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ABSTRACT: This paper examines the application of the Verkle tree—an efficient data structure that leverages
commitments and a novel proof technique in cryptographic solutions. Unlike traditional Merkle trees, the Verkle tree
significantly reduces signature size by utilizing polynomial and vector commitments. Compact proofs also accelerate
the verification process, reducing computational overhead, which makes Verkle trees particularly useful. The study
proposes a new approach based on a non-positional polynomial notation (NPN) employing the Chinese Remainder
Theorem (CRT). CRT enables efficient data representation and verification by decomposing data into smaller, indepen-
dent components, simplifying computations, reducing overhead, and enhancing scalability. This technique facilitates
parallel data processing, which is especially advantageous in cryptographic applications such as commitment and proof
construction in Verkle trees, as well as in systems with constrained computational resources. Theoretical foundations
of the approach, its advantages, and practical implementation aspects are explored, including resistance to potential
attacks, application domains, and a comparative analysis with existing methods based on well-known parameters and
characteristics. An analysis of potential attacks and vulnerabilities, including greatest common divisor (GCD) attacks,
approximate multiple attacks (LLL lattice-based), brute-force search for irreducible polynomials, and the estimation of
their total number, indicates that no vulnerabilities have been identified in the proposed method thus far. Furthermore,
the study demonstrates that integrating CRT with Verkle trees ensures high scalability, making this approach promising
for blockchain systems and other distributed systems requiring compact and efficient proofs.

KEYWORDS: Verkle tree; Verkle tree commitment and proof; non-positional polynomial notation (NPN); Chinese
remainder theorem

1 Introduction
Public-key encryption is vulnerable to attacks using quantum computers. Currently, the most well-

known and widely used public-key encryption systems are Elliptic Curve Cryptography (ECC) and
Rivest-Shamir-Adleman (RSA). The security of ECC is based on the intractability of the elliptic curve
discrete logarithm problem, whereas the security of RSA cryptography relies on the intractability of
integer factorization of large numbers. Both ECC and RSA are susceptible to attacks utilizing quantum
computers [1–3].

Shor’s algorithm is a well-known quantum algorithm capable of efficiently factoring large integers in
polynomial time, significantly reducing the security of cryptographic algorithms such as ECC and RSA. Such
attacks pose a threat to many applications that rely on public-key cryptography, including Transport Layer
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Security (TLS), Secure/Multipurpose Internet Mail Extensions (S/MIME), Pretty Good Privacy (PGP), and
digital signatures. If Shor’s algorithm is implemented on a quantum computer with a sufficient number of
qubits, it can break the elliptic curve digital signature algorithm (ECDSA), which is the primary public-key
signature algorithm used for Bitcoin, Ethereum, and many other blockchains [4–7].

One of the most critical aspects of implementing post-quantum cryptography is ensuring compatibility
with existing technological systems. This is essential to allow the transition to new cryptographic standards
without the need for a complete overhaul of current digital infrastructure. By maintaining such continuity,
organizations can smoothly and efficiently upgrade their security frameworks, significantly reducing the
risks posed by potential quantum computer-based attacks. Therefore, the integration of new algorithms into
current protocols and software becomes a key component of any information protection strategy in the era
of quantum technologies [8].

In July 2022, after three rounds of evaluation, the National Institute of Standards and Technology
(NIST) announced the first batch of standardized post-quantum cryptographic algorithms. Ultimately,
four algorithms were selected: CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON, and SPHINCS+ [9].
Among them, NIST recommends two primary algorithms: CRYSTALS-KYBER (for key establishment)
and CRYSTALS-Dilithium (for digital signatures) for most use cases, while also endorsing FALCON
and SPHINCS+ for signature schemes [10]. NIST-standardized algorithms, such as CRYSTALS-KYBER,
belong to the field of post-quantum cryptography, but they are designed for entirely different tasks—
specifically, encryption and key exchange. In contrast, the proposed method focuses on efficient polynomial
commitments in Verkle trees.

Traditional hash-based signature schemes, such as those based on Merkle trees, require strict key
management to prevent reuse, as key reuse can lead to security compromises [11,12].

