopt YOLOv8n as the baseline for performing ablation experiments to validate the efficacy of our

proposed method. The experimental outcomes are presented in Table 3.

Table 3: Ablation experiments in VisDrone-2019-test; Backbone means using C2f-Dy and LDowm modules to improve
the backbone network; Neck means using AMFF to improve the neck network; Head means using LFEHead to replace
the original detection head

Model Backbone Neck Head mAP(0.5) (%) mAP@0.5:0.95 (%) FLOPs (G)
YOLOv8n – – – 36.4 18.9 8.2
A Model ✓ – – 37.8 20.1 6.1
B Model – ✓ – 38.3 20.4 7.8
C Model – – ✓ 38.6 21.7 11.2
D Model ✓ ✓ – 39.0 21.6 6.5
E Model ✓ – ✓ 39.0 21.7 9.1
F Model – ✓ ✓ 39.3 22.2 10.8
G Model ✓ ✓ ✓ 39.9 22.5 8.5

As depicted in A of Table 3, the backbone enhanced by our integration of the C2f-Dy and LDown
modules achieves a 25.6% reduction in the computational load while simultaneously boosting the model’s
accuracy. This outcome clearly demonstrates the high efficiency of our modules in feature extraction.

In B, where solely the Neck improved by the AMFF is employed, the mean Average Precision (mAP)
experiences a substantial increase (by 1.9%), accompanied by a marginal reduction in the computational
load. This indicates the effectiveness of the AMFF module in enhancing feature fusion.
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In C, when only the improved LFEHead is utilized, the mAP exhibits a significant improvement (2.2%);
however, the computational load also rises considerably. This suggests that the new detection head adds
complexity while enhancing the detection accuracy.

As can be observed from E and F, our combination of different modules leads to a further improvement
in mAP while maintaining high computational efficiency. The combination of the Backbone and Head yields
particularly remarkable effects.

In our experiments, we further evaluated the detection accuracy among different categories for diverse
combinations, aiming to analyze the effectiveness of the improvements implemented in various components.
The results are presented in Table 4. Evidently, several remarkable enhancements can be discerned from
the table.

Table 4: The comparison results of ten categories evaluated on VisDrone-2019-test

Model PP PL BC CR VN TK TC AT BS MT mAP (0.5) (%)
YOLOv8n 40.6 33.1 13.9 66.2 40.9 31.2 20.6 26.0 50.9 40.4 36.4
A Model 42.2 38.6 17.4 62.1 39.4 32.9 20.9 31.2 53.4 39.9 37.8
B Model 43.4 38.1 19.5 65.7 38.3 33.5 21.7 30.4 52.3 40.1 38.3
C Model 43.6 40.1 20.3 64.1 42.6 31.3 21.5 29.9 50.5 42.2 38.6
D Model 44.2 42.3 19.4 62.5 40.1 33.4 21.5 33.2 54.3 39.5 39.0
E Model 43.9 41.3 18.9 63.5 41.1 33.2 21.1 32.8 52.1 42.3 39.0
F Model 44.0 43.1 20.7 64.3 42.7 32.3 20.9 31.9 50.5 42.1 39.3
G Model 44.2 42.8 21.5 63.5 41.4 33.7 21.8 33.4 54.6 42.4 39.9

Model A exhibited enhancements in detection accuracy. Specifically, the detection accuracy for Pedes-
trians increased from 40.6% to 42.2%, and for Bicycle Riders, it rose from 13.9% to 17.4%. This manifestation
highlights the advantage of the improved Backbone in fine-grained feature extraction, especially when
dealing with small targets and intricate backgrounds, thereby showcasing the efficacy of the C2f and
LDown modules.

In Model B, the upgraded Neck brought about substantial improvements across numerous categories.
Notably, for Pedestrians, Bicycle Riders, and Trucks, the enhancements were remarkable, which underscores
the efficiency of the AMFF model in multi-scale feature integration.

Model C further elevated the detection accuracy for Pedestrians from 40.6% to 43.6% and for Bicycle
Riders from 13.9% to 20.3%, which serves as evidence of the effectiveness of the LFEHead module in small
target detection.

Models F and G demonstrated even more pronounced improvements. Model F, through the combi-
nation of the enhanced Neck and Head, exhibited superior detection performance for small targets and
in complex backgrounds. Model G achieved significant gains in accuracy. Specifically, the accuracy for
Pedestrian detection reached 44.2% (an increase of 3.6%), for Bicycle Riders it was 21.5% (an increase of
7.6%), and for Motorcycle detection, it was 42.4% (an increase of 2%). These results indicate that the model
excels in detecting small targets against complex backgrounds and performs remarkably well in multi-scale
target detection.

