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ABSTRACT: Feature selection (FS) is a pivotal pre-processing step in developing data-driven models, influencing
reliability, performance and optimization. Although existing FS techniques can yield high-performance metrics for
certain models, they do not invariably guarantee the extraction of the most critical or impactful features. Prior literature
underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification
of appropriate features. However, the challenge of discerning the most relevant and influential features persists,
particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly
salient in modern artificial intelligence (AI) applications. In response, this study introduces an innovative, automated
statistical method termed Farea Similarity for Feature Selection (FSFS). The FSFS approach computes a similarity
metric for each feature by benchmarking it against the record-wise mean, thereby finding feature dependencies and
mitigating the influence of outliers that could potentially distort evaluation outcomes. Features are subsequently ranked
according to their similarity scores, with the threshold established at the average similarity score. Notably, lower FSFS
values indicate higher similarity and stronger data correlations, whereas higher values suggest lower similarity. The
FSFS method is designed not only to yield reliable evaluation metrics but also to reduce data complexity without
compromising model performance. Comparative analyses were performed against several established techniques,
including Chi-squared (CS), Correlation Coefficient (CC), Genetic Algorithm (GA), Exhaustive Approach, Greedy
Stepwise Approach, Gain Ratio, and Filtered Subset Eval, using a variety of datasets such as the Experimental Dataset,
Breast Cancer Wisconsin (Original), KDD CUP 1999, NSL-KDD, UNSW-NB15, and Edge-IIoT. In the absence of the
FSFS method, the highest classifier accuracies observed were 60.00%, 95.13%, 97.02%, 98.17%, 95.86%, and 94.62%
for the respective datasets. When the FSFS technique was integrated with data normalization, encoding, balancing,
and feature importance selection processes, accuracies improved to 100.00%, 97.81%, 98.63%, 98.94%, 94.27%, and
98.46%, respectively. The FSFS method, with a computational complexity of O(f n log n), demonstrates robust scalability
and is well-suited for datasets of large size, ensuring efficient processing even when the number of features is
substantial. By automatically eliminating outliers and redundant data, FSFS reduces computational overhead, resulting
in faster training and improved model performance. Overall, the FSFS framework not only optimizes performance
but also enhances the interpretability and explainability of data-driven models, thereby facilitating more trustworthy
decision-making in AI applications.
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1 Introduction
FS is a crucial aspect of machine learning and deep learning methodologies, significantly impacting

model accuracy and reliability [1]. As data size and complexity grow in the era of big data, models face
challenges in managing large numbers of features. This often leads to overfitting, poor generalization, and
inflated computational costs due to redundant or irrelevant features [2]. FS aims to address these issues by
reducing data dimensionality, ensuring that only the most relevant features are used for training, thereby
enhancing model performance and evaluation reliability [3]. Researchers and practitioners alike struggle
with selecting the most influential features, a task further complicated by the massive and varied nature
of modern datasets [4]. The failure to identify key features can result in inaccurate models, negatively
affecting the decisions based on them. Moreover, irrelevant features increase training time, model complexity,
and computational costs. Consequently, FS techniques have evolved to improve model performance and
efficiency by reducing unnecessary data noise. While optimization-focused feature selection can yield models
with high predictive accuracy, it often does so at the expense of a deeper understanding of feature relevance
and impact. A more balanced approach one that combines performance metrics with direct measures
of feature importance and domain insights can lead to models that are not only accurate but also more
interpretable and robust.

Feature selection (FS) techniques encompass a broad spectrum of methodologies, ranging from tradi-
tional statistical analyses to advanced machine learning approaches. Although machine learning methods
can operate with high efficiency, they often function as black boxes in the context of feature selection, thereby
limiting interpretability and potentially compromising reliability [5]. Commonly implemented FS techniques
include filter methods (e.g., CS, ANOVA (Analysis of Variance)), wrapper methods (e.g., GA), and embedded
methods (e.g., Lasso regression) [5]. The primary objectives of these approaches are to accelerate training
processes and enhance predictive accuracy. However, methods that achieve high accuracy by arbitrarily
selecting features may sacrifice the reliability of results. In big data environments, effective FS is crucial not
only for improving model performance but also for reducing training times and computational costs [6]. In
applications where precision is of utmost importance, such as finance and security, FS plays a vital role in
ensuring accurate and dependable outcomes. The current study continues to innovate new methodologies
to address the increasing complexity of contemporary datasets, thereby facilitating the development of
more robust and interpretable models [7]. Filter methods, in particular, are widely favoured due to their
strong statistical foundation, which allows for rapid data interpretation and efficient filtering. Nonetheless,
traditional filter approaches typically do not account for interactions among dependent variables.

To mitigate this shortcoming, there is a pressing need for novel techniques that simultaneously balance
accuracy and reliability by integrating similarity metrics. In response, we propose a new filter-based approach
that not only interprets the data but also identifies features with significant impact on model outcomes.
Unlike conventional techniques that assess each feature in isolation, our method computes a similarity metric
that reflects both the intrinsic importance of individual features and their relationships within the overall
data structure, thereby providing a more comprehensive and holistic feature selection process.

This manuscript presents a novel statistical method called Farea Similarity for Feature Selection (FSFS),
designed to automatically select the most important and impactful features on model outcomes without
losing essential data. The FSFS technique measures the similarity between each feature and the approximate
average of records, ranking features according to the highest similarity scores. The proposed automatic
threshold classifies features as either important or less important by calculating the mean of the total
similarities. The most similar features are considered the most important, while the least similar ones
are discarded. The FSFS approach eliminates outlier values that negatively affect model outcomes. FSFS
incorporates encoding techniques to improve data processing. Data encoding methods are used to transform
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raw data into structured numerical data, making it machine-readable for AI models. After data structuring,
the proposed method performs statistical operations and calculates the highest similarity and correlation
between features and records. FSFS stands out from traditional statistical feature selection methods because
it doesn’t merely rank features based on isolated metrics (like correlation or mutual information) but rather
quantifies the similarity between each feature and the overall data pattern. In conventional filter methods,
each feature is evaluated independently, often overlooking how features work together.

The scientific contributions of this paper are as follows:

• Proposing a new, innovative statistical method for selecting the most important features called Farea
Similarity for Feature Selection (FSFS).

• Developing a fair FSFS approach that ranks features based on their similarity and feature dependencies
with the approximate average of each record, discarding outliers that distort evaluation outcomes.

• Classifying features into most and least important categories based on an FSFS automatic threshold.
• Comparing the FSFS proposed method with existing FS methods and evaluating their performance.

This paper is organized as follows: Section 2 provides a review of related work, contextualizing the con-
tributions of the proposed FSFS framework against existing methods. Section 3 outlines the methodology,
detailing the FSFS architecture, step-by-step pseudocode, and practical implementation examples. Section 4
conducts a comprehensive statistical analysis comparing FSFS to state-of-the-art approaches, supported by
rigorous experimental results and performance evaluations. Finally, Section 5 summarizes the key findings,
discusses current limitations, and proposes actionable insights for future research directions.

2 Comparative Analysis of Feature Selection Approaches
The body of literature on FS provides a crucial foundation for understanding the available tools and

techniques for selecting optimal features and improving model performance and evaluation results. However,
with the continuous advancement in this field, challenges remain, such as ensuring fair and adaptive FS
in response to evolving and diverse datasets. Challenges include handling imbalanced data and noise, as
well as variations in data types and model training approaches. Existing studies highlight the need for
developing new methods that address these challenges, opening new horizons for solving future problems
as technologies and data representation methods evolve.