The primary issue with Merkle trees is that in the process of “proving something”, nearly all hashes must
be revealed, even if they do not contain relevant information. As the Ethereum blockchain scales, running
nodes and verifying data integrity becomes increasingly challenging due to the growing amount of stored
information. This has led to the need for a new approach that enables more efficient data verification without
requiring the disclosure of all hashes throughout the process. The solution currently being developed is the
Verkle tree [13].

In recent years, Verkle trees have emerged as a promising approach to organizing Merkle-like structures
in blockchains. Their main advantage lies in significantly reducing proof sizes and accelerating verification
processes, which is particularly critical for scalable blockchain systems. Unlike Merkle trees, which require a
logarithmic number of hashes for proof generation, Verkle trees utilize polynomial commitments, providing
compact proofs of fixed size. The issue of polynomial commitment efficiency remains relevant, as modern
approaches such as Kate-Zaverucha-Goldberg-based (KZG-based) or Bulletproofs-based commitments
have their limitations despite offering substantial proof size reductions. In particular, KZG commitments
require a trusted setup, whereas Bulletproofs, despite not having such requirements, involve relatively high
computational complexity. This motivates the search for alternative solutions that can offer a balance between
efficiency, security, and computational costs [14,15].

The Verkle tree is a key component of Ethereum’s next upgrade. It serves the same purpose as the
Merkle tree but offers a significant advantage with its shorter proof size. If there are 1,000,000 data fragments,
a Merkle tree requires a 1 KB proof, whereas a Verkle tree needs only 150 bytes. Verkle trees were first
proposed by John Kuszmaul in 2018. While Verkle trees provide substantial benefits, they require advanced
cryptographic and mathematical knowledge.
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2 Literature Review
In recent years, cryptographic structures that enable compact and efficient data storage and verification

have garnered significant attention from researchers. Among them, Verkle trees, polynomial commitments,
and vector commitments play a crucial role in modern cryptographic systems, including blockchain and
post-quantum protocols. This section focuses on analyzing contemporary research related to Verkle trees,
as well as polynomial and vector commitments. Specifically, it examines their cryptographic properties,
efficiency, and applicability in the context of blockchain and post-quantum cryptography.

The study [16] explores Verkle trees, a cryptographic data structure designed as an alternative to Merkle
trees. The author provides a detailed analysis of their architecture, mathematical properties, the use of vector
commitments, and their advantages over traditional Merkle trees. John Kusmaul’s research demonstrates
that Verkle trees can significantly reduce storage and proof verification overhead, making them a promising
solution for next-generation blockchain systems.

The work [17] proposes an adaptive restructuring of Merkle and Verkle trees to enhance blockchain
scalability. It highlights the unique advantages of adaptive restructuring, such as simplicity, security, and
increased efficiency, without introducing additional complexity or dependencies. The study suggests mod-
ifying the structure of Merkle and Verkle trees in response to data usage patterns, thereby shortening the
average verification path length and lowering the computational overhead associated with data validation.

In [18], the authors propose an efficient Bulletproofs protocol for range proofs and other zero-knowledge
proof tasks. This protocol is designed for confidential transactions in blockchains like Monero and Bitcoin.
Its key advantages include short proof sizes, making it more efficient than existing approaches, the absence of
a trusted setup, eliminating the need for a trusted initialization phase, and efficient verification. Bulletproofs
is based on the discrete logarithm problem, making them potentially resistant to quantum attacks.

Traditional approaches to spatiotemporal queries in blockchain often require additional external storage
or rely on static indexes. In light of this, study [19] introduces a novel adaptive indexing method for
spatiotemporal data in blockchain to improve query efficiency and data verification. This method employs
encrypted signatures for spatiotemporal indexing and features an adaptive algorithm capable of modifying
the tree structure based on query history, optimizing the index for current needs.

Traditional vector commitment schemes require recomputation of all proofs when adding new ele-
ments, leading to significant computational overhead. To address this issue, the authors of [20] propose
a new scheme of aggregatable subvector commitments based on Newton interpolation. This scheme
enables efficient updates of commitments and proofs when adding new elements, eliminating the need for
complete recomputation.

The study [21] focuses on the development of a lattice-based commitment scheme aimed at reducing
communication overhead in cryptographic protocols. The authors provide a comprehensive security analysis
of the proposed scheme, demonstrating its resistance to various attacks, including those potentially feasible
with quantum computing. Additionally, experimental results confirm the scheme’s efficiency and practical
applicability in real-world scenarios. Overall, this work makes a significant contribution to post-quantum
cryptography by offering an efficient and secure solution for low-communication-cost commitments.