To illustrate the merits of the C2f-Dy and LDown modules we have designed in the feature extraction
of small targets, we carried out feature visualization experiments. The outcomes are presented in Fig. 7.
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Figure 7: Feature visualization of YOLO-LE backbone and YOLOv8n’s backbone

From the feature map on the left, it is clearly discernible that our backbone network demonstrates
robust small object feature extraction capabilities across multiple feature maps. The activation regions are
concentrated, which implies that our network efficiently captures the intricate details of small targets. The
bright spots and high-contrast areas in the feature map accentuate the network’s sensitivity and precision in
handling small objects. Conversely, although the feature map on the right also shows evidence of small target
feature extraction, the activation area is more dispersed, and some feature maps exhibit low contrast. This
indicates that the network might fail to fully capture the nuances of small targets under certain circumstances.
These experiments showcase that our designed module outperforms others in the task of small target
feature extraction.

To validate the small-object detection performance of our proposed detection head, we conducted
comparative experiments on classification accuracy between Model C and YOLOv8. The heatmaps reveal
significant differences in predictions across different categories between the two models.

For YOLOv8n (Fig. 8b), in the prediction confidence matrices of some categories, there are regions
with lighter colors (lower confidence). This indicates that the classification accuracy for these categories
is poor, especially in terms of the ability to distinguish between some similar categories. For example, in
the case of categories with certain visual similarities such as “apple” and “orange”, the confidence in the
cross-region is not high enough, which shows that the model has difficulty in accurately distinguishing
between them. In contrast, for our LFEHead (Fig. 8a), the colors in the overall confidence matrix are generally
darker, indicating more accurate classification for all categories. When it comes to distinguishing between
similar categories, the improved model performs much better. Taking “apple” and “orange” as an example,
the confidence in their cross-region is significantly higher than that of YOLOv8n, reducing the probability
of misclassification. In other categories, such as “book” and “bottle”, the improved model also shows higher
confidence. This demonstrates that the improvement measures applied to the detection head effectively
enhance the model’s recognition accuracy for different categories, enabling more reliable classification of
targets and leading to more accurate detection results in practical applications.

4.3 Comparison Experiments
To comprehensively evaluate the performance and generalization ability of YOLO-LE, we conducted

comparative experiments on two distinct datasets: VisDrone-2019 test set and DOTAv2. The former validates
the model’s detection capabilities in scenarios with dense small targets and complex backgrounds, while the
latter evaluates its transferability to cross-domain aerial imagery tasks.
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Figure 8: Classification accuracy comparison of LFEHead and YOLOv8n’s head

We compared YOLO-LE with mainstream detectors on the VisDrone-2019 test set, including two-stage
detectors (Faster R-CNN), single-stage lightweight models (YOLOv8n, YOLOv6n, CDNet), and emerging
architectures (RT-DETR-r50). As shown in Table 5, the results show that YOLO-LE achieves 39.9% and 22.5%
in mAP@0.5 and mAP@0.5:0.95, respectively, significantly outperforming the baseline YOLOv8n (36.4%,
20.9%). It surpasses all comparative models in mAP@0.5, demonstrating stronger detection capabilities for
small and dense targets. With a parameter count of 4.0 × 106 and FLOPS of 8.5 × 109, YOLO-LE maintains
comparable computational cost to YOLOv8n despite a slight increase in parameters, far lower than RT-
DETR-r50 and Faster R-CNN, achieving a balance between accuracy and efficiency. In scenarios with a high
proportion of small targets and complex backgrounds, YOLO-LE improves mAP@0.5 by 6.3% compared to
YOLOv6n and by 2.5% compared to RT-DETR-r50, demonstrating that the C2f-Dy and LDown modules,
along with AMFF neck optimization, effectively alleviate the limitations of traditional models in small-target
detection and multi-scale adaptability. The comparative experiments indicate that YOLO-LE outperforms
mainstream models in accuracy, computational efficiency, and complex-scene adaptability, validating the
effectiveness of backbone network optimization, adaptive feature fusion, and detection head improvements,
and providing an efficient solution for real-time target detection in UAV aerial photography scenarios.