This section outlines some of the key FS techniques. Filter Techniques: Filter techniques are among
the oldest methods used in FS [8]. Studies such as [9] emphasized the importance of statistical methods in
evaluating the relationship between features and target variables. Researchers employed tests like the Chi-
square test and ANOVA to identify the most relevant features [10]. These studies demonstrated that using
filter techniques can significantly reduce the number of features without losing critical information. Wrapper
Methods: Wrapper methods are more complex, relying on evaluating model performance with a specific
subset of features. In the study by [11], the concept of eliminating unnecessary features was introduced
through Recursive Feature Elimination (RFE) [12]. Their results indicated that this approach significantly
improved model accuracy compared to traditional methods. Embedded Methods: Embedded methods,
which combine the benefits of both filter and wrapper approaches, are gaining increasing popularity. In
the study [13] on Lasso Regression, the regression technique was used to strike a balance between model
complexity and accuracy by imposing constraints on the coefficients. The results showed that Lasso could
lead to effective FS while reducing overfitting. Recent Innovations: With the development of machine and
deep learning techniques, new studies have emerged that utilize deep learning for FS. In a study by [14], the
paper proposes a metaheuristic method for selecting optimal features in HER2 (Human epidermal growth
factor receptor 2) image classification, enhancing accuracy and reducing complexity. It utilizes a transfer
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learning model combined with NSGA-II (non-dominated sorting genetic algorithm) and SVM (support
vector machine) classifiers for improved performance. Study [15] focuses on enhancing phishing detection
using machine learning techniques, particularly through feature selection and deep learning models. A
dataset comprising 58,645 URLs was analyzed, identifying 111 features. A feedforward neural network model
achieved an accuracy of 94.46% using only 14 selected features. Table 1 provides a summary of existing feature
selection (FS) methods, highlighting their key characteristics and differences. Table 2 illustrates widely
used FS approaches and compares them with the proposed FSFS theory. Previous studies, as summarized
in Tables 1 and 2, have played a fundamental role in improving machine learning model performance. Some
focus on enhancing system performance, others on optimizing evaluation metrics, while certain methods
emphasize selecting noise-free features to improve model interpretability. Existing approaches often assume
that the features leading to high performance are the most suitable without considering their significance.
As a result, less important features that enhance system performance may be selected over more impactful
ones. On the other hand, some methods focus solely on achieving high evaluation results, disregarding
the importance of the selected features. These methods aim to balance feature selection and optimization,
often sacrificing the more critical features that could increase the reliability of the results. Hence, techniques
designed to improve system performance may not necessarily select the most important features, as their goal
is to maximize performance and speed without emphasizing feature relevance. Similarly, techniques aimed
at maximizing evaluation results may not prioritize the most crucial features, as their objective is to find
features that yield high results, regardless of their impact on model outputs. However, there are significant
differences in the operation of these methods. Techniques that prioritize system performance and select
features to achieve the model’s performance.

Table 1: Existing general types of FS methods and compares them with the FSFS proposed method

FS Approaches Speed Scalability Interpretability Pros/Cons
Filter [7,16,17] High High High Simple, fast, and independent of

the model. Cons: May ignore
feature dependencies

Wrapper [18,19] Low Low Moderate Can find optimal features for
specific models. Cons:

Computationally expensive, risk of
overfitting

Embedded [20,21] Moderate Moderate Moderate Integrates FS during model
training. Cons: Model-dependent

and complex
Dimensionality [22,23] Moderate Moderate Low Reduces feature space effectively.

Cons: Loss of interpretability and
information

Regularization [19,24] Moderate Moderate Moderate Prevents overfitting and simplifies
models. Cons: May exclude useful

features
This study (FSFS) FSFS focuses not only on FS but also on interpretability, serving as a

gateway approach for XAI and emphasizing speed. Therefore, the type of
FSFS theory proposed in this study is filter-based
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Table 2: Popular and practical approaches are used in FS compared to the proposed FSFS approach

FS Methods/Ref. Type Mathematical Equations/
Concepts

Selection Criteria/Key Details

Variance
thresh-

old [11,25]

Filter σ = 1
N

N
∑
i=0
(xi − μ)2 Simplify the model, reduce

noise/Pros: Simple, fast, easy to
implement. Cons: May discard
useful low-variance features.

Correlation-
based [26,27]

Filter r = ∑n
i=1 (xi − x) (yi − y)√
∑n

i=1 (xi − x)2 (yi − y)2
Maximize relevance, and reduce

redundancy/Pros: Simple,
interpretable, computationally

efficient. Cons: May miss
complex relationships, and
cannot detect non-linear

correlations.
Mutual

Information
(MI) [28,29]

Filter I (X; Y) =

∑∑P (x , y) log( P (x , y)
P (x)P (y))

Maximize shared
information/Pros: Detects

non-linear relationships, and
works with categorical data.

Cons: Computationally
expensive for large datasets.

Chi-Square
test [30,31]

Filter x2 = ∑
(Qi − Ei)2

Ei
Maximize dependency between
features and target/Pros: Useful

for categorical data, fast to
compute.

RFE [12,32] Wrapper Iterative selection process Find the optimal subset of
features/Pros: Select features

based on real model
performance. Cons: Risk of

removing essential classification
features.

GA [33,34] Wrapper Evolutionary algorithms, fitness
function

Optimize FS using population
evolution/Pros: Finds global
optima, works for non-linear

problems. Cons:
Computationally expensive,

requires tuning.

L1 regulariza-
tion [13,35]

Embedded Min 1
2n

n
∑
i=1
(yi − y)2 + γ

p
∑
i=1
∣Bi ∣ Less important feature

coefficients to zero/Pros:
Reduces overfitting, and

promotes sparsity.

(Continued)



1462 Comput Mater Contin. 2025;84(1)

Table 2 (continued)

FS Methods/Ref. Type Mathematical Equations/
Concepts

Selection Criteria/Key Details

Ridge (L2
Regulariza-
tion) [36,37]

Embedded Min 1
2n

n
∑
i=1
(yi − y)2 + γ

p
∑
i=1

Bi
2 Reduces overfitting/Pros:

Prevents overfitting, and works
with many features. Cons: Does

not perform strict FS, and
retains all features.

Elastic
net [35,38]

Embedded ∂L1 + (1 − ∂) L2 Balances FS and
regularization/Pros: Balances

feature selection and
regularization. Cons: More
complex to tune due to two

parameters.
Decision

trees [31,39]
Embedded Decision nodes and Gini/Entropy

impurity
Selects important features based

on splits/Pros: Interpretable,
handles categorical and

continuous data. Cons: Can
overfit, biased towards features.

Forward
selection [40,41]

Wrapper Stepwise selection process Finds optimal subset of
features/Pros: Intuitive,

interpretable. Cons:
Computationally expensive.

Backward elim-
ination [41,42]

Wrapper Stepwise elimination process Finds optimal subset of
features/Pros: Intuitive,

interpretable. Cons: Risk of
overfitting.

PCA [43,44] Dimensionality Eigenvalues, eigenvectors,
covariance matrix

Reduce dimensionality, retain
variance/Pros: Reduces

multicollinearity, useful for
high-dimensional data.

Sequential
Feature

Selection
(SFS) [45,46]

Wrapper Sequential process Find the best-performing
feature subset/Pros: Flexible,

works with many model types.
Cons: Computationally

expensive for large feature sets.

Fisher
score [47,48]

Filter (μ1 − μ2)2

σ 2
1 − σ 2

2
Maximize separability between

classes/Pros: Simple, and
effective for classification tasks.
Cons: Assumes normality and

equal variance in data.

(Continued)
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Table 2 (continued)

FS Methods/Ref. Type Mathematical Equations/
Concepts

Selection Criteria/Key Details

This study
(FSFS)

Filter (FSFS) i =
������������
∑ F i −

⎡⎢⎢⎢⎢⎣

∑n
0 Ri −Max M∑n

j=1,J>i R j∣
nr −mr

⎤⎥⎥⎥⎥⎦

������������

Identifies features that
positively impact model

outputs removes outliers,
reduces dimensions and

improves overall
performance/Pros: Easy to

implement with an automatic
threshold for FS. Cons:

Suitable only for numerical
data; can be adapted for

categorical data using
encoding approaches.

