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ABSTRACT: Bird species classification is not only a challenging topic in artificial intelligence but also a domain closely
related to environmental protection and ecological research. Additionally, performing edge computing on low-level
devices using small neural networks can be an important research direction. In this paper, we use the EfficientNetV2B0
model for bird species classification, applying transfer learning on a dataset of 525 bird species. We also employ the
BiRefNet model to remove backgrounds from images in the training set. The generated background-removed images
are mixed with the original training set as a form of data augmentation. We aim for these background-removed images
to help the model focus on key features, and by combining data augmentation with transfer learning, we trained a highly
accurate and efficient bird species classification model. The training process is divided into a transfer learning stage and a
fine-tuning stage. In the transfer learning stage, only the newly added custom layers are trained; while in the fine-tuning
stage, all pre-trained layers except for the batch normalization layers are fine-tuned. According to the experimental
results, the proposed model not only has an advantage in size compared to other models but also outperforms them
in various metrics. The training results show that the proposed model achieved an accuracy of 99.54% and a precision
of 99.62%, demonstrating that it achieves both lightweight design and high accuracy. To confirm the credibility of the
results, we use heatmaps to interpret the model. The heatmaps show that our model can clearly highlight the image
feature area. In addition, we also perform the 10-fold cross-validation on the model to verify its credibility. Finally, this
paper proposes a model with low training cost and high accuracy, making it suitable for deployment on edge computing
devices to provide lighter and more convenient services.
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1 Introduction
Bird species classification is an important problem in the domain of computer science. With the rapid

development of artificial intelligence in pattern recognition, numerous models and algorithms have been
developed. Among various datasets, bird species datasets are often considered important benchmarks for
evaluating model performance due to their unique variety, rich backgrounds, and diverse classes. These
datasets typically cover a wide range of bird species, uneven lighting conditions, varying observation angles,
and interference from natural backgrounds. Such characteristics not only increase the challenge of the
recognition task but also provide an excellent testing environment for assessing model generalization.
In addition, accurate bird species classification plays a crucial role in ecological research. With precise
classification, we can effectively monitor and analyze the ecological behaviors of birds, including migration
routes, feeding habits, mating behaviors, and more. This information is essential not only for conserving
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biodiversity but also for understanding the dynamic balance of ecosystems. For example, migration patterns
can reveal the impacts of climate change, while feeding behaviors can shed light on the distribution of plant
and insect populations. In agriculture, bird species classification also has direct applications. By identifying
bird species that pose threats to crops, we can develop effective management strategies to reduce agricultural
losses. Meanwhile, recognizing beneficial bird species that help control pests can also promote natural
agricultural processes and support ecological farming practices.

In addition to basic bird species classification, how to perform edge computing on low-level devices
through small network models is also an important research direction. With the continuous advancement
of hardware devices, more and more models tend to increase gradually. Although this is not too much of
a problem with the support of existing computing power, it also makes it difficult to use many low-level
devices such as handheld devices and personal computers. To solve this problem, we can use smaller, lighter
networks as the backbone of the model, and further reduce their capacity by reducing accuracy, optimizing
the network, etc., to increase the feasibility of edge computing. Through edge computing, we can combine
handheld device applications for local identification services, which greatly improves the usability of the
model and maintains privacy without consuming network traffic. This approach can even go one step further
to achieve real-time computing, which can meet the requirements of low power consumption while ensuring
its performance. This is ideal for outdoor biometrics such as birds, and can also be combined with relevant
agricultural facilities for efficient responses. This approach not only increases the application of Artificial
Intelligence (AI) in a single domain but also meets the market’s expectation to reduce costs.

In summary, bird species classification is not only a challenging topic in artificial intelligence, but also
a domain related to environmental protection, ecological research, and agricultural management. Through
the small network model, we will be able to train the relevant model in a low-cost way, and further
integrate edge computing to realize handheld device applications and local identification services. How
to improve the accuracy and efficiency of the model will play a key role in helping us better understand
and improve the environment. This is not only a technological advancement, but also a contribution to
sustainable development.

