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ABSTRACT: Network intrusion detection systems (IDS) are a prevalent method for safeguarding network traffic
against attacks. However, existing IDS primarily depend on machine learning (ML) models, which are vulnerable to
evasion through adversarial examples. In recent years, the Wasserstein Generative Adversarial Network (WGAN),
based on Wasserstein distance, has been extensively utilized to generate adversarial examples. Nevertheless, several
challenges persist: (1) WGAN experiences the mode collapse problem when generating multi-category network traffic
data, leading to subpar quality and insufficient diversity in the generated data; (2) Due to unstable training processes,
the authenticity of the data produced by WGAN is often low. This study improves WGAN to address these issues
and proposes a new adversarial sample generation algorithm called Distortion Enhanced Multi-Generator Generative
Adversarial Network (DEMGAN). DEMGAN effectively evades ML-based IDS by proficiently obfuscating network
traffic data samples. We assess the efficacy of our attack method against five ML-based IDS using two public datasets.
The results demonstrate that our method can successfully bypass IDS, achieving average evasion rates of 97.42% and
87.51%, respectively. Furthermore, empirical findings indicate that retraining the IDS with the generated adversarial
samples significantly bolsters the system’s capability to detect adversarial samples, resulting in an average recognition
rate increase of 86.78%. This approach not only enhances the performance of the IDS but also strengthens the network’s
resilience against potential threats, thereby optimizing network security measures.
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1 Introduction
Network intrusion detection systems (IDS) function as a proactive defense mechanism aimed at

identifying and addressing suspicious or malicious activities within networks and systems [1–3]. With the
continuous development of adversarial sample generation technology, traditional signature-based intrusion
detection systems are facing challenges in meeting the growing detection demands [4]. In recent years,
machine learning (ML), particularly deep learning (DL), already widely used in the IDS field, however,
they exhibit a level of susceptibility to inaccuracies, leading to a significant occurrence of false positives [5].
Moreover, the susceptibility of ML models to manipulation of input data by malicious actors has led to the
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emergence of a novel form of network traffic attack known as adversarial attacks [6]. Adversarial attacks
attempt to fool ML models by making subtle changes to input data.

Adversarial attacks can be categorized into two main types: black-box and white-box attacks. While
certain traditional white-box attack methods [7–10] have been successful against neural networks and
their ability to bypass defense mechanisms, some approaches may not be feasible in specific practical
contexts due to implementation constraints. Therefore, black-box attack method is crucial in contemporary
network security threats. State-of-the-art black-box attack strategies include techniques based on Generative
Adversarial Networks (GANs) [11], transfer learning methods, and embedded adversarial sample generation
approaches. GAN generates traffic with malicious intent to evade IDS through adversarial training between
the generator and the discriminator.

Although GAN has made great achievements in the field of adversarial attacks, a key challenge persists,
known as pattern collapse [12]. There are many reasons for mode collapse, one of which is insufficient
generator capacity. Given that the GAN model primarily generates data through the interplay between the
generator and the discriminator, the selection of the loss function directly influences the diversity and quality
of the generated data [13,14]. Therefore, we still need to further explore more complex and advanced GAN
technologies to increase the diversity and authenticity of adversarial samples.

This paper proposes an adversarial attack method called DEMGAN to cover up malicious traffic and
evade IDS detection. This not only has a positive impact on network security but also plays an important
role in privacy protection [15]. The main contributions of this paper are summarized as follows.

1. We use WGAN [16] as the base model and introduce multiple generators structure in DEMGAN to
solve the mode collapse problem of traditional GAN, this approach enhances the ability to conceal
malicious traffic and enhances the adaptability of the model. Experimental results demonstrate that
DEMGAN, utilizing multiple generators structures, achieves an average evasion rate enhancement of
17.79% compared to WGAN with a single generator structure.

2. To enhance the ability to conceal malicious traffic data while preserving its malicious nature, a distortion
rate is incorporated into DEMGAN to quantify the variance between the generated data and the initial
data. Experimental results demonstrate that the evasion rate achieved by DEMGAN exhibits an average
improvement of 21.34% in comparison to WGAN.

3. We performed experiments using the CICIDS2017 and CICIDS2018 datasets to evaluate the effective-
ness of our proposed DEMGAN in evading ML-based IDS. Our findings show that DEMGAN achieved
an average evasion rate increase of 22.89% compared to WGAN. In addition, retraining IDS with
adversarial examples generated by DEMGAN can improve the detection ability of IDS.