The evaluation in Tables 1 and 2 demonstrates that our proposed FSFS filter-based methods rely on
statistical measures to assess feature importance. Their ability to analyze features independently and effi-
ciently establishes them as a powerful foundation for explainable AI, outperforming existing FS approaches
in extracting and analyzing meaningful evidence. Traditional filter-based methods evaluate features inde-
pendently using metrics like correlation or mutual information, enabling fast and computationally efficient
feature ranking. However, this isolated evaluation often overlooks feature interactions or dependencies.
For example, two features may exhibit weak individual correlations with the target variable, yet their
combined interdependence could yield significant predictive power—a nuance addressed by our proposed
FSFS approach. While filter-based methods excel at rapid dimensionality reduction, their inability to capture
such joint relationships may result in missed critical insights. By contrast, the FSFS framework accounts for
feature interdependencies, enhancing robustness in scenarios where collaborative feature effects are pivotal.
This distinction underscores its superiority in identifying complex patterns that conventional filter methods
fail to detect.

FSFS designed to automatically identify and select the most important and impactful features in data-
driven models while preserving essential information. The FSFS technique measures the similarity between
each feature and the mean of records, ranking features based on their similarity scores. To ensure objective
feature selection, an automatic thresholding mechanism is employed, classifying features as either important
or less significant by calculating the average similarity score. Features with higher similarity scores are
retained, while those with lower similarity scores are discarded. Additionally, the FSFS method effectively
eliminates outlier values that could negatively impact model outputs. The FSFS framework effectively
identifies and selects features exhibiting strong statistical relationships and high similarity, ensuring fairness
in FS while maintaining reliable evaluation outcomes. Although FSFS is inherently optimized for numerical
data, it can be adapted for categorical data through preprocessing techniques that map categorical variables
to numerical representations.

This framework includes an automated ranking mechanism to identify features with the highest
statistical significance and impact on the trustworthiness of models. To enable precise feature selection, FSFS
integrates advanced data encoding techniques, transforming raw datasets into structured numerical formats
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compatible with machine learning workflows. Once structured, statistical analyses—the proposed FSFS
metrics are applied to guide the right selection process, ensuring robustness, reproducibility, and alignment
with model objectives. The proposed FSFS method focuses on fair feature selection, emphasizing the most
critical and correlated features that influence overall system outputs while achieving high performance
and reliable, reasonable evaluation results. Moreover, new FSFS methods provide greater interpretability of
models by offering insights into data features from multiple perspectives, thus increasing users’ confidence
in the results.

3 Methodology
The significance of this approach lies in its ability to select the most similar and related features by

calculating the ratio of similarity and dependencies among features. This is achieved by comparing the total
feature similarity with the average of each record to identify the minimum distance, where the shortest
distance indicates the highest similarity. Higher similarity corresponds to a stronger relationship between
features. After normalization (data standardization and unification), the dataset values are transformed into a
uniform range, such as 0–1, 0–100, or 100–1000, depending on the dataset’s scale. This normalization process
mitigates the effects of data anomalies and extreme values. The FSFS method further eliminates extreme
values after normalization, reducing their influence on model outputs. For illustration, consider a dataset
containing information on patients with cancer and diabetes. If the focus is on cancer-related data, the FSFS
method calculates feature similarity to prioritize parameters most closely related to cancer, while minimizing
the influence of dissimilar features that may be more associated with diabetes. This targeted approach
enhances performance and yields more reliable results by leveraging the similarity and dependencies in
data patterns. As displayed in Fig. 1, the proposed FSFS methodology involves calculating the approximate
average for each record and subtracting it from the sum of each attribute, incorporating deep and intelligent
scaling values. The scaling process (e.g., Max-value division scaling) eliminates values that negatively impact
the output of data-driven models, ensuring that the target values in testing data remain consistent across
records while aligning with the corresponding target class (e.g., class X or Y). FSFS methodology is further
integrated with the replacement encoding techniques, which preserves the dimensionality of the data
while maintaining privacy and ensuring data encryption. The replacement encoding mechanism transforms
categorical data into numerical representations, facilitating seamless integration within AI models. In this
study, the proposed method for FS and classification into the most important and least important features
consists of several stages: Data Structuring and Formatting: This stage involves organizing and structuring
the data through replacement encoding, transforming it into a numerical format to ensure uniformity and
make it suitable for FSFS statistical analysis. It maintains both the data’s dimensions and structure. Datasets
containing numerical data do not require this encoding process. However, datasets with categorical data
must undergo data encoding to facilitate easy computation. Statistical Stage: This is the most crucial stage in
The FSFS proposed method for feature selection, designed to identify the most and least significant features.
In this stage, the similarity between each feature and the approximate average of all records is calculated
to determine the most correlated and similar features. Automatic Threshold Stage: In this final stage, the
automatic threshold is used to classify the features into those with the highest significance and those with
lower importance. The threshold is calculated by determining the average of the sum of the similar features.
Features that are more correlated and similar are classified as the most important and are less than the
output of the automatic threshold. Conversely, features with less correlation and similarity are classified as
less important, having less impact on model outcomes, and are greater than the output of the automatic
threshold. Fig. 1 illustrates the workflow underpinning the proposed FSFS theory, along with the equations
that define its theoretical framework. The output of the automated preprocessing consists of numerical
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data, although outlier values may still affect the performance of AI models. To address this, the output
dataset undergoes standard normalization techniques tailored to the dataset’s characteristics. The choice of
normalization method depends on the specific dataset characteristics and the desired value ranges. Once
normalized, the dataset—with reduced outlier effects—serves as input for the FSFS methodology. The FSFS
approach conducts statistical computations by deeply analyzing and removing outliers using the Min-Max
(M) function. FSFS calculates feature similarity by summing feature values correlated with the approximate
averages of records. Finally, the method applies an automated optimal thresholding process, classifying
features into the most important and least important categories, respectively.

Figure 1: Workflow and equations underpinning the proposed FSFS theory

The proposed equation for feature selection consists of three components: the preliminary condition
in Eq. (1), denoted as (∑ Fi), calculates the total sum for each feature. Eq. (2) computes the correlation
and similarity ratio with interactions between each feature (Attributes) and the average of each record
(Observations) to identify the most suitable features, which are the most significant and have the greatest
impact on the model’s output. Eq. (3) establishes the automatic threshold for distinguishing between the
most important features and those of lesser importance. In the proposed FS equations, the process begins by
calculating the sum of each feature, which serves as an initial condition to facilitate the subsequent calculation
of feature similarity. Next, the similarity and correlation between each feature as illustrated in the first part
of Eq. (2) and the average of all records as illustrated in the second part of Eq. (2) are determined. Eq. (2)
demonstrates how to compute the most important, highly correlated features that have the greatest influence
on the model’s outcomes.
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∑ Fi f1, f2, f3, . . . , fn (1)

(FSFS) =
�����������
∑ Fi −

⎡⎢⎢⎢⎣

∑n
0 Ri −MaxM∑n

j=1, J>i R j∣
nr −mr

⎤⎥⎥⎥⎦

�����������
(2)

∑ Fi represents the sum of each feature starting from f1, f2, f3, . . . , fn . The term (FSFS) refers to the Farea
Similarity for Feature Selection, which calculates the correlation of each feature using the first part of the
equation denoted by (∑ Fi) with the approximate average of each record using the second part of the equation
denoted by [∑

n
0 Ri−Max M

∑
n
j=1, J>i R j∣

nr−mr
],∑n

0 Ri is the total of instances where MaxM is used to eliminate outliers
that negatively impact the model’s results, with accounting for multiple outliers. Where M indicates the
number of outliers that may be single or multivalued depending on M configuration. Using the Interquartile
Range (IQR) method, the min-max (Max) function automatically calculates the upper and lower boundaries
to identify outliers. The minus sign represents the calculation of the minimum difference to identify the
highest similarity and correlation between features. nr is the number of instances, and mr is the number of
outlier values subtracted to ensure accuracy. FSFS approach ensures that outliers are excluded, and the focus
is on identifying highly correlated and significant features. Table 3 illustrate the symbols and abbreviation of
the proposed FSFS approach and description.