2 Related Work
In recent years, Convolutional Neural Network (CNN) models have become an indispensable part

of image classification. The earliest concept of CNN can be traced back to a paper published by Yann
LeCun in 1989. This paper describes a receptive field model and applies it to handwritten postal code
recognition, demonstrating its effectiveness. Then in 1998, the LeNet-5 architecture [1], also published by
Yann LeCun, further improved the concept of CNN. Compared to previous research, this paper defines the
basic architecture of convolutional layers, pooling layers, and fully connected layers for the first time, and
demonstrates it in handwritten digit recognition. Although this architecture was only capable of handling
simple datasets at the time, in 2012, AlexNet, developed by Hinton as a mentor, brought about a historic
breakthrough in the application of artificial intelligence in this domain [2]. This new architecture uses
ReLU as the activation function to avoid gradient vanishing and improve convergence speed. Also, dropout
and local response normalization layers are used to reduce the overfitting of the model and improve
generalization. Meanwhile, the maximum pooling layer is used to improve feature variety, data augmentation
is used to increase data volume, and Graphics Processing Unit (GPU) acceleration is used to increase training
speed. This architecture performed well on large datasets, bringing explosive growth to CNN-related research
and laying the foundation for the basic architecture workflow for future image classification models. Most
current CNN image classification research is based on this, but replacing the local response normalization
layer with a batch normalization layer instead [3]. The batch normalization layer is currently the mainstream
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approach to prevent overfitting. Compared to the local response normalization layer used by AlexNet, it has
better performance but a higher training cost. It has become a key block in many newer models such as
VGG [4], ResNet [5], and Inception [6].

Among many new models derived from this architecture workflow, the EfficientNet series, released by
Google in 2019, is the most well-known [7]. The basic architecture of this model was generated by Neural
Architecture Search (NAS) [8], which can automatically find the optimal neural network configuration
within a defined search space and validate it using the ImageNet dataset. The resulting architecture is
mainly based on the MBConv block and its embedded SE block [9]. The MBConv block serves as the core
computational unit of the architecture, responsible for extracting image features, and it inherits the inverted
bottleneck design from MobileNetV2 [10]. Meanwhile, the embedded SE block functions as a channel
attention mechanism. For example, if the initial image input is in RGB format, the initial number of channels
is three. After multiple rounds of feature extraction through the convolutional layers, additional channels are
created, each representing different features such as edges, textures, colors, etc. The SE block can weigh these
features according to the importance of their channels, thereby enhancing the key features extracted by the
MBConv block. In addition, this architecture employs compound scaling as a global strategy to extend the
series from B0 to B7. While the EfficientNet series is primarily an extension of the MobileNet series, which
was designed for extremely resource-constrained environments, EfficientNet offers a better balance between
efficiency and performance. It achieves higher accuracy under similar constraints, making it highly suitable
for research and use by individual scholars or home users.

In 2021, EfficientNetV2 [11], also proposed by Google, became an upgraded version of EfficientNet. The
model architecture in this version was also generated through NAS, but with a changed optimization goal
and a reduced search space to introduce the Fused-MBConv block, which reduces computational complexity
and improves training efficiency. Additionally, a progressive learning strategy is employed to dynamically
adjust regularization, enhancing training efficiency while also increasing accuracy. Specifically, the models in
this series offer faster training speeds, fewer parameters, and better accuracy compared to previous versions.
This also makes them easier to apply to different datasets through transfer learning [12]. Transfer learning
is currently the mainstream approach in neural network training. This method allows a model trained on
one task or dataset to be adapted for another related task or dataset. It not only addresses the lack of data for
new tasks but also significantly reduces training costs while maintaining model accuracy. Furthermore, the
transfer learning approach can be divided into fixed feature extraction and fine-tuning. With fixed feature
extraction, the new model acts as a classifier, receiving the extracted features and achieving good results
after some training. To more comprehensively adapt to the dataset and achieve higher accuracy, some of the
pre-trained layers can be unfrozen and further trained through fine-tuning.

In this research, we are going to use these two methods to perform transfer learning on the Efficient-
NetV2B0 model on the BIRDS 525 SPECIES dataset [13]. This dataset is one of the most comprehensive
datasets on birds, and many researchers have built their image classification models based on this dataset.
Mochurad et al. also used this dataset to perform transfer learning on the EfficientNetB5 model and
achieving an accuracy of 98.86% [14]. It is better than the hybrid model architecture of YOLOv5 and
EfficientNetB3 proposed by Vo et al. [15], who also compared EfficientNetB3, VGG19, and Inception V3 [16].
The EfficientNetB3 achieved the highest accuracy of 98%, but it is still slightly worse than the model built
solely on EfficientNetB5. The reason for this is not only that the number of parameters of B5 is higher than
that of B3, but also the training steps. The researcher who uses the B5 model added three additional fully
connected layers, three batch normalization layers, and three dropout layers as new custom layers. They use
data augmentation to rotate, scale, and shift the image to a certain extent. Then, with transfer learning, they
first train the newly added custom layer with a high learning rate and then train the last 92 layers of the
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pre-trained model with a low learning rate. This approach not only allows for more comprehensive model
training but also enhances the original feature extraction capabilities by adding new layers.