2 Motivation
As network attacks become increasingly complex and diverse, IDS, as the first line of defense for network

security, is of great importance. In recent years, intrusion detection algorithms based on machine learning
have gradually become mainstream due to their powerful pattern recognition capabilities and adaptive
characteristics. GAN, as a powerful generative model, can generate samples that are highly similar to real
data by learning data distribution. Using GAN to generate adversarial samples can not only simulate the
behavior of attackers and reveal potential vulnerabilities in intrusion detection systems, but also provide
defenders with a new tool for enhancing the security of the system. By using the generated adversarial samples
for retraining intrusion detection systems, the model’s resistance to adversarial attacks can be significantly
improved, thereby improving overall network security.
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This study aims to explore the adversarial sample generation technology based on GAN and evaluate
its effectiveness in evading intrusion detection systems. At the same time, we further study how to use these
adversarial samples to enhance the robustness of intrusion detection systems. Through this study, we hope
to provide a new defense idea for the field of network security and help build a more secure and reliable
network environment.

3 Related Work

3.1 Network Intrusion Detection Technology
IDS is an important component of network security, which aims to identify potential attacks or

abnormal activities by monitoring network traffic or system behavior. In recent years, with the increasing
complexity and diversity of network attacks, traditional IDS methods face many challenges, such as insuf-
ficient detection capabilities for new attacks, high false alarm rates, and limited processing capabilities for
encrypted traffic. To address these challenges, machine learning techniques are widely used in intrusion
detection systems. For example, supervised learning methods (such as SVM and random forest) are used
for network traffic classification and attack identification, while unsupervised learning methods are used for
anomaly detection. In addition, deep learning techniques [17,18] excel in processing high-dimensional data
and nonlinear relationships and are used to detect complex network attacks.

3.2 Adversarial Machine Learning
Adversarial machine learning is to attack machine learning models by generating adversarial samples,

or to improve the model’s ability to resist such attacks. Adversarial machine learning can be divided into two
main categories: adversarial attacks and adversarial defenses. Adversarial attacks can be divided into white-
box attacks and black-box attacks. In recent years, research [19] has employed white-box attack methods
to carry out traffic attacks. However, in practical scenarios, attackers often face challenges in obtaining
comprehensive internal information about the target system due to its confidential and sensitive nature.
Consequently, black-box attacks have emerged as a more viable option.

We utilize GANs in our algorithms for two main reasons. Firstly, GANs have demonstrated strong
performance in various domains, and the data produced by GANs can mislead recognition systems across
different domains. Secondly, GANs possess a distinctive advantage in data generation by understanding
the distributional characteristics of the data and creating samples that closely resemble real data. This
proficiency is especially vital in areas where data scarcity or difficulty in obtaining data is a prevalent issue.
GAN continuously optimize the generator’s capacity to produce authentic samples through adversarial
training. Consequently, GANs emerge as an optimal option for generating adversarial samples, particularly
for intrusion detection systems [20–24].

4 Methodology
In this section, we propose a method called DEMGAN for generating adversarial samples of malicious

traffic to evade ML-based IDS. We use WGAN as the base model and enhance it.
Overview: Fig. 1 illustrates our process of generating adversarial examples, which is divided into two

parts: data preprocessing and adversarial example generation based on DEMGAN.

4.1 Data Preprocessing
The data preprocessing part is divided into three stages: data cleaning, feature extraction, and data

normalization.
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Figure 1: Adversarial example generation process

Data Cleaning: Data cleaning is one of the crucial steps in data preprocessing, ensuring that the model
receives accurate and stable input during the training process. In numerous datasets, outliers like NaN or
Infinity may exist, potentially impacting model training negatively. When dealing with data containing NaN
or Infinity, the approach in this article is to remove the data samples containing these outliers. This practice
helps prevent the outliers from interfering with model training, ensuring the quality and consistency of the
dataset, as well as the accuracy and stability of model training.