Table 3: Symbols and description of the FSFS approach

Symbols Eq. Description
F i (1) and (2) The sum of the i-th feature across all records (e.g., f1, f2, f3, . . . , fn).

(FSFS) (2) Farea Similarity for Feature Selection score for the i-th feature, quantifying its
correlation and similarity to the dataset’s average structure.

Ri (2) i-th record (observation) in the dataset.
Max M (2) Operator to remove M outlier values from the records. M can be a single or

multiple outlier, depending on (IQR).
nr (2) Total number of records (instances) in the dataset.
mr (2) Number of outlier values removed during calculations.
M (2) Number of outliers to eliminate (configurable based on IQR, e.g., M = 1 for a

single outlier).
f n (3) and (4) Total number of features in the dataset.

(FSFS) i (3) and (4) The sum of (FSFS)i scores across all features.
Threshold (3) and (4) ∑(FSFS)i

fn
: Average FSFS score used to classify features.

Features automatically with (FSFS) ≤Threshold are deemed important
(Eq. (3)), while those with (FSFS) >Threshold are less important (Eq. (4)).

In Eq. (2), feature interactions are quantified by subtracting the sum of each feature from the average
of each record, thereby minimizing the distance and maximizing similarity and correlation both vertically
(across features) and horizontally (across records). The subtraction operation represents finding the smallest
distance, which signifies the highest degree of similarity. In other words, the equation calculates the overall
similarity between each feature (representing vertical data) and the average of each record (representing
horizontal data). This process establishes a connection between the features and records to determine their
correlation. FSFS considers feature dependencies rather than isolated metrics. This approach evaluates both
feature consistency and inter-feature similarity to the overall data pattern. The FSFS measure, calculated as
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the absolute difference, quantifies dissimilarity, with a smaller difference indicating higher similarity. Tradi-
tional methods often neglect feature interactions. For instance, individually weak features may collectively
possess strong predictive power, which FSFS aims to capture.

Furthermore, FSFS incorporates outlier and irrelevant feature removal post-normalization, potentially
impacting AI results. In the proposed method, we also account for outlier removal, as these anomalous
values can have a direct impact on the evaluation and calculation results. The equation allows for the
removal of either a single outlier or multiple outliers. Considering the elimination of outliers is crucial in
this proposed equation, as outliers significantly affect feature selection and result variability. Additionally,
the method operates on a general statistical basis for calculating the correlation and similarity between
features, ensuring a robust and accurate selection process. In the FSFS approach, outlier removal is integrated
into the FS process, ensuring data preservation without arbitrary elimination and maintaining meaningful
information. This study deliberately avoids the arbitrary exclusion of extreme values, which could result in
significant information loss if such values were indiscriminately treated as part of data cleaning. The careful
handling of extreme values was a central focus of this study, aligning with the overarching goal of improving
feature selection.

Eqs. (3) and (4) illustrate the automatic threshold condition used to classify the most important features
from the less important ones. The automatic threshold is calculated by determining the average of the total
similarity for all features. Features that are of the highest importance have values below the threshold,
indicating they are the most similar and significant, as shown in Eq. (3). Conversely, features with lower
importance have values greater than the threshold, indicating they are less correlated, as outlined in Eq. (4).

fn f or More importance = (∑(FSFS) i
fn

≥ (FSFS) i) (3)

fn f or Less importance = ((FSFS) i > ∑(FSFS)i
fn

) (4)

The proposed algorithm processes the features and records of the dataset, which serves as the input to
our model. The outputs are the number of features classified as highly similar and of utmost importance, as
well as the number of features identified as less correlated and having lower significance and impact on the
model’s outputs. A data encoding technique is employed to ensure the proper reorganization and structuring
of the data. Following this, a normalization process is applied to scale down large values. The FSFS Statistical
computations are then performed. Finally, the condition and description of the automatic threshold equation
are applied to distinguish and classify the important features from the less significant ones. Fig. 2 illustrates
the pseudocode detailing the sequence of operations in our proposed method.
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Figure 2: FSFS pseudocode detailing the sequence of operations in our proposed method

4 Results and Discussions
The proposed theory has been evaluated, tested, and compared with various feature selection techniques

and datasets. The selected datasets include experimental data, Breast Cancer Wisconsin (Original) [49],
KDD CUP 1999 DATASET [50], NSL-KDD, UNSW-NB15 and Edge-IIoT [51] datasets while the techniques
compared with the FSFS proposed method include CS, Gain Ratio, Filtered Subset Eval, Genetic Approach,
Exhaustive Approach, and Greedy Stepwise Approach. We assessed and tested the FSFS approach across
three scenarios to validate its effectiveness and efficiency, which are detailed as follows: The first scenario
involved simple experimental data to demonstrate and simplify the step-by-step calculations of the FSFS
proposed theory, ensuring its ease of use and applicability to data-driven models. The second scenario
utilized health data related to breast cancer. Lastly, the third scenario applied cybersecurity data to evaluate
the approach further.

Scaling dataset values to a specific range through data normalization is crucial, particularly for handling
anomalous values and mitigating the influence of outliers that can adversely affect the performance of AI
models. The purpose of the first scenario is solely to provide a mathematical understanding of the proposed
FSFS approach. In experimental setups, normalization helps in computationally understanding the proposed
theory, Hence, we employed division by the maximum value as a normalization step for the datasets. The
choice of normalization method depends on the dataset characteristics and desired value ranges. These
techniques ensure data standardization and unification, avoiding the adverse effects of outliers. For instance,
consider a testing record R with features R (f 1 = 16, f 2 = 18, f 3 = 1000, f 4 = 7, T = ?), where f 1, f 2, f 3, and f 4
represent features, and T is the target label. The training dataset includes two records: R1 (f 1 = 15, f 2 = 13, f 3
= 500, f 4 = 4, T = P) R2 (f 1 = 17, f 2 = 17, f 3 = 300, f 4 = 8, T = N). Before normalization, these records contain
anomalies, such as the values f 3 = 1000 in R, f 3 = 500 in R1 and f 3 = 300 in R2. After normalization (scaling
the data to the specific range using max-value division), the transformed records are: R′ (f 1

′ = 0.016, f 2
′ =

0.018, f 3
′ = 1.000, f 4

′ = 0.007, T = ?), R1
′ (f 1

′ = 0.015, f 2
′ = 0.013, f 3

′ = 0.500, f 4
′ = 0.004, T = P), R2

′ (f 1
′ = 0.017,

f 2
′ = 0.017, f 3

′ = 0.300, f 4
′ = 0.008, T = N). In traditional methods, similarity between records is calculated

using the absolute differences between corresponding normalized feature values (e.g., ∣R′_f 1-R1
′_f 1∣, ∣R′_f 2-

R2
′_f 2∣, etc.). Based on these calculations, R′ is closer to R1

′, which would associate T with class P. However,
the proposed FSFS approach introduces additional preprocessing steps by eliminating outliers and unrelated
features (e.g., f 3), thus altering the results. For example, FSFS detects that R′ shares more similarity with R2

′
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when focusing on related features f 1
′, f 2

′, and f 4
′, and avoids using the anomaly-prone feature f 3

′. As a result,
T is correctly classified into class N, demonstrating how FSFS enhances model reliability via interaction
and dependency between features. This highlights the significance of normalization in ensuring accurate AI
outputs and underscores the added value of the FSFS method. By removing unrelated and outlier features,
FSFS improves the trustworthiness of results and supports more sensitive and precise calculations that
affect AI model outputs. Compared to standard normalization techniques, FSFS offers a more robust and
context-aware approach to feature selection, ensuring reliable and consistent decision-making in AI systems.