In addition to simply customizing the number of layers and models, the optimizer and metrics used
in the training process are also crucial. The bird species classification research mentioned in the previous
paragraph mainly used the Adam optimizer to train the model [17]. The Adam optimizer is an optimization
algorithm that combines the momentum method with RMSProp. It adjusts the learning rate by calculating
the gradient’s first-order and second-order momentum. This makes the Adam optimizer have better stability
and convergence speed when dealing with high-dimensional data and sparse gradient problems, and is
particularly suitable for deep learning tasks. By introducing the Adam optimizer, this research can quickly
find the optimal solution for the model parameters and further improve the accuracy of bird species
classification. Besides that, to avoid overfitting, this research also uses validation loss as a metric for storing
models. During the training process, the validation loss is calculated after each epoch, and the model with the
lowest loss is stored as the best model. To further enhance the robustness of training, the research set up an
early stopping mechanism, which determines whether training should stop early based on the patience value.
Specifically, if the validation loss does not decrease in multiple epochs and the patience value is exhausted, the
training process will be stopped. This method not only prevents overfitting but also ensures that the model
performs optimally on the validation set, thereby improving its generalization in practical applications.

In addition to the various model training methods mentioned above, data augmentation is also
indispensable. Traditional data augmentation involves rotating, scaling, shifting, and other transformations
on training set to increase the overall data volume. This allows the model to adapt to more variations and
improves its generalization to unknown testing set. Besides that, there are other data augmentation such
as adjusting image contrast and brightness, and using Generative Adversarial Network (GAN) to generate
new images [18]. Perez and Wang compared the effects of various data augmentation and concluded that
data augmentation can indeed improve model accuracy [19]. In addition to data augmentation, attention
mechanism is also one of the current trends in image classification. In addition to the SE block’s channel
attention mechanism mentioned in the previous paragraph, more and more models refer to the self-
attention mechanism of the Transformer to assist image classification [20]. One of the pioneering models
that introduced the Transformer architecture to computer vision tasks is the Vision Transformer (ViT) [21],
Proposed by Dosovitskiy et al. in 2020. ViT treats an image as a sequence of patches and processes them
in the same way as tokens in natural language processing. Each patch is linearly embedded, and positional
embeddings are added before feeding them into standard Transformer encoders. ViT demonstrated that
pure Transformer models can outperform convolutional networks on large-scale image classification tasks
when trained on sufficient data. Besides that, the Swin Transformer developed by Microsoft in 2021 is also
a computer vision model based on the Transformer architecture [22]. Its core principle is to efficiently
capture local and global features through a sliding window attention mechanism. The model divides the
image into multiple patches and applies window self-attention within these patches, which can reduce
computational costs. At the same time, the information interaction across windows is achieved using shifted-
window. Swin Transformer adopts a hierarchical design, gradually building high-level feature representations
from low resolution and supporting multi-scale output. This design enables it to perform well in tasks
such as image classification, object detection, and semantic segmentation, combining both efficiency and
accuracy. The research proposed by Chou et al. is based on the Swin Transformer model developed
by Microsoft [23], using its attention mechanism as the backbone, with a high-temperature refinement
module to adjust the temperature of the feature map to learn diverse and detailed features. Combined
with the background suppression module, the features are divided into foreground and background using
classification confidence. Then transfer learning was performed on the CUB-200-2011 dataset, achieving the
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highest accuracy of 93.1%. This approach does not include traditional convolution layers but only borrows
ideas from the hierarchical structure and feature pyramid network of CNN, and relies on the attention
mechanism to recognize images. Another similar approach proposed by Wang et al. also uses the attention
mechanism to enhance the discrimination of objects in both local and global aspects [24]. Their research
developed an internal graph combined with a discriminative parts mining strategy, which can effectively
embed the pixel-level information within each part to extract more compact features of those irregular parts.
The graph-in-graph discriminative feature enhancement network (G2DFE-Net) they proposed has achieved
over 90% accuracy on the CUB-200-2011 dataset within different backbones. This gives us a good insight into
how important it is to let the model pay attention to key features. Their another research which proposed
an Adversarial-Aware Fine-Grained Visual Classification Network (A2-Net) [25], also has the similarity of
letting the model focus on small details.