Thus, the Verkle tree represents a promising technology that can significantly enhance blockchain
system performance and scalability. Polynomial and vector commitments serve as powerful tools that can
contribute to improving the efficiency and scalability of cryptographic systems. However, as the literature
review suggests, further research is needed, particularly in the areas of security and practical implementation.
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3 Materials and Methods
This section presents the theoretical and practical approaches used in the study. It describes the

mathematical models, algorithms, and experimental attack methodologies applied for the analysis and
verification of the proposed method. Additionally, key research parameters, data used, and evaluation criteria
for assessing the efficiency of the proposed method are outlined.

3.1 Verkle Tree
The Verkle tree is a data structure that combines the properties of Merkle trees and polynomial

commitments. It is designed to improve blockchain scalability by reducing the size of data inclusion
proofs [22]. The Verkle tree is used to represent a large set of elements while providing provable integrity
guarantees (Fig. 1).

Figure 1: Verkle Tree Structure

Key Characteristics of the Verkle Tree:

• More Compact Proofs: The Verkle tree requires significantly less computationally expensive proofs
compared to Merkle trees, which is crucial for conserving computational resources and increasing
blockchain throughput [23].

• Flat Structure: Unlike binary Merkle trees, Verkle trees can utilize nodes with a higher branching factor,
reducing their height.

• Fast Membership Proofs: Clients can quickly verify the presence of elements in the tree using
short proofs.

3.2 Polynomial Commitments
Polynomial commitments enable the verification of polynomial computations without revealing the

polynomial itself or its coefficients.
Key Properties:

• Polynomial Representation: A polynomial commitment is a compact representation of a polynomial
from which proofs of its values at specific points can be derived.

• Proof Correctness: The party generating the commitment can produce proofs for any given points, while
the verifying party can check their correctness without knowing the polynomial itself.

Types of Polynomial Commitments:

• KZG-based Commitments (Kate, Zaverucha, and Goldberg): Widely used in modern implementations
of Verkle trees.

• Bulletproofs-based Commitments: Do not require trusted setups but have higher computational costs.
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3.3 Construction of a Non-Positional Polynomial Notation
The construction of a non-positional polynomial notation based on the Chinese Remainder Theorem

(CRT) represents an intriguing approach in cryptography, information encoding, and number theory. The
key steps and principles for implementing this system are as follows:

3.3.1 Chinese Remainder Theorem (CRT)
The CRT states that the system of congruences:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ≡ r1mod p1

x ≡ r2mod p2

⋮
x ≡ rk mod pk

(1)

has a unique solution x in the ring ZP , where P = p1 ⋅ p2 ⋅ . . . ⋅ pk , provided that the moduli pi are pairwise
coprime. This allows any number x ∈ ZP to be represented as a set of residues (r1 , r2, . . . , rk) [24–26].

Eq. (1) represents a system of congruences stating that for any number x in the ring ZP , a unique
set of remainders (r1 , r2, . . . , rk) can be determined modulo p1 , p2, . . . , pk , provided that the moduli are
pairwise coprime. This follows from the Chinese Remainder Theorem (CRT). In the context of the proposed
polynomial commitment scheme, this representation plays a key role in constructing commitments and
computing verifiable values.

3.3.2 Non-Positional Representation
Instead of the traditional positional numeral system, where each digit has a specific weight, the non-

positional representation based on the CRT operates with residues ri modulo pi .
A number x is represented as: x → (r1 , r2, . . . , rk), where ri = x mod pi . In this system, the order of

residues ri does not affect the representation, making it non-positional.
Example:
Suppose we want to represent the number 29 using the moduli (5, 7). In this case:
The remainder of 29 divided by 5: 29 mod 5 = 4
The remainder of 29 divided by 7: 29 mod 7 = 1
Thus, the representation of 29 in the Non-Positional Notation (NPN) with moduli (5, 7) is (4, 1).

By applying the Chinese Remainder Theorem (CRT), the original number can be reconstructed, enabling
efficient computations within this system.