Feature Extraction: This paper utilizes mutual information [25] as a method for feature extraction to
compute the correlation coefficient between each feature and the label associated with the data sample. By
computing mutual information, the significance of each feature in predicting labels can be assessed, enabling
the identification of the most beneficial features for the model’s predictions. In mutual information, let X
and Y denote two random variables that can represent any form of data, such as text, images, etc. Their joint
probability distribution is denoted as P(X, Y), and their marginal probabilities are P(X) and P(Y). The mutual
information between X and Y is typically denoted as (X; Y) and is defined by Eq. (1).

I (X; Y) = ∑
y∈Y
∑
x∈X

P (X , Y) log( p (x , y)
p (x) p (y)) (1)

Data Normalization: This article employs the maximum-minimum normalization method to stan-
dardize the data. Max-min normalization is a widely used data preprocessing technique. It scales the original
data to the range [0, 1], ensuring a consistent scale for the data, which aids in model training and convergence.
The formula for max-min normalization is presented in Eq. (2).
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x∗ = x − xmin

xmax − xmin
(2)

4.2 Adversarial Example Generation
This paper proposes the DEMGAN model for generating adversarial examples. The DEMGAN model

comprises multiple generators and a discriminator. The generator creates adversarial example data, while the
discriminator assesses the authenticity of the generated adversarial examples.

4.2.1 WGAN
WGAN was proposed by Martin et al. in 2017. It is a variant of GAN. The significance of Wasserstein

distance is to measure the minimum moving cost in real space between two distributions. In WGAN,
by minimizing the Wasserstein distance between the generated distribution and the real distribution, the
generator can be prompted to generate samples that are closer to the real data distribution, thereby improving
the performance and stability of the generated model. In WGAN, for a given real distribution (Pr) and
generator distribution (Pg), the Wasserstein distance is defined as Eq. (3). Among them,∏(Pr, Pg) represents
the set of all joint distributions γ(x, y), whose margins are Pr and Pg ⋅γ(x, y) represents that to convert the
distribution Pr into Pg , it must be converted from the “quality” of transmission from x to y, and W(Pr, Pg) is
the cost of the optimal transmission solution, which is the “price” that must be paid.

W (Pr, Pg) =
inf

γ ∈ Π (Pr, Pg)
E(x,y)∼γ[∣∣x − y∣∣] (3)

Since the information in the Wasserstein distance cannot be solved directly, a known theorem can
convert the Wasserstein distance into Eq. (4). Here, 1/K represents a normalization factor used to adjust the
effect of the Lipschitz constant K, sup represents the supremum, Ex∼Pr [ f (x)] represents the expected value
of function f under the real data distribution, Ex∼Pg [ f (x)] represents the expected value of the function f
under the generated data distribution, ∣∣ f ∣∣L ≤ K is the Lipschitz condition, which means that the Lipschitz
constant of function f does not exceed K, f (x) is a K-Lipschitz continuous function, usually implemented
by the discriminator.

W (Pr , Pg) =
1
K

sup
∣∣ f ∣∣L≤K

Ex∼Pr [ f (x)] − Ex∼Pg [ f (x)] (4)

4.2.2 DEMGAN
This article discusses the unresolved issues in WGAN, maintains the utilization of the Wasserstein

distance method in WGAN, and integrates Transformer as the generator architecture, and RNN as the
discriminator architecture, resulting in the development of a robust generative adversarial network called
DEMGAN. We have mainly made two improvements based on WGAN, namely a multi-generator structure
and loss function.

Multi-generator Structure: In WGAN, the task of the generator is often much more challenging
than that of the discriminator. The generator must strive to produce highly realistic data to minimize the
discriminator’s errors. Although WGAN solves some problems inherent in GAN, the problem persists when
dealing with large datasets. Drawing inspiration from the use of multi-generators in the field of image
processing [26], we propose incorporating a multi-generator structure into WGAN to enhance generator
diversity and improve the quality of generated samples.
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We train multiple generators simultaneously in DEMGAN. Each generator is responsible for generating
a subset of the data or a specific pattern. In order to effectively input the output of these generators into
the discriminator, we adopted the concatenation method, that is, concatenating the subsets generated by
multiple generators into a set, and inputting the data in the generated set and the original real data into the
discriminator together. The discriminator determines the authenticity of the generated data, and then feeds
the result back to the generator to adjust the parameters so that the generator can generate high-quality data.
This approach allows each generator to focus on generating a specific pattern, enhancing the simulation and
generation of various types of data samples. Consequently, it increases the diversity and authenticity of the
generated data. Fig. 2 illustrates the fundamental structural difference between WGAN and DEMGAN.