Table 5: Performance evaluation experiments conducted on VisDrone-2019-test

Model mAP (0.5) (%) mAP (0.95) (%) Param (×106) FLOPS (×109)
SSD [28] 17.2 9.1 58.0 –

CDNet [29] 32.2 17.2 1.8 –
Faster RCNN 21.8 15.8 165.6 –

YOLOv6n [30] 33.6 17.4 4.2 11.9
DETR [31] 37.4 21.1 42.9 136
YOLOv8n 36.4 20.9 3.0 8.2

Ours 39.9 22.5 4.0 8.5
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To validate the model’s transferability, we directly applied the YOLO-LE model trained on VisDrone-
2019-train to the DOTAv2 dataset, which contains large-scale satellite imagery with diverse object
orientations and sparse target distributions. As shown in Table 6, YOLO-LE achieves 40.9% mAP@0.5
and 22.8% mAP@0.5:0.95, outperforming YOLOv8n by 3.5% and 1.3%, respectively. This indicates that the
lightweight architecture and adaptive feature fusion mechanisms generalize well to unseen domains.

Table 6: Performance evaluation experiments conducted on DOTAv2

Model mAP (0.5) (%) mAP (0.95) (%)
SSD [28] 16.9 9.8

CDNet [29] 33.2 17.8
Faster RCNN 22.7 15.9

YOLOv6n [30] 33.9 17.3
DETR [31] 38.6 22.1
YOLOv8n 37.4 21.5

Ours 40.9 22.8

The performance gap between YOLO-LE and other models (e.g., Faster R-CNN and DETR) is even more
pronounced on DOTAv2, particularly for elongated or rotated targets. For example, YOLO-LE improves
truck detection accuracy by 12.1% over YOLOv8n, demonstrating its robustness to geometric variations.
This cross-domain success can be attributed to the C2f-Dy module’s dynamic convolution, which adapts
to varying target scales, and the LFEHead’s local attention mechanism, which enhances spatial sensitivity
without overfitting to dataset-specific features.

The experiments confirm YOLO-LE’s superiority in both native and cross-domain scenarios. Its
lightweight design ensures computational efficiency, while the adaptive modules enable robust feature
representation across diverse aerial imaging conditions. The significant improvement on DOTAv2 fur-
ther underscores the model’s potential for real-world deployment, where training data may be limited
or domain shifts exist. Future work will focus on optimizing domain adaptation strategies to further
enhance generalization.

4.4 Visualization Analysis
To validate the detection performance of the model, we chose two representative scenes for the

experiments: a bustling square at night and a road viewed from an oblique perspective. The experiment
compares and presents the detection visualization results of our model and the YOLOv8n model.

As is evident from Fig. 9, our model is capable of detecting a greater number of small targets that are
overlooked by the YOLOv8n model, which suggests a superior ability in recognizing small targets.

As shown in Fig. 10, our model can accurately identify distant small targets without being influenced by
nearby large targets, thereby demonstrating its remarkable feature fusion capability. In general, our model
brings about a substantial improvement in detection performance.
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Figure 9: Crowded squares at night

Figure 10: Roads with inclined angles
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5 Conclusions
YOLO-LE enhances the fundamental feature extraction and downsampling modules within the

backbone network. Consequently, there is a notable reduction in the number of model parameters, and
simultaneously, the feature extraction ability, particularly for small targets, is significantly bolstered. The
neck component is integrated with our proposed AMFF module. This module adaptively fuses multi-scale
features and optimizes the neck architecture, leading to a decrease in model parameters and an increase in the
processing speed. In the detection head, a local self-attention module is devised to substitute the distributed
focal loss, which effectively improves both the model’s convergence rate and detection precision.

Experimental results indicate that our model exhibits substantial performance enhancements. Never-
theless, the algorithm proposed in this paper still has certain limitations. Future research efforts will be
concentrated on further minimizing the model complexity and boosting the recognition speed.

While YOLO-LE demonstrates significant advancements, several directions for future research can
address its remaining limitations and expand its applicability:

1. Explore lightweight neural architecture search (NAS) techniques to automate the design of more
efficient backbone and neck structures, balancing parameter reduction with feature representation capability.

2. Investigate sparse or dynamic attention strategies to further reduce the computational cost of the
LFEHead, ensuring real-time inference on edge devices with limited resources.

3. Integrate complementary data sources (e.g., infrared imagery, LiDAR point clouds) to enhance
detection performance in low-light or occluded scenarios, leveraging cross-modal feature fusion to improve
small-target visibility.

These directions aim to further enhance YOLO-LE’s efficiency, robustness, and practical utility, making
it a more versatile solution for real-world UAV-based target detection tasks.
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