3.3.3 Polynomial Structure
For a polynomial notation, the moduli pi can be chosen as polynomials over a finite field ZP . For

example, the moduli can be: p1 (x) , p2 (x) , . . . , pk(x), where pi(x) are irreducible polynomials. Any
polynomial f (x) from the ring Fp[x] can be represented as a set of residues [27,28]:

f (x) → ( f (x)mod p1(x), f (x)mod p2(x), . . . , f (x)mod pk(x)).
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3.3.4 Polynomial Reconstruction Algorithm
Using the CRT, the original polynomial f (x) can be reconstructed from the given residues using the

formula:

f (x) =
k
∑
i=1

ri ⋅ Pi(x) ⋅ P−1
i (x)modP (x) (2)

here,

• P(x) is the common modulus, which is the product of all polynomial moduli pi(x).
• Pi(x) is defined as the quotient of the common modulus divided by a specific modulus pi(x).
• The polynomial P−1

i (x) is the multiplicative inverse of Pi(x) modulo pi (x), ensuring correct
reconstruction.

• Each remainder ri (x), which corresponds to the remainder of the polynomial f (x) modulo Pi (x), is
combined with the respective modular polynomials to reconstruct the original f (x)modulo P(x).

Eq. (2) allows for the reconstruction of the original polynomial f (x) based on its remainders modulo
pi(x). In the context of the proposed polynomial commitment scheme, this equation enables efficient
recovery of the polynomial from its representation in a non-positional notation. This is crucial for verifying
the correctness of commitments and ensuring computational efficiency.

3.4 GCD-Based Attacks and the LLL Algorithm
Greatest common divisor (GCD) attacks are used to compromise public-key cryptographic systems.

These attacks allow an adversary to find common factors of different users’ keys or expose private keys if a
weak prime number generator is used. In RSA, DSA, or other cryptosystems, insufficient randomness in key
generation can lead to vulnerabilities that an attacker can exploit in seconds. The attack concept is as follows:
In classical RSA, the public key consists of a modulus N = p ⋅ q, where p and q are large prime numbers. If
two different users accidentally select the same prime number p when generating their keys, it becomes trivial
to discover p using the GCD operation. Suppose there are two RSA keys: N1 = p ⋅ q1 , N2 = p ⋅ q2. An attacker
can compute d = gcd (N1 , N2). If d = p, then both keys can be factorized: p = d , q1 = N1/p, q2 = N2/p.

The LLL (Lenstra–Lenstra–Lovász) Algorithm is a powerful method used in cryptanalysis, including
attacks on RSA, factorization, and finding short vectors in lattices. It is an efficient technique for computing
a reduced lattice basis, making it more orthogonal and containing shorter vectors. This is crucial because
short vectors help solve difficult cryptographic problems, such as identifying weak secret keys.

4 Results and Discussion

4.1 Development of a New Scheme Based on CRT
Verkle trees are an advanced alternative to Merkle trees, designed for efficient data storage and

verification in decentralized systems. One of the key components of a Verkle tree is the use of polynomial
commitments. This section describes the process of constructing such commitments using the CRT. Fig. 2
illustrates the structure of a Verkle tree, where the commitment and proofs are built based on CRT. An
example is provided using a cross-section of a single root and three leaves.

The scheme operates as follows: first, a hash code hi is computed for the information mi using the hash
function H. The obtained hash code is then combined with a pre-generated key gi using the XOR operation,
resulting in the proof πi . The XOR operation with pre-generated keys, as shown in Fig. 2, enhances security
and is accompanied by a whitening process. The whitening process plays a crucial role in strengthening
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cryptographic resistance, as it improves diffusion in the early stages. This, in turn, helps prevent attacks
based on known structures, complicates related-key attacks, and increases the entropy of input data. This
process is repeated for all proofs πi . Next, using these proofs and predefined irreducible polynomials pi ,
the commitment C1 is determined using Eq. (2). An important aspect to consider is that all gi and hi must
have the same degree: deg (gi) = deg (hi) = n. Additionally, all pi must also have the same degree, given by:
deg (pi) = n + 1, where i = 1, . . . , k. Consequently, the degree of the polynomial commitment C(x)must be
deg (C(x)) = k ∗ (n + 1).