Inspired by these approaches, our research decided to use background removal for data augmentation on
the CNN model. We hope this can provide the model with attention to the key features. However according
to the conclusions of research proposed by Liang et al. [26], the performance of training the model on
background-removed images is not better than the traditional method, especially for deep and complex
neural networks. But here we will mix the background-removed images with the original training set to
increase the overall data volume instead of just removing the background information. We hope to improve
the model’s ability to capture key features in this way. To achieve this goal, our research initially attempted
to use a model called U2-Net for background removal [27]. This model was published in 2020 and is a
deep learning-based fully convolutional neural network that focuses on accurate object boundary detection
and segmentation. The architecture adopts an encoder-decoder design, with the core innovation being the
combination of a U-shaped structure and dual U-shaped networks. It utilizes multi-layer residual blocks
to extract features at different scales, enhancing the capability to capture boundaries and details. However,
during the experiment, we found that U2-Net cannot fully capture subtle structures, which will greatly
affect the background removal effect for birds with rich backgrounds. Therefore, we turned to the BiRefNet
model [28], which was published in 2024 and is a deep-learning model for high-resolution dichotomous
image segmentation (DIS). The core design of BiRefNet is a bilateral reference framework, including inward
reference and outward reference, which consists of a localization module and a reconstruction module. The
model extracts multi-scale features through the transformer encoder and combines it with efficient loss
function design to achieve higher-precision image segmentation. Experimental results show that BiRefNet
performs well in processing subtle structures and boundary details, so it became the main choice for our
research. In this research, we will use BiRefNet for background removal. The generated background-removed
image is mixed with the original training set as data augmentation. Then, we will combine it with transfer
learning, hoping to train a bird species classification model with high accuracy and efficiency.

3 System Design
This research mainly uses the BIRDS 525 SPECIES dataset from the Kaggle dataset. This dataset has 525

classes, including training, validation, and testing sets. The training set has 84,635 images, the validation set
has 2625 images, and the testing set has 2625 images, for a total of 89,885 images. The resolution of each image
is 224 × 224, and there are more than 130 training images for each class. Fig. 1 shows the class distribution in
the training set. Fig. 2a is the sample taken from the training set. As can be seen from these figures, the dataset
contains only high-quality images and maintains a balanced distribution of classes across the 525 species.
This dataset has more classes and richer images than the NABirds dataset [29]. Although these images do
not have noise such as Gaussian blur and motion blur to increase the robustness of the model, their complex
background has provided us with a good testing environment.
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Figure 1: The class distribution in the training set of the BIRDS 525 SPECIES dataset

Figure 2: The samples of the training set: (a) original images; (b) images after background removal

To train the model more effectively, this research will also use image background removal as a method
for data augmentation and employ the BiRefNet model to perform background removal on training
images. Fig. 2b shows images that removed the background with this model. The images after background
removal will be put back into the training set together with the original images. This approach is similar to
traditional data augmentation, except that we do not use methods such as rotation and scaling to increase the
amount of data. To better verify the effectiveness of this method, we will use traditional data augmentation
to train other models independently. Thus, we can know whether using image background removal for
data augmentation is better than traditional data augmentation. This study will compare the following four
different data augmentation methods and explore their impact on model training effectiveness.
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1. No data augmentation: only the original images are used for training.
2. Traditional data augmentation: including horizontal flipping, 5% random shifting, 5 degrees random

rotation, and 5% random scaling.
3. Using image background removal for data augmentation: use the BiRefNet model to remove images’

backgrounds and put them together with the original images.
4. Hybrid data augmentation: Use the above two methods at the same time.