(a) Original WGAN (b) Our DEMGAN
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Figure 2: Structure of WGAN and DEMGAN

Loss Function Improvement: In WGAN, we minimize the Wasserstein distance by constraining the
parameters of the discriminator to be Lipschitz continuous and then optimizing a loss function with
truncated gradients. Based on the generator loss function of WGAN, we incorporate the distortion rate to
quantify the disparity between real data and generated data. This enhancement can assist the model in more
precisely assessing the variance between generated data and real data, and aid the generator in finely tuning
the attributes of the generated data, thereby enhancing the training efficacy of the generator and the quality
of the generated samples. The final loss function of the DEMGAN generator is defined as Eq. (5). In the
formula, P(i)

g represents the ith feature of the original data, P(i)
r represents the ith feature of the generated

adversarial samples, and N represents the feature dimension, which is used to measure the strength of the
correction. The main reason why we add the distortion rate on the basis of the WGAN loss function is that
the distortion rate can measure the distance between the generated data and the real data, further improving
the authenticity of the generated data.

LG = −Ex∼Pg [ fw (x)] +
�


�∑

i
(P(i)

g − P(i)
r )

2
/N (5)

According to the definition of DEMGAN, it can be concluded that the purpose of the generator is to
generate more realistic data. Therefore, the final training objective of the generator is as depicted in Eq. (6).
We consider Eq. (6) as having two parts. The first part pertains to the training objective of the original
WGAN, which we will not delve into here. The second part involves the training objective introduced by
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DEMGAN, which we will elaborate on. When the data generated by DEMGAN approaches the original data
infinitely closely, which can be achieved under ideal conditions, Eq. (7) can be derived. At this point, the
DEMGAN generator attains optimal performance.

min (−Ex∼Pg [ fw (x)]) +min
⎛
⎝

�


�∑

i
(P(i)

g − P(i)
r )

2
/N
⎞
⎠

(6)

l im
�


�∑

i
(Pg

(i) − Pr
(i))

2
/N = 0 (7)

4.3 Evading ML-Based IDS
This paper selects a variety of ML-based IDS algorithms for experiments to verify the effectiveness of

DEMGAN in evading ML-based IDS. The specific operations are as follows:

• Use traffic data to train ML-based IDS algorithms.
• The adversarial examples generated by DEMGAN are input into the ML-based IDS algorithm for clas-

sification.
• If the ML-based IDS cannot identify the adversarial examples generated by DEMGAN as malicious

traffic but benign traffic, it means that the adversarial examples generated by DEMGAN can evade the
ML-based IDS, which also means that DEMGAN can evade the ML-based IDS.

5 Experiments and Results
In this section, we experimentally verify the effectiveness of the adversarial examples generated by

DEMGAN. First, we provide detailed settings of the experimental process and an introduction to the dataset.
Subsequently, we conduct a series of experiments on the proposed adversarial example generation method.
Additionally, we perform ablation experiments to confirm the effectiveness of all improvement steps.

5.1 Experimental Setup
5.1.1 Experiment Equipment

Our experimental equipment consists of two parts: a computer equipped with an Intel Xeon Platinum
8352 V processor (Santa Clara, CA, USA) and 90 GB of memory, and an NVIDIA RTX 4090 graphics card
(Santa Clara, CA, USA). The computer runs on the Ubuntu 20.04 operating system, and we utilize Python
3.8, PyTorch 2.0, and TensorFlow 2.0 framework to implement our deep learning model. In the experiment,
we utilized the CPU for the initial data preprocessing and model training and then switched to the GPU to
expedite the model calculations. In order to demonstrate the effectiveness of DEMGAN more intuitively and
clearly, in our experiments, both the generator and discriminator models of WGAN and DEMGAN use the
Transformer model and RNN model.

5.1.2 Datasets and Preprocessing
This article utilizes the standard data sets CICIDS2017 and CICIDS2018, commonly employed in

analyzing traffic attacks. This article removes data containing NaN and Infinity from the dataset. We utilized
all the data from the CICIDS2017 dataset for our experiments. For the CICIDS2018 dataset, only a portion
of the data was selected for experimentation. Following data cleaning, the traffic categories and quantities
for each dataset used in this article are presented in Table 1. Mutual information is used to calculate the
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correlation coefficient between each feature in the experimental data and the data label. Table 2 lists the top
10 features with the highest correlation coefficients with traffic data labels in the two datasets.