Figure 2: Polynomial commitments based on NPN

KeyGen (1n , k). n—security parameter, which represents either the polynomial degree or its length
in binary representation. The parameter k ∈ N determines the number of nodes in the Verkle tree. A
cryptographically secure hash function H∶ {0, 1}∗ → {0, 1}n is used for hashing data.

At this stage, the degree of the polynomial pi(x) is set to n + 1 and depends on the requirements of
the cryptographic scheme. As a working basis, irreducible polynomials pi(x) of degree n + 1 are randomly
selected, where i = 1, k. Then, using a pseudorandom sequence generator G, the required number of keys
gi(x) are generated, forming the complete key G (x) = (g1 (x) , g2 (x) , . . . , gk (x)), where each gi(x) has a
degree of n.

Compp (m1(x), . . . , mk(x)). To compute the polynomial commitment C (x) for all messages mi(x),
the commitment πi(x) is first calculated for each given message mi , where i = 1, k. Using the cryptographic
hash function H∶ {0, 1}∗ → {0, 1}n , the hash value is computed as hi (x) = H (mi (x)) . Then, the proof
πi(x) is determined as πi(x) = hi(x) ⊕ gi(x), where i = 1, k.

Now, based on the CRT, the polynomial commitment C(x), can be reconstructed using all πi as its
remainders. C(x) can be uniquely restored provided that its degree is smaller than the degree of the product
of all pi (x), i.e., deg (C(x)) < deg (p1 (x) ⋅ p2 (x) ⋅ . . . ⋅ pk (x)). The reconstruction of C (x) consists of the
following four steps:

• Compute the product of the working bases: P (x) = p1 (x) ⋅ p2 (x) ⋅ . . . ⋅ pk (x).
• Compute Pi (x) = P(x)/pi(x), i = 1, k.
• Find the inverse polynomial P−1

i (x) such that Pi (x) ⋅ P−1
i (x) ≡ 1 (mod pi(x)), i = 1, k.

• Compute C(x) using the formula: C (x) = ∑k
i=1 πi(x) ⋅ Pi (x) ⋅ P−1

i (x)modP (x) and declare it as the
public key for message verification. C (x) = ∑l

i=1 πi(x) ⋅ Pi (x) ⋅ P−1
i (x)modP (x) , l ≤ k.

Open (mi (x) , πi(x), i). The algorithm declares that the message mi (x) is committed to πi(x) and
that this commitment is indeed included in C (x) without revealing all other values of πi(x).

Ver (C (x) , pi(x), g i(x), i). The algorithm verifies that the provided commitment πi(x) is indeed
contained in C (x) and, accordingly, that the signed or received message mi (x) has not been modified. To
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do this, the proof (pi(x), gi(x)) is sent, and the following computations and comparisons are performed:
πi (x) = C (x)mod pi(x), yi (x) = H(mi(x)) ⊕ gi(x).

If πi (x) = yi (x), then the commitment is valid, and it is concluded that mi is authentic.

Update(C (x) , mi(x), m
′

i(x), g
′

i(x), i). The algorithm is initiated by the sender who wishes to update
the commitment C (x) by replacing the ith message. To perform the update, the commitment is recomputed
as follows: C′ (x) = ∑k

i=1 πi
′(x) ⋅ P′i (x) ⋅ Pi

′−1 (x)modP (x), while there is no need to recompute P (x).
ProofUpdate(C′ (x) , m

′

j(x), π
′

j(x), j). When one or more nodes in a Verkle tree are modified, the
corresponding commitments are recomputed upwards in the tree, altering the root commitment. To update
the proof for query j, only the changed paths need to be considered. Instead of recomputing the entire proof
from scratch, the algorithm modifies the existing proof by incorporating the difference between the old and
new commitment states.

The use of polynomial commitments in tree nodes minimizes proof sizes, making them more efficient
for transmission and verification. This significantly accelerates data authentication, which is particularly
important in scenarios with limited computational resources.

By leveraging polynomial commitments with the CRT, Verkle trees enable faster data verification.
Unlike traditional methods that require sequential hash function computations, this structure employs a
compact representation that substantially reduces verification time. This is especially crucial for distributed
systems where authentication speed plays a key role.

Vector commitments for Verkle trees based on CRT allow for compact storage and verification of nodes,
eliminating the need for discrete logarithm operations. At the same time, the structure remains concise
while supporting efficient inclusion and update proofs. Table 1 presents a comparative analysis of various
polynomial commitment methods.