After processing the training set, this research will use it for transfer learning of the EfficientNetV2B0
model. This model has been trained on the ImageNet dataset. When loading it, we will keep the weights
from its previous training process, so that we can directly use its feature extraction to help us do image
classification. We will remove the original output layer of the pre-trained model and add different custom
layers as the decision layer after the model extracts features, and finally connect to the output layer that
can represent 525 different classes. The specific architecture is shown in Fig. 3. As can be seen from the
architecture, after removing the original output layer of the pre-trained model, we connect it to the fully
connected layer using ReLU as the activation function, as well as the batch normalization layer and Dropout
layer for regularization. We will repeat these three layers of connections, each time with different neurons
or parameters. The features are converted into logits through the final output layer, and then the Softmax
function is used to output the probability distribution and select the highest probability one as the final output
of the model. During the training process, we will also use categorical cross entropy as the loss function. The
loss is calculated at the end of each forward pass, and the model performs backpropagation and gradient
descent through the loss to help it update its weights.

Figure 3: The proposed model architecture
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The training of this research will be divided into a transfer learning stage and a fine-tuning stage, as
shown in Fig. 4. In the transfer learning stage, we will freeze all pre-trained layers and only the newly added
custom layers will be trained. Here we will use the Adam optimizer, set the learning rate to 0.0001, and train
the model for 30 epochs. To avoid overfitting during training, we will use early stopping to end training when
the model makes no progress and store the best-performing model during training. We need to choose a
metric to determine whether the model is best-performing. Here we will use the validation loss as the metric.
The images in the validation set don’t have any data augmentation, and the model will run the validation set
once after each epoch to measure performance. The reason why the validation loss is chosen as the metric
to store and early stop the model is that this metric can effectively measure whether the model is overfitting
with the training set and preserve the model generalization on unknown testing set.

Figure 4: The proposed two-stage training flowchart

After the transfer learning stage is done, we unfreeze all pre-trained layers except the batch normal-
ization layer and start fine-tuning the model by reducing the learning rate to 0.00001. The reason for not
unfreezing the batch normalization layer is not only to effectively utilize the feature extraction capabilities of
the pre-trained model but also to avoid various instability problems that may occur during the fine-tuning
stage. Here, the model is also trained for 30 epochs, and the validation loss is used as the metric for model
storage and early stopping. Once the model is trained in the fine-tuning stage, we evaluate its performance
on an unknown testing set. The images in the testing set don’t have any data augmentation and have the
same class distribution as the validation set, with only 5 images per class. To fairly compare the effects of four
different data augmentations on model training, this research will use the same training process as above and
train the models independently on the same computer. The experimental environment used in this research
is as follows: 1 CPU as AMD Ryzen™ 9 5900X, 1 GPU as NVIDIA GeForce RTX 3090, and our computer
mainly processes calculations on the GPU through CUDA.
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4 Experimental Results
This research divides the training process into two stages: the transfer learning stage and the fine-

tuning stage, and trains different models using four different data augmentation methods from Section 3. The
training results of the four data augmentation methods in the transfer learning stage are shown in Table 1.
From the results, it can be seen that there are no significant differences in the results under different data
augmentation methods. Figs. 5 and 6 show the changes in loss of four data augmentation methods during the
transfer learning stage. It can be seen from the graph that all of these four models have reached convergence
near the 30th epoch. Here, we use the validation loss as the metric for early stopping. If the loss does not
decrease for three epochs, early stopping will be triggered. The reason why we don’t give the model more
patience or more epochs is to avoid overfitting at this stage, which will make the model enter a suboptimal
solution, affecting the follow-up fine-tuning stage performance. Fortunately, in the transfer learning stage,
we can see that the trends in the validation and training are roughly parallel, which means that the model
does not suffer from overfitting. Figs. 7 and 8 show the accuracy changes of these four models during the
transfer learning stage. It can be seen that this change corresponds well to the loss decrease, and there is not
much difference in the performance of these four models. After these four models in this stage are trained,
we can fine-tune them independently.