Table 1: Data distribution in the data set after data cleaning

Dataset Category Quantity Dataset Category Quantity

CICIDS2017

Benign 2,271,319

CICIDS2018

Benign 1205,106
Bot 1956 Bot 286,191

Brute Force 1507 DoSHulk 461,912
DDoS 128,025 SlowHTTPTest 139,886
XSS 625 – – –

SSH Patator 5897 – – –
SQL Injection 21 – – –

PortScan 158,804 – – –
Infiltration 36 – – –
Heartbleed 11 – – –
FTP Patator 7935 – – –

DoS 251,712 – – –

Table 2: Characteristics of the top 10 correlation coefficients with data labels in the CICIDS2017 and CICIDS2018
datasets

Ranking CICIDS2017 CICIDS2018
1 Total length of Fwd packets Dst port
2 Subflow Fwd bytes Fwd IAT max
3 Subflow Bwd bytes Fwd IAT mean
4 Total length of Bwd packets Flow Pkts/s
5 Bwd packet length mean Fwd IAT tot
6 Avg Bwd segment size Flow IAT mean
7 Destination port Fwd Pkts/s
8 Fwd header length Flow IAT max
9 Average packet size Flow duration
10 Bwd packet length max Fwd IAT min

When using DEMGAN to generate adversarial samples, we considered the balance between malicious
intent and evasion detection to ensure that the generated adversarial examples can effectively deceive the
intrusion detection system while maintaining the malicious nature of the data, thereby enhancing adversarial
attacks. Table 3 illustrates the modifications made to some features in the two datasets. Changed indicates
that the feature data modified by DEMGAN can serve as the final data of the adversarial example, unchanged
indicates that the feature data still requires the use of the original data that has not been altered by DEMGAN.
To provide clarity, we will use specific feature data modification conditions as examples. The source address
and destination address are crucial identifiers for network communications, used to denote the sender and
receiver of a data packet. Therefore, even if DEMGAN alters the content of malicious traffic, the source
address and destination address in the data packet must remain unaltered. The protocol field of the traffic
data specifies the transport protocol utilized by the data packet, such as TCP, UDP, or ICMP. This field dictates
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how the data packet is processed, the format of the data packet header, and cannot be modified. ACK Flag
Cnt denotes the number of acknowledgment flags in a TCP packet, indicating whether the packet includes an
acknowledgment message. These flags are defined by the TCP protocol, and their number and significance
are vital for the accurate processing of the TCP protocol, hence they cannot be altered. Once information
such as ACK Flag Cnt is changed, the authenticity and validity of the traffic data cannot be ensured, and it
will not be able to play a role in adversarial attacks, affecting the final experimental results.

Table 3: Modification status of feature data in two sets of datasets

CICIDS2017 CICIDS2018
Feature Operate Feature Operate

Total length of Fwd packets Changed Dst Port Unchanged
Subflow Fwd bytes Changed Flow Duration Changed
Subflow Bwd bytes Changed Total Fwd Packets Changed

Total length of Bwd packets Changed Fwd Packet Length Max Changed
Destination port Unchanged PSH Flag Cnt Unchanged

Total Fwd packets Changed ACK Flag Cnt Unchanged
URG Flag count Unchanged Flow IAT Std Changed
CWE Flag count Unchanged Bwd Header Length Changed

5.1.3 Evaluation Metrics
We use evasion rate (ER) to measure the success rate of evading ML-based IDS after using DEMGAN

for adversarial example generation. The evasion rate is a common evaluation indicator in traffic attacks. It
can reflect the effectiveness and practicality of the adversarial example generation algorithm, as well as the
difficulty of detecting the adversarial examples. Let P be the total number of malicious traffic, and L be the
total number of traffic that the ML-based IDS detection result is benign. The calculation of ER is as shown
in Eq. (8).

ER = L
P

(8)

We use accuracy to verify the improvement effect of adversarial samples generated by DEMGAN on the
intrusion detection algorithm after retraining. The specific mathematical representation is shown in Eq. (9).
TP represents true positive examples, TN represents true negative examples, FP represents false positive
examples, and FN represents false negative examples.