4.1 First Scenario
To enhance understanding of the proposed theory, we applied a simple numerical example to a small

dataset, aiming to illustrate the workflow of the FSFS theory and simplify it for the reader. The experimental
dataset used in this example, to comprehend and apply the proposed theory, consists of 8 features and 15
patient records. The objective is to classify the 8 features into those of utmost importance and those of
lesser significance. Table 4 presents the data from the experimental dataset to facilitate understanding. The
features include Patient ID, Age, Weight, Blood Pressure, Cholesterol, Glucose, Heart Rate, Body Temp, BMI
(Body mass index), and Oxygen Saturation (%). This small dataset was carefully selected to demonstrate the
step-by-step mathematical calculations and the functioning of our proposed theory. The goal is to simplify
its application and understanding, ensuring it can be effectively used on larger datasets in the next future
scenarios. Table 5 provides a detailed breakdown of the computational steps for the proposed theory FSFS
as applied to the dataset shown in Table 4. The first column represents the sum of each feature, serving as
the initial condition for our proposed theory. The second column shows the approximate sum of the average
of each record, excluding outliers that negatively impact the results. The upper and lower boundaries for
detecting outliers are determined using the IQR (Interquartile Range) method. In this case, the IQR is 145.1.
This yields a lower boundary of 430.75 and an upper boundary of 1011.15. Any values outside this range—
such as 1043.5 and 1116—are classified as outliers. The third column presents the complete calculation of our
proposed method FSFS, which involves measuring the similarity and correlation of features both vertically
and horizontally. Table 6 summarizes the computational results of the proposed FSFS theory, FSFS indicating
the similarity ratio between the features. It also delineates the automatic threshold employed for feature
selection and classification into highly similar, moderately related, and less correlated categories. Features
with an aggregate below the mean of FSFS are sequentially the most similar and related. Conversely, features
above the average of FSFS are sequentially the least significant features.

Table 4: Workflow detailing the steps applied to the FSFS experimental dataset for patient analysis

Ri/F i f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 ∑Ri T
r1 45 80 120 200 95 75 36.7 25 676.7 1
r2 50 85 140 180 105 80 37 28 705.0 1
r3 60 70 130 220 115 85 36.5 24 740.5 0
r4 35 65 110 190 90 70 37.1 23 620.1 0
r5 80 110 200 300 180 100 38.5 35 1043.5 1
r6 25 45 80 120 65 50 35 17 437.0 0
r7 55 90 150 230 130 78 36.8 29 798.8 1
r8 40 68 115 170 85 72 36.6 22 608.6 0
r9 65 75 160 210 125 90 37.2 26 788.2 1
r10 30 60 105 180 100 65 36.9 22 598.9 0

(Continued)
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Table 4 (continued)

Ri/F i f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 ∑Ri T
r11 90 120 210 320 190 110 39 37 1116.0 1
r12 70 95 170 250 135 88 37 31 876.0 1
r13 52 82 130 195 110 82 36.7 27 714.7 1
r14 45 88 135 210 125 76 37.1 26 742.1 0
r15 60 73 125 200 95 68 36.8 23 680.8 0
∑ Fi 802.0 1206.0 2080.0 3175.0 1745.0 1189.0 554.9 395.0 11,146.9

Table 5: A detailed breakdown of the computational steps for the proposed theory FSFS on the dataset

∑n
0 F i

⎡⎢⎢⎢⎢⎣

∑n
0 Ri −Max M∑n

j=1,J>i R j∣
nr −mr

⎤⎥⎥⎥⎥⎦
(FSFS) i =

������������
∑ F i −

⎡⎢⎢⎢⎢⎣

∑n
0 Ri −Max M∑n

j=1,J>i R j∣
nr −mr

⎤⎥⎥⎥⎥⎦

������������
f1 = 802.0 [8987.4 −Max2 (1043.5 + 1116)

15 − 2
] (FSFS)1 = ∣802–525.22∣ = 276.78

f2 = 1206.0 525.22 (FSFS)2 = ∣1206–525.22∣ = 680.78
f3 = 2080.0 525.22 (FSFS)3 = ∣2080–525.22∣ = 1554.78
f4 = 3175.0 525.22 (FSFS)4 = ∣3175–525.22∣ = 2649.78
f5 = 1745.0 525.22 (FSFS)5 = ∣1745–525.22∣ = 1219.78
f6 = 1189.0 525.22 (FSFS)6 = ∣1189–525.22∣ = 663.78
f7 = 554.9 525.22 (FSFS)7 = ∣554.9–525.22∣ = 29.68
f8 = 395.0 525.22 (FSFS)8 = ∣395–525.22∣ = 130.22

Table 6: Computational results of the proposed FSFS theory

Fi ∑ f 1 ∑ f 2 ∑ f 3 ∑ f 4 ∑ f 5 ∑ f 6 ∑ f 7 ∑ f 8

∑ Fi 802.0 1206.0 2080.0 3175.0 1745.0 1189.0 554.9 395.0
(FSFS)i f1 (FSFS)1 f2 (FSFS)2 f3 (FSFS)3 f4 (FSFS)4 f5 (FSFS)5 f6 (FSFS)6 f7 (FSFS)7 f8 (FSFS)8
(FSFS) i 276.78 680.78 1554.78 2649.78 1219.78 663.78 29.68 130.22
∑(FSFS)i

fn

7205.38
8 900.672 900.672 900.672 900.672 900.672 900.672 900.672

∑(FSFS)i
fn

≥ (FSFS) √ √ × × × √ √ √

(FSFS) i > ∑(FSFS)i
fn

× × √ √ √ × × ×

The similarity between features does not merely reflect the closeness of their numerical values but
also highlights the relationship and relevance among the features themselves. Features that exhibit strong
associations as f 1, f 2, f 6, and f 7, and tend to group, indicating their collective influence on reliable
classification results. This underscores the importance of evaluating not only numerical proximity but also
feature relevance when diagnosing cases or drawing conclusions. For instance, assigning features f 3, f 4, and
f 5 to one condition (e.g., a specific disease) and grouping other features under another condition is more
effective than treating them as part of the same group. This differentiation enhances diagnostic accuracy and
result reliability. In the context of this study, the features with the smallest differences in values are considered
the most similar, and the most similar features are typically the most correlated. Conversely, larger differences
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indicate lower similarity and weaker correlation. This relationship can be conceptualized geometrically: the
determination of correlation strength can be visualized as finding the least vertical and horizontal deviations
between points, which helps pinpoint the strength and direction of the correlation. In this context, the most
significant features are f 7, f 8, f 1, and f 6. Among these, f 7 demonstrates the least difference in value compared
to other features, making it the most similar and correlated. On the other hand, f 4 has the greatest difference
in value, making it the least similar and least correlated feature. To better illustrate this concept, consider a
scenario where similarity is assessed between a given individual and two others based on specific features.
By calculating the differences in feature values, the individual is determined to be closer to the person with
the smallest overall difference, signifying greater similarity. This principle underlines the importance of
minimizing differences in critical features to identify strong correlations and reliable relationships within
data. According to the FSFS approach, the computational results presented in Table 6 indicate a stronger
correlation and similarity between features f 1, f 2, f 6, f 7, and f 8, compared to features f 3, f 4, and f 5. Since
the distance between features f 1, f 2, f 6, f 7, and f 8 is much smaller than that between features f 3, f 4, and f 5,
it follows that features f 1, f 2, f 6, f 7, and f 8 are more similar to each other than features f 3, f 4, and f 5. Fig. 3
illustrates the distribution of important and unimportant data within the experimental dataset. The lower
the value of variable FSFS, the more significant the feature, as these points fall below the FSFS average line.
Conversely, higher values indicate less importance. This is because lower values represent smaller differences
in the output, signifying greater similarity among features. Thus, features with smaller FSFS values are more
strongly correlated and considered more critical in influencing the model’s results. Table 7 presents a ranked
list of features based on their statistical significance and similarity. Features f 7, f 8, f 1, f 6, and f 2 exhibit the
highest levels of significance, with f 7 being the most important feature overall. In contrast, features f 5, f 3,
and f 4 show the lowest levels of significance, with f 4 having the weakest correlation. The overall ranking
from most to least significant is: f 7, f 8, f 1, f 6, f 2, f 5, f 3, and f 4. Therefore, f 7 has the strongest correlation,
while f 4 demonstrates the weakest correlation. Fig. 4 illustrates the significance levels, where the zigzag
line represents the FSFS ratio, shown in light orange. Feature f 7 exhibits the smallest distance, indicating
the highest similarity and correlation, while feature f 4 shows the largest difference and distance, reflecting
the lowest similarity and correlation. Table 8 details a comparison of feature selection techniques with the
proposed FSFS method integrated with a Random Forest (RF) classifier. It compares the FSFS theory with
several other methods, such as CS, CC, and GA, showing the number and names of the selected features in
each method along with the evaluation results. The proposed FSFS method achieved competitive evaluation
results, reaching up to 100% accuracy compared to other techniques.