Table 1: Comparative analysis of the proposed method against other methods

Characteristic Method with NPNs RSA (2048-bit) CDH
Computation speed ~10 ms ~500 ms ~200 ms

Key size 256–512 bits 2048 bits 3072 bits
Commitment size ~512 bits ~512–1024 bits ~1024 bits

Resistance to quantum attacks High Low Low
Update capability Local update Recalculation of the entire system Limited

Support for ZK proofs Optimized Limited Medium

For an objective evaluation of the proposed method, a comparison was conducted with existing
schemes, including KZG and Bulletproofs (Table 2). The evaluation criteria included commitment genera-
tion time and proof verification time.

As seen from the results, the proposed scheme provides a balance between commitment size and
computational speed while demonstrating lower verification costs compared to Bulletproofs and eliminating
the need for a trusted setup, which is required by KZG.

Table 3 provides a comparative analysis of the polynomial commitment scheme based on the Chinese
Remainder Theorem (CRT) and the classical KZG scheme. We examine the parameters—proof size and
computational complexity—at the Commitment and Verify stages, as well as their security properties.
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Table 2: Comparison results

Tree size Scheme Commitment generation time (ms) Proof verification time (ms)

1000 nodes
KZG 1650 125

Bulletproofs [18] 1594 114
Proposed scheme 1289 109

10,000 nodes
KZG 3288 248

Bulletproofs [18] 3128 210
Proposed scheme 2974 185

100,000 nodes
KZG 6515 500

Bulletproofs [18] 6171 392
Proposed scheme 5803 371

Table 3: Comparative analysis with KZG

Parameter Proposed scheme KZG
Proof size Single polynomial πi , degree n One group element in G1

Commitment complexity O (k ⋅ n2) O (d) ⋅ EC mult
Verify complexity O (k + 1) O (logd) ⋅ EC mult

Post-quantum security Yes No

Here, EC mult stands for Elliptic Curve Multiplication, i.e., point multiplication on an elliptic curve.
While KZG grows more efficiently with large polynomial degree d, in practice it tends to be slower due to
the high computational cost of elliptic curve operations.

4.2 Analysis of Potential Attacks on the Proposed Method Based on NPNs
Problem Statement: Let us consider a system of congruences based on the CRT for polynomials:

C (x) ≡ r1 (x)mod p1(x)
C (x) ≡ r2 (x)mod p2(x)

⋮
C (x) ≡ rk (x)mod pk(x)

Is it possible to compute the moduli pi(x) given only C(X) and all ri(x) for i = 1, k?

4.2.1 Greatest Common Divisor (GCD) Attack
One fundamental attack approach is attempting to compute pi(x) through GCD-based attacks. Given

C(x) and ri(x), one can construct the difference: di(x) = C(x) − ri(x). Since di(x) must be divisible by
pi(x), an adversary can attempt to compute: pi(x) = gcd (d1 (x) , d2 (x) , . . . , dk(x)), where i = 1, k. To
mitigate such attacks, the following precautions must be taken:

• Selecting moduli pi(x) without common factors, ensuring that: ∀i ≠ j∶ gcd (pi (x) , p j (x)) = 1.
• Making moduli pi(x) random and unrelated to each other.
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4.2.2 Approximate Multiples Attack (LLL Lattice Reduction)
If the moduli pi(x) exhibit a specific structure or belong to a certain class of polynomials, an adversary

may attempt to recover them using the approximate multiples method. If these moduli have small coefficients
or a known form (e.g., many zeroes or fixed bits), a lattice can be constructed based on the residues, and the
LLL algorithm can be used to approximate pi(x). The LLL algorithm finds a reduced basis for the lattice,
which may help reconstruct the target moduli.

To protect against such attacks, the moduli should be chosen as random dense polynomials, i.e., without
fixed bits or known coefficients. If only irreducible polynomials of degree 256 are used as moduli in the CRT,
the probability of an attacker recovering them becomes negligible because:

• Irreducible polynomials cannot be factored into lower-degree polynomials, which eliminates the
possibility of a GCD attack.

• The number of possible irreducible polynomials is large, and they are uniformly distributed, making it
difficult to identify patterns or predict their structure.