Table 1: The training results in the transfer learning stage

Method Dataset Accuracy Precision Recall F1 score

No data augmentation Training 0.9720 0.9728 0.9718 0.9719
Testing 0.9783 0.9819 0.9783 0.9777

Traditional data augmentation Training 0.9573 0.9589 0.9568 0.9572
Testing 0.9749 0.9795 0.9749 0.9743

Using image background
removal for data augmentation

Training 0.9703 0.9711 0.9702 0.9703
Testing 0.9752 0.9795 0.9752 0.9747

Hybrid data augmentation Training 0.9615 0.9625 0.9613 0.9614
Testing 0.9790 0.9826 0.9790 0.9784

The training results of the four data augmentation methods in the fine-tuning stage are shown in Table 2.
From the results, we can see that the model that uses background removal for data augmentation performed
best, with an accuracy of 99.54% and a precision of 99.62% on the testing set. The experimental results show
that the model’s performance using background removal is significantly better. However, if traditional data
augmentation is mixed with background removal, the performance will be worse than using background
removal alone. We speculate that the reason is that after the image loses its background, it will look the
same even if it is shifted, scaled, rotated, or subjected to other common augmentation techniques. These
transformations no longer introduce meaningful variability, as the image content becomes too uniform and
lacks contextual diversity. The original purpose of traditional data augmentation is to enrich the dataset with
variations that help the model generalize better—for example, by simulating different object positions, scales,
or orientations, the model can learn to focus on essential object features rather than being distracted by the
surrounding background. However, once the background is removed, this variation is largely diminished.
The augmented images become visually similar, which reduces the effectiveness of the augmentation. Instead
of promoting robustness, it may introduce redundancy. This lack of meaningful diversity can lead the
model to overfit on the repetitive patterns, memorizing specific features rather than learning generalized
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representations. Consequently, combining traditional data augmentation with background removal may
inadvertently harm the training process and degrade overall model performance.

Figure 5: The loss of transfer learning stage: (a) no data augmentation; (b) traditional data augmentation; (c) using
image background removal for data augmentation; (d) hybrid data augmentation

Figure 6: The loss of transfer learning stage in four data augmentation methods: (a) training loss; (b) validation loss
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Figure 7: The accuracy of transfer learning stage: (a) no data augmentation; (b) traditional data augmentation; (c)
using image background removal for data augmentation; (d) hybrid data augmentation

Figure 8: The accuracy of transfer learning stage in four data augmentation methods: (a) training accuracy; (b)
validation accuracy
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Table 2: The training results in the fine-tuning stage

Method Dataset Accuracy Precision Recall F1 score

No data augmentation Training 0.9870 0.9872 0.9868 0.9869
Testing 0.9893 0.9911 0.9893 0.9891

Traditional data augmentation Training 0.9885 0.9887 0.9883 0.9883
Testing 0.9935 0.9948 0.9935 0.9933

Using image background
removal for data augmentation

Training 0.9974 0.9975 0.9974 0.9974
Testing 0.9954 0.9962 0.9954 0.9952

Hybrid data augmentation Training 0.9926 0.9928 0.9925 0.9926
Testing 0.9939 0.9949 0.9939 0.9936

Figs. 9 and 10 show the changes in loss of four data augmentation methods during the fine-tuning stage.
It can be seen from the graph that the model starts to get early stopping before the 25th epoch in the training
process. Besides the model that uses background removal for data augmentation, the remaining models have
not reached a good convergence state. Here we also only give the model 30 epochs and set the early stopping
metric to the validation loss. As long as the loss does not decrease for three epochs, early stopping will be
triggered. The reason why the model is still not given more patience or more epochs is again to prevent it
from overfitting before running on an unknown testing set. We have tested models on higher epochs and
found that even though the model’s performance in the validation set and training set has improved, its
performance in the testing set has become worse. Therefore, we limit the epoch to 30 and the patience for
early stopping to 3, hoping that the model can reach a good convergence state within this range and thus keep
the generalization. From the graph here, we can see that only the model using background removal for data
augmentation successfully achieved high performance with the validation set and the training set, while the
remaining models were early stopped before they showed a good convergence state. Figs. 11 and 12 show the
accuracy changes of these models, from which we can also see that they correspond well to the loss changes.

From the experimental results, we can see that in the transfer learning stage, only the custom layer is
trained, which mainly uses the features of the pre-trained model to make classification decisions. Therefore,
the performance of all methods is similar. Training the custom layer first will help with the model feature
training in the second stage, when different data augmentation methods will produce larger differences. In
addition to the training results, another thing we found in our experiments is that using background removal
for data augmentation also has a lower cost than other methods during model training. Here we set the batch
size of the data to 32. Without any data augmentation, the model needs to be trained for 2645 steps per
epoch. This took about 73 s per epoch during the transfer-learning stage and 164 s during the fine-tuning
stage. If traditional data augmentation is used, one epoch in the transfer learning stage will take up to 500
s, the same for the fine-tuning stage. If only background removal is used, one epoch in the transfer learning
stage will take less than 200 s, and the fine-tuning stage will take 328 s, which is much faster. Therefore, using
background removal for data augmentation is a good way to train the model.