Figure 3: Distribution of important and unimportant data as classified by the FSFS theory
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Table 7: A ranked list of features based on their statistical significance and similarity

Fi ↑ ∑ f 7 ∑ f 8 ∑ f 1 ∑ f 6 ∑ f 2 ∑ f 5 ∑ f 3 ∑ f 4

Name (Fi ) Temp (C) BMI Age Heart (bpm) Weight (kg) Glucose Blood pressure Cholesterol (mg/dL)
(FSFS) i↑ 29.68 130.22 276.78 663.78 680.78 1219.78 1554.78 2649.78

Most important features Less important features

Figure 4: Significance levels, and FSFS values

Table 8: Comparative evaluation of established FS techniques versus the proposed FSFS method

FS Selected
Features

Training
(70%)

Testing
(30%)

Algorithm Accuracy =
Number o f Corre c t Pred i c t ions

Total Predictions × 100
CS f 4, f 3, f 1,

f 2, f 5

r1, r2, r5, r7,
r9, r11, r12,
r13, r14, r15

r3, r4, r6,
r8, r10

RF Correct predictions: 3 (r3, r6, r8)
Total predictions: 5 and Accuracy =

3/5 × 100 = 60%
CC f 6, f 4, f 1,

f 5, f 2

r1, r2, r5, r7,
r9, r11, r12,
r13, r14, r15

r3, r4, r6,
r8, r10

RF Correct predictions: 3 (r3, r6, r8)
Total predictions: 5 and Accuracy =

3/5 × 100 = 60%
GA f 7, f 4, f 6,

f 2, f 3

r1, r2, r5, r7,
r9, r11, r12,
r13, r14, r15

r3, r4, r6,
r8, r10

RF Correct predictions: 3 (r3, r6, r8)
Total predictions: 5 and Accuracy = 3

5
× 100 = 60%

This study
(FSFS)

f 7, f 8, f 1,
f 6, f 2

r1, r2, r4, r5,
r7, r8, r10,
r11,r13, r14

r3, r6, r9,
r12,r15

RF Correct Predictions: 5 ( r3, r6, r9, r12,
r15)

Total Predictions: 5 and Accuracy =
5
5× 100 = 100%

In this study, we define affected model outputs as cases where selecting less important features leads to
contradictory outcomes. For example, selecting 5 features out of 8 may classify a new data record into class
A, while selecting 6 features out of 8 from the same dataset may classify the same record into class B. This
inconsistency arises due to the removal of features with extreme values that significantly and directly affect
the model’s results, resulting in inconsistent and volatile outcomes. Figs. 5 and 6 present a comparison of
our proposed feature selection method on the experimental dataset with several widely used and established
techniques, namely CS, CC, GA, and RF. In our newly developed statistical FSFS method, the features f 3, f 4,
and f 5 were identified as less significant, while f 7, f 8, f 1, f 6, and f 2 were ranked as more important, in that
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order. When applying the CS method to the same dataset, f 6, f 7, and f 8 were classified as less important,
while f 4, f 3, f 1, f 2, and f 5 were categorized as more important, also in that order. similarly, the CC method
selected f 6, f 4, f 1, f 5, and f 2 as the most important features. Additionally, when using the GA method on
the same dataset, the features f 1, f 5, and f 8 were deemed less important, whereas f 7, f 4, f 6, f 2, and f 3 were
ranked as more significant. Furthermore, implementing the encoding mechanisms on the same dataset with
full feature selection resulted in optimal model performance. This outcome suggests that ignoring some
features can lead to negative results and highlights the significant impact that the choice of test data has on
model performance.

Figure 5: Feature significance determined using the RF method on the complete feature set

Figure 6: (Continued)
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Figure 6: FSFS vs. CS, CC & GA on dataset

4.2 Second Scenario
In the second scenario, a health-related dataset, referred to as the Breast Cancer Wisconsin (Original)

dataset was used. This dataset was applied and evaluated using the proposed FSFS method. The dataset
contains 10 features, with the ID feature excluded due to its significant deviation from the other data. The
dataset comprises 699 records. The proposed FSFS method was calculated for each feature, along with
the average for each record, as shown in Table 9. Table 10 presents the calculation of similarity based on
the proposed FSFS theory applied to the dataset. It is observed that features f 3, f 4, f 6, f 8, and f 9 were
classified as highly significant, while features f 1, f 2, f 5 and f 7 showed lower similarity and correlation.
The features were automatically classified based on the FSFS proposed threshold. Additionally, the chart
illustrates the relationship between the total number of features and the correlation within the proposed
FSFS framework. Fig. 7 illustrates the relation between the sum and FSFS values for similarity. Table 11
ranks the importance of the features, with feature f9 being the most important, while feature f 1 is the most
distinct, having the lowest similarity and correlation. Overall, the features are ranked in terms of importance,
similarity, and correlation from highest to lowest as follows: f 9, f 4, f 3, f 6, f 8, f 2, f 5, f 7, and f 1, respectively. Fig. 8
shows the distribution of significant and insignificant data within the Breast Cancer Wisconsin (Original)
dataset, while Fig. 9 illustrates the feature importance rankings in the same dataset. Features with lower
FSFS values are considered more important, as they lie below the FSFS average line, while higher values
correspond to less important features. Lower FSFS values indicate smaller output differences, which reflect
a higher similarity among features. Therefore, features with the smallest FSFS values are those most closely
aligned and have the greatest impact on the model’s outcomes. Table 12 presents a comparative analysis of
the proposed FSFS method and theory against several other feature selection techniques, such as the Genetic
Approach, Exhaustive Approach, and Greedy Stepwise Approach. The number of selected features varies
among these methods, influenced by their underlying principles, methodologies, and statistical formulations.
Notably, the FSFS method identified only five features, namely f 9, f 4, f 3, f 6, and f 8, as highly significant and
impactful on the model’s outcomes. This represents the smallest feature subset selected by any of the methods,
yet it consistently outperformed the others in terms of evaluation metrics. Fig. 10 presents a comparative
analysis of the proposed FSFS theory against other feature selection techniques, visualizing accuracy and the
number of features selected by each method. The RF classifier integrated with the FSFS approach achieved
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an accuracy of 97.81% on the Breast Cancer Wisconsin (Original) dataset, along with a precision of 97.2%,
recall of 98.1%, and an F1-score of 97.7%.