• An LLL-based lattice attack becomes ineffective if the coefficients of irreducible polynomials are
chosen randomly.

4.2.3 Brute-Force Search for Irreducible Polynomials
If an adversary knows that the moduli are irreducible polynomials of degree 256, they may attempt to

enumerate them exhaustively. However, such enumeration has exponential complexity.
Estimation of the Number of Possible Irreducible Polynomials
In the scheme, the proof components consist of two parts, pi (x) and gi (x) , which are generated

independently. The first part of the proof represents a pseudorandom sequence, while the second part
consists of the selected system of polynomial bases p1(x), p2(x), . . . , pk(x). It is known that the number of
operations required to enumerate all possible keys gi (x) of length n bits is 2n . To determine the number
of irreducible polynomials of degree n over a finite field Fq , where q is the power of a prime number,
the following formula can be used: Nq (n) = 1

n ∑d ∣n μ(d)qn/d , where Nq (n) is the number of irreducible
polynomials of degree n over the field Fq , μ(d) is the Möbius function, and the sum is taken over all divisors
d of n.

The Möbius function is defined as follows:

μ (d) ∶ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if d has a squared factor,
(−1)k , if d is the product of k distinct prime numbers,
+1, if d = 1.

For n = 256 and q = 2 (field F2): N2 (256) = 1
256 ∑d ∣256 μ(d)q256/d .

The divisors of 256 are d = {1, 2, 4, 8, 16, 32, 64, 128, 256}, and the values of the Möbius function for
these divisors are: μ (1) = 1, μ (2) = −1, μ (4) = 0, μ (8) = 0, μ (16) = 0, μ (32) = 0, μ (64) = 0, μ (128) = 0,
μ(256) = 0.

Since only the terms for d = 1 and d = 2 are nonzero in the summation:

N2 (256) = 1
256
(μ(1)q256/1 + μ(2)q256/2) = 1

256
(2256 − 2128) = 2248 − 2120
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As a result, the number of irreducible polynomials of degree 256 over the field F2 is: N2 (256) = 2248 −
2120. From this, the total proof space is given by 2256 ⋅ (2248 − 2120) = 2504 − 2376. This is an extremely large
number, making an exhaustive search infeasible, even for quantum computers.

Using Coefficient Information
If the moduli pi(x) have a specific structure (e.g., some coefficients are zero or follow a known pattern),

an adversary might attempt to reconstruct them. To mitigate this risk, the algorithm ensures that:

• The moduli are generated using cryptographically secure random methods.
• No predictable patterns are used in the coefficients.

Using irreducible polynomials of degree 256 makes it extremely difficult to determine the moduli
because:

• GCD attacks are ineffective, as irreducible polynomials cannot be factored.
• LLL-based lattice attacks are useless if the coefficients are randomly chosen.
• The number of possible moduli is enormous, making exhaustive search infeasible.

Verkle trees represent an advanced data structure that significantly outperforms traditional Merkle trees
and Patricia Tries in several key aspects. They provide more compact data storage and proof sizes, which is
critical for the scalability of blockchains and distributed systems. By leveraging polynomial commitments
in tree nodes, Verkle trees minimize proof sizes to the lowest possible level, making them more efficient
for transmission and verification. This reduces network load and speeds up data authentication, which is
particularly important in resource-constrained environments.

Another major advantage of Verkle trees is their memory efficiency. Unlike classical structures that
require storing numerous intermediate hashes, Verkle trees reduce the amount of necessary data, improving
overall system performance. This is especially beneficial in environments where data growth is rapid, and
efficient storage is essential.

The flexibility of data updates in Verkle trees is another key advantage. Unlike Merkle trees, where
modifying a single node requires recomputing an entire hash chain, Verkle trees allow individual elements
to be updated with minimal computational overhead. This makes them ideal for dynamic systems where
data changes in real time. Table 4 presents the key characteristics of Verkle trees compared to Merkle trees
and Patricia Tries. The values presented in Table 4 are theoretical estimates based on the analysis of the
characteristics of various data structures.