Accurac y = TP + TN
TP + TN + FP + FN

(9)

5.1.4 IDS Algorithm Selection
This paper evaluates the effectiveness of the proposed DEMGAN using various ML-based intrusion

detection systems (IDS) [27]. We selected a range of intrusion detection algorithms such as decision
tree (DT), naive Bayes (NB), logistic regression (Logistic), multi-layer perceptron (MLP), and we also
selected more complex neural networks such as convolutional neural network (CNN), recurrent neural
network (RNN) and CNN-BiLSTM. By adopting these different intrusion detection algorithms, we can
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comprehensively evaluate the performance and impact of DEMGAN, as well as its applicability to various
types of intrusion detection algorithms.

5.2 DENGAN’s Improvement Proof
In this section, we use experiments to prove the effectiveness of DEMGAN’s two improvements.

5.2.1 Solve the Mode Collapse Problem
Table 4 presents the experimental results of evasion rates using WGAN and DEMGAN for five

categories of malicious traffic data. The results indicate that malicious traffic disguised using DEMGAN is
more successful in evading ML-based IDS compared to traffic disguised using WGAN. Consequently, the
adversarial examples produced by DEMGAN exhibit greater diversity than those generated by WGAN.

Table 4: Comparative experiment on multi-category evasion rate

Doshulk DoSGoldenEye DoSGoldenEye FTP-Patator PortScan

DT WGAN 51.04% 58.79% 54.44% 61.56% 56.88%
DEMGAN 95.65% 97.15% 100% 100% 100%

Logistic WGAN 48.22% 48.15% 48.25% 47.68% 48.01%
DEMGAN 100% 100% 100% 100% 93.7%

MLP WGAN 86.73% 80.18% 100% 72.36% 88.64%
DEMGAN 100% 100% 100% 100% 100%

NB WGAN 90.90% 91.11% 90.19% 90.20% 90.96%
DEMGAN 100% 100% 100% 100% 93.7%

5.2.2 Addressing Data Diversity Lack
We conducted multiple experiments using DEMGAN and recorded the generator loss each time, as

shown in Fig. 3. The experimental results indicate that as the number of training rounds increases, the
generator loss gradually decreases. In Fig. 3, lines of different colors represent the changes in the generator’s
loss function in different rounds of experiments as the number of training times increases.

Figure 3: Changes in generator loss from multiple experiments
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5.3 Attacking ML-Based IDS
In this section, we detected the evasion rate on the preprocessed CICIDS2017 dataset and uniformly

labeled all malicious traffic data as attack samples. Fig. 4 displays the classification confusion matrix results
after injecting the adversarial examples generated by DEMGAN into normal traffic. The green section
represents the volume of malicious traffic, which, when camouflaged by DEMGAN, leads to the IDS
detection outcome being benign traffic. Table 5 presents the evasion rate results of traffic attacks against five
ML-based IDS after applying DEMGAN to disguise malicious traffic.

Figure 4: Results of dichotomous confusion matrices based on different IDSs

Table 5: The escape rate results of binary classification of adversarial examples generated by DEMGAN

DT Logistic MLP NB CNN RNN CNN-BiLSTM
WGAN 61.15% 48.94% 83.96% 90.77% 35.99% 41.06% 36.64%

DEMGAN 97.88% 94.97% 96.41% 97.85% 100% 97,.61% 96.41%

5.4 Comparison with GAN-Based Attacks
We simulated the threat model specified in the ADVGAN [28] paper on the CICIDS2017 dataset. The

results are presented in Table 6. The experimental results indicate that ADVGAN attains a high evasion rate
among MLP methods but demonstrates poor performance in the other IDS, particularly in CNN, where the
evasion rate is less than 10%.

5.5 Validation of DEMGAN Applicability
To verify the universality of the DEMGAN method, we selected some data from the CICIDS2018 dataset

for experiments. Table 7 displays the experimental results of the evasion rate in comparison to the original
WGAN. The findings indicate that DEMGAN can effectively evade ML-based IDS. Our approach achieves a
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100% evasion rate on MLP, NB, and CNN models. However, the results are slightly less favorable for logistic
regression and decision tree models, which have now become a focal point for our future research.