Table 9: Calculation of the FSFS metric for each feature, incorporating the record-wise average

n
∑
0

Fi
⎡⎢⎢⎢⎢⎣

∑n
0 Ri −Max M∑n

j=1,J>i R j∣
nr −mr

⎤⎥⎥⎥⎥⎦
(FSFS) i =

������������
∑ F i −

⎡⎢⎢⎢⎢⎣

∑n
0 Ri −Max M∑n

j=1,J>i R j∣
nr −mr

⎤⎥⎥⎥⎥⎦

������������
f1 = 3088 [ 19,670 −Max 1 (82)

699 − 1
] (FSFS)1 = ∣3088–28.06∣ = 3059.94

f2 = 2191 28.06 (FSFS)2 = ∣2191–28.06∣ = 2162.94
f3 = 1993 28.06 (FSFS)3 = ∣1993–28.06∣ = 1964.94
f4 = 1962 28.06 (FSFS)4 = ∣1962–28.06∣ = 1933.94
f5 = 2248 28.06 (FSFS)5 = ∣2248–28.06∣ = 2219.94
f6 = 2000 28.06 (FSFS)6 = ∣2000–28.06∣ = 1971.94
f7 = 2403 28.06 (FSFS)7 = ∣2403–28.06∣ = 2374.94
f8 = 2004 28.06 (FSFS)8 = ∣2004–28.06∣ = 1975.94
f9 = 1111 28.06 (FSFS)9 = ∣1111–28.06∣ = 1082.94

Table 10: Calculation of similarity based on the proposed FSFS theory applied to the dataset

Fi ∑ f 1 ∑ f 2 ∑ f 3 ∑ f 4 ∑ f 5 ∑ f 6 ∑ f 7 ∑ f 8 ∑ f 9

∑ Fi 3088 2191 1993 1962 2248 2000 2403 2004 1111
(FSFS)i f1 (FSFS)1 f2 (FSFS)2 f3 (FSFS)3 f4 (FSFS)4 f5 (FSFS)5 f6 (FSFS)6 f7 (FSFS)7 f8 (FSFS)8 f9 (FSFS)9
(FSFS) i 3059.94 2162.94 1964.94 1933.94 2219.94 1971.94 2374.94 1975.94 1082.94
∑(FSFS)i i

fn

18,747.46
9 2083.05 2083.05 2083.05 2083.05 2083.05 2083.05 2083.05 2083.05

∑(FSFS)i
fn

≥ (FSFS) × × √ √ × √ × √ √

(FSFS) i > ∑(FSFS)i
fn

√ √ × × √ × √ × ×

Figure 7: Relationship between the sum and FSFS values for similarity
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Table 11: Features ranked in ascending order of importance

Fi ↑ ∑ f 9 ∑ f 4 ∑ f 3 ∑ f 6 ∑ f 8 ∑ f 2 ∑ f 5 ∑ f 7 ∑ f 1

Name (Fi ) Mitoses Marginal
adhesion

Cell
shape

Bare
Nuclei

Normal
Nucleoli

Cell size Single
epithelial

Bland
Chro-
matin

Clump
thickness

(FSFS) i↑ 1082.94 1933.94 1964.94 1971.94 1975.94 2162.94 2219.94 2374.94 3059.94
Most important features Less important features

Figure 8: Distribution of data classified as significant and insignificant by the FSFS method

Figure 9: Rank of features importance in Breast Cancer Wisconsin (Original) dataset
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Table 12: Proposed approach vs. other feature-selection techniques: a comparative analysis

Ref. Feature Selection
Approach

Algorithm Dataset Selected
Feature

Name of
Selected
Features

Accuracy (%)

[52–55]
Genetic approach Decision

tree (DT)
Breast
Cancer

Wisconsin
(Original)

6 out of 9 N/A 94.84

Exhaustive
approach

DT 6 out of 9 N/A 95.13

Greedy stepwise
approach

DT 7 out of 9 N/A 93.99

This study
(FSFS)

FSFS approach RF 5 out of 9 f 9 , f 4 , f 3 , f 6 , f 8 97.81

Figure 10: Comparative analysis of the proposed FSFS theory against other FS techniques

4.3 Third Scenario
In this scenario, a cybersecurity-focused dataset known as the KDD CUP 1999 DATASET was employed.

This dataset, consisting of 41 features and 4,000,000 instances, was subjected to the proposed FSFS method.
The FSFS metric was calculated for each feature, and an average FSFS score was determined for each record,
as presented in Table 13. The proposed FSFS theory selected only eight features from the total 41, prioritizing
those with the highest significance and correlation. In this scenario, the eight features were selected using
the same mechanism as in the first and second scenarios, and the proposed FSFS method was applied for
the calculations, as outlined step by step in the earlier scenarios. The features identified as most impactful,
ranked from highest to lowest according to the FSFS theory, are f 4, f1, f 23, f 9, f 22, f 3, f 11, and f 19. Feature f 4
(flag) is the most significant, while f 19 (Num access files) is the least, as depicted in Fig. 11. The corresponding
labels for these features are flag, Duration, count, Urgent, Is guest login, Service, Number failed logins,
Num access files, Is host login, and Logged in, . . . , etc., respectively. Notably, 31 features were deemed
insignificant and discarded by the FSFS approach. Table 14 presents a comparative analysis of the proposed
FSFS method and theory against several other feature selection techniques, including the CS Approach, Gain
Ratio Approach, and Filtered Subset Eval Approach. The number of selected features varies among these
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methods, influenced by their underlying principles, methodologies, and statistical formulations. Notably, the
FSFS method identified only eight features, namely f 4, f 1, f 23, f 9, f 22, f 3, f 11, and f 19, as highly significant and
impactful on the model’s outcomes. The integration of the FSFS approach with the RF classifier yielded robust
results on the KDD CUP 1999 dataset. Specifically, the model achieved an accuracy of 98.63%, with precision,
recall, and F1-score values of 97.9%, 98.3%, and 98.5%, respectively. This demonstrates the FSFS method’s
ability to select a minimal feature subset while consistently outperforming the others in terms of evaluation
metrics. Fig. 12 presents a comparative analysis of the proposed FSFS theory against other feature selection
techniques, visualizing the accuracy achieved and the number of features selected by each method. Table 15
presents a comparison of several data processing techniques applied to a standard dataset, all implemented
on the same Deep Neural Network (DNN) model, which demonstrated superior performance compared
to other models for the selected data. The results reveal that applying encoding approaches integrated with
normalization techniques had a positive and direct impact on the model outputs in the first scenario. In
contrast, when the one-hot encoding technique was used without normalization, the results deteriorated due
to an increase in data dimensionality, which led to misclassification, as observed in the second scenario. In the
third scenario, which aligns with the workflow proposed in this study, encoding mechanisms were integrated
with normalization techniques and the proposed FSFS approach. This combination resulted in notable
variations in performance compared to the first scenario, with improvements attributed to the selection of
reliable features based on similarity. These reliable features contributed to achieving balanced outcomes. The
findings underscore that encoding and normalization techniques play a crucial role in improving model
performance. However, achieving high accuracy alone is insufficient unless the results are reliable, balanced
and reasonable, preserving the data most critical to the model’s outputs. In this discussion, we analyze and
conclude the observations and results of the proposed FSFS method, comparing it to similar techniques.
The primary objective of the proposed FSFS method was to identify features that have the most significant
impact—whether positive or negative—on the model outputs. These findings provide increased reliability
in model outcomes, making them highly dependable for decision-making processes. Moreover, the FSFS
technique is highly interpretable, making it a crucial foundation for the concept of XAI. It also contributes
to the overall improvement of data-driven models’ performance. While FSFS achieves reasonably good
accuracy compared to its counterparts, it stands out in its interpretability.