We use heatmaps to present the model’s attention distribution and improve the interpretability of the
model’s classification. To present the heatmap distribution, we remove the custom layer and directly train a
single-layer classification decision layer. Fig. 13 is the heatmaps examples of four data augmentations. We can
see that it is difficult to observe the differences directly from the heatmaps. To show the difference, we subtract
the first heatmap from the second to fourth heatmaps to find the difference under data augmentation and
display it after normalization, as shown in Fig. 14. From the results in Fig. 14b, it can be seen that background
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removal for data augmentation can clearly highlight the image feature area, and it can more clearly present
the impact and credibility of the results.

Figure 9: The loss of fine-tuning stage: (a) no data augmentation; (b) traditional data augmentation; (c) using image
background removal for data augmentation; (d) hybrid data augmentation

Figure 10: The loss of fine-tuning stage in four data augmentation methods: (a) training loss; (b) validation loss
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Figure 11: The accuracy of fine-tuning stage: (a) no data augmentation; (b) traditional data augmentation; (c) using
image background removal for data augmentation; (d) hybrid data augmentation

Figure 12: The accuracy of fine-tuning stage in four data augmentation methods: (a) training accuracy; (b) validation
accuracy
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Figure 13: The heatmaps examples of four data augmentation: (a) no data augmentation; (b) traditional data
augmentation; (c) using image background removal for data augmentation; (d) hybrid data augmentation

Figure 14: The differences in heatmaps under different data augmentations: (a) the differences between methods
3 and 1; (b) the differences between methods 3 and 2; (c) the differences between methods 3 and 4
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To confirm the credibility of the results, we mix the training set and validation set, using the stratified
K-fold method to perform 10-fold cross-validation. The final results are shown in Table 3. The results show
that the model using background removal for data augmentation performs well on different data splits and
is not much different from the original experimental results. This proved the reliability of our model, with
an accuracy of 99.43% and a precision of 99.53% after averaging the result of each split.

Table 3: The comparison of stratified 10-fold cross validation

Fold number Accuracy Precision Recall F1 score
1 0.9931 0.9944 0.9931 0.9930
2 0.9943 0.9953 0.9943 0.9942
3 0.9943 0.9953 0.9943 0.9942
4 0.9947 0.9956 0.9947 0.9945
5 0.9950 0.9960 0.9950 0.9950
6 0.9943 0.9951 0.9943 0.9941
7 0.9950 0.9959 0.9950 0.9949
8 0.9935 0.9947 0.9935 0.9933
9 0.9943 0.9952 0.9943 0.9942
10 0.9947 0.9956 0.9947 0.9944

Mean 0.9943 0.9953 0.9943 0.9942
StdDev 0.0006 0.0005 0.0006 0.0006

Note: The model is evaluated using the original testing set.

In order to further clarify the effects of using image background removal for data augmentation, we
show the samples that only the model using data augmentation method 3 can correctly predict, as shown
in Fig. 15. From the figure, it can be seen that these birds’ body postures are not traditional standing positions,
nor are they common cases seen in our training set. Therefore, models trained without data augmentation
and with traditional data augmentation cannot accurately classify these birds based on the features they have
learned. In contrast, the model that utilizes background-removed images for data augmentation can classify
them correctly. We conjecture that the reason for its accurate classification is that the data augmentation
employed during the training process allows the model to focus more on the physical characteristics of the
birds, thereby capturing more details. As a result, even if their body postures change, the model can still make
correct predictions, achieving a higher accuracy rate.

Figure 15: The samples that only the model using data augmentation method 3 can correctly predict
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Table 4 shows the comparison with other models in different research. From the comparison results, we
can see that our model not only performs best in all metrics but also has the lightest model size. According
to Keras [30], the model size of EfficientNetV2B0 only takes 29 MB on the hard disk and reaches 32 MB
after adding the newly added custom layer. This is a significant reduction compared to the models used in
other researches. Our model requires fewer epochs in the training process and takes less memory in the
testing process. It not only meets the needs of general computers but also has the potential to be distributed
to different low-level devices for edge computing.