Table 6: ADVGAN attack results

DT Logistic MLP NB CNN RNN CNN-BiLSTM
ADVGAN 84.59% 67.24% 95.15% 18.86% 1.7% 18.06% 17.81%
DEMGAN 97.88% 94.97% 96.41% 97.85% 100% 97,.61% 96.41%

Table 7: The binary evasion rate results of DEMGAN attack on ML-based IDS

DT Logistic MLP NB CNN RNN CNN-BiLSTM Macro-ER
WGAN 68.26% 58.07% 65.84% 100% 82.84% 53.47% 42.81% 67.33%

DEMGAN 72.22% 65.34% 100% 100% 100% 97.51% 98.72% 90.54%

5.6 Ablation Experiment
In this section, we verify the effectiveness of various improvements to the model through ablation

experiments. Fig. 5 intuitively demonstrates the efficacy of various improvements. The experimental results
show that although there is a significant improvement in the effect when only one of the two improvements
is made, when the two improvements are applied to DEMGAN at the same time, the effect of DEMGAN
reaches the best and the two improvements do not have a counter-effect.

Figure 5: Escape rate results under various improvement
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In the ablation experiment, there are four combinations.

• Combination 1 (WGAN): Indicates the case where the loss function of the original WGAN is used, the
Transformer is used as the generator, and RNN is used as the discriminator.

• Combination 2 (DEMGAN-loss): Indicates the use of our improved loss function with distortion rate
added, Transformer as the generator, and RNN as the discriminator.

• Combination 3 (DENGAN-muliG): Indicates the case of using the loss function of the original GAN,
using multiple Transformer generator structures, and using RNN as the discriminator.

• Combination 4 (DEMGAN): Indicates the use of our improved loss function that adds distortion rate
and multiple Transformer generator structures.

5.7 Comparative Efficiency Analysis
In order to comprehensively evaluate the performance of DEMGAN in practical applications, we con-

ducted a systematic efficiency comparison experiment on WGAN and DEMGAN in the same experimental
environment as Section 5.1.1. The experiment used 100,000 sample data from 7 randomly selected traffic
categories, and obtained reliable performance indicator data by taking the average value of 10 independent
repeated experiments. The specific experimental results show that under the condition of generating the
same number of adversarial samples, the total time consumed by WGAN is 5248.72 s, while DEMGAN only
takes 5124.93 s. In terms of resource usage, the peak memory usage of both methods is 456 MB, showing a
comparable level of resource requirements. These experimental results verify that DEMGAN has achieved
significant time efficiency improvement while maintaining the same resource usage as WGAN.

5.8 Enhancements to IDS
We further validated the enhancement effect of the DEMGAN algorithm on Intrusion Detection

Systems (IDS) by using its generated adversarial examples to retrain the ML-based IDS. Fig. 6 illustrates
the change in recognition accuracy of the adversarial examples generated by DEMGAN before and after
retraining the IDS.

Figure 6: Recognition accuracy of ML-based IDS before and after retraining using adversarial examples
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According to the experimental results, it can be observed that when the Intrusion Detection System
(IDS) is retrained without using adversarial examples, the adversarial examples generated by DEMGAN can
successfully evade the intrusion detection algorithm. This evasion is particularly effective when employing
techniques such as decision trees, linear regression, Naive Bayes, and CNN, as the recognition rate of
adversarial examples can be decreased to below 5%.

By utilizing adversarial examples for retraining, an Intrusion Detection System (IDS) learns the
counterattack mechanism against adversarial examples. This process can effectively enhance its ability to
identify adversarial examples and enable it to better distinguish between normal data and malicious intrusion
behaviors. Consequently, it further improves the overall performance and security of the IDS, safeguarding
the network from potential intrusion threats.

6 Conclusion
This paper introduces an adversarial traffic attack method called DEMGAN, designed for attackers

to evade intrusion detection systems. We have made two improvements based on WGAN. The improved
algorithm can generate real adversarial malicious traffic and evade a variety of ML-based IDS. We conducted
ablation experiments and algorithm applicability experiments, and the results show that the adversarial
examples generated by our attack algorithm can achieve the purpose of evading IDS on multiple datasets.
We also conducted experiments to demonstrate that retraining using adversarial examples generated by
DEMGAN can effectively improve the performance of IDS. In the future, we will focus on addressing
DEMGAN’s low evasion rate on linear regression algorithms and decision tree algorithms. At the same time,
we still need to continuously improve the algorithm to achieve better results, make it more meaningful in
practical applications, and improve the level of network security.
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