Table 13: The FSFS metric calculation

Fi ↑ ∑ f 4 ∑ f 1 ∑ f 23 ∑ f 9 ∑ f 22 ∑ f 3 ∑ f 11 ∑ f 19 ∑ f 21 ∑ f 12

Name (Fi ) Flag Duration Count Urgent Is guest
login

Service failed
logins

Access
files

Is host
login

Logged in

(FSFS) i↑ 78.01 82.25 97.17 114.32 121.01 137.41 151.73 182.11 201.03 217.91
Most important features Less important
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Figure 11: Features ranked by impact, from highest to lowest, according to the FSFS approach

Table 14: FSFS vs. other FS techniques: a comparative analysis

Ref. FS
Approach

Algorithm Dataset Selected
Feature

Name of Selected Features Accuracy (%)

[52–54]
Chi-

squared
NAÏVE
BAYES
(NB)

KDD CUP
1999

DATASET

30 out of 41 F5 , F3 , F6 , F4 , F40 , F33 , F41 , F38 ,
F23 , F37 , F1 , F35 , F34

F27 , F24 , F29 , F36 , F25 , F2 , F13 , F28 ,
F11 , F39 , F32 , F30 , F18

F9 , F8 , F31 , F10

93.209

Gain ratio NB 30 out of 41 F11 , F9 , F13 , F2 , F8 , F4 , F18 , F28 , F3 ,
F29 , F30 , F12 , F41

F21 , F10 , F22 , F27 , F36 , F25 , F14 , F16, F5 ,
F40 , F24 , F1 , F6

F35 , F38 , F26 , F34

89.037

Filtered
subset eval

Decision
tree

7 out of 41 F2 , F3 , F4 , F5 , F6 , F24 , F36 97.026

This study
(FSFS)

FSFS
approach

RF 8 out of 41 F4 , F1 , F23 , F9 , F22 , F3 , F11 , F19 98.63
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Figure 12: Comparative analysis of the proposed FSFS theory against other feature selection techniques

Table 15: Comparison of data processing techniques and accuracy on a standard dataset

Features→Datasets↓ Models Replacement
Encoding

One Hot
Encoding

Min-Max
Normal-

ized

Selected
Features

FSFS Accuracy (% ) F1-Score (%)

First scenario
NSL-KDD

DNN Yes No Yes
Full (41)

No
98.17 98.2

UNSW-NB15 Full (42) 95.86 95.5
Edge-IIoT Full (61) 94.62 94.2

Second scenario
NSL-KDD

DNN No
41 became

122 features No
Full (41)

No
94.68 94.5

UNSW-NB15 42 became
194 features

Full (42) 93.15 92.4

Edge-IIoT dataset 61 became
218 features

Full (61) 86.11 86.4

Third scenario
NSL-KDD

DNN Yes No Yes
Selected (16)

Yes
98.94 98.7

UNSW-NB15 Selected (20) 94.27 92.2
Edge-IIoT dataset Selected (17) 98.46 98.7

FS techniques range from traditional to modern, each with specific goals. They differ in how they
operate and choose the most suitable features. It is observed that each method selects different features
based on its mechanism of operation, but certain features are consistently ranked as more important across
all feature selection techniques (FSFS, GA, CC, etc.). This indicates that differences in feature selection
reflect the unique statistical principles of each technique. The most suitable features are not necessarily
the most important but are often the most tailored to achieve high performance and evaluation results.
Conversely, agreement on certain features among the techniques suggests common factors in the statistical
processes and feature selection criteria, possibly representing the calculation of feature similarity. Some
techniques focus on improving system performance by reducing data dimensions, such as CC and CS
methods, which were highlighted and compared in the first and third scenarios. Others prioritize achieving
high evaluation results through optimal solutions, like GA techniques, discussed in the first and second
scenarios. Meanwhile, others aim to select noise-free features. Methods focused on system performance
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cannot often choose the most impactful features for model outputs. Conversely, less impactful features
may sometimes be more critical for achieving high performance. In both cases, reducing features generally
enhances performance. Some methods prioritize high evaluation results regardless of feature importance,
navigating through feature selection to find optimal solutions, resulting in high accuracy but overlooking
crucial features. However, feature navigation does not always guarantee high results. Therefore, techniques
that prioritize high performance do not necessarily select the most important features, instead focusing on
performance optimization and speed without considering feature importance in ensuring reliable outcomes.
It is better to choose features that provide reliable results regardless of their accuracy level. However, in
this study, selecting the most suitable and important features guarantees reliable outcomes with reasonable
performance and evaluation results. The computational complexity of the FSFS approach, which utilizes the
IQR method for outlier detection, is primarily driven by the sorting required for each feature. For a dataset
with features (f ) and records (n), sorting each feature to compute quartiles incurs a time complexity of O(n
log n) per feature, resulting in an overall complexity of O(f n log n). Additional operations such as computing
feature sums and correlations contribute linearly, but they are overshadowed by the sorting step. In terms
of space, the method requires O(f n) to store the dataset and minimal additional space for intermediate
computations. This analysis indicates that while the FSFS approach is scalable for large-sized datasets, its
performance may be impacted when dealing with very large datasets due to the computational cost associated
with sorting. It emphasized the dependencies and interactions among features, as characterized by similarity
measures, to ensure reliable model predictions. The proposed FSFS method addresses the challenge of
ensuring both performance and reliability by prioritizing the identification of similarities among features.
This approach highlights the correlations between data points and selects the most relevant features, ensuring
that critical information is preserved. By focusing on these relationships, FSFS enhances the reliability and
trustworthiness of the results while maintaining reasonable performance levels. Thus, continuous innovation
in FS techniques is essential for adapting to evolving and diverse datasets.

One limitation of the proposed FSFS method is its current applicability only to numerical data, but it
can be adapted with data encoding techniques to transform data into structured numerical forms suitable
for statistical operations. As a future direction for this study, FSFS is interpretable for data because it operates
by calculating the difference between features and the similarity ratio. Methods based on proximity and
similarity are comparable to features, allowing us to compare features based on their similarity ratios. Thus,
it serves as a fundamental approach, and we strive to develop it further to become a gateway for interpretable
artificial intelligence. This is referred to as evidence and feature analysis based on similarity.

5 Conclusion
Farea Similarity for Feature Selection (FSFS) is introduced as a novel statistical mechanism for feature

selection. FSFS is an automated statistical method designed to identify and classify the most significant
features in large-scale and data-driven AI models. FSFS not only demonstrated reliable results by selecting
the features with the greatest impact on model outcomes but also effectively reduced data dimensionality
without compromising accuracy. By calculating the similarity ratio between features and the approximate
average of each record, FSFS systematically excluded outliers, improving the fairness and trustworthiness of
feature selection.

In comparison to existing approaches, FSFS achieved a robust balanced evaluation matrix by fairly
identifying the most important features, ensuring that those with the highest similarity were selected while
irrelevant features were discarded. The accuracy of the best classifiers without employing the FSFS approach
reached 60.00%, 95.13%, 97.02%, 98.17%, 95.86%, and 94.62% on the Experimental dataset, Breast Cancer
Wisconsin (Original), KDD CUP 1999, NSL-KDD, UNSW-NB15, and Edge-IIoT datasets, respectively.
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However, integrating the FSFS method with data normalization, encoding, data balancing, and feature
importance selection improved accuracy to 100.00%, 97.81%, 98.63%, 98.94%, 94.27%, and 98.46%. Although
results fluctuated across datasets, rigorous testing against existing feature selection techniques, including
CS, CC, and GA, demonstrated that FSFS excels in selecting features strongly correlated with model
outcomes, enhancing its reliability and effectiveness. Notably, the significant predictive power afforded by
the interplay of feature interactions and dependencies underscores the importance of explicitly modelling
these relationships—a critical gap addressed by our FSFS approach. The FSFS approach, using IQR for outlier
detection, is influenced by sorting-related computational complexity, making it suitable for large datasets but
challenging for very large ones. A linear scan can enhance performance.

Extensive validation demonstrates the applicability of this method in data-driven domains—such
as cybersecurity and healthcare—where informed and interpretable insights are paramount for reliable
decision-making. By elucidating inter-feature relationships and providing a clear rationale for feature
importance, FSFS establishes a robust foundation for transparent and accountable AI models, thereby
facilitating their deployment in high-stakes environments.
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