Table 4: Comparison of Verkle trees, Merkle trees, and Patricia tries

Parameter Verkle tree Merkle tree Patricia trie
Proof size ~1–2 KB ~10–100 KB ~5–50 KB

Hashes for verification O(log n) O(log n) O(log n)
Verification performance Fast (polynomials) Medium Slow

Memory usage Low High Medium
Computational complexity O(log n) O(log n) O(log n)

Optimized for ZK Yes Partially No
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4.3 Future Works
As shown in Section 4.2, no vulnerabilities have been identified so far as a result of the theoretical

analysis. Given the limited scope of our study, which focused primarily on the theoretical foundations of
the proposed method, the next stage of our work will involve identifying potential practical vulnerabilities
(e.g., side-channel attacks and fault injection attacks) and exploring possible countermeasures. In addition,
further efforts will be directed toward optimizing computational processes and investigating the applicability
of the scheme to real-world blockchain platforms.

5 Conclusion
The use of the CRT for constructing polynomial commitments in Verkle trees opens new prospects

in cryptography and information security. This approach enhances key properties of the scheme, such as
computational efficiency, data compactness, and resistance to quantum attacks. A CRT-based system relies
on decomposition into multiple pairwise coprime moduli, allowing large polynomials to be represented
as a set of remainders corresponding to these moduli. This method facilitates the development of efficient
verification and update mechanisms for commitments while optimizing computations by leveraging the
properties of the CRT.

In the proposed scheme, we use a combination of the Chinese Remainder Theorem (CRT) and hash
functions to construct polynomial commitments. This combination ensures resistance to quantum computer
attacks due to:

• The absence of reliance on complexity assumptions vulnerable to quantum attacks. Unlike schemes based
on discrete logarithms or factorization, our scheme does not rely on mathematical problems solvable by
Shor’s algorithm.

• The use of hash functions. Properly chosen cryptographic hash functions are assumed to remain
secure even against quantum computer attacks (e.g., against Grover’s algorithm, which only provides a
quadratic speedup for preimage searches). This makes our scheme potentially post-quantum secure.

Another crucial feature of polynomial commitments based on CRT is their compactness. Traditional
schemes relying on RSA or CDH often involve large commitments and proofs, posing challenges for data
storage and transmission. The use of CRT reduces these sizes by representing polynomials as remainders
over multiple moduli, thereby decreasing memory requirements and accelerating data transfer operations.
This compactness is particularly important in the context of Verkle trees, where numerous polynomial
commitments must be structured hierarchically with minimal overhead.

Polynomial commitments constructed using CRT can also exhibit resistance to quantum attacks. Unlike
conventional schemes based on hard mathematical problems, such as the discrete logarithm problem, which
are vulnerable to quantum algorithms, CRT-based approaches can be adapted to ensure post-quantum
security. For instance, combining CRT with lattice-based cryptography or homomorphic hash functions
can yield a commitment scheme resistant to quantum computing attacks. This enhances the system’s long-
term reliability, especially in light of advancing quantum technologies. Since one of the proposed approaches
to constructing quantum-resistant cryptographic primitives involves the use of cryptographically secure
hash functions, incorporating hashing of the signed message in the proposed method provides additional
protection against quantum attacks, as well as other cryptanalytic algorithms that pose a threat to classical
cryptographic systems [29].

An additional advantage of CRT-based commitments is the flexibility and efficiency of updates. In clas-
sical schemes, updating a commitment may require extensive data recomputation, increasing computational
costs. The CRT allows for partial commitment updates, as changes in one remainder do not necessitate
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recomputation of the entire system. This is particularly beneficial for dynamic Verkle trees, where nodes
may change over time. The ability to update commitments locally without recalculating the entire structure
improves system efficiency in practical applications. Furthermore, the mathematical foundation of CRT
enables additional optimization of cryptographic operations.

Thus, employing the CRT for constructing polynomial commitments in Verkle trees provides numerous
advantages. It accelerates computations through residue representations, reduces the size of commitments
and proofs, enhances system updatability, and increases resistance to quantum attacks. These proper-
ties make CRT-based approaches a promising direction in cryptographic commitments, with potential
applications ranging from blockchain technology to secure distributed computing.

As shown in Section 4.2, no vulnerabilities have been identified so far as a result of various types of
theoretical analysis. The study of potential practical attacks remains a subject for future research. Future work
will focus on further optimization of computational processes and exploring the possibility of applying the
scheme to real blockchain platforms.
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