Table 4: The comparison with other models in different research

Model Accuracy Precision Recall F1 Score Size (MB) Parameters
ResNet-152 [31] 0.965 0.980 0.946 0.947 ~232 ~60.4 M

Inception V3 [15] 0.93 0.94 0.93 0.93 ~92 ~23.9 M
VGG19 [15] 0.95 0.96 0.95 0.95 ~549 ~143.7 M

EfficientNetB3 [15] 0.98 0.98 0.98 0.98 ~48 ~12.3 M
EfficientNetB5 [14] 0.9886 0.99 0.99 0.99 ~118 ~30.6 M

Ours 0.9954 0.9962 0.9954 0.9952 32 ~8.3 M

Note: The size is evaluated using the officially provided basic network size.

To further test the generalization of the model, we decided to validate the model’s performance on
our own dataset. This new dataset we created is based on the bird species of Kinmen Island. This island is
rich in different birds, with 251 birds listed in its official bird-watching guide [32] (published by the local
government). The data we collected comes from the eBird website [33], which has tons of photo uploads from
different people in the real world. Overall, this Kinmen bird species dataset has 251 classes, 41,978 training
images, 1255 validation images, and 1255 testing images. With the same split ratio and image size as the 525
bird species dataset. We use the model proposed in this paper for training, and the final results after the fine-
tuning stage are shown in Table 5. From the results, we can see that the model using background removal for
data augmentation still has better accuracy, which confirms the generalization of the proposed model.

Table 5: The training results on the Kinmen bird dataset

Method Dataset Accuracy Precision Recall F1 Score

No data augmentation Training 0.9866 0.9870 0.9861 0.9863
Testing 0.9275 0.9403 0.9275 0.9267

Traditional data augmentation Training 0.9846 0.9851 0.9844 0.9846
Testing 0.9323 0.9438 0.9323 0.9312

Using image background
removal for data augmentation

Training 0.9986 0.9986 0.9986 0.9986
Testing 0.9434 0.9518 0.9434 0.9427

Hybrid data augmentation Training 0.9828 0.9833 0.9826 0.9828
Testing 0.9371 0.9471 0.9371 0.9355
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5 Conclusions
In this paper, we use the EfficientNetV2B0 model for bird species classification, conducting transfer

learning on a dataset of 525 bird species, while also using the BiRefNet model to remove backgrounds from
images in the training set. This research successfully improved the model performance by removing the
background for data augmentation. The model training process can be divided into a transfer learning stage
and a fine-tuning stage. In the transfer learning stage, we only need to train the newly added custom layers.
In the fine-tuning stage, we need to unfreeze the pre-trained layers. These two stages only require a small
number of steps and epochs to reach convergence. Besides that, since the pre-trained model used in this
research is the lightest model in the EfficientNetV2 series, we can achieve predictions during operation with
low memory consumption. This model not only has an advantage over other models in terms of size but also
performs better in different metrics. The model achieved an accuracy of 99.54% and a precision of 99.62%,
which can be said that it achieves lightweight while also achieving accuracy. To confirm the credibility of the
results, we use heatmaps to interpret the model. The heatmaps show that our model can clearly highlight
the image feature area. In addition, we also perform the 10-fold cross-validation on the model to verify
its credibility.

The current results not only confirm the effectiveness of combining background removal with the CNN
model, but also lay the foundation for practical applications. This integration has demonstrated significant
improvements in classification accuracy and model robustness, especially in complex natural environments
where background noise can severely hinder performance. In the future, we hope to further integrate the
model of this research with edge computing so that it can be deployed on resource-constrained devices
for immediate applications in scenarios such as biodiversity monitoring and automatic detection in natural
environments. Such integration would allow for real-time analysis in the field, reducing the need for data
transmission to centralized servers and enabling more responsive and autonomous monitoring systems.
In addition, we also hope to introduce the design of explainable models in future research to make the
model’s judgment process more transparent and understandable. By incorporating explainable artificial
intelligence (XAI) techniques, we aim to visualize the decision-making process of the model, identify which
features contribute most to each classification, and provide interpretable insights for domain experts. This
transparency is critical for building trust with ecologists and other users, as it not only helps validate the
credibility of the results but also encourages collaborative refinement of the model. Ultimately, we believe
these directions will further promote the actual implementation and innovative development of machine
learning in the domain of ecological monitoring and image classification, contributing to both scientific
research and real-world environmental conservation efforts.
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